WO2017087070A1 - Système à ligne de transmission à effet josephson (jtl) - Google Patents

Système à ligne de transmission à effet josephson (jtl) Download PDF

Info

Publication number
WO2017087070A1
WO2017087070A1 PCT/US2016/053412 US2016053412W WO2017087070A1 WO 2017087070 A1 WO2017087070 A1 WO 2017087070A1 US 2016053412 W US2016053412 W US 2016053412W WO 2017087070 A1 WO2017087070 A1 WO 2017087070A1
Authority
WO
WIPO (PCT)
Prior art keywords
jtl
phase
stage
clock
transformer
Prior art date
Application number
PCT/US2016/053412
Other languages
English (en)
Inventor
Donald L. Miller
Ofer Naaman
Original Assignee
Northrop Grumman Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Systems Corporation filed Critical Northrop Grumman Systems Corporation
Priority to JP2018525546A priority Critical patent/JP6556952B2/ja
Priority to CA3003272A priority patent/CA3003272C/fr
Priority to KR1020207009213A priority patent/KR102158678B1/ko
Priority to KR1020187013489A priority patent/KR102098081B1/ko
Priority to AU2016357098A priority patent/AU2016357098B2/en
Priority to EP16781601.6A priority patent/EP3378162B1/fr
Publication of WO2017087070A1 publication Critical patent/WO2017087070A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/38Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of superconductive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • H03K19/1952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with electro-magnetic coupling of the control current

