WO2017081922A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2017081922A1
WO2017081922A1 PCT/JP2016/076407 JP2016076407W WO2017081922A1 WO 2017081922 A1 WO2017081922 A1 WO 2017081922A1 JP 2016076407 W JP2016076407 W JP 2016076407W WO 2017081922 A1 WO2017081922 A1 WO 2017081922A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
metal
metal oxide
layer
insulating layer
Prior art date
Application number
PCT/JP2016/076407
Other languages
English (en)
French (fr)
Inventor
池田芳史
奥田良治
大西啓之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016557087A priority Critical patent/JPWO2017081922A1/ja
Publication of WO2017081922A1 publication Critical patent/WO2017081922A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • CSP chip size package
  • WLP Wafer Level Package
  • a desired semiconductor element or an integrated circuit is formed on one surface (hereinafter referred to as an upper surface for convenience) of a semiconductor substrate, and the upper surface side is covered so as to cover these semiconductor elements and the like.
  • a rewiring layer is further provided on the insulating layer.
  • the rewiring layer is formed so as to extend with an arbitrary wiring pattern on the insulating layer, and is connected to a semiconductor element or the like formed on the upper surface of the semiconductor substrate through an opening provided in the insulating layer. Connected to the pad.
  • an insulating layer is further provided on the upper surface side of the semiconductor substrate including the rewiring layer and the insulating layer.
  • the insulating layer is provided with an opening through which a part of the rewiring layer is exposed, and a solder ball or a protruding electrode (solder bump) as an external connection electrode is connected through the opening.
  • a solder ball or a protruding electrode solder bump
  • the adhesion between the insulating layer and the wiring layer is very important.
  • Resins typified by polyimide and polybenzoxazole have excellent heat resistance and electrical insulation, and are therefore used for surface protective films of semiconductor elements, interlayer insulating films, insulating layers of organic electroluminescent elements, and the like. With the miniaturization of semiconductor elements, a resolution of several ⁇ m level is required for a surface protective film and an interlayer insulating film. Therefore, in such applications, a positive photosensitive polyimide resin composition and a positive photosensitive polybenzoxazole resin composition that can be finely processed are often used.
  • copper is often used as a metal wiring member from the viewpoint of cost and electrical characteristics, so it is very important to improve the adhesion between copper and the insulating layer.
  • lead-free solder that does not contain lead is in progress from the viewpoint of environmental protection. Since the lead-free solder has a high melting point and the reflow process needs to be performed at a higher temperature, an adhesive that can withstand the reflow process temperature is required between the semiconductor insulating layer and the wiring layer.
  • a positive photoresist containing a resin composition used for an insulating layer for example, a 2-mercaptobenzoxazole derivative, a triazole compound which is a compound having a heterocyclic ring, or a sulfur compound
  • a semiconductor device using the composition has been proposed (see, for example, Patent Documents 1 to 3).
  • the native oxide film formed on the electrode pad surface is removed by sputter etching before the barrier layer is formed. (For example, patent document 4) is proposed.
  • the insulating layer used in the semiconductor device can be formed by using a thermosetting resin and heating at a high temperature for a long time, for example, heating at about 350 ° C. for 60 minutes. After forming the insulating layer, a reflow process is performed at a high temperature of 250 ° C. or higher in order to melt the solder ball when an electrode such as a solder ball is connected to the opening where a part of the wiring layer is exposed.
  • thermosetting resin for forming the insulating layer is used at a low temperature of 250 ° C. or less, for example, in order to avoid deterioration of the memory cell characteristics at high temperatures. It is desired to cure.
  • the reflow process performed after formation of an insulating layer is implemented at the temperature of 250 degreeC or more. Therefore, even when the curing temperature during formation of the insulating layer is low, the adhesion between the insulating layer and the wiring layer is required to be sufficient to withstand the reflow process.
  • PCT pressure cooker test
  • Patent Document 4 has a problem that the adhesion between the wiring layer that is an inorganic material and the insulator made of an organic material still cannot be obtained sufficiently.
  • An object of the present invention is to provide a semiconductor device having a high adhesion between an insulating layer and a metal wiring layer that can withstand a temperature of 250 ° C. or higher during reflow of solder balls and can withstand a subsequent reliability test. .
