WO2017086357A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2017086357A1
WO2017086357A1 PCT/JP2016/083995 JP2016083995W WO2017086357A1 WO 2017086357 A1 WO2017086357 A1 WO 2017086357A1 JP 2016083995 W JP2016083995 W JP 2016083995W WO 2017086357 A1 WO2017086357 A1 WO 2017086357A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
aromatic
atom
organic
Prior art date
Application number
PCT/JP2016/083995
Other languages
English (en)
French (fr)
Inventor
駿河 和行
幸喜 加瀬
淳一 泉田
望月 俊二
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to CN201680079144.8A priority Critical patent/CN108475736A/zh
Priority to KR1020187016875A priority patent/KR20180084909A/ko
Priority to US15/776,582 priority patent/US20180351101A1/en
Priority to EP16866358.1A priority patent/EP3379593A4/en
Priority to JP2017551910A priority patent/JP6814156B2/ja
Publication of WO2017086357A1 publication Critical patent/WO2017086357A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present invention relates to an organic electroluminescence element (hereinafter also referred to as an organic EL element) which is a self-luminous element suitable for various display devices, and more specifically, an organic EL using a specific arylamine compound (and a specific anthracene derivative). It relates to an element.
  • the organic EL element is a self-luminous element, it is brighter and more visible than a liquid crystal element, and a clear display is possible. Therefore, active research has been done.
  • each layer in the laminated structure is further subdivided, and is increased by an electroluminescent device provided with an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode on the substrate. Efficiency and durability have been achieved.
  • the light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a fluorescent light emitting compound, a phosphorescent light emitting compound or a material emitting delayed fluorescence.
  • a charge transporting compound generally called a host material
  • a fluorescent light emitting compound e.g., a phosphorescent light emitting compound
  • a material emitting delayed fluorescence e.g., a material emitting delayed fluorescence.
  • the light injected from both electrodes is recombined in the light emitting layer to obtain light emission. Therefore, in an organic EL device, it is important how efficiently both holes and electrons are transferred to the light emitting layer, and it is necessary to make the device excellent in carrier balance.
  • the probability of recombination of holes and electrons is improved by improving the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer. By confining, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
  • the heat resistance and amorphousness of the material are also important.
  • thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material deteriorates.
  • crystallization of the thin film occurs even in a short time, and the element deteriorates. For this reason, the material used is required to have high heat resistance and good amorphous properties.
  • NPD N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine
  • various aromatic amine derivatives have been known as hole transport materials for organic EL devices (Patent Documents). 1 and Patent Document 2).
  • NPD has a good hole transport capability, but its glass transition point (Tg), which is an index of heat resistance, is as low as 96 ° C., and device characteristics are degraded by crystallization under high temperature conditions.
  • Tg glass transition point
  • Patent Document 1 and Patent Document 2 there are compounds having an excellent mobility of hole mobility of 10 ⁇ 3 cm 2 / Vs or more, but the electron blocking property is poor. It is enough.
  • An aromatic tertiary amine compound (compound A) represented by the following formula has been proposed as a compound with improved properties such as heat resistance, hole injection property, hole transport property, and electron blocking property (Patent Document 3). reference).
  • JP-A-8-48656 Japanese Patent No. 3194657 International Publication No. 2012/117793 International Publication No. 2011/059000 International Publication No. 2003/060956 Korean open patent 2013-0060157
  • the object of the present invention is to provide various materials for organic EL devices having excellent hole injection / transport performance, electron injection / transport performance, electron blocking capability, and stability or durability in a thin film state. By combining them so that the characteristics they have can be effectively expressed, an organic EL element having (1) high luminous efficiency and high power efficiency, (2) low practical driving voltage, and (3) long life (high durability) It is to provide.
  • arylamine-based materials are excellent in hole injection and transport capability, thin film stability and durability, and are formed using arylamine compounds.
  • the hole transport layer it was considered that holes could be injected and transported efficiently.
  • the compound having an anthracene ring structure is excellent in the electron injection and transport ability, the stability and durability of the thin film, and selecting an anthracene derivative having a specific structure as the material of the electron transport layer, We thought that electrons could be injected and transported efficiently.
  • various organic EL elements which combined these as a hole transport material and an electron transport material were produced so that carrier balance might be taken, and the characteristic evaluation of the element was performed earnestly. As a result, the present invention has been completed.
  • the hole transport layer contains an arylamine compound represented by the following general formula (1), and an organic EL device is provided.
  • Ar 1 to Ar 6 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group
  • a 1 and A 2 may be the same or different and each represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group or a condensed polycyclic aromatic divalent group
  • R 1 to R 6 may be the same or different and are a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or a carbon atom number of 5
  • Preferred embodiments of the organic EL device of the present invention are as follows. 2)
  • the arylamine compound is represented by the following general formula (1a). Where Ar 1 to Ar 6 , A 1 , A 2 and R 1 to R 6 have the same meanings as described in the general formula (1).
  • the arylamine compound is represented by the following general formula (1b). Where Ar 1 to Ar 6 , A 1 , A 2 and R 1 to R 6 have the same meanings as described in the general formula (1).
  • the arylamine compound is represented by the following general formula (1c). Where Ar 1 to Ar 6 , A 1 , A 2 and R 1 to R 6 have the same meanings as described in the general formula (1).
  • the electron transport layer contains an anthracene derivative represented by the following general formula (2).
  • a 3 represents a divalent group of an aromatic hydrocarbon, a divalent group of an aromatic heterocyclic ring, a condensed polycyclic aromatic divalent group or a single bond
  • B represents an aromatic heterocyclic group
  • C represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and when there are two Cs, the two Cs may be the same or different
  • D may be the same or different, and may be a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic group.
  • the anthracene derivative is represented by the following general formula (2a).
  • a 3 represents a divalent group of an aromatic hydrocarbon, a divalent group of an aromatic heterocyclic ring, a condensed polycyclic aromatic divalent group or a single bond
  • Ar 7 to Ar 9 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group
  • R 7 to R 13 may be the same or different and each represents a hydrogen atom, a deuterium atom, Fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, alkenyl group having 2 to 6 carbon atoms, 1 to 6 carbon atoms Alkyloxy group of 5 to 5 carbon atoms 10 cycloalkyloxy groups, aromatic hydrocarbon groups, aromatic heterocyclic groups, Represents a condensed polycyclic aromatic group or aryloxy group, and may be bonded to each other via a single bond, methylene
  • the anthracene derivative is represented by the following general formula (2b).
  • a 3 represents a divalent group of an aromatic hydrocarbon, a divalent group of an aromatic heterocyclic ring, a condensed polycyclic aromatic divalent group or a single bond
  • Ar 10 to Ar 12 may be the same or different and each represents an aromatic hydrogen group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the anthracene derivative is represented by the following general formula (2c).
  • a 3 represents a divalent group of an aromatic hydrocarbon, a divalent group of an aromatic heterocyclic ring, a condensed polycyclic aromatic divalent group or a single bond
  • Ar 13 to Ar 15 may be the same or different and each represents an aromatic hydrocarbon group
  • R 14 is a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, or 2 to 2 carbon atoms.
  • the light emitting layer contains a blue light emitting dopant.
  • the blue light-emitting dopant is a pyrene derivative.
  • the light emitting layer contains an anthracene derivative. 12) The light emitting layer contains the anthracene derivative as a host material. 13) The anthracene derivative is represented by the following general formula (3).
  • R 15 to R 19 may be the same or different and each includes a deuterium atom, a carbon number of 1 to 30 alkyl groups, alkenyl groups having 2 to 30 carbon atoms, alkynyl groups having 2 to 30 carbon atoms, cycloalkyl groups having 3 to 30 carbon atoms, cycloalkenyl groups having 5 to 30 carbon atoms, alkyl having 1 to 30 carbon atoms Oxy group, 6 to 6 carbon atoms 30 aryloxy groups, alkylthio groups having 1 to 30 carbon atoms, 5 carbon atoms An arylthio group having 30 to 30 carbon atoms, an alkylamino group having 1 to 30 carbon atoms, an arylamino group having 5 to 30 carbon atoms, an aryl group having 6 to 50 carbon atoms, and 2 carbon atoms Represents an aromatic heterocyclic group of ⁇ 50, a cyano group, a nitro group, a halogen atom, an amino group,
  • the electron blocking layer comprises an arylamine compound represented by the general formula (1).
  • An organic EL element comprising: 15) In an organic EL device having an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode in this order, the arylamine compound in which the hole injection layer is represented by the general formula (1) And 16) an organic EL device having an anode, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode in this order, wherein the light-emitting layer has the general formula (1)
  • the organic electroluminescent element characterized by containing the arylamine compound represented by these is provided.
  • arylamine compound I The arylamine compound having four triarylamine structures represented by the general formula (1) (hereinafter sometimes referred to as arylamine compound I) is a novel compound, and more than conventional hole transport materials, It has a high hole-injecting property, a high mobility, an excellent electron blocking ability, and a high stability to electrons and a stable thin film state. Furthermore, it is excellent in terms of heat resistance. Therefore, the arylamine compound I is suitably used for various layers in the organic EL device of the present invention.
  • the arylamine compound I is suitably used as a constituent material for the hole injection layer and / or the hole transport layer.
  • excitons generated in the light emitting layer can be confined, the probability of recombination of holes and electrons is improved, high luminous efficiency can be obtained, and the driving voltage is reduced. Durability is improved.
  • an anthracene derivative represented by the general formula (2) (hereinafter sometimes referred to as anthracene derivative II) is preferably used as a constituent material of the electron transport layer. This is because the anthracene derivative II is excellent in electron injecting / transporting ability, and further excellent in the stability and durability of the thin film.
  • the anthracene derivative represented by the general formula (3) (hereinafter sometimes referred to as anthracene derivative III) is a host material of the light emitting layer, particularly a light emitting layer containing a blue light emitting dopant. It is suitably used as a host material. This is because the anthracene derivative III is superior in luminous efficiency compared to conventional materials.
  • the arylamine compound I has an excellent electron blocking ability, is superior in hole transportability as compared with conventional materials, and has high stability in a thin film state. Therefore, the arylamine compound I is also preferably used as a constituent material for the electron blocking layer. In the organic EL device having such an electron blocking layer, the driving voltage is low, the current resistance is improved, and the maximum light emission luminance is improved while realizing high luminous efficiency.
  • the arylamine compound I is excellent in hole transportability and has a wide band gap as compared with conventional materials, the arylamine compound I is suitably used as a constituent material of the light emitting layer, particularly as a host material supporting a dopant. In the organic EL element having such a light emitting layer, the driving voltage is lowered and the light emission efficiency is improved.
  • the present invention materials excellent in hole injection / transport performance, electron injection / transport performance, thin film stability, durability, and the like are selected and appropriately combined.
  • a hole can be efficiently inject
  • the electron transport efficiency from an electron carrying layer to a light emitting layer is also improved.
  • an organic EL element with high efficiency, low driving voltage, and long life can be realized.
  • FIG. 1 is a diagram showing the structural formulas of compounds 1 to 10 which are arylamine compounds I.
  • FIG. 2 is a diagram showing the structural formulas of compounds 11 to 20 which are arylamine compounds I.
  • FIG. 3 is a diagram showing the structural formulas of compounds 21 to 30 which are arylamine compounds I.
  • FIG. 3 is a diagram showing the structural formulas of compounds 31 to 40 which are arylamine compounds I.
  • FIG. 4 is a diagram showing the structural formulas of compounds 41 to 48 which are arylamine compounds I.
  • FIG. 3 is a diagram showing the structural formulas of compounds 49 to 58 which are arylamine compounds I.
  • FIG. 2 is a diagram showing the structural formulas of compounds 59 to 65 which are arylamine compounds I.
  • FIG. 3 is a diagram showing a structural formula of compounds 2a-1 to 2a-8 which are anthracene derivatives II.
  • FIG. 3 is a diagram showing a structural formula of compounds 2a-9 to 2a-16 that are anthracene derivatives II.
  • FIG. 3 is a diagram showing a structural formula of compounds 2a-17 to 2a-20 which are anthracene derivatives II.
  • FIG. 3 is a diagram showing the structural formulas of compounds 2b-1 to 2b-8 that are anthracene derivatives II.
  • FIG. 4 is a diagram showing a structural formula of compounds 2b-9 to 2b-16 that are anthracene derivatives II.
  • FIG. 4 is a diagram showing the structural formulas of compounds 2c-1 to 2c-6 that are anthracene derivatives II.
  • FIG. 3 is a diagram showing a structural formula of compounds 2c-7 to 2c-12 which are anthracene derivatives II.
  • FIG. 5 is a diagram showing a structural formula of compounds 2c-13 to 2c-18 which are anthracene derivatives II.
  • FIG. 2 is a diagram showing a structural formula of compounds 2c-19 to 2c-24, which are anthracene derivatives II.
  • FIG. 3 is a diagram showing a structural formula of compounds 2c-25 to 2c-30, which are anthracene derivatives II.
  • FIG. 3 is a diagram showing a structural formula of compounds 3-1 to 3-6 that are anthracene derivatives III.
  • FIG. 3 is a diagram showing a structural formula of compounds 3-7
  • the organic EL device of the present invention has a basic structure in which at least an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are provided in this order on a substrate.