Definitions

  • the present invention relates generally to computer systems, and specifically to a
  • JTL Josephson transmission line
  • Superconducting digital technology has been developed as an alternative to CMOS technology, and typically comprises superconductor based single flux superconducting circuitry, utilizing superconducting Josephson junctions, and can exhibit typical signal power dissipation of less than 1 nW (nanowatt) per active device at a typical data rate of 20 Gb/s (gigabytes/second) or greater, and can operate at temperatures of around 4 Kelvin.
  • Multiple Josephson junctions and inductors can be provided in a specific arrangement to provide a Josephson transmission line to propagate data signals in superconductor computing systems.
  • JTL Josephson transmission line
  • the system includes a plurality of JTL stages that are arranged in series.
  • the system also includes a clock transformer comprising a primary inductor configured to propagate an AC clock signal and a secondary inductor arranged in a series loop with at least two of the plurality of JTL stages.
  • the clock transformer can be configured to propagate a single flux quantum (SFQ) pulse to set a respective one of the plurality of JTL stages in response to a first phase of the AC clock signal and to reset the respective one of the plurality of JTL stages in response to a second phase of the AC clock signal that is opposite the first phase.
  • SFQ single flux quantum
  • Another embodiment includes a method for propagating an SFQ pulse in a JTL system.
  • the method includes providing a DC bias current through a primary inductor of a bias transformer to induce a bias signal via a secondary inductor.
  • the method also includes providing an AC clock signal through a primary inductor of each of at least one clock transformer, each of the at least one clock transformer comprising a secondary inductor arranged in series with the secondary inductor associated with the bias transformer in a respective at least one series loop with at least two of a plurality of JTL stages of the JTL system.
  • the method further includes providing unipolar SFQ pulses at an input of the JTL system, each of the unipolar SFQ pulses being propagated through the plurality of JTL stages based on the bias signal and the AC clock signal to set one of the JTL stages in the at least one series loop and to concurrently reset another one of the JTL stages in the at least one series loop in a sequence,.
  • Another embodiment includes a JTL system comprising a first JTL stage, a second JTL stage, a third JTL stage, and a fourth JTL stage.
  • the first JTL stage is controlled via at least one first clock transformer comprising a respective at least one primary inductor that carries an in-phase component of an AC clock signal and a respective at least one secondary inductor that is arranged in a first series loop with the first JTL stage.
  • the first JTL stage can be set in response to an SFQ pulse propagating through the first JTL stage at a first phase of the in- phase component and can be reset in response to the SFQ pulse propagating through the third JTL stage at a second phase of the in-phase component opposite the first phase.
  • the second JTL stage is arranged in series with the first JTL stage.
  • the second JTL stage can be controlled via at least one second clock transformer comprising a respective at least one primary inductor that carries a quadrature -phase component of the AC clock signal and a respective at least one secondary inductor that is arranged in a second series loop with the second JTL stage.
  • the second JTL stage can be set in response to the SFQ pulse propagating through the second JTL stage at a first phase of the quadrature-phase component and can be reset in response to the SFQ pulse propagating through the fourth JTL stage at a second phase of the quadrature-phase component opposite the first phase.
  • the third JTL stage is arranged in series with the second JTL stage.
  • the third JTL stage can be controlled via the first clock transformer and is arranged in the first series loop, the third JTL stage being set in response to the SFQ pulse propagating through the third JTL stage at the second phase of the in-phase component and can be reset in response to the SFQ pulse propagating through the first JTL stage at the first phase of the in- phase component.
  • the fourth JTL stage is arranged in series with the third JTL stage.
  • the fourth JTL stage can be controlled via the second clock transformer and is arranged in the second series loop.
  • the fourth JTL stage can be set in response to the SFQ pulse propagating through the fourth JTL stage at the second phase of the quadrature-phase component and can be reset in response to the SFQ pulse propagating through the second JTL stage at the first phase of the quadrature-phase component.
  • FIG. 1 illustrates an example of a JTL system.
  • FIG. 2 illustrates an example of a JTL circuit.
  • FIG. 3 illustrates an example of a timing diagram
  • FIG. 4 illustrates an example diagram of flux in a JTL circuit.
  • FIG. 5 illustrates another example diagram of flux in a JTL circuit.
  • FIG. 6 illustrates yet another example diagram of flux in a JTL circuit.
  • FIG. 7 illustrates yet a further example diagram of flux in a JTL circuit.
  • FIG. 8 illustrates an example of a flux-shuttle system.
  • FIG. 9 illustrates an example of a method for propagating unipolar SFQ pulses in a JTL system.
  • the present invention relates generally to computer systems, and specifically to a
  • the JTL system can include a plurality of JTL stages that can each be configured as superconducting quantum interference devices (SQUIDs), such that each stage can include a pair of Josephson junctions and an inductor.
  • the JTL system can also include at least one clock transformer, one associated with each of the JTL stages, and at least one bias transformer.
  • the bias transformer can include a primary inductor that carries a DC bias current, and thus induces a bias signal on the secondary inductor.
  • the clock transformers can propagate an AC clock signal on primary inductors, and can thus induce the AC clock signal on the secondary inductors.
  • the secondary inductors of the clock transformers and the secondary inductor of the bias transformer can be arranged in a series loop with the respective JTL stages.
  • the series loop comprising a given one of the JTL stages can switch to one of a first flux state and a second flux state in response to a single flux quantum (SFQ) pulse propagating from the respective JTL stage to a next JTL stage of the JTL.
  • SFQ single flux quantum
  • the series loop comprising the JTL stage can switch to the other of the first and second flux states based on the propagation of the SFQ pulse through another JTL stage that is coupled in a series loop with the respective JTL stage, and thus can be reset absent a negative SFQ pulse. Therefore, the JTL system can provide self-resetting of the JTL stages without providing negative SFQ pulses, and can thus propagate a unipolar SFQ pulse stream.
  • the AC clock signal can be configured as a quadrature signal that includes an in-phase component and a quadrature-phase component (e.g., 90° out-of-phase with respect to each other).
  • the JTL stages can be arranged as a first JTL stage, a second JTL stage, a third JTL stage, and a fourth JTL stage that are arranged in a sequence.
  • the first and third JTL stages can be arranged in a first series loop with secondary inductors of respective first and third clock transformers associated with the in-phase component.
  • the second and fourth JTL stages can be arranged in a second series loop with secondary inductors of respective second and fourth clock transformers associated with the quadrature-phase component. Therefore, the respective series loops comprising first JTL stage and the second JTL stage are set from the first flux state to the second flux state via the first clock transformer and the second clock
  • transformer respectively, in response to the first phase of the in-phase component and the quadrature-phase component, respectively, of the AC clock signal, and the propagation of an SFQ pulse through the respective JTL stages, and are reset from the second flux state to the first flux state in response to the second phase of the in-phase component and the quadrature-phase component, respectively, of the AC clock signal.
  • the respective series loops comprising the third JTL stage and the fourth JTL stage are set from the second flux state to the first flux state via the third clock transformer and the fourth clock transformer, respectively, in response to the second phase of the in-phase component and the quadrature-phase component, respectively, of the AC clock signal, and the propagation of an SFQ pulse through the respective JTL stages, and are reset from the first flux state to the second flux state in response to the first phase of the in-phase component and the quadrature-phase component, respectively, of the AC clock signal.
  • a first flux state describes that a loop comprising a bias transformer secondary inductor and two JTL stages (e.g. first and third or second and fourth, as described herein), encloses a magnetic flux of + ⁇ /2, and therefore a persistent current in the loop is flowing away from the Josephson junctions of one of the JTL stages in the loop and towards the Josephson junctions of the other JTL stage in the loop.
  • a bias transformer secondary inductor e.g. first and third or second and fourth, as described herein
  • a second flux state describes that the same loop encloses a magnetic flux of - ⁇ /2, and therefore the persistent current in the loop is flowing in the opposite direction relative to the first flux state, and thus towards the Josephson junctions of the other JTL stage and away from the Josephson junctions of the one JTL stage (relative to the first flux state).
  • a JTL stage is described herein as "reset” when the persistent DC current in the respective bias transformer secondary inductor is flowing towards the Josephson junctions of the respective JTL stage.