  • a semiconductor device of the present invention has the following configuration. That is, (a) a metal wiring layer, (b) a metal oxide layer, and (c) an insulating layer on a semiconductor substrate having connection pads, The (b) metal oxide layer is disposed on the surface of the (a) metal wiring layer, The (c) insulating layer is in contact with the (a) metal wiring layer via the (b) metal oxide layer, The ratio (y / x) of the total amount (y) of the divalent metal oxide to the total amount of metal (x) in the (b) metal oxide layer is 0.10 to 1.00 (mol / mol). It is a semiconductor device.
  • the present invention is also a method for manufacturing the above semiconductor device, wherein (a) a metal wiring layer is formed on a semiconductor substrate having connection pads, and then (a) the surface of the metal wiring layer is oxidized. By performing, (b) the manufacturing method of the semiconductor device including the process of forming a metal oxide layer is included.
  • a semiconductor device having high adhesion between the insulating layer and the metal wiring layer can be obtained even if the insulating layer is formed at a low temperature of 250 ° C. or lower. Accordingly, it is possible to provide a semiconductor device that can avoid deterioration of the characteristics of the semiconductor element due to heat at the time of forming the insulating layer, can withstand a temperature of 250 ° C. or higher during the reflow process, and can withstand a subsequent reliability test.
  • the semiconductor device of the present invention has (a) a metal wiring layer, (b) a metal oxide layer, and (c) an insulating layer on a semiconductor substrate having connection pads,
  • the (b) metal oxide layer is disposed on the surface of the (a) metal wiring layer,
  • the (c) insulating layer is in contact with the (a) metal wiring layer via the (b) metal oxide layer,
  • the ratio (y / x) of the total amount (y) of the divalent metal oxide to the total amount of metal (x) in the (b) metal oxide layer is 0.10 to 1.00 (mol / mol). .
  • the semiconductor device includes a semiconductor element made of silicon, GaAs, or the like on which an integrated circuit having a predetermined function is formed.
  • the integrated circuit is formed by a known element such as a transistor, a diode, a resistor, or a capacitor.
  • FIG. 1 shows an example of a schematic cross-sectional view of the semiconductor device according to the present embodiment.
  • connection pads 2-1 made of an aluminum-based metal or the like connected to each element of the integrated circuit are provided on the upper surface of the semiconductor substrate 1.
  • a passivation film 2-2 made of silicon oxide, silicon nitride, or the like is provided on the upper surface of the semiconductor substrate 1.
  • An insulating layer 3 made of polyimide resin or the like is provided on the upper surface of the passivation film 2-2.
  • the passivation film 2-2 and the insulating layer 3 are provided with openings, and the upper surfaces of the connection pads 2-1 are exposed through the openings.
  • a metal wiring layer 5 and a metal oxide layer 6 are provided on a part of the insulating layer 3 and the upper surface of the connection pad.
  • An insulating layer 7 is provided on the upper surfaces of the metal oxide layer 6 and the insulating layer 3.
  • the insulating layer 7 may be provided with an opening that exposes a part of the upper surface of the metal oxide layer 6.
  • solder balls 8 for external connection connected to the lands exposed through the openings may be provided.
  • a metal wiring layer is provided on the upper surface of the insulating layer 3.
  • a metal wiring layer for example, a layer having a structure in which a base metal layer (under bump metal; UBM) and an upper metal layer provided on the upper surface of the base metal layer are preferably applied. It can.
  • the base metal layer is a thin film of titanium (Ti) or the like (hereinafter referred to as a titanium thin film) provided on the upper surface of the insulating layer 3 and a metal thin film made of aluminum, copper, nickel or the like provided on the upper surface of the titanium thin film. Those having a laminated structure can be preferably applied.
  • the metal thin film is preferably a copper thin film. The adhesion between the insulating layer 3 and (a) the metal wiring layer can be improved by the base metal layer.
  • the metal wiring layer is subjected to electrolytic plating using the metal thin film formed on the titanium thin film, which is the adhesion layer described above, as a seed layer, as illustrated in the manufacturing method described later, and the metal thin film It can be formed by growing an upper metal layer on the upper surface.
  • the material for the metal wiring layer include copper, aluminum, chromium, and gold. From the viewpoint of stability in air and conductivity, the metal wiring layer preferably contains copper. Further, the effect of the present invention can be obtained when (a) the metal wiring layer is copper.
  • a metal oxide layer is provided on (a) the metal wiring layer.
  • the metal oxide layer can be formed by oxidizing the surface of the metal wiring layer.