  • the layer structure of the organic EL element of the present invention can take various forms.
  • a hole injection layer is provided between the anode and the hole transport layer
  • an electron blocking layer is provided between the hole transport layer and the light emitting layer
  • a hole blocking layer is provided between the light emitting layer and the electron transport layer.
  • some organic layers may be omitted or doubled.
  • FIG. 2 shows a layer configuration employed in the examples described later, that is, on the glass substrate 1, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, an electron blocking layer 5, A layer structure in which a light emitting layer 6, an electron transport layer 7, an electron injection layer 8, and a cathode 9 are formed in this order is shown.
  • the layer has an important feature in that it contains an arylamine compound I represented by the following general formula (1).
  • the arylamine compound I is used in a plurality of adjacent layers, the layer configuration of the plurality of layers is different.
  • the arylamine compound I has a structure represented by the following general formula (1).
  • the arylamine compound I there are, for example, the following three modes depending on the bonding positional relationship of R 1 to R 6 on the naphthalene ring.
  • Ar 1 to Ar 6 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the condensed polycyclic aromatic group does not have a hetero atom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, etc.) in its skeleton.
  • aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 6 include phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 6 may be unsubstituted or may have a substituent.
  • substituents include the following groups in addition to the deuterium atom, cyano group, and nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • Alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl An n-hexyl group
  • An alkenyl group such as a vinyl group, an allyl group
  • An aryloxy group such as a phenyloxy group, a tolyloxy group
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group such as
  • the above substituent may be unsubstituted, but may be further substituted with the exemplified substituent.
  • the above substituents may be present independently and do not form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. You may do it.
  • a 1 and A 2 may be the same or different and each represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group or a condensed polycyclic aromatic divalent group.
  • a divalent group of an aromatic hydrocarbon, a divalent group of an aromatic heterocyclic ring or a condensed polycyclic aromatic divalent group has two hydrogen atoms from the aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic Represents a divalent group formed by removing.
  • aromatic hydrocarbons, aromatic heterocycles or condensed polycyclic aromatics include benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, pyrene, and triphenylene.
  • the aromatic hydrocarbon divalent group represented by A 1 or A 2 , the aromatic heterocyclic divalent group or the condensed polycyclic aromatic divalent group may be unsubstituted or substituted. Also good.
  • Examples of the substituent are the same as those shown as the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 6 may have. Can be mentioned. The aspect which a substituent can take is also the same.
  • R 1 to R 6 may be the same or different and are a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 5 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • These groups may exist independently and do not form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. May be.
  • alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 6 include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, Examples thereof include a 2-adamantyl group, a vinyl group, an allyl group, an isopropenyl group, and a 2-butenyl group.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 6 may be unsubstituted but has a substituent. You may do it. Examples of the substituent include the following groups in addition to the deuterium atom, cyano group, and nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom;
  • An alkenyl group such as a vinyl group, an allyl group;
  • An aryloxy group such as a phenyloxy group, a tolyloxy group;
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group A triphenyleny
  • the above substituent may be unsubstituted, but may be further substituted with the exemplified substituent.
  • the above substituents may be present independently and do not form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. You may do it.
  • alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 6 include a methyloxy group, an ethyloxy group, and an n-propyloxy group.
  • the substituent may be an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 6.
  • R 1 to R 6 The thing similar to what was shown as a good substituent can be mentioned.
  • the aspect which a substituent can take is also the same.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 6 include the aromatic hydrocarbon group and aromatic heterocyclic group represented by Ar 1 to Ar 6. Examples thereof are the same as those shown as the group or the condensed polycyclic aromatic group. These groups may be unsubstituted or may have a substituent. Examples of the substituent include those similar to those shown as the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 6 may have. be able to. The aspect which a substituent can take is also the same.
  • aryloxy group represented by R 1 to R 6 include a phenyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthyloxy group, an anthracenyloxy group, and a phenanthrenyloxy group. Fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group and the like.
  • the aryloxy group represented by R 1 to R 6 may be unsubstituted or may have a substituent.
  • substituents include those similar to those shown as the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 6 may have. be able to.
  • the aspect which a substituent can take is also the same.
  • the arylamine compound I is preferably represented by the general formula (1a), (1b) or (1c), and more preferably represented by the general formula (1b).
  • the arylamine compound I preferably has symmetry.
  • Ar 1 to Ar 6 may be the same or different, and are preferably an aromatic hydrocarbon group, a condensed polycyclic aromatic group, a benzofuranyl group, a benzothienyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothienyl group.
  • Preferred are phenyl group, biphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, benzofuranyl group, benzothienyl group, carbazolyl group, dibenzofuranyl group or dibenzothienyl group.
  • an aromatic hydrocarbon group or a condensed polycyclic aromatic group is preferable, and a phenyl group, a biphenylyl group, or a naphthyl group is most preferable. These groups may have a substituent, but are more preferably unsubstituted.
  • a 1 and A 2 may be the same or different, and a divalent group formed by removing two hydrogen atoms from an aromatic hydrocarbon, a condensed polycyclic aromatic, benzofuran, benzothiophene, carbazole, dibenzofuran or dibenzothiophene is preferable.
  • a divalent group formed by removing two hydrogen atoms from an aromatic hydrocarbon or condensed polycyclic aromatic is more preferable.
  • a divalent group formed by removing two hydrogen atoms from benzene, biphenyl, naphthalene, anthracene, fluorene, phenanthrene, benzofuran, benzothiophene, carbazole, dibenzofuran or dibenzothiophene is preferable, and hydrogen from benzene, biphenyl or naphthalene
  • a divalent group formed by removing two atoms is more preferred.
  • R 1 to R 6 may be the same or different and are each a hydrogen atom, deuterium atom, aromatic hydrocarbon group, condensed polycyclic aromatic group, benzofuranyl group, benzothienyl group, carbazolyl group, dibenzofuranyl group or dibenzo A thienyl group is preferred.
  • the aromatic hydrocarbon group, condensed polycyclic aromatic group, benzofuranyl group, benzothienyl group, carbazolyl group, dibenzofuranyl group or dibenzothienyl group may have a substituent, but may be unsubstituted. More preferred.
  • a hydrogen atom, deuterium atom, phenyl group, biphenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, benzofuranyl group, benzothienyl group, carbazolyl group, dibenzofuranyl group or dibenzothienyl group are more preferred.
  • a hydrogen atom, deuterium atom, phenyl group or naphthyl group is particularly preferred.
  • FIGS. 3 to 9 Specific examples of preferred compounds among the arylamine compounds I are shown in FIGS. 3 to 9, but the arylamine compounds I are not limited to these compounds.
  • compounds 1 to 31 correspond to the above general formula (1a).
  • Compounds 32 to 54 correspond to the above general formula (1b).
  • Compounds 55 to 65 correspond to the above general formula (1c).
  • D represents a deuterium atom.
  • the arylamine compound I can be produced by a known method such as Buchwald-Hartwig coupling.
  • the purification of the arylamine compound I can be performed by purification by column chromatography, adsorption purification by silica gel, activated carbon, activated clay, etc., recrystallization or crystallization by a solvent, sublimation purification and the like.
  • the compound can be identified by NMR analysis. As physical properties, glass transition point (Tg) and work function can be measured.
  • Glass transition point (Tg) is an indicator of the stability of the thin film state.
  • the glass transition point (Tg) can be measured with a high sensitivity differential scanning calorimeter (Bruker AXS, DSC3100S) using powder.
  • Work function is an indicator of hole transportability.
  • the work function can be measured by preparing a 100 nm thin film on an ITO substrate and using an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.).
  • compounds used in the organic EL device of the present invention can be purified and measured in the same manner after synthesis.
  • each layer can take various modes.
  • each layer will be described in detail with reference to FIG.
  • an anode 2 is provided on a glass substrate 1.
  • an electrode material having a large work function such as ITO or gold is used.
  • a hole injection layer 3 can be provided between the anode 2 and the hole transport layer 4.
  • an arylamine compound I is preferably used for the hole injection layer 3.
  • a known material may be used for the hole injection layer 3.
  • porphyrin compounds typified by copper phthalocyanine
  • materials such as starburst triphenylamine derivatives and various triphenylamine tetramers
  • acceptor heterocyclic compounds such as hexacyanoazatriphenylene.
  • a coating type polymer material; and the like can be used.
  • a material usually used for the hole injection layer is further doped with trisbromophenylamine hexachloroantimony, a radicalene derivative (see, for example, International Publication No. 2014/009310), or benzidine such as TPD.
  • a polymer compound having a derivative structure in its partial structure can also be used.
  • the hole injection layer 3 can be obtained by forming a thin film by a known method such as a vapor deposition method, a spin coating method, or an ink jet method.
  • a known method such as a vapor deposition method, a spin coating method, or an ink jet method.
  • each layer described below can be obtained by forming a thin film by a known method such as an evaporation method, a spin coating method, or an ink jet method.
  • a hole transport layer 4 is provided on the anode 2 (or hole injection layer 3).
  • the arylamine compound I is preferably used for the hole transport layer 4.
  • a known hole transporting material exemplified below may be used for the hole transport layer 4.
  • Benzidine derivatives such as NPD, N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (T PD), N, N, N ′, N′-tetrabiphenylylbenzidine; 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane; Various triphenylamine trimers and tetramers;
  • These materials may be used alone for film formation, or may be mixed with other materials for film formation.
  • Each organic layer described below can be similarly formed.
  • the hole transport layer 4 has a structure in which layers formed independently are stacked, a structure in which layers formed by mixing are stacked, or a structure in which layers formed by mixing with a layer formed independently are stacked. You may have. Each organic layer described below can have a similar structure.
  • the arylamine compound I can be used, or poly (3,4-ethylenedioxythiophene) (PEDOT) / poly (styrene sulfate).
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PES poly(styrene sulfate)
  • PES phonate
  • materials that are usually used for the hole transport layer are further doped with trisbromophenylamine hexachloroantimony, a radicalene derivative (for example, see International Publication No. 2014/009310) or the like, or benzidine such as TPD.
  • a polymer compound having a derivative structure in its partial structure can be used.
  • An electron blocking layer 5 can be provided between the hole transport layer 4 and the light emitting layer 6.
  • the arylamine compound I is preferably used for the electron blocking layer 5.
  • the electron blocking layer 5 may contain a compound having a known electron blocking action exemplified below.
  • Carbazole derivatives such as 4,4 ′, 4 ′′ -tri (N-carbazolyl) triphenylamine (TCTA), 9,9-bis [4- (carbazol-9-yl) phenyl] fluorene, 1,3-bis (carbazol-9-yl) benzene (mCP), 2,2-bis (4-carbazol-9-ylphenyl) adamantane (Ad-Cz);
  • a triarylamine compound having a triphenylsilyl group such as 9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene;
  • the light emitting layer 6 is formed on the hole transport layer 4 (or the electron blocking layer 5).
  • various metal complexes, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, and the like can be used in addition to metal complexes of quinolinol derivatives including Alq 3. .
  • the light emitting layer may be composed of a host material and a dopant material.
  • the host material the light-emitting material can be used.
  • the arylamine compound I or anthracene derivative is preferably used.
  • an anthracene derivative III represented by the following general formula (3) is preferable.
  • the anthracene derivative III will be described.
  • R 15 to R 19 may be the same or different and each includes a deuterium atom, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, and 3 to 30 carbon atoms.
  • the alkyl group having 1 to 30 carbon atoms, the alkenyl group having 2 to 30 carbon atoms, and the alkynyl group having 2 to 30 carbon atoms may be linear or branched.
  • These groups may exist independently and do not form a ring, but are bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. Also good.
  • 30 cycloalkenyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, vinyl group, allyl group, isopropenyl group, 2-butenyl group, cyclopentenyl group, cyclohexenyl group, ethynyl group, isopropynyl group
  • the cycloalkenyl group of 30 may be unsubstituted or may have a substituent. Examples of the substituent include the following groups in addition to the deuterium atom, cyano group, and nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom;
  • An alkenyl group such as a vinyl group, an allyl group;
  • An aryloxy group such as a phenyloxy group, a tolyloxy group;
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group A triphenyleny
  • the above substituent may be unsubstituted, but may be further substituted with the exemplified substituent.
  • the above substituents may be present independently and do not form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. You may do it.
  • alkyloxy group having 1 to 30 carbon atoms represented by R 15 to R 19 an aryloxy group having 6 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, an arylthio group having 5 to 30 carbon atoms, a carbon number of 1
  • Specific examples of the alkylamino group having 30 to 30 carbon atoms or the arylamino group having 5 to 30 carbon atoms include methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, phenyloxy group, naphthyloxy group, methylthio group, ethylthio group, phenylthio group, naphthylthio group, dimethylamino group, diethylamino group, diphenylamino group, dinaphth
  • the alkylamino group having ⁇ 30 or the arylamino group having 5 to 30 carbon atoms may be unsubstituted or may have a substituent.
  • substituents examples include an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, and a cycloalkyl group having 3 to 30 carbon atoms represented by R 15 to R 19. Or the thing similar to what was shown as a substituent which a C5-C30 cycloalkenyl group may have can be mentioned. The aspect which a substituent can take is also the same.