  • a JTL stage is described herein as “set” when the persistent current in the respective bias transformer secondary inductor is flowing away from the Josephson junctions of the respective JTL stage.
  • one JTL stage in a given loop is in the set state and the other JTL stage is in the reset state. Accordingly, an SFQ propagating through the one JTL stage of the loop sets the respective one JTL stage, causing a transition to the second flux state and causing a reset of the other JTL stage of the loop.
  • FIG. 1 illustrates an example of a JTL system 10.
  • the JTL system 10 can be implemented in any of a variety of quantum and/or classical circuit systems to propagate SFQ pulses, such as between circuit devices. As described herein, the JTL system 10 can be implemented to propagate unipolar encoded SFQ pulses, and thus does not require negative SFQ pulses as typically required in a reciprocal quantum logic (RQL) computing system.
  • RQL reciprocal quantum logic
  • the term "propagate" with respect to an SFQ pulse describes an SFQ pulse being generated via the triggering of a Josephson junction in a given stage of the JTL system 10, such that the voltage of the SFQ pulse, combined with a bias voltage (e.g., via the clock signal CLK), causes a Josephson junction of the next stage in the JTL system 10 to generate another SFQ pulse, and so on.
  • the JTL system 10 can be implemented in a rapid single flux quantum (RSFQ) logic system, or in a combination RSFQ and RQL system.
  • RSFQ rapid single flux quantum
  • the JTL system 10 includes a plurality of JTL stages 12 that can each be associated with a given phase of an AC clock signal CLK.
  • the AC clock signal CLK can be a quadrature clock signal, such that the AC clock signal includes an in-phase component and a quadrature-phase component.
  • Each of the JTL stages 12 can be configured, for example, as SQUIDs.
  • each of the JTL stages 12 can include a pair of Josephson junctions and an inductor.
  • the JTL system 10 can also include at least one clock transformer 14, such that each of the clock transformers 14 can be associated with a respective one of the JTL stages 12.
  • the clock transformers 14 can propagate the AC clock signal on primary inductors, and can thus induce the AC clock signal on the secondary inductors of the clock transformers 14.
  • the secondary inductors of the clock transformers 14 can be arranged in a series loop with the respective JTL stages 12.
  • a DC flux bias signal BIAS can be provided to the JTL system 10 to provide a flux bias to the JTL stages 12 to facilitate the switching of flux states of the series loop, as described herein.
  • the JTL system 10 receives SFQ pulses, demonstrated as a signal PLS IN , at an input.
  • the signal PLS IN can be provided as a unipolar encoded sequence of SFQ pulses, which, as described in greater detail herein, can be absent negative SFQ pulses (as demonstrated at 16).
  • the series loop comprising a pair of the JTL stages 12 can switch to one of a first flux state and a second flux state in response to an SFQ pulse of the signal PLS IN to propagate the SFQ pulse from the respective JTL stage 12 to a next JTL stage 12 of the JTL system 10.
  • the series loop comprising the pair of JTL stages 12 can switch to the other of the first and second flux states based on the SFQ pulse of the signal PLS IN propagating through a respective one of the JTL stages 12, and thus can be reset absent a negative SFQ pulse. Therefore, the JTL system 10 can provide self -resetting of the JTL stages 12 without providing negative SFQ pulses, and can thus propagate a unipolar SFQ pulse stream.
  • FIG. 2 illustrates an example of a JTL circuit 50.
  • the JTL circuit 50 can correspond to the JTL system 10 in the example of FIG. 1, and can thus be configured to propagate a sequence of unipolar SFQ pulses.
  • the JTL circuit 50 includes a first JTL stage 52, a second JTL stage 54, a third JTL stage 56, and a fourth JTL stage 58.
  • the JTL stages 52, 54, 56, and 58 are sequentially arranged in series with respect to each other to propagate a signal PLS IN that can be provided as a sequence of unipolar SFQ pulses.
  • PLS IN signal
  • the AC clock signal is demonstrated as a quadrature signal including an in-phase component CLKi and a quadrature-phase component CLK Q . Therefore, the in-phase component CLKi and the quadrature-phase component CLK Q can collectively correspond to the AC clock signal, such as can be implemented for RQL circuits.
  • Each of the JTL stages 52, 54, 56, and 58 are configured substantially similarly with respect to each other, and are each arranged as SQUIDs.
  • the first JTL stage 52 includes a first Josephson junction Ju, a second Josephson junction J 2 1 , an inductor L x _ ⁇ , and an inductor L Y _ ⁇ .
  • the second JTL stage 54 includes a first Josephson junction J 1 2 , a second Josephson junction J 2 _ 2 , an inductor L x 2 , and an inductor L Y _ 2 .
  • the third JTL stage 56 includes a first Josephson junction Ji 3 , a second Josephson junction J 2 3 , an inductor L x 3 , and an inductor L Y 3 .
  • the fourth JTL stage 58 includes a first Josephson junction Ji 4, a second Josephson junction J 2 4, an inductor Lx 4, and an inductor Ly_ 4 .
  • the first JTL stage 52 receives the input signal PLS I via an inductor Li _ 1 and is separated from the second JTL stage 54 by an inductor L i 2 .
  • the second JTL stage 54 and the third JTL stage 56 are separated by an inductor Li 3
  • the third JTL stage 56 and the fourth JTL stage 58 are separated by an inductor Li 4.
  • the JTL circuit 50 can output SFQ pulses as an output signal PLS OUT - [0025]
  • the JTL circuit 50 also includes a plurality of clock transformers that are associated with each of the JTL stages 52, 54, 56, and 58.
  • the clock transformers include a first clock transformer Ti that is associated with the first JTL stage 52, a second clock transformer T 2 that is associated with the second JTL stage 54, a third clock transformer T 3 that is associated with the third JTL stage 56, and a fourth clock transformer T 4 that is associated with the fourth JTL stage 58.
  • the JTL circuit 50 includes a first bias transformer T B I that is associated with the first and third JTL stages 52 and 56, and a second bias transformer T B2 that is associated with the second and fourth JTL stages 54 and 58.
  • the clock transformers Ti and T 3 include primary inductors Ly and Li 3 , respectively, through which the in-phase component CLKi flows, and the clock transformers T 2 and T 4 include primary inductors Li 2 and Li 4, respectively, through which the quadrature-phase component CLK Q flows.
  • the bias transformers T B i and T B2 include primary inductors L B 1 and L B 3 through which a DC bias signal BIAS flows.
  • the clock transformer Ti provides inductive coupling of the in-phase component CLKi to the first JTL stage 52 via a secondary inductor L 2 _ 1 that is coupled between the inductors L x _ 1 and Ly_ 1 .
  • the clock transformer T 3 provides inductive coupling of the in-phase component CLKi to the third JTL stage 56 via a secondary inductor L 2 3 that is coupled between the inductors L x 3 and L Y 3 .
  • the bias transformer T B1 includes a secondary inductor L B 2 that is arranged in series with the secondary inductors L 2 _ 1 and L 2 3 to form a series loop between the first and third JTL stages 52 and 56.
  • the clock transformer T 2 provides inductive coupling of the quadrature-phase component CLK Q to the second JTL stage 54 via a secondary inductor L 2 2 that is coupled between the inductors L x 2 and L Y 2 .
  • the clock transformer T 4 provides inductive coupling of the quadrature-phase component CLK Q to the fourth JTL stage 58 via a secondary inductor L 2 4 that is coupled between the inductors Lx 4 and Ly_ 4 .
  • the bias transformer T B2 includes a secondary inductor L B 4 that is arranged in series with the secondary inductors L 2 2 and L 2 4 to form a series loop between the second and fourth JTL stages 54 and 58.
  • a flux state of the series loops comprising the JTL stages 52, 54, 56, and 58 can be sequentially switched at each phase and each opposite phase of the in-phase and quadrature-phase components CLKi and CLK Q .
  • each of the first in-phase component CLKi and the quadrature -phase component CLK Q can include a first phase corresponding to a positive peak (e.g., in a first half of a respective period) and a second phase that is opposite the first phase, and thus corresponding to a negative peak (e.g., in a second half of a respective period). Therefore, as described in greater detail in the examples of
  • the secondary inductors L 2 1 , L 2 _ 2 , L 2 3 , and L 2 4 of the clock transformers Ti, T 2 , T 3 , and T 4 can sequentially provide current in each of 90° intervals of the respective in-phase and quadrature-phase components CLKi and CLK Q to sequentially switch the flux states of the series loops comprising the JTL stages 52, 54, 56, and 58 in response to propagation of the SFQ pulse through each of the respective JTL stages 52, 54, 56, and 58.
  • the JTL circuit 50 can track the flux state of the secondary inductors L B 2 and L B 4 of the bias transformers T B i and T B2 , and thus the flux state of the series loops comprising the JTL stages 52, 54, 56, and 58 through each alternating first and second phase of the in-phase and quadrature-phase components CLKi and CLK Q to propagate an SFQ pulse through the JTL circuit 50 in one of the JTL stages 52, 54, 56, and 58 to set the flux state of the respective pair of the JTL stages 52, 54, 56, and 58 and to concurrently reset the flux state of the other of the JTL stages 52, 54, 56, and 58 in the same series loop.
  • FIG. 3-7 illustrate example diagrams of flux in the JTL circuit 50 of the example of FIG. 2 at each of different phases of the AC clock signal CLK.
  • FIG. 3 illustrates an example diagram 100 of an initial flux state of the JTL circuit 50.
  • FIG. 4 illustrates an example diagram 102 of the flux of the JTL circuit 50 at the first phase of the in-phase component CLKi
  • FIG. 5 illustrates an example diagram 104 of the flux of the JTL circuit 50 at the first phase of the quadrature-phase component CLK Q .
  • FIG. 6 illustrates an example diagram 106 of the flux of the JTL circuit 50 at the second phase of the in- phase component CLKi