  • the oxidation treatment method include plasma treatment using oxygen plasma, reactive ion etching (RIE) using a mixed gas containing oxygen, treatment using a chemical solution having an oxidizing action, and the like. From the viewpoint of preventing influence on film physical properties and the like on regions other than the metal wiring layer during the oxidation treatment, treatment with a chemical solution having an oxidizing action is preferable.
  • the plasma treatment using oxygen plasma and the RIE using a mixed gas containing oxygen are preferably performed under conditions where the temperature of the semiconductor substrate is 20 ° C. or higher and 200 ° C. or lower. If temperature is 20 degreeC or more, the adhesiveness of (a) metal wiring layer and (c) insulating layer mentioned later can fully be improved. When the temperature is 200 ° C. or less, (a) adhesion to the metal wiring layer can be improved without impairing film properties of the insulating layer.
  • the plasma treatment using oxygen plasma is preferably performed under a pressure condition of 5 Pa or more and 1200 Pa or less. When the pressure is in the above range, the adhesion between (a) the metal wiring layer and (c) the insulating layer described later can be sufficiently improved.
  • the plasma treatment with oxygen plasma and the RIE treatment time with a mixed gas containing oxygen are preferably 1 minute or more and 60 minutes or less.
  • the treatment time is 1 minute or longer, the adhesion between (a) the metal wiring layer and (c) the insulating layer described later can be sufficiently improved. If the treatment time is 60 minutes or less, (a) adhesion to the metal wiring layer can be improved without impairing the film properties of the insulating layer.
  • O 2 gas is used for plasma treatment with oxygen plasma.
  • an F-containing gas an inert gas such as N 2 gas and Ar gas can be used in addition to the O 2 gas.
  • the F-containing gas include F 2 gas, CF 3 gas, and CHF 3 gas.
  • the gas flow rate in plasma treatment with oxygen plasma and RIE with a mixed gas containing oxygen is preferably 10 sccm or more and 5000 sccm.
  • the adhesion between (a) the metal wiring layer and (c) the insulating layer described later can be sufficiently improved.
  • the chemical solution having an oxidizing action is preferably a chemical solution containing hydrogen peroxide, more preferably an aqueous solution, from the viewpoint of influence on the region other than the metal wiring layer.
  • the concentration of hydrogen peroxide is preferably 10% by mass or more, more preferably 15% by mass or more.
  • the concentration of hydrogen peroxide is preferably 50% by mass or less, more preferably 40 parts by mass or less.
  • the oxidizing chemical solution may further contain an acid such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid or acetic acid, or an alkali such as sodium hydroxide, potassium hydroxide or tetramethylammonium hydroxide.
  • an acid or alkali such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid or acetic acid, or an alkali such as sodium hydroxide, potassium hydroxide or tetramethylammonium hydroxide.
  • the concentration of the acid or alkali in the chemical solution is preferably 15% by mass or less, more preferably 10% by mass or less, and most preferably not contained at all.
  • Oxidation treatment with an oxidizing chemical solution is preferably performed under a temperature condition of 20 ° C. or higher and 100 ° C. or lower. If temperature is 20 degreeC or more, the adhesiveness of (a) metal wiring layer and (c) insulating layer mentioned later can fully be improved. If the temperature is 100 ° C. or lower, (a) adhesion to the metal wiring layer can be improved without impairing film properties of the insulating layer. It is preferable that the time for the oxidation treatment with the oxidizing chemical solution is 1 minute or more and 180 minutes or less. When the treatment time is 1 minute or longer, the adhesion between (a) the metal wiring layer and (c) the insulating layer described later can be sufficiently improved. If the processing time is 180 minutes or less, (a) adhesion to the metal wiring layer can be improved without impairing the film properties of the insulating layer.
  • the ratio (y / x) of the total amount (y) of the divalent metal oxide to the total metal amount (x) is 0.10 or more and 1.00 or less (mol / mol).
  • the ratio (y / x) is preferably 0.65 or more, more preferably 0.75 or more, and further preferably 0.90 or more.
  • the ratio (y / x) is 0.10 or more, the adhesion between (a) the metal wiring layer and (c) insulating layer described later can be improved, and the ratio (y / x) is 0.65 or more. If so, it can be further improved.
  • the ratio (y / x) of 1.00 indicates that all the components of the metal oxide layer become a divalent oxide film. (Y / x) never exceeds 1.00.