  • aryl group having 6 to 50 carbon atoms or the aromatic heterocyclic group having 2 to 50 carbon atoms represented by R 15 to R 19 include a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, and a phenanthrenyl group.
  • the aryl group having 6 to 50 carbon atoms or the aromatic heterocyclic group having 2 to 50 carbon atoms represented by R 15 to R 19 may be unsubstituted or may have a substituent.
  • the substituent include an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, and a cycloalkyl group having 3 to 30 carbon atoms represented by R 15 to R 19.
  • the thing similar to what was shown as a substituent which a C5-C30 cycloalkenyl group may have can be mentioned.
  • the aspect which a substituent can take is also the same.
  • R 20 Examples of the alkyloxy group having 1 to 6 carbon atoms or the aryloxy group having 6 to 30 carbon atoms represented by R 20 include a methyloxy group, an ethyloxy group, a propyloxy group, a phenyloxy group, a biphenylyloxy group, A naphthyloxy group, anthracenyloxy group, phenanthrenyloxy group, etc. can be mentioned. These groups may be unsubstituted or may have a substituent.
  • substituents examples include an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, and a cycloalkyl group having 3 to 30 carbon atoms represented by R 15 to R 19. Or the thing similar to what was shown as a substituent which a C5-C30 cycloalkenyl group may have can be mentioned. The aspect which a substituent can take is also the same.
  • r 15 represents an integer of 0 to 5
  • r 16 , r 17 and r 19 represent an integer of 0 to 4
  • r 18 represents an integer of 0 to 3.
  • the case where r 15 to r 19 are 0 represents that R 15 to R 19 are not present, that is, the benzene ring is not substituted with a group represented by R 15 to R 19 .
  • a plurality of R 15 to R 19 are bonded to the same benzene ring.
  • a plurality of bonded groups may be the same or different. Further, they may be present independently and do not form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. .
  • a 4 represents an aromatic hydrocarbon divalent group, a condensed polycyclic aromatic divalent group or a single bond.
  • the aromatic hydrocarbon divalent group or condensed polycyclic aromatic divalent group represents a divalent group formed by removing two hydrogen atoms from the aromatic hydrocarbon or condensed polycyclic aromatic.
  • aromatic hydrocarbon or condensed polycyclic aromatic examples include benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, pyrene, and triphenylene. it can.
  • the aromatic hydrocarbon divalent group or the condensed polycyclic aromatic divalent group represented by A 4 may be unsubstituted or may have a substituent.
  • a substituent an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group represented by Ar 1 to Ar 6 in the general formula (1) may be shown. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • anthracene derivative III (Preferred embodiment of anthracene derivative III)
  • the group not designated as substituted / unsubstituted may have a substituent or be unsubstituted.
  • the anthracene derivative III is preferably represented by the following general formula (3a) or (3b), and more preferably represented by the following general formula (3a).
  • R 15 to R 19 may be the same or different and are preferably a deuterium atom, an aryl group having 6 to 50 carbon atoms, a benzofuranyl group, a benzothienyl group, a carbazolyl group, a dibenzofuranyl group or a dibenzothienyl group, A hydrogen atom, a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorenyl group, a benzofuranyl group, a benzothienyl group, a carbazolyl group, a dibenzofuranyl group, or a dibenzothienyl group is more preferable, and a deuterium atom, a phenyl group, A carbazolyl group or a dibenzofuranyl group is particularly preferred.
  • r 15 is preferably 0 or 5, more preferably 0. As r 16 and r 17 , 0 is preferable. r 18 is preferably 0, 1 or 3, and more preferably 3. The r 19, preferably 0 or 1, more preferably 0.
  • a 4 is preferably a single bond, a divalent group or a single bond formed by removing two hydrogen atoms from benzene, biphenyl, naphthalene, anthracene, fluorene or phenanthrene. Two hydrogen atoms are removed from a single bond, benzene or naphthalene. A divalent group or a single bond is more preferable.
  • anthracene derivative III is shown in FIGS. 20 and 21, but the anthracene derivative III is not limited to these compounds.
  • compounds 3-1 to 3-4, 3-7, 3-10 and 3-11 correspond to the above general formula (3a).
  • Compounds 3-5, 3-6, 3-8 and 3-9 correspond to the above general formula (3b).
  • D represents a deuterium atom.
  • a heterocyclic compound having an indole ring as a partial structure a heterocyclic compound having a carbazole ring as a partial structure, a carbazole derivative, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like may be used.
  • a blue light-emitting dopant such as a pyrene derivative is preferably used.
  • an amine derivative having a fluorene ring as a partial structure quinacridone, coumarin, rubrene, perylene, pyrene, and derivatives thereof; benzopyran derivative; Nophenanthrene derivatives; rhodamine derivatives; aminostyryl derivatives; and the like can be used.
  • a phosphorescent emitter As the phosphorescent emitter, a phosphorescent emitter of a metal complex such as iridium or platinum can be used. Specifically, green phosphorescent emitters such as Ir (ppy) 3 ; blue phosphorescent emitters such as FIrpic and FIr6; red phosphorescent emitters such as Btp 2 Ir (acac); and the like are used.
  • the host material at this time for example, the following hole injection / transport host materials can be used.
  • Carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (CBP), TCTA, mCP, etc .
  • Arylamine compounds such as the arylamine compounds I
  • the following electron transporting host material can also be used.
  • the doping of the phosphorescent light-emitting material into the host material is preferably performed by co-evaporation in the range of 1 to 30% by weight with respect to the entire light-emitting layer in order to avoid concentration quenching.
  • a material that emits delayed fluorescence such as a CDCB derivative such as PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN, etc., as the light emitting material.
  • a hole blocking layer (not shown) can be provided on the light emitting layer 6.
  • a known compound having a hole blocking action can be used for the hole blocking layer.
  • Known compounds having a hole blocking action include phenanthroline derivatives such as bathocuproin (BCP); metals of quinolinol derivatives such as aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate (BAlq) Various rare earth complexes; triazole derivatives; triazine derivatives; oxadiazole derivatives; These materials may also serve as the material for the electron transport layer.
  • An electron transport layer 7 is provided on the light emitting layer 6 (or hole blocking layer). It is preferable to use an anthracene derivative II represented by the following general formula (2) for the electron transport layer 7.
  • Anthracene compound II has, for example, the following three aspects.
  • a 3 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond.
  • the aromatic hydrocarbon divalent group, aromatic heterocyclic divalent group or condensed polycyclic aromatic divalent group represented by A 3 is represented by A 1 and A 2 in the general formula (1). Examples thereof include those similar to those shown for the aromatic hydrocarbon divalent group, aromatic heterocyclic divalent group or condensed polycyclic aromatic divalent group. These divalent groups may be unsubstituted or may have a substituent. As the substituent, an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group represented by Ar 1 to Ar 6 in the general formula (1) may be shown. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • (B) B represents an aromatic heterocyclic group. Specifically, triazinyl group, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, Examples thereof include a quinoxalinyl group, a benzimidazolyl group, a pyrazolyl group, a dibenzofuranyl group, a dibenzothienyl group, a naphthyridinyl group, a phenanthrolinyl group, an acridinyl group, and a carbolinyl group.
  • the aromatic heterocyclic group represented by B may be unsubstituted or may have a substituent.
  • substituent include the following groups in addition to the deuterium atom, cyano group, and nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • Alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl An n-hexyl group
  • the above substituent may be unsubstituted, but may be further substituted with the exemplified substituent.
  • the above substituents may be present independently and do not form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. You may do it.
  • (C) C represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the two groups C may be the same or different.
  • aromatic hydrocarbon group aromatic heterocyclic group or condensed polycyclic aromatic group represented by C
  • aromatic hydrocarbon group represented by Ar 1 to Ar 6 in the general formula (1) aromatic
  • aromatic hydrocarbon group represented by Ar 1 to Ar 6 in the general formula (1) aromatic
  • aromatic heterocyclic group or condensed polycyclic aromatic group aromatic
  • these groups may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 6 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may be shown as a substituent.
  • the same thing can be mentioned.
  • the aspect which a substituent can take is also the same.
  • D may be the same or different, and may be a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic complex. Represents a cyclic group or a condensed polycyclic aromatic group.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • alkyl group having 1 to 6 carbon atoms represented by D include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n- A pentyl group, isopentyl group, neopentyl group, n-hexyl group and the like can be mentioned.
  • aromatic hydrocarbon group aromatic heterocyclic group or condensed polycyclic aromatic group represented by D
  • aromatic hydrocarbon group represented by Ar 1 to Ar 6 in the general formula (1) aromatic
  • these groups may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 6 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may be shown as a substituent.
  • the same thing can be mentioned.
  • the aspect which a substituent can take is also the same.
  • the groups D bonded to the anthracene ring may be present independently of each other to form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom. It may combine to form a ring.
  • the groups C bonded to the anthracene ring may be present independently of each other to form a ring, but may be a single bond, a substituted or unsubstituted methylene group, an oxygen atom Alternatively, they may be bonded to each other via a sulfur atom to form a ring.
  • Ar 7 to Ar 15 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 7 to Ar 15 is an aromatic carbon group represented by Ar 1 to Ar 6 in the general formula (1).
  • the thing similar to what was shown as a hydrogen group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group can be mentioned. These groups may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 6 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may be shown as a substituent.
  • the same thing can be mentioned.
  • the aspect which a substituent can take is also the same.
  • R 7 to R 14 may be the same or different, and are a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 5 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • the cycloalkyloxy group having 5 to 10 carbon atoms includes an alkyl group having 1 to 6 carbon atoms represented by R 1 to R 6 in the general formula (1), and a cycloalkyloxy group having 5 to 10 carbon atoms.
  • Examples thereof include those similar to the alkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, and cycloalkyloxy groups having 5 to 10 carbon atoms. These groups may be unsubstituted or may have a substituent. Examples of the substituent include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 1 to R 6 in the general formula (1). The thing similar to what was shown as a substituent which an alkenyl group may have can be mentioned. The aspect which a substituent can take is also the same.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 7 to R 14 is an aromatic carbon group represented by Ar 1 to Ar 6 in the general formula (1).
  • the thing similar to what was shown as a hydrogen group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group can be mentioned. These groups may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 6 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may be shown as a substituent.
  • the same thing can be mentioned.
  • the aspect which a substituent can take is also the same.
  • Examples of the aryloxy group represented by R 7 to R 14 include the same aryloxy groups represented by R 1 to R 6 in the general formula (1). These groups may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 6 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may be shown as a substituent. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • R 7 to R 13 may be independently present to form a ring, but are bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. You may do it.
  • X 1 to X 4 each represent a carbon atom or a nitrogen atom, and only one of X 1 to X 4 is a nitrogen atom.
  • the nitrogen atom does not have a hydrogen atom or substituent of R 7 to R 10 . That is, when X 1 is a nitrogen atom, R 7 is present, when X 2 is a nitrogen atom, R 8 is present, when X 3 is a nitrogen atom, R 9 is present, and when X 4 is a nitrogen atom, R 10 is not present.
  • anthracene derivative II (Preferred embodiment of anthracene derivative II)
  • preferred embodiments of the anthracene derivative II will be described.
  • the group not designated as substituted / unsubstituted may have a substituent or be unsubstituted.
  • the anthracene derivative II is preferably represented by the general formula (2a), (2b) or (2c), and particularly preferably represented by the general formula (2b).
  • a 3 is preferably a single bond, an aromatic hydrocarbon divalent group or a condensed polycyclic aromatic divalent group, more preferably an aromatic hydrocarbon divalent group or a condensed polycyclic aromatic divalent group.
  • Divalent groups formed by removing two hydrogen atoms from benzene, biphenyl, naphthalene or phenanthrene are particularly preferred.
  • a 3 is particularly preferably an aromatic hydrocarbon divalent group.
  • aromatic heterocyclic group represented by B a nitrogen-containing aromatic heterocyclic group is preferable, and pyridyl group, pyrimidinyl group, pyrrolyl group, quinolyl group, isoquinolyl group, indolyl group, carbazolyl group, benzoxazolyl group, A benzothiazolyl group, a quinoxalinyl group, a benzimidazolyl group, a pyrazolyl group or a carbolinyl group is more preferable, and a pyridyl group, a pyrimidinyl group, a quinolyl group, an isoquinolyl group, an indolyl group, a pyrazolyl group, a benzoimidazolyl group or a carbolinyl group is particularly preferable.
  • X 3 is preferably a nitrogen atom.
  • D is preferably a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or an alkyl group having 1 to 6 carbon atoms.
  • Ar 7 is preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, more preferably a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, or a phenanthrenyl group.
  • Ar 8 and Ar 9 may be the same or different, and are preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, and more preferably a phenyl group, a naphthyl group, or a phenanthrenyl group.
  • Ar 10 and Ar 11 may be the same or different, and are preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, and more preferably a phenyl group, a naphthyl group, or an anthracenyl group.
  • Ar 12 is preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, more preferably a phenyl group, a naphthyl group, an anthracenyl group or a phenanthrenyl group, and particularly preferably a phenyl group.