  • FIG. 7 illustrates an example diagram 108 of the flux of the JTL circuit 50 at the second phase of the quadrature-phase component CLK Q .
  • the diagrams 100, 102, 104, 106, and 108 include the waveform of the AC clock signal CLK, demonstrated as the in-phase component CLKi and the quadrature-phase component CLK Q , as indicated at a legend 101, as a function of time.
  • the in-phase component CLKi and the quadrature-phase component CLK Q are each demonstrated as sinusoidal signals having magnitudes centered about zero.
  • the in-phase component CLKi and the quadrature-phase component CLK Q in the example of FIGS. 3-7 can correspond to the in-phase component CLKi and the quadrature-phase component CLK Q in the example of FIG. 2.
  • the JTL circuit 50 is demonstrated simplistically in the examples of FIGS. 3-7, and thus without the clock
  • the signal PLS I can provide an SFQ pulse to the inductor at approximately the time to.
  • the first series loop 110 formed by the first JTL stage 52, the secondary inductors L 2 _ ⁇ , L B 2 , L 2 3 , and the third JTL stage 56, has a first flux state (e.g., encloses a flux) of + ⁇ /2, as indicated in the diagram 100 in the example of FIG. 3.
  • the flux state + ⁇ 3>o/2 is based on the DC flux bias induced in the secondary inductor L B 2 via the DC flux transformer T B1 .
  • the in-phase component CLKi begins, with the first phase (e.g., positive peak) of the in-phase component CLKi occurring at a time ti (FIG. 4). Therefore, the in-phase component CLKi begins to induce a clock current via the secondary inductors L 2 _i and L 2 3 in a first direction, with current flowing towards the Josephson junctions Ji 1 and J 2 1 of the first JTL stage 52 based on the inductive coupling with the respective primary inductors Li _ 1 and Li 3 .
  • the induced clock current is combined with the induced bias signal (e.g., via the DC bias current BIAS provided via the secondary inductor L B 2) and the SFQ pulse indicated at 114 in the diagram 102 in the example of FIG. 4. Therefore, the critical current of the Josephson junctions Ji 1 and J 2 1 is exceeded by the combined current to trigger the Josephson junctions J 1 _ 1 and J 2 1 , thus propagating the SFQ pulse to the second JTL stage 54 via the inductor L i 2 and switching the flux state of the first series loop 110 from the first flux state of + ⁇ /2 to the second flux state of - ⁇ /2. Additionally, as described in greater detail herein, the switching of the flux state of the first series loop 110 from the first flux state of + ⁇ /2 to the second flux state of - ⁇ /2 resets the third JTL stage 56.
  • the critical current of the Josephson junctions Ji 1 and J 2 1 is exceeded by the combined current to trigger the Josephson junctions J 1 _ 1 and J 2 1 , thus propagating the SFQ
  • the secondary inductors L 2 _ 2 , L B 4, L 2 4, and the fourth JTL stage 58 has the first flux state (e.g., encloses a flux) of + ⁇ /2, based on the DC flux bias induced in the secondary inductor L B 4 via the DC flux transformer T B2 , as indicated in the diagram 102 in the example of FIG. 4.
  • the first flux state e.g., encloses a flux
  • the first phase e.g., positive peak
  • the quadrature-phase component CLK Q begins to induce a clock current via the secondary inductors L 2 2 and L 2 4 in a first direction with current flowing towards the Josephson junctions Ji 2 and J 2 2 of the second JTL stage 54 based on the inductive coupling with the respective primary inductors Li 2 and Li 4.
  • the induced clock current is combined with the induced bias signal (e.g., via the DC bias current BIAS provided via the secondary inductor L B 4) and the SFQ pulse. Therefore, the critical current of the Josephson junctions Ji 2 and J 2 2 is exceeded by the combined current to trigger the
  • Josephson junctions Ji 2 and J 2 2 thus propagating the SFQ pulse indicated at 116 in the diagram 104 in the example of FIG. 5 to the third JTL stage 56 via the inductor L i 3 and switching the flux state of the second series loop 112 from the first flux state of + ⁇ /2 to the second flux state of - ⁇ /2. Additionally, as described in greater detail herein, the switching of the flux state of the second series loop 112 from the first flux state of + ⁇ /2 to the second flux state of - ⁇ /2 resets the fourth JTL stage 58.
  • the first series loop 110 has the second flux state of -
  • the in-phase component CLKi begins to induce a clock current via the secondary inductors L 2 _ 1 and L 2 3 in a second direction, with current flowing towards the Josephson junctions Ji 3 and J 2 3 of the third JTL stage 56 based on the inductive coupling with the respective primary inductors Li i and Li 3 .
  • the induced clock current is combined with the induced bias signal (e.g., via the DC bias current BIAS provided via the secondary inductor L B 2 ) and the SFQ pulse.
  • the critical current of the Josephson junctions Ji 3 and J 2 3 is exceeded by the combined current to trigger the Josephson junctions Ji 3 and J 2 3 , thus propagating the SFQ pulse indicated at 118 in the diagram 106 in the example of FIG. 6 to the fourth JTL stage 58 via the inductor Li _ 4 and switching the flux state of the first series loop 110 from the second flux state of - ⁇ 0 /2 to the first flux state of + ⁇ 0 /2.
  • the first JTL stage 52 is reset absent a negative SFQ pulse.
  • the JTL circuit 50 is self-resetting with respect to the JTL stages 52, 54, 56, and 58.
  • the JTL circuit 50 can propagate the input signal PLS IN as a sequence of unipolar SFQ pulses, and thus does not require negative SFQ pulses to reset the respective JTL stages 52, 54, 56, and 58 upon propagating a SFQ pulse along the respective JTL formed by the JTL stages 52, 54, 56, and 58.
  • the third JTL stage 56 was similarly reset at the time ti, as demonstrated in the diagram 102 of the example of FIG. 4, in which the third JTL stage 56 is reset at approximately the time ti, and thus substantially concurrently with the setting of the first JTL stage 52.
  • the second series loop 112 has the second flux state of - ⁇ /2, as indicated in the diagram 106 in the example of FIG. 6.
  • a negative portion of the quadrature-phase component CLK Q begins, with the second phase of the quadrature-phase component CLK Q occurring at a time t 4 (FIG. 7). Therefore, the quadrature- phase component CLK Q begins to induce a clock current via the secondary inductors L 2 2 and L 2 4 in the second direction, with current flowing towards the Josephson junctions Ji 4 and J 2 4 of the fourth JTL stage 58 based on the inductive coupling with the respective primary inductors Li 2 and Li 4 .
  • the induced clock current is combined with the induced bias signal (e.g., via the DC bias current BIAS provided via the secondary inductor L B 4 ) and the SFQ pulse. Therefore, the critical current of the Josephson junctions Ji 4 and J 2 4 is exceeded by the combined current to trigger the Josephson junctions Ji 4 and J 2 4 , thus propagating the SFQ pulse, as indicated at 126 in the diagram 108 in the example of FIG. 7 as the output signal PLS OUT and switching the flux state of the second series loop 112 from the second flux state of - ⁇ /2 to the first flux state of + ⁇ /2.
  • the second JTL stage 54 is reset absent a negative SFQ pulse.
  • the fourth JTL stage 58 was similarly reset at the time t 2 , as demonstrated in the diagram 104 of the example of FIG. 5, and thus substantially concurrently with the setting of the second JTL stage 54.
  • FIGS. 2-7 demonstrate a JTL circuit 50 that can propagate the input signal PLS IN as a sequence of unipolar SFQ pulses, and can thus provide self -resetting of the JTL stages 52, 54, 56, and 58 without implementing negative SFQ pulses based on manipulating the flux states of the series loops 158 and 160 that include the respective JTL stages 52, 54, 56, and 58. It is to be understood that the JTL circuit 50 is not intended to be limited to the examples of FIGS. 2-7.
  • the series order of the transformers Ti, T B I, and T 3 with respect to the series loop 158, and the transformers T 2 , T B2 , and T 4 with respect to the series loop 160 is not limited to as demonstrated in the example of FIG. 2, but could be any equivalent series order.
  • the transformers Ti and T 3 and the transformers T 2 and T 4 are demonstrated as separate transformers having approximately equal mutual inductance, it is to be understood that an equivalent single transformer could be implemented instead of the separate transformers Ti and T 3 and/or the separate transformers T 2 and T 4 , with the single transformer having approximately twice the mutual inductance as the separate transformers Ti and T 3 and/or the separate transformers T 2 and T 4 .
  • the JTL circuit 50 can be a single JTL segment, such that multiple JTL segments can be combined in series to provide a JTL that extends through multiple periods of the AC clock signal CLK. Accordingly, the JTL circuit 50 can be configured in a variety of ways.
  • FIG. 8 illustrates an example of a flux-shuttle system 200.
  • the flux-shuttle system 200 can correspond to a Josephson AC/DC converter that is configured to convert an AC input signal (e.g., the AC clock signal CLK) to a DC output signal.
  • the flux-shuttle system 200 includes a first loop stage 202, a second loop stage 204, a third loop stage 206, and a fourth loop stage 208.
  • the loop stages 202, 204, 206, and 208 are configured substantially similar to the JTL stages 52, 54, 56, and 58 in the example of FIG. 2, and thus are demonstrated in the example of FIG. 8 as SQUIDs.
  • the loop stages 202, 204, 206, and 208 are sequentially arranged in series with respect to each other, and are arranged in a loop, such that the loop stage 208 is coupled in series to the loop stage 202 via an initialization system 210.
  • the initialization system 210 can be any of a variety of arrangements to inject an SFQ pulse into the flux-shuttle system 200 to propagate sequentially through the loop stages 202, 204, 206, and 208, as described in greater detail herein.
  • the AC clock signal is demonstrated as a quadrature signal including an in-phase component CLKi and a quadrature-phase component CLK Q .
  • the in-phase component CLKi and the quadrature-phase component CLK Q can collectively correspond to the AC clock signal, such as can be implemented for RQL circuits.