  • the total amount of metal and the total amount of divalent metal oxide in the metal oxide layer are measured from the surface of the metal oxide layer measured using X-ray photoelectron spectroscopy (XPS). It is a value calculated from the amount of metal element existing up to 5 nm.
  • the surface of the material is irradiated with soft X-rays in a high vacuum, photoelectrons emitted from the surface are detected, elements having different valences from the photoelectron energy are assigned, and the peak area is used for quantification.
  • an insulating layer made of an organic material has been considered to have low adhesion to a metal wiring layer that is an inorganic material.
  • the oxide film on the surface of the metal wiring layer is considered to be an obstacle to adhesion, and is removed before the insulating layer and the metal wiring layer are stacked.
  • the adhesion between the metal wiring layer and the insulating layer is improved by actively providing a metal oxide layer on the surface of the metal wiring layer.
  • Insulating layer in this invention consists of organic substance.
  • the insulating layer is a cured film obtained by curing a resin composition containing one or more resins selected from (d) polyimide, polyimide precursor, polyamideimide, polybenzoxazole precursor, and polybenzoxazole. Is preferred.
  • the cured film refers to a film made of a cured product of the resin composition.
  • the polyamic acid, polyamideimide, and polybenzoxazole precursor have a structure represented by the following general formula (1).
  • a resin having a main component is preferable. These resins can be a polymer having an imide ring, an oxazole ring, or other cyclic structure by heating or an appropriate catalyst. Preferable examples include polyamic acid and polyamic acid ester of polyimide precursor, polyhydroxyamide of polybenzoxazole precursor, and the like. Since these resins have a cyclic structure, heat resistance and solvent resistance are dramatically improved.
  • the main component means that the structural unit represented by the general formula (1) has 50 mol% or more of the structural units of the polymer.
  • the structural unit represented by the general formula (1) is preferably 70 mol% or more, more preferably 90 mol% or more.
  • R 1 and R 2 may be the same or different and each represents a divalent to octavalent organic group having 2 or more carbon atoms.
  • R 3 and R 4 may be the same or different and each represents hydrogen or an organic group having 1 to 20 carbon atoms.
  • n is an integer in the range of 10 to 100,000
  • m and f are each independently an integer of 0 to 2
  • p and q are each independently an integer of 0 to 4.
  • R 1 represents a divalent to octavalent organic group having 2 or more carbon atoms and represents a structural component derived from an acid.
  • acids in which R 1 becomes divalent include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, naphthalenedicarboxylic acid, and bis (carboxyphenyl) propane; aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid and adipic acid And so on.
  • Examples of the acid in which R 1 becomes trivalent include tricarboxylic acids such as trimellitic acid and trimesic acid.
  • Examples of the acid in which R 1 becomes tetravalent include tetracarboxylic acids such as pyromellitic acid, benzophenone tetracarboxylic acid, biphenyl tetracarboxylic acid, and diphenyl ether tetracarboxylic acid.
  • the acid which has hydroxyl groups such as a hydroxyphthalic acid and a hydroxy trimellitic acid, can also be mentioned. Two or more of these acid components may be used. From the viewpoint of heat resistance, it is preferable that 50 mol% or more of a structural component derived from tetracarboxylic acid is included among the structural components derived from acid.
  • R 1 preferably contains an aromatic ring from the viewpoint of heat resistance, and more preferably a divalent or trivalent organic group having 6 to 30 carbon atoms from the viewpoint of pattern processability.
  • examples of R 1 include a benzene ring, a biphenyl group, a diphenyl ether group, a diphenyl hexafluoropropane group, a diphenylpropane group, and a diphenylsulfone group.
  • R 1 (COOR 3 ) m (OH) p in the general formula (1) include the following structures, but are not limited thereto.
  • R 2 represents a divalent to octavalent organic group having 2 or more carbon atoms and represents a structural component derived from diamine. From the viewpoint of the heat resistance of the resulting resin, those having an aromatic ring are preferred.
  • diamine examples include, for example, polyoxypropylene diamines D-200, D-400, D-2000, D-4000 (trade names, manufactured by HUNTSMAN Co., Ltd.); bis (3-amino-4 -Hydroxyphenyl) hexafluoropropane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (3-amino-4-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) methylene, bis (3 -Hydroxyl-containing diamines such as amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) biphenyl, bis (3-amino-4-hydroxyphenyl) fluorene; 3-sulfonic acid-4,4 ' -Sulfonic acid-containing diamines such as diaminodiphenyl ether; dimercaptophenyle Thiol group-containing diamines such as diamines; 3,4′-di
  • R 3 and R 4 in the general formula (1) may be the same or different and each represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms. If the number of carbon atoms in R 3 and R 4 is 20 or less, solubility in an alkaline aqueous solution can be maintained.