  • Ar 13 is preferably an aromatic hydrocarbon group, a nitrogen-containing aromatic heterocyclic group or a condensed polycyclic aromatic group, more preferably a phenyl group, a naphthyl group, a pyridyl group, a quinolyl group or a carbolinyl group.
  • Ar 14 and Ar 15 may be the same or different and are preferably an aromatic hydrocarbon group, a nitrogen-containing aromatic heterocyclic group or a condensed polycyclic aromatic group, more preferably a phenyl group, a naphthyl group, a phenanthrenyl group or a carbolinyl group. preferable.
  • the substituent is preferably an aromatic hydrocarbon group, a condensed polycyclic aromatic group or an aromatic heterocyclic group, and preferably a phenyl group, a naphthyl group, a phenanthrenyl group or a pyridyl group.
  • R 7 to R 10 may be the same or different and are preferably a hydrogen atom, an aromatic hydrocarbon group or an aromatic heterocyclic group, and more preferably a hydrogen atom, a phenyl group or a pyridyl group.
  • R 11 to R 13 may be the same or different and are preferably a hydrogen atom or a deuterium atom.
  • R 14 is preferably a hydrogen atom or a deuterium atom.
  • anthracene derivative II Specific examples of preferable compounds among the anthracene derivatives II are shown in FIGS. 10 to 19, but the anthracene derivative II is not limited to these compounds.
  • D represents a deuterium atom.
  • the above-mentioned anthracene derivative II can be synthesized by a known method (see Patent Documents 4 to 6).
  • a known electron transport material may be mixed or used at the same time as long as the effects of the present invention are not impaired.
  • Known electron transporting materials include metal complexes of quinolinol derivatives such as Alq 3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, pyridine derivatives, pyrimidine derivatives, benzimidazole derivatives, thiadiazoles.
  • Derivatives, anthracene derivatives, carbodiimide derivatives, quinoxaline derivatives, pyridoindole derivatives, phenanthroline derivatives, silole derivatives, and the like can be used.
  • An electron injection layer 8 may be provided on the electron transport layer 7.
  • an alkali metal salt such as lithium fluoride or cesium fluoride, an alkaline earth metal salt such as magnesium fluoride, a metal oxide such as aluminum oxide, Liq, or the like can be used. This can be omitted in the preferred choice of layer and cathode.
  • an electrode material having a low work function such as aluminum, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
  • the glass transition point was calculated
  • Glass transition point Compound of Synthesis Example 1 (Compound 33) 149.8 ° C
  • the arylamine compound I had a glass transition point of 100 ° C. or higher, particularly 130 ° C. or higher, and the thin film state was stable.
  • the glass substrate 1 on which a 50 nm-thick ITO film was formed was washed with an organic solvent, and then the ITO surface was washed by UV / ozone treatment. Then, this glass substrate with an ITO electrode was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less. Subsequently, a compound HIM-1 having the following structural formula was deposited so as to cover the transparent anode 2 to form a hole injection layer 3 having a thickness of 5 nm. Next, the compound 33 of Synthesis Example 1 was deposited on the hole injection layer 3 to form a hole transport layer 4 having a film thickness of 65 nm.
  • a compound EBM-1 having the following structural formula was deposited on the hole transport layer 4 to form an electron blocking layer 5 having a thickness of 5 nm.
  • Binary vapor deposition was performed at a rate to form a light emitting layer 6 having a thickness of 20 nm.
  • Binary vapor deposition was performed to form an electron transport layer 7 having a thickness of 30 nm.
  • the compound ETM-1 having the above structural formula was deposited on the electron transport layer 7 to form an electron injection layer 8 having a thickness of 1 nm.
  • aluminum was deposited on the electron injection layer 8 to form a cathode 9 having a thickness of 100 nm.
  • the glass substrate on which the organic film and aluminum were formed was moved into a glove box substituted with dry nitrogen, and bonded to a glass substrate for sealing using a UV curable resin to obtain an organic EL element.
  • the element lifetime was measured. Specifically, when constant current driving is performed with the light emission luminance (initial luminance) at the start of light emission being 2000 cd / m 2 , the light emission luminance is 1900 cd / m 2 (corresponding to 95% when the initial luminance is 100%). : Time to decay to 95% attenuation). The results are shown in Table 1.
  • the drive voltage when a current with a current density of 10 mA / cm 2 was passed was 4.26 V in the device comparative example 1, whereas in the device example 1, the voltage was lowered to 3.68 V.
  • the luminous efficiency was 4.85 cd / A in Device Comparative Example 1, whereas the device Example 1 was as high as 5.60 cd / A.
  • the power efficiency was 3.57 lm / W in the device comparative example 1, whereas the device example 1 greatly improved to 4.77 lm / W.
  • the element lifetime was 194 hours in the element comparative example 1, whereas it was 375 hours in the element example 1, and the lifetime was greatly extended.
  • the organic EL device of the present invention using the arylamine compound I represented by the general formula (1) has a lower driving voltage and higher luminous efficiency than the known organic EL device.
  • a long-life organic EL device could be realized.
  • the organic EL device of the present invention can obtain high luminous efficiency and power efficiency, can reduce a practical driving voltage, and can improve durability. Therefore, for example, it can be applied to household appliances and lighting applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)

Abstract

本発明によれば、少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、前記正孔輸送層が下記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子が提供される。本発明の有機EL素子は、高効率、低駆動電圧であって、特に長寿命である。

Description

有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)に関し、詳しくは特定のアリールアミン化合物(および特定のアントラセン誘導体)を用いた有機EL素子に関する。
 有機EL素子は自己発光性素子であるため、液晶素子に比べて明るく視認性に優れ、鮮明な表示が可能である。そのため活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発し、有機材料を用いた有機EL素子を実用的なものにした。有機EL素子は、電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層して形成される。これにより、両方の電荷を蛍光体の層の中に注入して発光させ、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(特許文献1および特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされている。例えば、積層構造における各層の役割をさらに細分化し、基板上に順次、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されるようになってきた。
 また、発光効率のさらなる向上を目的として三重項励起子の利用が試みられ、燐光発光性化合物の利用が検討されている。更に、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発されている。2011年に九州大学の安達らは、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率を実現させた。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光発光性化合物、燐光発光性化合物または遅延蛍光を放射する材料をドープして作製することもできる。有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られる。そのため、有機EL素子では、正孔、電子の両電荷を如何に効率良く発光層に受け渡すかが重要であり、キャリアバランスに優れた素子とする必要がある。また、正孔注入性を高め、陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、更には発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
 また、素子寿命の観点からは、材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低温でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短時間でも薄膜の結晶化が起こり、素子が劣化する。そのため使用する材料には耐熱性が高く、アモルファス性が良好な性質が求められる。
 これまで有機EL素子の正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(NPD)や種々の芳香族アミン誘導体が知られていた(特許文献1および特許文献2参照)。NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こる。また、特許文献1および特許文献2の芳香族アミン誘導体の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有する化合物があるが、電子阻止性が不十分である。そのため、かかる芳香族アミン誘導体を用いて形成された有機EL素子では、電子の一部が発光層を通り抜け、発光効率の向上が期待できない。従って、更なる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。
 耐熱性、正孔注入性、正孔輸送性、電子阻止性などの特性を改良した化合物として、下記式で表される芳香族三級アミン化合物(化合物A)が提案されている(特許文献3参照)。
Figure JPOXMLDOC01-appb-C000013
 しかしながら、化合物Aを正孔注入層、正孔輸送層または電子阻止層に用いた素子では、耐熱性や発光効率などの改良はされているものの、未だ十分とはいえない。また、低駆動電圧化や電流効率も十分とはいえず、アモルファス性にも問題があった。そのため、アモルファス性が高く、さらなる低駆動電圧化やさらなる高発光効率化を実現できる材料が求められていた。
特開平8-48656号公報 特許第3194657号公報 国際公開第2012/117973号 国際公開第2011/059000号 国際公開第2003/060956号 韓国公開特許2013-0060157号公報
 本発明の目的は、正孔の注入・輸送性能、電子の注入・輸送性能、電子阻止能力、薄膜状態での安定性または耐久性に優れた有機EL素子用の各種材料を、それぞれの材料が有する特性が効果的に発現できるように組み合わせることで、(1)発光効率および電力効率が高く、(2)実用駆動電圧が低く、(3)長寿命(高耐久性)である有機EL素子を提供することにある。
 上記の目的を達成するために、本発明者らはアリールアミン系材料が正孔の注入および輸送能力、薄膜の安定性や耐久性に優れていることに着目し、アリールアミン化合物を用いて形成された正孔輸送層では、正孔を効率良く注入・輸送できると考えた。また、アントラセン環構造を有する化合物が、電子の注入および輸送能力、薄膜の安定性や耐久性に優れていることに着目し、電子輸送層の材料として特定の構造を有するアントラセン誘導体を選択すると、電子を効率良く注入・輸送できると考えた。そして、キャリアバランスがとれるように、これらを正孔輸送材料と電子輸送材料として組み合わせた有機EL素子を種々作製し、素子の特性評価を鋭意行なった。その結果、本発明を完成するに至った。
 すなわち本発明によれば、
1)少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、
 前記正孔輸送層が、下記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子が提供される。
Figure JPOXMLDOC01-appb-C000014
  式中、
   Ar~Arは、同一でも異なってもよく、芳香族炭化水素基、芳
  香族複素環基または縮合多環芳香族基を表し、
   AおよびAは、同一でも異なってもよく、芳香族炭化水素の2価
  基、芳香族複素環の2価基または縮合多環芳香族の2価基を表し、
   R~Rは、同一でも異なってもよく、水素原子、重水素原子、フ
  ッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキ
  ル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6の
  アルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~
  10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、
  縮合多環芳香族基またはアリールオキシ基を表す。
 本発明の有機EL素子の好適な態様は以下の通りである。
2)前記アリールアミン化合物が、下記一般式(1a)で表される。
Figure JPOXMLDOC01-appb-C000015
  式中、
   Ar~Ar、A、AおよびR~Rは、前記一般式(1)に
  記載した通りの意味である。
3)前記アリールアミン化合物が、下記一般式(1b)で表される。
  式中、
   Ar~Ar、A、AおよびR~Rは、前記一般式(1)に
  記載した通りの意味である。
4)前記アリールアミン化合物が、下記一般式(1c)で表される。
Figure JPOXMLDOC01-appb-C000017
  式中、
   Ar~Ar、A、AおよびR~Rは、前記一般式(1)に
  記載した通りの意味である。
5)前記電子輸送層が、下記一般式(2)で表されるアントラセン誘導体を含有する。
Figure JPOXMLDOC01-appb-C000018
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環
  芳香族の2価基または単結合を表し、
   Bは、芳香族複素環基を表し、
   Cは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を
  表し、Cが2つあるとき、2つのCは同一でも異なってもよく、
   Dは、同一でも異なってもよく、水素原子、重水素原子、フッ素原子
  、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1~6のア
  ルキル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基
  を表し、
   pとqの和が9であるという条件の下、pは7または8を表し、qは
  1または2を表す。
6)前記アントラセン誘導体が、下記一般式(2a)で表される。
Figure JPOXMLDOC01-appb-C000019