  • Each of the loop stages 202, 204, 206, and 208 are configured substantially similarly with respect to each other, and are each arranged as SQUIDs.
  • the first loop stage 202 includes a first Josephson junction Ji i , a second Josephson junction J 2 i , an inductor Lxj, and an inductor Ly_ 1 .
  • the second loop stage 204 includes a first Josephson junction Ji 2 , a second Josephson junction J 2 2 , an inductor L x 2 , and an inductor L Y 2 .
  • the third loop stage 206 includes a first Josephson junction Ji_ 3 , a second Josephson junction J 2 3 , an inductor Lx 3 , and an inductor Ly 3 .
  • the fourth loop stage 208 includes a first Josephson junction Ji _ 4 , a second Josephson junction J 2 _ 4 , an inductor L x _ 4 , and an inductor L Y _ 4 .
  • the first loop stage 202 receives an SFQ pulse from either the initialization system 210 or from the fourth loop stage 208 via an inductor Li i and is separated from the second loop stage 204 by an inductor Li 2 .
  • the second loop stage 204 and the third loop stage 206 are separated by an inductor Li 3
  • the third loop stage 206 and the fourth loop stage 208 are separated by an inductor Li _ 4 .
  • the flux-shuttle system 200 can output the SFQ pulse back to the first loop stage 202. Therefore, the SFQ pulse that is generated in the initialization system 210 can circulate through the flux-shuttle system 200 in the loop formed by the loop stages 202, 204, 206, and 208.
  • the flux-shuttle system 200 also includes a plurality of clock transformers that are associated with each of the loop stages 202, 204, 206, and 208.
  • the clock transformers include a first clock transformer Ti that is associated with the first loop stage 202, a second clock transformer T 2 that is associated with the second loop stage 204, a third clock transformer T 3 that is associated with the third loop stage 206, and a fourth clock transformer T 4 that is associated with the fourth loop stage 208.
  • the flux-shuttle system 200 includes a first bias transformer T B I and a second bias transformer T B2 that are associated with the first and third loop stages 202 and 206, and includes a third bias transformer T B3 and a fourth bias transformer T B4 that is associated with the second and fourth loop stages 204 and 208.
  • the clock transformers Ti and T 3 include primary inductors Ln and Li 3 , respectively, through which the in-phase component CLKi flows, and the clock transformers T 2 and T 4 include primary inductors Li 2 and Li 4 , respectively, through which the quadrature-phase component CLK Q flows.
  • the bias transformers T B i, T B2 , T B3 , and T B4 include primary inductors L B i, L B 3 , L B 5, and L B 7 through which a DC bias signal BIAS flows.
  • the clock transformer Ti provides inductive coupling of the in-phase component CLKi to the first loop stage 202 via a secondary inductor L 2 1 that is coupled between the inductors Lxj and Lyj.
  • the clock transformer T 3 provides inductive coupling of the in-phase component CLKi to the third loop stage 206 via a secondary inductor L 2 3 that is coupled between the inductors Lx _ 3 and Ly 3 .
  • the bias transformers T B i and T B2 include respective secondary inductors L B 2 and L B 4 that are arranged in series with each other and with the secondary inductors L 2 _ ⁇ and L 2 3 to form a first series loop 212 between the first and third loop stages 202 and 206.
  • the clock transformer T 2 provides inductive coupling of the quadrature-phase component CLK Q to the second loop stage 204 via a secondary inductor L 2 2 that is coupled between the inductors Lx 2 and Ly 2 .
  • the clock transformer T 4 provides inductive coupling of the quadrature-phase component CLK Q to the fourth loop stage 208 via a secondary inductor L 2 4 that is coupled between the inductors L x 4 and L Y 4 .
  • the bias transformers T B3 and T B4 include respective secondary inductors L B 6 and L B 8 that are arranged in series with the secondary inductors L 2 2 and L 2 4 to form a second series loop 214 between the second and fourth loop stages 204 and 208.
  • a flux state of the series loops 212 and 214 comprising the respective loop stages 202, 204, 206, and 208 can be sequentially switched at each phase and each opposite phase of the in-phase and quadrature-phase components CLKi and CLK Q .
  • each of the first in-phase component CLKi and the quadrature-phase component CLK Q can include a first phase corresponding to a positive peak (e.g., in a first half of a respective period) and a second phase that is opposite the first phase, and thus corresponding to a negative peak (e.g., in a second half of a respective period).
  • the flux-shuttle system 200 can track the flux state of the secondary inductors L B 2 and L B 4 of the bias transformers T B1 and T B2 in the first series loop 212 and the flux state of the secondary inductors L B _ 6 and L B 8 of the bias transformers T B3 and T B4 in the second series loop 214, and thus the flux state of the series loops 212 and 214 comprising the respective loop stages 202, 204, 206, and 208 through each alternating first and second phase of the in-phase and quadrature-phase components CLKi and CLK Q .
  • the flux shuttle system 200 can propagate an SFQ pulse in one of the JTL stages 202, 204, 206, and 208 to set one of the JTL stages 202, 204, 206, and 208 and to concurrently reset one of the JTL stages 202, 204, 206, and 208 in the same one of the series loops 212 and 214.
  • the flux-shuttle system 200 includes a first storage inductor Ls i that interconnects an output node 216 and the first series loop 212, and a second storage inductor Ls 2 that interconnects the output node 216 and the second series loop 214.
  • the flux- shuttle system 200 further includes an output inductor L OUT that conducts an output current ⁇ from the output node 216.
  • a current step is generated in the respective storage inductors Ls i and Ls 2 .
  • the SFQ pulse in response to the respective Josephson junctions triggering in the first and third loop stages 202 and 206 to the switch of the flux state of the series loop 212, the SFQ pulse generates a resulting current step in the storage inductor Ls j .
  • the SFQ pulse in response to the respective Josephson junctions triggering in the second and fourth loop stages 204 and 208 to the switch the flux state of the series loop 214, the SFQ pulse generates a resulting current step in the storage inductor Ls 2 .
  • the output inductor L OUT integrates each of the current steps provided through the storage inductors Ls i and Ls 2 to provide the output current ⁇ , such that the flux-shuttle loop 200 acts as a DC signal source.
  • the output current I OUT can be provided as a DC signal converted from the in-phase component CLKi and the quadrature-phase component CLK Q , such as to a circuit device (e.g., a peripheral device in a memory system).
  • a circuit device e.g., a peripheral device in a memory system.
  • the example of FIG. 8 demonstrates a flux-shuttle system 200 that can propagate an SFQ pulse and provide self-resetting of the loop stages 202, 204, 206, and 208, and thus without implementing a negative SFQ pulse to reset the flux state of the bias transformers T B I, T B2 , T B3 , and T B4 in the flux-shuttle system 200. It is to be understood that the flux-shuttle system 200 is not intended to be limited to the example of FIG. 8, such as in ways similar to as described previously regarding the examples of FIGS. 2-7.
  • the initialization system 210 is not limited to being arranged between the fourth JTL stage 208 and the first JTL stage 202, but could instead be arranged between any two of the JTL stages 202, 204, 206, and 208. Accordingly, the flux-shuttle system 200 can be configured in a variety of ways
  • FIG. 9 a methodology in accordance with various aspects of the present invention will be better appreciated with reference to FIG. 9. While, for purposes of simplicity of explanation, the methodology of FIG. 9 is shown and described as executing serially, it is to be understood and appreciated that the present invention is not limited by the illustrated order, as some aspects could, in accordance with the present invention, occur in different orders and/or concurrently with other aspects from that shown and described herein. Moreover, not all illustrated features may be required to implement a methodology in accordance with an aspect of the present invention.
  • FIG. 9 illustrates an example of a method 250 for propagating unipolar SFQ pulses in a JTL system (e.g., the JTL system 10).
  • a DC bias current e.g., the DC bias current BIAS
  • a primary inductor e.g., primary inductors L B i and L B 3
  • a bias transformer e.g., the bias transformers T B I and T B2
  • a secondary inductor e.g., secondary inductors L B 2 and L B _ 4
  • an AC clock signal (e.g., the AC clock signal CLK) is provided through a primary inductor (e.g., primary inductors Li _ 1 and Li 3 and the primary inductors Li 2 and Li 4) of each of at least one clock transformer (e.g., the clock transformers Ti, T 2 , T3, and T 4 ).
  • a primary inductor e.g., primary inductors Li _ 1 and Li 3 and the primary inductors Li 2 and Li 4
  • the clock transformers Ti, T 2 , T3, and T 4 e.g., the clock transformers Ti, T 2 , T3, and T 4 .
  • the at least one clock transformer can include secondary inductors (e.g., secondary inductors L 2 _ 1 and L 2 3 and the secondary inductors L 2 2 and L 2 4) arranged in series with the secondary inductor associated with the bias transformer in a respective at least one series loop with at least two of a plurality of JTL stages (e.g., the JTL stages 52, 54, 56, and 58) of the JTL system.
  • secondary inductors e.g., secondary inductors L 2 _ 1 and L 2 3 and the secondary inductors L 2 2 and L 2
  • JTL stages e.g., the JTL stages 52, 54, 56, and 58
  • each of the unipolar SFQ pulses being propagated through the plurality of JTL stages based on the bias signal and the AC clock signal to set one of the JTL stages in the at least one series loop and to concurrently reset another one of the JTL stages in the at least one series loop in a sequence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Logic Circuits (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