  • R 3 and R 4 are preferably hydrogen or a hydrocarbon group having 1 to 16 carbon atoms.
  • R 3 and R 4 are preferably organic groups from the viewpoint of solution stability of the resulting photosensitive resin composition, but hydrogen is preferable from the viewpoint of solubility in an aqueous alkali solution. Hydrogen atoms and organic groups can also be mixed.
  • the dissolution rate with respect to the aqueous alkali solution is changed, so that a photosensitive resin composition having an appropriate dissolution rate can be obtained by this adjustment.
  • a preferred range is that 10 to 90 mol% of each of R 3 and R 4 is a hydrogen atom.
  • m and f represent the number of carboxyl groups and ester groups, and each independently represents an integer of 0 to 2.
  • m and f are preferably 0 from the viewpoint of pattern processability.
  • p and q each independently represent an integer of 0 to 4, and m + q ⁇ 0 and p + q ⁇ 0. From the viewpoint of solubility in an aqueous alkali solution, it is necessary that p + q ⁇ 0.
  • n represents the number of repeating structural units of the resin and is in the range of 10 to 100,000.
  • n is 10 or more, the solubility of the resin in the alkaline aqueous solution does not become excessive, the contrast between the exposed portion and the unexposed portion becomes good, and a desired pattern is easily formed.
  • n is 100,000 or less, a decrease in the solubility of the resin in the alkaline aqueous solution can be suppressed, and a desired pattern can be formed by dissolving the exposed portion.
  • n is preferably 1,000 or less, and more preferably 100 or less. Further, n is preferably 20 or more from the viewpoint of improving the elongation.
  • N in the general formula (1) is easily calculated from the value obtained by gel permeation chromatography (GPC) of the weight average molecular weight (Mw) of the resin having the structure represented by the general formula (1) as a main component. it can.
  • an aliphatic group having a siloxane structure may be copolymerized as R 1 and / or R 2 in the general formula (1) as long as the heat resistance is not lowered.
  • the diamine component include copolymerization of 1 to 10 mol% of bis (3-aminopropyl) tetramethyldisiloxane, bis (p-amino-phenyl) octamethylpentasiloxane, and the like.
  • a terminal blocking agent can be reacted with the terminal of the resin whose main component is the structure represented by the general formula (1).
  • a monoamine having a functional group such as a hydroxyl group, carboxyl group, sulfonic acid group, thiol group, vinyl group, ethynyl group, allyl group, acid anhydride, acid chloride, monocarboxylic acid.
  • the dissolution rate of the resin in the alkaline aqueous solution can be adjusted to a preferred range.
  • the content of the terminal blocking agent is preferably 5 to 50 mol% with respect to the total amine component.
  • the end-capping agent introduced into the resin can be easily detected by the following method.
  • a resin with an end-capping agent is dissolved in an acidic solution and decomposed into an amine component and an acid anhydride component, which are resin structural units, and measured using a gas chromatograph (GC) or NMR.
  • GC gas chromatograph
  • NMR gas chromatograph
  • the end sealant can be easily detected.
  • PPC pyrolysis gas chromatography
  • the resin whose main component is the structure represented by the general formula (1) can be synthesized, for example, by the following method.
  • a method of reacting a tetracarboxylic dianhydride with a diamine compound and a monoamino compound used for terminal blocking at a low temperature, a tetracarboxylic dianhydride and an alcohol A method of obtaining a diester and then reacting in the presence of a diamine compound, a monoamino compound and a condensing agent, obtaining a diester by tetracarboxylic dianhydride and an alcohol, and then converting the remaining dicarboxylic acid to an acid chloride to obtain a diamine compound and a monoamino
  • a method of reacting with a compound for example, a method of reacting a tetracarboxylic dianhydride with a diamine compound and a monoamino compound used for terminal blocking at a low temperature, a tetracarboxylic dianhydride and an alcohol
  • polyhydroxyamide as a polybenzoxazole precursor
  • a method in which a bisaminophenol compound, a dicarboxylic acid and a monoamino compound are subjected to a condensation reaction Specifically, a dehydrating condensing agent such as dicyclohexylcarbodiimide (DCC) is reacted with an acid and a bisaminophenol compound and a monoamino compound are added thereto, or a bisaminophenol compound and a monoamino added with a tertiary amine such as pyridine.