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環
  芳香族の2価基または単結合を表し、
   Ar~Arは、同一でも異なってもよく、芳香族炭化水素基、芳
  香族複素環基または縮合多環芳香族基を表し、
   R~R13は、同一でも異なってもよく、水素原子、重水素原子、
  フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアル
  キル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6の
  アルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~
  10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、
  縮合多環芳香族基またはアリールオキシ基を表し、単結合、メチレン基
  、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよく、
   X~Xは、それぞれ、炭素原子または窒素原子を表し、X~X
  のいずれか1つのみが窒素原子であり、この場合の窒素原子はR~R
  10の水素原子もしくは置換基を有さない。
7)前記アントラセン誘導体が、下記一般式(2b)で表される。
Figure JPOXMLDOC01-appb-C000020
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環
  芳香族の2価基または単結合を表し、
   Ar10~Ar12は、同一でも異なってもよく、芳香族化水素基、芳
  香族複素環基または縮合多環芳香族基を表す。
8)前記アントラセン誘導体が、下記一般式(2c)で表される。
Figure JPOXMLDOC01-appb-C000021
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環
  芳香族の2価基または単結合を表し、
   Ar13~Ar15は、同一でも異なってもよく、芳香族炭化水素基、
  芳香族複素環基または縮合多環芳香族基を表し、
   R14は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基
  、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシ
  クロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6
  のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、
  芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリール
  オキシ基を表す。
9)前記発光層が、青色発光性ドーパントを含有する。
10)前記青色発光性ドーパントが、ピレン誘導体である。
11)前記発光層が、アントラセン誘導体を含有する。
12)前記発光層が、前記アントラセン誘導体をホスト材料として含有する。
13)前記アントラセン誘導体が、下記一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000022
  式中、
   R15~R19は、同一でも異なってもよく、重水素原子、炭素数1~
  30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30の
  アルキニル基、炭素数3~30のシクロアルキル基、炭素数5~30の
  シクロアルケニル基、炭素数1~30のアルキルオキシ基、炭素数6~
  30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数5
  ~30のアリールチオ基、炭素数1~30のアルキルアミノ基、炭素数
  5~30のアリールアミノ基、炭素数6~50のアリール基、炭素数2
  ~50の芳香族複素環基、シアノ基、ニトロ基、ハロゲン原子、アミノ
  基、ヒドロキシ基または-CO-R20基を表し、
   R20は、水素原子、ヒドロキシ基、炭素数1~6のアルキルオキシ
  基または炭素数6~30のアリールオキシ基を表し、
   Aは、芳香族炭化水素の2価基、縮合多環芳香族の2価基または単
  結合を表し、
   r15は、0~5の整数を表し、r16、r17およびr19は、それぞ
  れ、0~4の整数を表し、r18は、0~3の整数を表し、
   R15~R19が同一のベンゼン環に複数結合している場合、複数結合
  している基は、同一でも異なってもよい。
 さらに、本発明によれば、
14)陽極、正孔輸送層、電子阻止層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、前記電子阻止層が、上記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子、
15)陽極、正孔注入層、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、前記正孔注入層が上記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子、および
16)陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、前記発光層が、上記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子
が提供される。
 前記一般式(1)で表されるトリアリールアミン構造を4個有するアリールアミン化合物(以下、アリールアミン化合物Iと呼ぶことがある。)は新規な化合物であり、従来の正孔輸送材料より、正孔の注入性が高く、移動度が大きく、優れた電子の阻止能力を有し、しかも電子に対する安定性が高く薄膜状態が安定である。更に、耐熱性の点でも優れている。そのため、アリールアミン化合物Iは、本発明の有機EL素子において種々の層に好適に使用される。
 具体的には、アリールアミン化合物Iは、正孔注入層および/または正孔輸送層の構成材料として好適に使用される。かかる有機EL素子では、発光層内で生成した励起子を閉じ込めることができ、さらに正孔と電子が再結合する確率が向上し、高発光効率を得ることができると共に、駆動電圧が低下して耐久性が向上する。
 加えて、本発明では、前記一般式(2)で表されるアントラセン誘導体(以下、アントラセン誘導体IIと呼ぶことがある。)が、電子輸送層の構成材料として好適に使用される。アントラセン誘導体IIは、電子注入・輸送能力に優れており、さらに薄膜の安定性や耐久性に優れているからである。
 更に、本発明では、前記一般式(3)で表されるアントラセン誘導体(以下、アントラセン誘導体IIIと呼ぶことがある。)が、発光層のホスト材料、特に青色発光性ドーパントを含有する発光層のホスト材料として好適に使用される。アントラセン誘導体IIIは、従来の材料に比べて発光効率に優れているからである。
 また、アリールアミン化合物Iは、優れた電子の阻止能力を有すると共に従来の材料に比べて正孔輸送性に優れ、かつ薄膜状態の安定性が高い。そのため、アリールアミン化合物Iは、電子阻止層の構成材料としても好適に使用される。かかる電子阻止層を有する有機EL素子では、高い発光効率を実現しながら、駆動電圧が低く、電流耐性が改善されており、最大発光輝度が向上している。
 また、アリールアミン化合物Iは、従来の材料に比べて正孔輸送性に優れ、かつバンドギャップが広いので、発光層の構成材料として、特にドーパントを担持するホスト材料として好適に使用される。かかる発光層を有する有機EL素子では、駆動電圧が低下し、発光効率が改善されている。
 上述のように、本発明では、正孔の注入・輸送性能、電子の注入・輸送性能、薄膜の安定性、耐久性等に優れた材料を選択し、適宜組み合わせている。これにより、本発明の有機EL素子では、従来の有機EL素子に比べて、正孔輸送層から発光層へ正孔を効率良く注入・輸送することができる。また、電子輸送層から発光層への電子輸送効率も向上する。その結果、高効率、低駆動電圧、長寿命の有機EL素子を実現することができる。
合成例1の化合物33のH-NMRチャート図である。 素子実施例1および素子比較例1における有機EL素子構成を示した図である。 アリールアミン化合物Iである化合物1~10の構造式を示す図である。 アリールアミン化合物Iである化合物11~20の構造式を示す図である。 アリールアミン化合物Iである化合物21~30の構造式を示す図である。 アリールアミン化合物Iである化合物31~40の構造式を示す図である。 アリールアミン化合物Iである化合物41~48の構造式を示す図である。 アリールアミン化合物Iである化合物49~58の構造式を示す図である。 アリールアミン化合物Iである化合物59~65の構造式を示す図である。 アントラセン誘導体IIである化合物2a-1~2a-8の構造式を示す図である。 アントラセン誘導体IIである化合物2a-9~2a-16の構造式を示す図である。 アントラセン誘導体IIである化合物2a-17~2a-20の構造式を示す図である。 アントラセン誘導体IIである化合物2b-1~2b-8の構造式を示す図である。 アントラセン誘導体IIである化合物2b-9~2b-16の構造式を示す図である。 アントラセン誘導体IIである化合物2c-1~2c-6の構造式を示す図である。 アントラセン誘導体IIである化合物2c-7~2c-12の構造式を示す図である。 アントラセン誘導体IIである化合物2c-13~2c-18の構造式を示す図である。 アントラセン誘導体IIである化合物2c-19~2c-24の構造式を示す図である。 アントラセン誘導体IIである化合物2c-25~2c-30の構造式を示す図である。 アントラセン誘導体IIIである化合物3-1~3-6の構造式を示す図である。 アントラセン誘導体IIIである化合物3-7~3-11の構造式を示す図である。
 本発明の有機EL素子は、基板上に少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極がこの順に設けられた基本構造を有している。
 このような基本構造を有している限り、本発明の有機EL素子の層構造は種々の態様を採ることができる。例えば、陽極と正孔輸送層の間に正孔注入層を設けること、正孔輸送層と発光層の間に電子阻止層を設けること、発光層と電子輸送層の間に正孔阻止層を設けること、電子輸送層と陰極の間に電子注入層を設けることなどが可能である。更に、有機層を何層か省略あるいは兼ねることも可能である。例えば、正孔注入層と正孔輸送層を兼ねた構成とすること、電子注入層と電子輸送層を兼ねた構成とすることなども可能である。また、同一の機能を有する有機層を2層以上積層した構成とすることも可能である。例えば、正孔輸送層を2層積層した構成、発光層を2層積層した構成、電子輸送層を2層積層した構成などが可能である。図2には、後述する実施例で採用された層構成が示されており、即ち、ガラス基板1上に、透明陽極2、正孔注入層3、正孔輸送層4、電子阻止層5、発光層6、電子輸送層7、電子注入層8および陰極9がこの順に形成された層構成が示されている。
 各層の詳細な説明は後述するが、本発明では、正孔輸送層、発光層、必要に応じて設けられる電子阻止層および必要に応じて設けられる正孔注入層から成る群より選ばれる少なくとも1層が、下記一般式(1)で表されるアリールアミン化合物Iを含有している点に重要な特徴を有する。尚、隣り合う複数層でアリールアミン化合物Iを使用する場合、かかる複数層の層構成は異なるものとする。
<アリールアミン化合物I>
 アリールアミン化合物Iは、下記一般式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000023
 アリールアミン化合物Iとしては、ナフタレン環上のR~Rの結合位置関係に応じて、例えば以下の3態様がある。
Figure JPOXMLDOC01-appb-C000024
(Ar~Ar
 Ar~Arは、同一でも異なってもよく、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。本願明細書において、縮合多環芳香族基は、その骨格にヘテロ原子(例えば窒素原子、酸素原子、硫黄原子など)を有していない。
 Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基などを挙げることができる。
 Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他に、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキル基、例えばメチル基、エチル基、n-プロ
 ピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチ
 ル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル
 基;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エチル
 オキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチルオキ
 シ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビフェ
 ニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナン
 トレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基
 、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニル基
 、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベ
 ンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベ
 ンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイ
 ミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基
 、カルボリニル基;
  アリールビニル基、例えばスチリル基、ナフチルビニル基;
  アシル基、例えばアセチル基、ベンゾイル基;
尚、炭素原子数1~6のアルキル基、炭素原子数1~6のアルキルオキシ基およびアルケニル基は、直鎖状でも分岐状でもよい。上記置換基は、無置換でもよいが、さらに前記例示した置換基が置換していても良い。また、上記置換基は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
(A、A
 A、Aは、同一でも異なってもよく、芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基を表す。
 芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基は、芳香族炭化水素、芳香族複素環または縮合多環芳香族から水素原子を2個取り除いてできる2価基を表す。
 芳香族炭化水素、芳香族複素環または縮合多環芳香族としては、具体的に、ベンゼン、ビフェニル、ターフェニル、テトラキスフェニル、スチレン、ナフタレン、アントラセン、アセナフタレン、フルオレン、フェナントレン、インダン、ピレン、トリフェニレン、ピリジン、ピリミジン、トリアジン、ピロール、フラン、チオフェン、キノリン、イソキノリン、ベンゾフラン、ベンゾチオフェン、インドリン、カルバゾール、カルボリン、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾイミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、ナフチリジン、フェナントロリン、アクリジン、アクリダンなどを挙げることができる。
 A、Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(R~R
 R~Rは、同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基および炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
 これらの基は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などを挙げることができる。
 R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他に、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エチル
 オキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチルオキ
 シ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビフェ
 ニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナン
 トレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基
 、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニル基
 、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベ
 ンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベ
 ンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイ
 ミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基
 、カルボリニル基;
尚、炭素原子数1~6のアルキルオキシ基およびアルケニル基は直鎖状でも分岐状であってもよい。上記置換基は、無置換でもよいが、さらに前記例示した置換基が置換していても良い。また、上記置換基は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 R~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などを挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基として示したものと同様のものを挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~Rで表されるアリールオキシ基としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などを挙げることができる。
 R~Rで表されるアリールオキシ基は、無置換でもよいが置換基を有していてもよい。置換基としては、Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(アリールアミン化合物Iの好適な態様)
 以下、アリールアミン化合物Iの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 アリールアミン化合物Iは、上記一般式(1a)、(1b)または(1c)で表されることが好ましく、上記一般式(1b)で表されることがより好ましい。
 また、アリールアミン化合物Iは、対称性を持つことが好ましい。
 Ar~Arは、同一でも異なってもよく、芳香族炭化水素基、縮合多環芳香族基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基が好ましく、具体的には、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基が好ましい。特に、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ビフェニリル基またはナフチル基が最も好ましい。これらの基は、置換基を有していても良いが、無置換であることがより好ましい。
 A、Aは、同一でも異なってもよく、芳香族炭化水素、縮合多環芳香族、ベンゾフラン、ベンゾチオフェン、カルバゾール、ジベンゾフランまたはジベンゾチオフェンから水素原子を2個取り除いてできる2価基が好ましく、芳香族炭化水素または縮合多環芳香族から水素原子を2個取り除いてできる2価基がより好ましい。具体的には、ベンゼン、ビフェニル、ナフタレン、アントラセン、フルオレン、フェナントレン、ベンゾフラン、ベンゾチオフェン、カルバゾール、ジベンゾフランまたはジベンゾチオフェンから水素原子を2個取り除いてできる2価基が好ましく、ベンゼン、ビフェニルまたはナフタレンから水素原子を2個取り除いてできる2価基がより好ましい。
 R~Rは、同一でも異なってもよく、水素原子、重水素原子、芳香族炭化水素基、縮合多環芳香族基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基が好ましい。芳香族炭化水素基、縮合多環芳香族基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基は、置換基を有していても良いが、無置換であることがより好ましい。水素原子、重水素原子、フェニル基、ビフェニル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基がより好ましい。水素原子、重水素原子、フェニル基またはナフチル基が特に好ましい。
 アリールアミン化合物Iの中で、好ましい化合物の具体例を図3~図9に示すが、アリールアミン化合物Iはこれらの化合物に限定されるものではない。具体例において、化合物1~化合物31は上記一般式(1a)に該当する。化合物32~化合物54は上記一般式(1b)に該当する。化合物55~化合物65は上記一般式(1c)に該当する。Dは重水素原子を表す。
 アリールアミン化合物Iは、Buchwald-Hartwigカップリング等の公知の方法により製造することができる。
 アリールアミン化合物Iの精製は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法、昇華精製などによって行うことができる。化合物の同定は、NMR分析によって行うことができる。物性値として、ガラス転移点(Tg)と仕事関数の測定を行うことができる。
 ガラス転移点(Tg)は薄膜状態の安定性の指標となる。ガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によって測定することができる。
 仕事関数は正孔輸送性の指標となる。仕事関数は、ITO基板の上に100nmの薄膜を作製し、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202型)によって測定することができる。