Un mode de réalisation de l'invention concerne une ligne de transmission à effet Josephson (JTL). Le système comprend une pluralité d'étages de JTL (14) qui sont disposés en série. Le système comprend également un transformateur d'horloge (12) qui comporte un inducteur primaire configuré pour propager un signal d'horloge (CLK) en courant alternatif et un inducteur secondaire disposé dans une boucle en série avec au moins deux de la pluralité d'étages de JTL. Le transformateur d'horloge (12) peut être configuré pour propager une impulsion de quantum de flux unique (SFQ) à un étage respectif de la pluralité d'étages de JTL en réponse à une première phase du signal d'horloge en courant alternatif et pour réinitialiser ledit étage de la pluralité d'étages de JTL en réponse à une deuxième phase du signal d'horloge en courant alternatif qui est opposée à la première phase.
PCT/US2016/053412 2015-11-17 2016-09-23 Système à ligne de transmission à effet josephson (jtl) WO2017087070A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018525546A JP6556952B2 (ja) 2015-11-17 2016-09-23 ジョセフソン伝送路(jtl)システム
CA3003272A CA3003272C (fr) 2015-11-17 2016-09-23 Systeme a ligne de transmission a effet josephson (jtl)
KR1020207009213A KR102158678B1 (ko) 2015-11-17 2016-09-23 조셉슨 전송 라인 시스템
KR1020187013489A KR102098081B1 (ko) 2015-11-17 2016-09-23 조셉슨 전송 라인 시스템
AU2016357098A AU2016357098B2 (en) 2015-11-17 2016-09-23 Josephson transmission line (JTL) system
EP16781601.6A EP3378162B1 (fr) 2015-11-17 2016-09-23 Système à ligne de transmission à effet josephson (jtl) et procédé correspondant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/943,767 2015-11-17
US14/943,767 US10122350B2 (en) 2015-11-17 2015-11-17 Josephson transmission line (JTL) system