 アリールアミン化合物I以外の本発明の有機EL素子に用いられる化合物(例えば後述するアントラセン誘導体II、III)についても、合成後、同様の方法により精製および各種測定をすることができる。
 本発明の有機EL素子においては、上記アリールアミン化合物Iが使用されている限り、各層は種々の態様を採ることができる。以下、図2を参照して、各層について詳細に説明する。
<陽極2>
 本発明の有機EL素子においては、ガラス基板1の上に陽極2が設けられている。陽極2には、ITOや金のような仕事関数の大きな電極材料が用いられる。
<正孔注入層3>
 陽極2と正孔輸送層4との間に正孔注入層3を設けることができる。正孔注入層3には、アリールアミン化合物Iが好ましく用いられる。その他、公知の材料を使用してもよい。
 公知の材料としては、例えば、銅フタロシアニンに代表されるポルフィリン化合物;スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料;ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物;塗布型の高分子材料;などを用いることができる。
 また、正孔注入層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(例えば、国際公開第2014/009310号参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いることもできる。
 これらの材料を用いて、蒸着法、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことで、正孔注入層3を得ることができる。以下に述べる各層も同様に、蒸着法、スピンコート法やインクジェット法などの公知の方法により薄膜形成を行うことで得ることができる。
<正孔輸送層4>
 陽極2(または正孔注入層3)の上には、正孔輸送層4が設けられる。かかる正孔輸送層4には、前記アリールアミン化合物Iを用いることが好ましい。正孔輸送層4には、本発明の効果を損なわない限りにおいて、以下に例示される公知の正孔輸送性の材料を使用してもよい。
  ベンジジン誘導体、例えば
   NPD、
   N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(T
  PD)、
   N,N,N’,N’-テトラビフェニリルベンジジン;
  1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン
 ;
  種々のトリフェニルアミン3量体および4量体;
 これらの材料は、単独で成膜に供してもよいが、他の材料とともに混合して成膜に供してもよい。以下に述べる各有機層でも、同様に成膜することができる。
 正孔輸送層4は、単独で成膜した層同士を積層した構造、混合して成膜した層同士を積層した構造または単独で成膜した層と混合して成膜した層を積層した構造を有してもよい。以下に述べる各有機層も同様の構造とすることができる。
 正孔注入層3兼正孔輸送層4として機能する層を設ける場合、前記アリールアミン化合物Iを使用することもできるし、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)/ポリ(スチレンスルフォネート)(PSS)などの塗布型の高分子材料を用いることもできる。
 また、正孔輸送層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(例えば、国際公開第2014/009310号参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いることができる。
<電子阻止層5>
 正孔輸送層4と発光層6との間に電子阻止層5を設けることができる。電子阻止層5には、前記アリールアミン化合物Iが好ましく用いられる。電子阻止層5には、本発明の効果を損なわない限りにおいて、以下に例示される公知の電子阻止作用を有する化合物を含有させてもよい。
  カルバゾール誘導体、例えば
   4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(
  TCTA)、
   9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレ
  ン、
   1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)、
   2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン
  (Ad-Cz);
  トリフェニルシリル基を有するトリアリールアミン化合物、例えば
   9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(ト
  リフェニルシリル)フェニル]-9H-フルオレン;
<発光層6>
 発光層6は、前記正孔輸送層4(または電子阻止層5)の上に形成される。発光層6には、Alqをはじめとするキノリノール誘導体の金属錯体の他、各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。
 また、発光層をホスト材料とドーパント材料とで構成しても良い。ホスト材料として、前記発光材料を使用することができる。前記アリールアミン化合物Iまたはアントラセン誘導体が好ましく用いられる。
 アントラセン誘導体としては、下記一般式(3)で表されるアントラセン誘導体IIIが好ましい。以下、アントラセン誘導体IIIについて説明する。
アントラセン誘導体III;
Figure JPOXMLDOC01-appb-C000025
(R15~R19
 R15~R19は、同一でも異なってもよく、重水素原子、炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~30のシクロアルキル基、炭素数5~30のシクロアルケニル基、炭素数1~30のアルキルオキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数5~30のアリールチオ基、炭素数1~30のアルキルアミノ基、炭素数5~30のアリールアミノ基、炭素数6~50のアリール基、炭素数2~50の芳香族複素環基、シアノ基、ニトロ基、ハロゲン原子、アミノ基、ヒドロキシ基または-CO-R20基を表し、R20は、水素原子、ヒドロキシ基、炭素数1~6のアルキルオキシ基または炭素数6~30のアリールオキシ基を表す。炭素数1~30のアルキル基、炭素数2~30のアルケニル基および炭素数2~30のアルキニル基は、直鎖状でも分岐状でもよい。
 これらの基は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
 R15~R19で表される炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~30のシクロアルキル基または炭素数5~30のシクロアルケニル基としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基、シクロペンテニル基、シクロヘキセニル基、エチニル基、イソプロピニル基、2-ブチニル基などを挙げることができる。
 R15~R19で表される炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~30のシクロアルキル基または炭素数5~30のシクロアルケニル基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他に、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エチル
 オキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチルオキ
 シ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビフェ
 ニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナン
 トレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基
 、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニル基
 、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベ
 ンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベ
 ンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイ
 ミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基
 、カルボリニル基;
尚、炭素原子数1~6のアルキルオキシ基およびアルケニル基は直鎖状でも分岐状であってもよい。上記置換基は、無置換でもよいが、さらに前記例示した置換基が置換していても良い。また、上記置換基は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成していてもよい。
 R15~R19で表される炭素数1~30のアルキルオキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数5~30のアリールチオ基、炭素数1~30のアルキルアミノ基または炭素数5~30のアリールアミノ基としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、フェニルオキシ基、ナフチルオキシ基、メチルチオ基、エチルチオ基、フェニルチオ基、ナフチルチオ基、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ジナフチルアミノ基などを挙げることができる。
 R15~R19で表される炭素数1~30のアルキルオキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数5~30のアリールチオ基、炭素数1~30のアルキルアミノ基または炭素数5~30のアリールアミノ基は、無置換でもよいが置換基を有していてもよい。置換基としては、R15~R19で表される炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~30のシクロアルキル基または炭素数5~30のシクロアルケニル基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R15~R19で表される炭素数6~50のアリール基または炭素数2~50の芳香族複素環基としては、具体的に、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基などを挙げることができる。
 R15~R19で表される炭素数6~50のアリール基または炭素数2~50の芳香族複素環基は、無置換でもよいが置換基を有していてもよい。置換基としては、R15~R19で表される炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~30のシクロアルキル基または炭素数5~30のシクロアルケニル基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(R20
 R20で表される炭素原子数1~6のアルキルオキシ基または炭素原子数6~30のアリールオキシ基としては、メチルオキシ基、エチルオキシ基、プロピルオキシ基、フェニルオキシ基、ビフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基等を挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、R15~R19で表される炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数3~30のシクロアルキル基または炭素数5~30のシクロアルケニル基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(r15~r19
 r15は、0~5の整数を表し、r16、r17、r19は、0~4の整数を表し、r18は、0~3の整数を表す。r15~r19が0である場合とは、R15~R19が存在しないこと、すなわち、R15~R19で表される基でベンゼン環が置換されていないことを表す。
 r15~r19が、上記範囲内の0と1以外の整数である場合、同一のベンゼン環にR15~R19が複数結合している。この場合、複数結合している基は、同一でも異なってもよい。また、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
(A
 Aは、芳香族炭化水素の2価基、縮合多環芳香族の2価基または単結合を表す。
 芳香族炭化水素の2価基または縮合多環芳香族の2価基は、芳香族炭化水素又は縮合多環芳香族から水素原子を2個取り除いてできる2価基を表す。
 芳香族炭化水素または縮合多環芳香族としては、具体的に、ベンゼン、ビフェニル、ターフェニル、テトラキスフェニル、スチレン、ナフタレン、アントラセン、アセナフタレン、フルオレン、フェナントレン、インダン、ピレン、トリフェニレンなどを挙げることができる。
 Aで表される芳香族炭化水素の2価基または縮合多環芳香族の2価基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(アントラセン誘導体IIIの好適な態様)
 以下、アントラセン誘導体IIIの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 アントラセン誘導体IIIは、下記一般式(3a)または(3b)で表されることが好ましく、下記一般式(3a)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000026
 R15~R19は、同一でも異なってもよく、重水素原子、炭素原子数6~50のアリール基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基が好ましく、重水素原子、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、ベンゾフラニル基、ベンゾチエニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基がより好ましく、重水素原子、フェニル基、カルバゾリル基またはジベンゾフラニル基が特に好ましい。
 r15としては、0または5が好ましく、0がより好ましい。r16、r17としては、0が好ましい。r18としては0、1または3が好ましく、3がより好ましい。r19としては、0または1が好ましく、0がより好ましい。
 Aとしては、単結合、ベンゼン、ビフェニル、ナフタレン、アントラセン、フルオレンまたはフェナントレンから水素原子を2個取り除いてできる2価基または単結合が好ましく、単結合、ベンゼンまたはナフタレンから水素原子を2個取り除いてできる2価基または単結合がより好ましい。
 アントラセン誘導体IIIの好適な具体例を図20および図21に示すが、アントラセン誘導体IIIはこれらの化合物に限定されるものではない。具体例において、化合物3-1~3-4、3-7、3-10および3-11は上記一般式(3a)に該当する。化合物3-5、3-6、3-8および3-9は上記一般式(3b)に該当する。Dは重水素原子を表す。
 また、ホスト材料としては、インドール環を部分構造として有する複素環化合物、カルバゾール環を部分構造として有する複素環化合物、カルバゾール誘導体、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いてもよい。
 ドーパント材料としては、ピレン誘導体などの青色発光性ドーパントが好ましく用いられるが、そのほか、フルオレン環を部分構造として有するアミン誘導体;キナクリドン、クマリン、ルブレン、ペリレン、ピレン、およびそれらの誘導体;ベンゾピラン誘導体;インデノフェナントレン誘導体;ローダミン誘導体;アミノスチリル誘導体;などを用いることができる。
 また、発光材料として燐光発光体を使用することも可能である。燐光発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。具体的には、Ir(ppy)などの緑色の燐光発光体;FIrpic、FIr6などの青色の燐光発光体;BtpIr(acac)などの赤色の燐光発光体;などが用いられる。
 このときのホスト材料としては、例えば以下の正孔注入・輸送性のホスト材料を用いることができる。
  カルバゾール誘導体、例えば4,4’-ジ(N-カルバゾリル)ビフェ
 ニル(CBP)、TCTA、mCPなど;
  アリールアミン化合物、例えば前記アリールアミン化合物I;
 また、以下の電子輸送性のホスト材料を用いることもできる。
  p-ビス(トリフェニルシリル)ベンゼン(UGH2)、2,2’,2
 ’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズ
 イミダゾール)(TPBI)など;
このようなホスト材料を用いると、高性能の有機EL素子を作製することができる。
 燐光性の発光材料のホスト材料へのドープは、濃度消光を避けるため、発光層全体に対して1~30重量%の範囲で、共蒸着によって行うことが好ましい。
 また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である。
<正孔阻止層>
 発光層6の上には、正孔阻止層(図示せず)を設けることができる。正孔阻止層には、公知の正孔阻止作用を有する化合物を用いることができる。公知の正孔阻止作用を有する化合物としては、バソクプロイン(BCP)などのフェナントロリン誘導体;アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(BAlq)などのキノリノール誘導体の金属錯体;各種の希土類錯体;トリアゾール誘導体;トリアジン誘導体;オキサジアゾール誘導体;などを挙げることができる。これらの材料は電子輸送層の材料を兼ねてもよい。
<電子輸送層7>
 発光層6(または正孔阻止層)の上には、電子輸送層7を設ける。電子輸送層7には、下記一般式(2)で表されるアントラセン誘導体IIを用いることが好ましい。
アントラセン化合物II;
Figure JPOXMLDOC01-appb-C000027
 アントラセン誘導体IIには、例えば以下の3態様がある。
Figure JPOXMLDOC01-appb-C000028
(A
 Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環芳香族の2価基または単結合を表す。
 Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基は、前記一般式(1)中のA、Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基に関して示したものと同様のものを挙げることができる。
 これらの2価基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(B)
 Bは、芳香族複素環基を表す。具体的に、トリアジニル基、ピリジル基、ピリミジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基などを挙げることができる。
 Bで表される芳香族複素環基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他に、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキル基、例えばメチル基、エチル基、n-プロ
 ピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチ
 ル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル
 基;
  炭素原子数5~10のシクロアルキル基、例えばシクロペンチル基、シ
 クロヘキシル基、1-アダマンチル基、2-アダマンチル基;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エチル
 オキシ基、プロピルオキシ基;
  炭素原子数5~10のシクロアルキルオキシ基、例えばシクロペンチル
 オキシ基、シクロヘキシルオキシ基、1-アダマンチルオキシ基、2-ア
 ダマンチルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチルオキ
 シ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビフェ
 ニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナン
 トレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基
 、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニル基
 、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベ
 ンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベ
 ンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイ
 ミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基
 、カルボリニル基;
  アリールオキシ基、例えばフェニルオキシ基、ビフェニリルオキシ基、
 ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基
 ;
  アリールビニル基、例えばスチリル基、ナフチルビニル基;
  アシル基、例えばアセチル基、ベンゾイル基;
尚、炭素原子数1~6のアルキル基、炭素原子数1~6のアルキルオキシ基およびアルケニル基は、直鎖状でも分岐状でもよい。上記置換基は、無置換でもよいが、さらに前記例示した置換基が置換していても良い。また、上記置換基は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
(C)
 Cは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。基Cが2つあるとき(q=2のとき)、2つの基Cは、同一でも異なってもよい。
 Cで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基として示したものと同様のものを挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基又は縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(D)