Publications (1)

Publication Number Publication Date
WO2017087070A1 true WO2017087070A1 (fr) 2017-05-26

Family

ID=57133414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/053412 WO2017087070A1 (fr) 2015-11-17 2016-09-23 Système à ligne de transmission à effet josephson (jtl)

Country Status (7)

Country Link
US (2) US10122350B2 (fr)
EP (1) EP3378162B1 (fr)
JP (2) JP6556952B2 (fr)
KR (2) KR102158678B1 (fr)
AU (1) AU2016357098B2 (fr)
CA (1) CA3003272C (fr)
WO (1) WO2017087070A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203943A3 (fr) * 2017-02-06 2018-12-20 Microsoft Technology Licensing, Llc Ligne de transmission josephson pour dispositifs supraconducteurs
US10355677B1 (en) 2018-05-07 2019-07-16 Northrop Grumman Systems Corporation Current driver system
US10491178B2 (en) 2017-10-31 2019-11-26 Northrop Grumman Systems Corporation Parametric amplifier system
US10622977B2 (en) 2017-07-25 2020-04-14 Northrop Grumman Systems Corporation Superconducting bi-directional current driver
US11211722B2 (en) 2017-03-09 2021-12-28 Microsoft Technology Licensing, Llc Superconductor interconnect system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10367483B1 (en) * 2018-12-20 2019-07-30 Northrop Grumman Systems Corporation Josephson current source system
US10984336B2 (en) * 2019-08-01 2021-04-20 Northrop Grumman Systems Corporation Superconducting clock conditioning system
US11476842B1 (en) * 2021-06-17 2022-10-18 Northrop Grumman Systems Corporation Superconducting current source system
US11973269B2 (en) * 2022-04-21 2024-04-30 United States Of America As Represented By The Secretary Of The Navy Tera-sample-per-second arbitrary waveform generator
US20230363292A1 (en) * 2022-05-04 2023-11-09 Northrop Grumman Systems Corporation Bias-level sensors for reciprocal quantum logic
US11942937B2 (en) * 2022-05-04 2024-03-26 Northrop Grumman Systems Corporation Pulse-generator-based bias-level sensors for reciprocal quantum logic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090153180A1 (en) * 2007-12-13 2009-06-18 Herr Quentin P Single flux quantum circuits
US20150092465A1 (en) * 2013-10-02 2015-04-02 Northrop Grumman Systems Corporation Josephson ac/dc converter systems and method

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341380A (en) 1964-12-28 1967-09-12 Gen Electric Method of producing semiconductor devices
DE2713820C2 (de) 1977-03-29 1985-11-14 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Josephson-Kontakt-Element für einen Wanderwellenverstärker
US4117354A (en) 1977-06-30 1978-09-26 International Business Machines Corporation Two-part current injection interferometer amplifiers and logic circuits
US4149097A (en) 1977-12-30 1979-04-10 International Business Machines Corporation Waveform transition sensitive Josephson junction circuit having sense bus and logic applications
US4274015A (en) 1978-12-29 1981-06-16 International Business Machines Corporation Self-resetting Josephson digital current amplifier
US4360898A (en) 1980-06-30 1982-11-23 International Business Machines Corporation Programmable logic array system incorporating Josephson devices
JPS6192036A (ja) 1984-10-11 1986-05-10 Tsutomu Yamashita 超伝導電子回路
JP2547588B2 (ja) 1987-09-09 1996-10-23 新技術事業団 超伝導回路
US5051627A (en) 1989-12-29 1991-09-24 Trw Inc. Superconducting nonhysteretic logic design
DE69123161T2 (de) 1990-02-06 1997-03-13 Fujitsu Ltd Supraleitende Schaltung mit einer Ausgangsumwandlungsschaltung
US5191236A (en) 1990-07-16 1993-03-02 Hewlett-Packard Company System and circuits using josephson junctions
JPH04207417A (ja) * 1990-11-30 1992-07-29 Hitachi Ltd 外部直流内部交流駆動型ジョセフソン集積回路
JP2838596B2 (ja) 1991-03-14 1998-12-16 科学技術振興事業団 超伝導トグルフリップフロップ回路およびカウンタ回路
SE512591C2 (sv) 1995-06-30 2000-04-10 Ericsson Telefon Ab L M Anordning och förfarande avseende digital information
US5963351A (en) 1996-08-23 1999-10-05 Conductus, Inc. Digital optical receiver with instantaneous Josephson clock recovery circuit
US5942950A (en) 1997-05-12 1999-08-24 Ail Systems, Inc. Varactor tuned strip line resonator and VCO using same
JP4233195B2 (ja) * 2000-03-03 2009-03-04 富士通株式会社 単一磁束量子論理回路
US6486756B2 (en) 2000-03-27 2002-11-26 Hitachi, Ltd. Superconductor signal amplifier
JP4130065B2 (ja) 2000-03-27 2008-08-06 株式会社日立製作所 超電導量子干渉素子及び超電導回路
US6507234B1 (en) 2000-11-13 2003-01-14 Trw Inc. Active timing arbitration in superconductor digital circuits
US6452520B1 (en) 2000-11-29 2002-09-17 Trw Inc. Gated counter analog-to-digital converter with error correction
US6549059B1 (en) 2001-02-23 2003-04-15 Trw Inc. Underdamped Josephson transmission line
JP4681755B2 (ja) 2001-05-14 2011-05-11 富士通株式会社 単一磁束量子論理回路および単一磁束量子出力変換回路
US6518786B2 (en) 2001-06-15 2003-02-11 Trw Inc. Combinational logic using asynchronous single-flux quantum gates
US6518673B2 (en) 2001-06-15 2003-02-11 Trw Inc. Capacitor for signal propagation across ground plane boundaries in superconductor integrated circuits
JP3806619B2 (ja) 2001-06-15 2006-08-09 株式会社日立製作所 超電導単一磁束量子回路
AU2002330905A1 (en) 2001-07-23 2003-02-17 Fernand D. Bedard Superconductive crossbar switch
US6580310B2 (en) 2001-08-22 2003-06-17 Northrop Grumman Corporation Double flux quantum superconductor driver
US6678540B2 (en) 2001-08-22 2004-01-13 Northrop Grumman Corporation Transmission line single flux quantum chip-to -chip communication with flip-chip bump transitions
US6865639B2 (en) 2001-12-19 2005-03-08 Northrop Grumman Corporation Scalable self-routing superconductor switch
US6900454B2 (en) 2002-04-20 2005-05-31 D-Wave Systems, Inc. Resonant controlled qubit system
FR2839389B1 (fr) 2002-05-03 2005-08-05 Commissariat Energie Atomique Dispositif de bit quantique supraconducteur a jonctions josephson
US6617643B1 (en) 2002-06-28 2003-09-09 Mcnc Low power tunneling metal-oxide-semiconductor (MOS) device
JP4044807B2 (ja) 2002-08-05 2008-02-06 株式会社日立製作所 超電導ドライバ回路
US7170960B2 (en) * 2002-12-20 2007-01-30 Northrop Grumman Corporation Instantaneous clock recovery circuit
US6836141B2 (en) 2003-04-11 2004-12-28 Northrop Grumman Corporation Superconductor ballistic RAM
US6917216B2 (en) 2003-04-11 2005-07-12 Northrop Grumman Corporation Superconductor output amplifier
US6750794B1 (en) 2003-05-05 2004-06-15 Northrop Grumman Corporation Application of single flux quantum pulse interaction to the simultaneous sampling in-phase and quadrature analog-to-digital converter
US7230266B2 (en) 2003-05-15 2007-06-12 D-Wave Systems Inc. Conditional Rabi oscillation readout for quantum computing
US6909109B2 (en) 2003-07-28 2005-06-21 Northrop Grumman Corporation Superconducting digital first-in first-out buffer using physical back pressure mechanism
US7129870B2 (en) 2003-08-29 2006-10-31 Fujitsu Limited Superconducting latch driver circuit generating sufficient output voltage and pulse-width
JP4047795B2 (ja) 2003-10-31 2008-02-13 株式会社東芝 量子計算方法および量子計算機
FR2862151B1 (fr) 2003-11-07 2007-08-24 Commissariat Energie Atomique Dispositif de reinitialisation d'un dispositif de bit quantique a deux etats d'energie
US7613764B1 (en) 2004-03-26 2009-11-03 D-Wave Systems Inc. Methods for quantum processing
US20050250651A1 (en) 2004-03-29 2005-11-10 Amin Mohammad H S Adiabatic quantum computation with superconducting qubits
US20060091490A1 (en) 2004-11-03 2006-05-04 Hung-Wei Chen Self-aligned gated p-i-n diode for ultra-fast switching
JP4499002B2 (ja) * 2005-09-05 2010-07-07 富士通株式会社 超電導回路
WO2008050864A1 (fr) 2006-10-27 2008-05-02 Dai Nippon Printing Co., Ltd. Procédé d'enregistrement de transfert de chaleur, procédé de formation d'image et article formé par image
US7782077B2 (en) 2007-01-18 2010-08-24 Northrop Grumman Systems Corporation Method and apparatus for ballistic single flux quantum logic
US8098179B2 (en) 2007-05-14 2012-01-17 D-Wave Systems Inc. Systems, methods and apparatus for digital-to-analog conversion of superconducting magnetic flux signals
US7498832B2 (en) 2007-08-03 2009-03-03 Northrop Grumman Systems Corporation Arbitrary quantum operations with a common coupled resonator
US8169231B2 (en) * 2007-09-24 2012-05-01 D-Wave Systems Inc. Systems, methods, and apparatus for qubit state readout
JP4996407B2 (ja) 2007-09-27 2012-08-08 株式会社東芝 単一光子発生装置、量子ビット読出装置および方法
US7772871B2 (en) 2008-04-28 2010-08-10 Northrop Grumman Corporation Method and apparatus for high density superconductor circuit
US7932514B2 (en) 2008-05-23 2011-04-26 International Business Machines Corporation Microwave readout for flux-biased qubits
US7969178B2 (en) 2008-05-29 2011-06-28 Northrop Grumman Systems Corporation Method and apparatus for controlling qubits with single flux quantum logic
JP5497642B2 (ja) 2008-06-26 2014-05-21 光造 長村 超電導電力変換器
CA2736116C (fr) 2008-09-03 2017-09-26 D-Wave Systems Inc. Systemes, procedes et appareil permettant une compensation active d'elements de processeur quantique
US7772872B2 (en) 2008-09-08 2010-08-10 Altera Corporation Multi-row block supporting row level redundancy in a PLD
US8022722B1 (en) 2010-06-04 2011-09-20 Northrop Grumman Systems Corporation Quantum logic gates utilizing resonator mediated coupling
US8111083B1 (en) 2010-12-01 2012-02-07 Northrop Grumman Systems Corporation Quantum processor
JP5354097B2 (ja) 2011-05-13 2013-11-27 株式会社村田製作所 電力送電装置、電力受電装置および電力伝送システム
US8508280B2 (en) 2011-07-11 2013-08-13 Northrop Grumman Systems Corporation Qubit readout via resonant scattering of josephson solitons
US8489163B2 (en) * 2011-08-12 2013-07-16 Northrop Grumman Systems Corporation Superconducting latch system
US8861619B2 (en) 2011-08-16 2014-10-14 Wisconsin Alumni Research Foundation System and method for high-frequency amplifier
US8975912B2 (en) 2012-07-30 2015-03-10 International Business Machines Corporation Multi-tunable superconducting circuits
US9787312B2 (en) * 2012-08-14 2017-10-10 Northrop Grumman Systems Corporation Systems and methods for applying flux to a quantum-coherent superconducting circuit
US9208861B2 (en) 2013-10-01 2015-12-08 Northrop Grumman Systems Corporation Phase hysteretic magnetic Josephson junction memory cell
KR101856437B1 (ko) * 2014-08-01 2018-06-25 노스롭 그루먼 시스템즈 코포레이션 초전도 회로 물리적 레이아웃 시스템 및 방법
WO2016127021A1 (fr) 2015-02-06 2016-08-11 Massachusetts, University Of Amplificateur paramétrique à ondes progressives à base de squid
US9281057B1 (en) 2015-03-11 2016-03-08 Northrop Grumman Systems Corporation Phase hysteretic magnetic Josephson junction memory cell
US10740688B2 (en) 2016-03-11 2020-08-11 Rigetti & Co, Inc. Impedance-matched microwave quantum circuit systems
US9735776B1 (en) 2016-09-26 2017-08-15 International Business Machines Corporation Scalable qubit drive and readout
US10122352B1 (en) 2018-05-07 2018-11-06 Northrop Grumman Systems Corporation Current driver system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090153180A1 (en) * 2007-12-13 2009-06-18 Herr Quentin P Single flux quantum circuits
US20150092465A1 (en) * 2013-10-02 2015-04-02 Northrop Grumman Systems Corporation Josephson ac/dc converter systems and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HERR QUENTIN ET AL: "Ultra-low-power superconductor logic", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 109, no. 10, 17 May 2011 (2011-05-17), pages 103903 - 103903, XP012146891, ISSN: 0021-8979, DOI: 10.1063/1.3585849 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203943A3 (fr) * 2017-02-06 2018-12-20 Microsoft Technology Licensing, Llc Ligne de transmission josephson pour dispositifs supraconducteurs
US10811587B2 (en) 2017-02-06 2020-10-20 Microsoft Technology Licensing, Llc Josephson transmission line for superconducting devices
US11211722B2 (en) 2017-03-09 2021-12-28 Microsoft Technology Licensing, Llc Superconductor interconnect system
US10622977B2 (en) 2017-07-25 2020-04-14 Northrop Grumman Systems Corporation Superconducting bi-directional current driver
US10491178B2 (en) 2017-10-31 2019-11-26 Northrop Grumman Systems Corporation Parametric amplifier system
US10355677B1 (en) 2018-05-07 2019-07-16 Northrop Grumman Systems Corporation Current driver system