 Dは、同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1~6のアルキル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。炭素原子数1~6のアルキル基は、直鎖状でも分岐状でもよい。
 Dで表される炭素原子数1~6のアルキル基としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などを挙げることができる。
 Dで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基として示したものと同様のものを挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基又は縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(p、q)
 pおよびqは、pとqの和が9であるという条件の下、pは7または8を表し、qは1または2を表す。
 アントラセン環に複数結合している基Dは、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 qが2である場合、アントラセン環に複数結合している基Cは、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
(Ar~Ar15
 Ar~Ar15は、同一でも異なってもよく、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。
 Ar~Ar15で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基として示したものと同様のものを挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基又は縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(R~R14
 R~R14は、同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基および炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
 R~R14で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、前記一般式(1)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基として示したものと同様のものを挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~R14で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基として示したものと同様のものを挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基又は縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~R14で表されるアリールオキシ基としては、前記一般式(1)中のR~Rで表されるアリールオキシ基として示したものと同様のものを挙げることができる。
 これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基又は縮合多環芳香族基が有してもよい置換基として示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~R13は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
(X~X
 X~Xは、それぞれ、炭素原子または窒素原子を表し、X~Xのいずれか1つのみが窒素原子である。この場合の窒素原子はR~R10の水素原子もしくは置換基を有さない。すなわち、Xが窒素原子である場合はRが、Xが窒素原子である場合はRが、Xが窒素原子である場合はRが、Xが窒素原子である場合はR10が存在しない。
(アントラセン誘導体IIの好適な態様)
 以下、アントラセン誘導体IIの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 アントラセン誘導体IIは、上記一般式(2a)、(2b)または(2c)で表されることが好ましく、上記一般式(2b)で表されることが特に好ましい。
 Aとしては、単結合、芳香族炭化水素の2価基または縮合多環芳香族の2価基が好ましく、芳香族炭化水素の2価基または縮合多環芳香族の2価基がより好ましく、ベンゼン、ビフェニル、ナフタレンまたはフェナントレンから水素原子を2個取り除いてできる2価基が特に好ましい。一般式(2c)においては、Aは、芳香族炭化水素の2価基が特に好ましい。
 Bで表される芳香族複素環基としては、含窒素芳香族複素環基が好ましく、ピリジル基、ピリミジニル基、ピロリル基、キノリル基、イソキノリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基またはカルボリニル基がより好ましく、ピリジル基、ピリミジニル基、キノリル基、イソキノリル基、インドリル基、ピラゾリル基、ベンゾイミダゾリル基またはカルボリニル基が特に好ましい。
 X~Xの内、Xが窒素原子であることが好ましい。
 Dとしては、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基または炭素原子数1~6のアルキル基が好ましい。
 Arとしては、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ビフェニル基、ナフチル基、フルオレニル基またはフェナントレニル基がより好ましい。
 Ar、Arは、同一でも異なってもよく、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ナフチル基またはフェナントレニル基がより好ましい。
 Ar10、Ar11は、同一でも異なってもよく、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ナフチル基またはアントラセニル基がより好ましい。
 Ar12としては、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ナフチル基、アントラセニル基またはフェナントレニル基がより好ましく、フェニル基が特に好ましい。
 Ar13としては、芳香族炭化水素基、含窒素芳香族複素環基または縮合多環芳香族基が好ましく、フェニル基、ナフチル基、ピリジル基、キノリル基またはカルボリニル基がより好ましい。
 Ar14、Ar15は、同一でも異なってもよく、芳香族炭化水素基、含窒素芳香族複素環基または縮合多環芳香族基が好ましく、フェニル基、ナフチル基、フェナントレニル基またはカルボリニル基がより好ましい。これらの基が置換基を有する場合、置換基としては、芳香族炭化水素基、縮合多環芳香族基または芳香族複素環基が好ましく、フェニル基、ナフチル基、フェナントレニル基またはピリジル基が好ましい。
 R~R10は、同一でも異なってもよく、水素原子、芳香族炭化水素基または芳香族複素環基が好ましく、水素原子、フェニル基またはピリジル基が好ましい。
 R11~R13としては、同一でも異なってもよく、水素原子または重水素原子が好ましい。
 R14としては、水素原子または重水素原子が好ましい。
 アントラセン誘導体IIの中で、好ましい化合物の具体例を図10~図19に示すが、アントラセン誘導体IIはこれらの化合物に限定されるものではない。Dは重水素原子を表す。
 尚、上述したアントラセン誘導体IIは、公知の方法によって合成することができる(特許文献4~6参照)。
 電子輸送層7では、本発明の効果を損なわない限りにおいて、公知の電子輸送性の材料を混合または同時に使用してもよい。公知の電子輸送性の材料としては、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、ピリジン誘導体、ピリミジン誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、アントラセン誘導体、カルボジイミド誘導体、キノキサリン誘導体、ピリドインドール誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。
<電子注入層8>
 電子輸送層7の上には、電子注入層8を設けてもよい。電子注入層8としては、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物、Liqなどを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
<陰極9>
 陰極9としては、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
<合成例1:化合物33>
N,N’-ビス(4’-ジフェニルアミノ-ビフェニル-4-イル)-N,N’-ジフェニル-ナフタレン-2,7-ジアミンの合成;
 窒素雰囲気下、反応容器に
   2、7-ジブロモナフタレン          10.0g、
   (4’-ジフェニルアミノ-ビフェニル-4-イル)-フェニルアミ
  ン                       31.0g、
   tert-ブトキシナトリウム         10.0gおよび
   トルエン                   330ml
を加え、続いて、
   tert-ブチルホスフィンのトルエン溶液(10wt%)
                          1.0gおよび
   酢酸パラジウム(II)            0.2g
を加えて加熱し、還流下、3時間攪拌した。次いで、反応液にトルエンと水を加え、分液操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(担体:シリカゲル、溶離液:トルエン/シクロヘキサン)を用いて精製した後、テトラヒドロフラン/アセトンの混合溶媒を用いて晶析精製した。その結果、化合物33の黄白色粉体17.3g(収率:52.1%)を得た。
Figure JPOXMLDOC01-appb-C000029
 得られた黄白色粉体についてNMRを使用して構造を同定した。H-NMR(THF-d)の測定結果を図1に示した。H-NMR(THF-d)で以下の52個の水素のシグナルを検出した。
δ(ppm)=7.85(2H)
       7.66(8H)
       7.42(14H)
       7.31(10H)
       7.25(12H)
       7.17(6H)
 得られた化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によってガラス転移点を求めた。
                      ガラス転移点
  合成例1の化合物(化合物33)     149.8℃
 アリールアミン化合物Iは100℃以上、特に130℃以上のガラス転移点を有しており、薄膜状態が安定であった。
 得られた化合物を用いてITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202型)で仕事関数を測定した。
                       仕事関数
  合成例1の化合物(化合物33)     5.61eV
 アリールアミン化合物Iは、NPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.5eVと比較して、好適なエネルギー準位を示し、良好な正孔輸送能力を有していた。
<素子実施例1>
 ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、電子阻止層5、発光層6、電子輸送層7、電子注入層8、陰極(アルミニウム電極)9の順に蒸着して、図2に示す構造の有機EL素子を作製した。
 具体的には、膜厚50nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、UV/オゾン処理にてITO表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。
 続いて、透明陽極2を覆うように、下記構造式の化合物HIM-1を蒸着し、膜厚5nmの正孔注入層3を形成した。
Figure JPOXMLDOC01-appb-C000030
 次いで、正孔注入層3の上に、合成例1の化合物33を蒸着し、膜厚65nmの正孔輸送層4を形成した。
Figure JPOXMLDOC01-appb-C000031
 次いで、正孔輸送層4の上に、下記構造式の化合物EBM-1を蒸着し、膜厚5nmの電子阻止層5を形成した。
Figure JPOXMLDOC01-appb-C000032
 次いで、電子阻止層5の上に、下記構造式のピレン誘導体EMD-1と下記構造式のアントラセン誘導体3-10を、蒸着速度比がEMD-1:誘導体3-10=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmの発光層6を形成した。
Figure JPOXMLDOC01-appb-C000033
 次いで、発光層6の上に、下記構造式のアントラセン誘導体2b-1と下記構造式の化合物ETM-1を、蒸着速度比が誘導体2b-1:ETM-1=50:50となる蒸着速度で二元蒸着を行い、膜厚30nmの電子輸送層7を形成した。
Figure JPOXMLDOC01-appb-C000034
 次いで、電子輸送層7の上に、上記構造式の化合物ETM-1を蒸着し、膜厚1nmの電子注入層8を形成した。
 最後に、電子注入層8の上に、アルミニウムを蒸着し、膜厚100nmの陰極9を形成した。
 有機膜及びアルミニウムを成膜したガラス基板を、乾燥窒素にて置換したグローブボックス内に移動し、UV硬化樹脂を用いて封止用のガラス基板と貼り合わせ、有機EL素子とした。
<素子比較例1>
 素子実施例1において、正孔輸送層4の材料として合成例1の化合物33に代えて下記構造式の化合物HTM-1を用いた以外は、同様の条件で有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000035
 素子実施例1および素子比較例1で作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。結果を表1に示した。
 素子実施例1および素子比較例1で作製した有機EL素子を用いて、素子寿命を測定した。具体的には、発光開始時の発光輝度(初期輝度)を2000cd/mとして定電流駆動を行った時、発光輝度が1900cd/m(初期輝度を100%とした時の95%に相当:95%減衰)に減衰するまでの時間を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000036
 電流密度10mA/cmの電流を流したときの駆動電圧は、素子比較例1で4.26Vであったのに対し、素子実施例1では3.68Vと低電圧化した。
 発光効率は、素子比較例1で4.85cd/Aであったのに対し、素子実施例1では、5.60cd/Aと高効率であった。
 電力効率は、素子比較例1で3.57lm/Wであったのに対し、素子実施例1では、4.77lm/Wと大きく向上した。
 素子寿命は、素子比較例1で194時間であったのに対し、素子実施例1では375時間と、大きく長寿命化していた。
 以上の結果から明らかなように、一般式(1)で表されるアリールアミン化合物Iを用いた本発明の有機EL素子は、既知の有機EL素子と比較して、低駆動電圧、高発光効率、長寿命の有機EL素子を実現できた。
 上述の通り、本発明の有機EL素子は、高い発光効率および電力効率を得ることができると共に、実用駆動電圧を低下させることができ、耐久性を改善させることができる。そのため、例えば、家庭電化製品や照明の用途への展開が可能である。
1 ガラス基板
2 透明陽極
3 正孔注入層
4 正孔輸送層
5 電子阻止層
6 発光層
7 電子輸送層
8 電子注入層
9 陰極

Claims (16)

  1.  少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、
     前記正孔輸送層が、下記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子。
    Figure JPOXMLDOC01-appb-C000001
      式中、
       Ar~Arは、同一でも異なってもよく、芳香族炭化水素
      基、芳香族複素環基または縮合多環芳香族基を表し、
       AおよびAは、同一でも異なってもよく、芳香族炭化水素
      の2価基、芳香族複素環の2価基または縮合多環芳香族の2価
      基を表し、
       R~Rは、同一でも異なってもよく、水素原子、重水素原
      子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1
      ~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭
      素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオ
      キシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族
      炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリール
      オキシ基を表す。
  2.  前記アリールアミン化合物が、下記一般式(1a)で表される、請求項1記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000002
      式中、
       Ar~Ar、A、AおよびR~Rは、前記一般式
      (1)に記載した通りの意味である。
  3.  前記アリールアミン化合物が、下記一般式(1b)で表される、請求項1記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000003
      式中、
       Ar~Ar、A、AおよびR~Rは、前記一般式
      (1)に記載した通りの意味である。
  4.  前記アリールアミン化合物が、下記一般式(1c)で表される、請求項1記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000004
      式中、
       Ar~Ar、A、AおよびR~Rは、前記一般式
      (1)に記載した通りの意味である。
  5.  前記電子輸送層が、下記一般式(2)で表されるアントラセン誘導体を含有する、請求項1記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000005
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮
      合多環芳香族の2価基または単結合を表し、
       Bは、芳香族複素環基を表し、
       Cは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香
      族基を表し、Cが2つあるとき、2つのCは、同一でも異なって
      もよく、
       Dは、同一でも異なってもよく、水素原子、重水素原子、フッ
      素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子
      数1~6のアルキル基、芳香族炭化水素基、芳香族複素環基また
      は縮合多環芳香族基を表し、
       pとqの和が9であるという条件の下、pは7または8を表
      し、qは1または2を表す。
  6.  前記アントラセン誘導体が、下記一般式(2a)で表される、請求項5記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000006
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮
      合多環芳香族の2価基または単結合を表し、
       Ar~Arは、同一でも異なってもよく、芳香族炭化水素
      基、芳香族複素環基または縮合多環芳香族基を表し、
       R~R13は、同一でも異なってもよく、水素原子、重水素原
      子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1
      ~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭
      素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオ
      キシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族
      炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリール
      オキシ基を表し、単結合、メチレン基、酸素原子または硫黄原子
      を介して互いに結合して環を形成してもよく、
       X~Xは、それぞれ、炭素原子または窒素原子を表し、X
       ~Xのいずれか1つのみが窒素原子であり、この場合の窒素原
      子はR~R10の水素原子もしくは置換基を有さない。
  7.  前記アントラセン誘導体が、下記一般式(2b)で表される、請求項5記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000007
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮
      合多環芳香族の2価基または単結合を表し、
       Ar10~Ar12は、同一でも異なってもよく、芳香族炭化水
      素基、芳香族複素環基または縮合多環芳香族基を表す。
  8.  前記アントラセン誘導体が、下記一般式(2c)で表される、請求項5記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000008
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮
      合多環芳香族の2価基または単結合を表し、
       Ar13~Ar15は、同一でも異なってもよく、芳香族炭化水
      素基、芳香族複素環基または縮合多環芳香族基を表し、
       R14は、水素原子、重水素原子、フッ素原子、塩素原子、シ
      アノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数
      5~10のシクロアルキル基、炭素原子数2~6のアルケニル
      基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10
      のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環
      基、縮合多環芳香族基またはアリールオキシ基を表す。
  9.  前記発光層が、青色発光性ドーパントを含有する、請求項1記載の有機EL素子。
  10.  前記青色発光性ドーパントが、ピレン誘導体である、請求項9記載の有機EL素子。
  11.  前記発光層が、アントラセン誘導体を含有する、請求項1記載の有機EL素子。
  12.  前記発光層が、前記アントラセン誘導体をホスト材料として含有する、請求項11記載の有機EL素子。
  13.  前記アントラセン誘導体が、下記一般式(3)で表される、請求項12記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000009
      式中、
       R15~R19は、同一でも異なってもよく、重水素原子、炭素
      数1~30のアルキル基、炭素数2~30のアルケニル基、炭素
      数2~30のアルキニル基、炭素数3~30のシクロアルキル
      基、炭素数5~30のシクロアルケニル基、炭素数1~30のア
      ルキルオキシ基、炭素数6~30のアリールオキシ基、炭素数1
      ~30のアルキルチオ基、炭素数5~30のアリールチオ基、炭
      素数1~30のアルキルアミノ基、炭素数5~30のアリールア
      ミノ基、炭素数6~50のアリール基、炭素数2~50の芳香族
      複素環基、シアノ基、ニトロ基、ハロゲン原子、アミノ基、ヒド
      ロキシ基または-CO-R20基を表し、R20は、水素原子、ヒ
      ドロキシ基、炭素数1~6のアルキルオキシ基または炭素数6~
      30のアリールオキシ基を表し、
       Aは、芳香族炭化水素の2価基、縮合多環芳香族の2価基ま
      たは単結合を表し、
       r15は、0~5の整数を表し、r16、r17およびr19は、そ
      れぞれ、0~4の整数を表し、r18は、0~3の整数を表し、
       R15~R19が同一のベンゼン環に複数結合している場合、複
      数結合している基は、同一でも異なってもよい。
  14.  陽極、正孔輸送層、電子阻止層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、
     前記電子阻止層が、下記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子。
    Figure JPOXMLDOC01-appb-C000010
      式中、
       Ar~Arは、同一でも異なってもよく、芳香族炭化水素
      基、芳香族複素環基または縮合多環芳香族基を表し、
       A、Aは、同一でも異なってもよく、芳香族炭化水素の2
      価基、芳香族複素環の2価基または縮合多環芳香族の2価基を表
      し、
       R~Rは、同一でも異なってもよく、水素原子、重水素原
      子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1
      ~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭
      素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオ
      キシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族
      炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリール
      オキシ基を表す。
  15.  陽極、正孔注入層、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、
     前記正孔注入層が、下記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子。
    Figure JPOXMLDOC01-appb-C000011
      式中、
       Ar~Arは、同一でも異なってもよく、芳香族炭化水素
      基、芳香族複素環基または縮合多環芳香族基を表し、
       A、Aは、同一でも異なってもよく、芳香族炭化水素の2
      価基、芳香族複素環の2価基または縮合多環芳香族の2価基を
      表し、
       R~Rは、同一でも異なってもよく、水素原子、重水素原
      子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1
      ~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭
      素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオ
      キシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族
      炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリール
      オキシ基を表す。
  16.  陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、
     前記発光層が、下記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子。
    Figure JPOXMLDOC01-appb-C000012
      式中、
       Ar~Arは、同一でも異なってもよく、芳香族炭化水素
      基、芳香族複素環基または縮合多環芳香族基を表し、
       A、Aは、同一でも異なってもよく、芳香族炭化水素の2
      価基、芳香族複素環の2価基または縮合多環芳香族の2価基を
      表し、
       R~Rは、同一でも異なってもよく、水素原子、重水素原
      子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数
      1~6のアルキル基、炭素原子数5~10のシクロアルキル基、
      炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキ
      ルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、
      芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基または
      アリールオキシ基を表す。
PCT/JP2016/083995 2015-11-17 2016-11-16 有機エレクトロルミネッセンス素子 WO2017086357A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680079144.8A CN108475736A (zh) 2015-11-17 2016-11-16 有机电致发光元件
KR1020187016875A KR20180084909A (ko) 2015-11-17 2016-11-16 유기 전계발광 소자
US15/776,582 US20180351101A1 (en) 2015-11-17 2016-11-16 Organic electroluminescent devices
EP16866358.1A EP3379593A4 (en) 2015-11-17 2016-11-16 ORGANIC ELECTROLUMINESCENCE ELEMENT
JP2017551910A JP6814156B2 (ja) 2015-11-17 2016-11-16 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015224450 2015-11-17
JP2015-224450 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017086357A1 true WO2017086357A1 (ja) 2017-05-26

Family

ID=58718983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083995 WO2017086357A1 (ja) 2015-11-17 2016-11-16 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20180351101A1 (ja)
EP (1) EP3379593A4 (ja)
JP (1) JP6814156B2 (ja)
KR (1) KR20180084909A (ja)
CN (1) CN108475736A (ja)
TW (1) TW201734178A (ja)
WO (1) WO2017086357A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035412A1 (ja) * 2017-08-14 2019-02-21 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2023167253A1 (ja) * 2022-03-04 2023-09-07 保土谷化学工業株式会社 トリアリールアミン高分子量化合物および有機エレクトロルミネッセンス素子

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027516B1 (ko) * 2017-12-22 2019-10-01 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
CN112654611B (zh) * 2018-10-17 2024-04-30 保土谷化学工业株式会社 具有嘧啶环结构的化合物及有机电致发光元件
KR102661411B1 (ko) * 2018-12-28 2024-04-25 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
CN109705108A (zh) * 2018-12-31 2019-05-03 瑞声科技(南京)有限公司 一种蒽基杂环化合物及其应用
JP7187095B2 (ja) * 2019-02-20 2022-12-12 エルジー・ケム・リミテッド ジベンゾフラン-1-イル又はジベンゾチオフェン-1-イル基を有するアントラセン誘導体及びそれを用いた有機電子デバイス
KR20210085532A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20210085531A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JP2003133076A (ja) * 2001-09-28 2003-05-09 Eastman Kodak Co 多層電場発光デバイス
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
US20050214567A1 (en) * 2004-03-26 2005-09-29 Eastman Kodak Company Organic element for electroluminescent devices
WO2006046441A1 (ja) * 2004-10-29 2006-05-04 Idemitsu Kosan Co., Ltd. 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2007109988A (ja) * 2005-10-17 2007-04-26 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JP2008056625A (ja) * 2006-09-01 2008-03-13 Toyo Ink Mfg Co Ltd テトラアミン化合物およびその用途
JP2009299049A (ja) * 2008-05-16 2009-12-24 Semiconductor Energy Lab Co Ltd 組成物、薄膜の作製方法、及び発光素子の作製方法
KR20110018195A (ko) * 2009-08-17 2011-02-23 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
WO2011059000A1 (ja) 2009-11-12 2011-05-19 保土谷化学工業株式会社 置換されたアントラセン環構造とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2012117973A1 (ja) 2011-02-28 2012-09-07 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2013010742A (ja) * 2011-06-29 2013-01-17 Samsung Display Co Ltd 新規のヘテロ環化合物及びそれを含む有機発光素子
KR20130060157A (ko) 2011-11-29 2013-06-07 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
WO2014009310A1 (en) 2012-07-09 2014-01-16 Novaled Ag Doped organic semiconductive matrix material
WO2014129201A1 (ja) * 2013-02-22 2014-08-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201974948U (zh) * 2011-02-22 2011-09-14 陕西科技大学 一种全透明的oled交通信号指示灯
KR102313045B1 (ko) * 2013-09-20 2021-10-14 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 전자 기기

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2003133076A (ja) * 2001-09-28 2003-05-09 Eastman Kodak Co 多層電場発光デバイス
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
JP2005515233A (ja) * 2002-01-18 2005-05-26 エルジー ケミカル エルティーディー. 新しい電子輸送用物質及びこれを利用した有機発光素子
US20050214567A1 (en) * 2004-03-26 2005-09-29 Eastman Kodak Company Organic element for electroluminescent devices
WO2006046441A1 (ja) * 2004-10-29 2006-05-04 Idemitsu Kosan Co., Ltd. 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2007109988A (ja) * 2005-10-17 2007-04-26 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
JP2008056625A (ja) * 2006-09-01 2008-03-13 Toyo Ink Mfg Co Ltd テトラアミン化合物およびその用途
JP2009299049A (ja) * 2008-05-16 2009-12-24 Semiconductor Energy Lab Co Ltd 組成物、薄膜の作製方法、及び発光素子の作製方法
KR20110018195A (ko) * 2009-08-17 2011-02-23 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
WO2011059000A1 (ja) 2009-11-12 2011-05-19 保土谷化学工業株式会社 置換されたアントラセン環構造とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2012117973A1 (ja) 2011-02-28 2012-09-07 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2013010742A (ja) * 2011-06-29 2013-01-17 Samsung Display Co Ltd 新規のヘテロ環化合物及びそれを含む有機発光素子
KR20130060157A (ko) 2011-11-29 2013-06-07 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
WO2014009310A1 (en) 2012-07-09 2014-01-16 Novaled Ag Doped organic semiconductive matrix material
WO2014129201A1 (ja) * 2013-02-22 2014-08-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379593A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019035412A1 (ja) * 2017-08-14 2019-02-21 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
CN110915014A (zh) * 2017-08-14 2020-03-24 出光兴产株式会社 有机电致发光元件和电子设备
JPWO2019035412A1 (ja) * 2017-08-14 2020-10-01 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
EP3671879A4 (en) * 2017-08-14 2021-05-12 Idemitsu Kosan Co.,Ltd. ORGANIC ELECTROLUMINESC ELEMENT AND ELECTRONIC DEVICE
JP7194107B2 (ja) 2017-08-14 2022-12-21 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
US11665962B2 (en) 2017-08-14 2023-05-30 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
CN110915014B (zh) * 2017-08-14 2023-08-18 出光兴产株式会社 有机电致发光元件和电子设备
WO2023167253A1 (ja) * 2022-03-04 2023-09-07 保土谷化学工業株式会社 トリアリールアミン高分子量化合物および有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
JPWO2017086357A1 (ja) 2018-10-18
EP3379593A1 (en) 2018-09-26
CN108475736A (zh) 2018-08-31
KR20180084909A (ko) 2018-07-25
TW201734178A (zh) 2017-10-01
EP3379593A4 (en) 2019-10-23
JP6814156B2 (ja) 2021-01-13
US20180351101A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6814156B2 (ja) 有機エレクトロルミネッセンス素子
KR102355739B1 (ko) 유기 일렉트로루미네센스 소자
EP3291323B1 (en) Organic electroluminescent element
CN111670506B (zh) 有机电致发光元件
CN107709285B (zh) 芳基胺化合物和有机电致发光器件
TWI594987B (zh) 具有茚并吖啶滿環結構之化合物以及有機電致發光元件
JP6158703B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6815320B2 (ja) 有機エレクトロルミネッセンス素子
WO2016017594A1 (ja) 有機エレクトロルミネッセンス素子
KR20140084051A (ko) 신규 트리페닐렌 유도체 및 상기 유도체를 사용하는 유기 전계발광 소자
WO2017051765A1 (ja) 有機エレクトロルミネッセンス素子
WO2021177022A1 (ja) 有機エレクトロルミネッセンス素子
TWI741047B (zh) 有機電致發光元件
KR20200134232A (ko) 벤조이미다졸 고리 구조를 갖는 화합물 및 유기 일렉트로 루미네선스 소자
TW202138361A (zh) 芳香胺化合物及使用其之電子機器
KR20210096180A (ko) 유기 일렉트로루미네선스 소자
KR102538722B1 (ko) 아릴디아민 화합물 및 유기 일렉트로 루미네선스 소자
KR20240041870A (ko) 유기 일렉트로루미네센스 소자
KR20240022707A (ko) 아릴아민 화합물, 유기 일렉트로루미네센스 소자 및 전자 기기
JP2023022389A (ja) スピロビフルオレン化合物および有機エレクトロルミネッセンス素子
KR20230127061A (ko) 아릴아민 화합물, 유기 일렉트로루미네선스 소자, 및 전자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016875

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016875

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016866358

Country of ref document: EP