Also Published As

Publication number Publication date
JP6556952B2 (ja) 2019-08-07
KR102098081B1 (ko) 2020-04-07
KR20180069026A (ko) 2018-06-22
AU2016357098A1 (en) 2018-05-10
US10389336B1 (en) 2019-08-20
JP2020010337A (ja) 2020-01-16
EP3378162B1 (fr) 2021-11-24
JP6861245B2 (ja) 2021-04-21
KR20200038546A (ko) 2020-04-13
CA3003272A1 (fr) 2017-05-26
AU2016357098B2 (en) 2019-05-02
EP3378162A1 (fr) 2018-09-26
KR102158678B1 (ko) 2020-09-22
JP2019504527A (ja) 2019-02-14
CA3003272C (fr) 2021-04-06
US10122350B2 (en) 2018-11-06
US20170141769A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US10389336B1 (en) Josephson transmission line (JTL) system
EP3052430B1 (fr) Systèmes de convertisseurs ac/dc à josephson et méthode
KR101943604B1 (ko) 조세프슨 전류 소스 시스템들 및 방법
US9467126B1 (en) Josephson current source systems and method
CA3120018A1 (fr) Systeme de source de courant a effet josephson

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16781601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3003272

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016357098

Country of ref document: AU

Date of ref document: 20160923

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187013489

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018525546

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016781601

Country of ref document: EP