  • DCC dicyclohexylcarbodiimide
  • the resin having the structure represented by the general formula (1) as a main component is polymerized by the above method, it is poured into a large amount of water or a methanol / water mixture, precipitated, filtered and dried, It is desirable to isolate. By this precipitation operation, unreacted monomers and oligomer components such as dimers and trimers are removed, and film properties after thermosetting are improved.
  • polyimide Of the polyimide, polyimide precursor, polyamideimide, polybenzoxazole precursor and polybenzoxazole, polyimide and polybenzoxazole heat a resin whose main component is the structure represented by the general formula (1).
  • a resin whose main component is the structure represented by the general formula (1).
  • it is a polymer having an imide ring, an oxazole ring, or other cyclic structure obtained by ring closure with an appropriate catalyst. Since these resins have a cyclic structure, heat resistance and solvent resistance are dramatically improved.
  • the polyimide in the present invention means a polyimide precursor having an imidization ratio of 90 mol% or more
  • the polybenzoxazole means a polybenzoxazole precursor having a cyclization ratio of 90 mol% or more.
  • the imidization rate can be calculated from the peak intensity around 1377 cm ⁇ 1 due to CN stretching vibration of the imide ring in the infrared absorption spectrum, and the cyclization rate of the oxazole ring is around 1045 cm ⁇ 1 derived from the oxazole ring in the infrared absorption spectrum. It can be calculated from the intensity.
  • polyimide polyimide precursor, polyamideimide, polybenzoxazole precursor and polybenzoxazole, one or more kinds of resins selected from polyimide and polybenzoxazole from the viewpoint of mechanical properties and heat resistance are included.
  • polyimide is included from a viewpoint of adhesiveness with a metal oxide layer.
  • the insulating layer may contain two or more kinds of resins selected from (d) polyimide, polyimide precursor, polyamideimide, polybenzoxazole precursor, and polybenzoxazole.
  • resins selected from (d) polyimide, polyimide precursor, polyamideimide, polybenzoxazole precursor, and polybenzoxazole.
  • the polyimide is preferably 60% by weight or more, more preferably 80% by weight or more with respect to 100% by weight of the total amount of the selected resin.
  • the resin composition may contain (e) a photoacid generator for the purpose of imparting photosensitivity for patterning before curing.
  • the photoacid generator may be contained in the (c) insulating layer after curing.
  • the photoacid generator is a compound that generates an acid in response to radiation such as ultraviolet rays, far ultraviolet rays, and X-rays, and specifically, onium compounds such as diaryliodonium salts, triarylsulfonium salts, phenyldiazonium salts, Examples thereof include quinonediazide compounds, imidosulfonate derivatives, tosylate compounds, carbonate compounds of benzyl derivatives, and halogen compounds of triazine derivatives.
  • quinonediazide compounds that are sensitive to i-line (365 nm), h-line (405 nm), or g-line (436 nm) of a mercury lamp, which is a general ultraviolet ray, are preferred from the viewpoint of versatility.
  • both 5-naphthoquinonediazidesulfonyl ester compounds and 4-naphthoquinonediazidesulfonylester compounds are preferably used.
  • the 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinonediazide sulfonyl ester compound has an absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • a naphthoquinone diazide sulfonyl ester compound having both a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound. Can also be used in combination.
  • the molecular weight of the quinonediazide compound is 1500 or less because the quinonediazide compound is sufficiently thermally decomposed in the subsequent heat treatment, and the heat resistance, mechanical properties, and adhesiveness of the resulting film can be maintained.
  • the molecular weight of the quinonediazide compound is preferably 300 to 1500, and more preferably 350 to 1200.
  • the content of the quinonediazide compound is one or more selected from (d) a polyimide, a polyimide precursor, a polyamideimide, a polybenzoxazole precursor, and a polybenzoxazole in that the film thickness of the unexposed part after development is maintained.
  • 1 mass part or more is preferable with respect to 100 mass parts of resin, and 3 mass parts or more is more preferable.
  • 50 mass parts or less are preferable at the point of pattern workability, and 40 mass parts or less are more preferable.
  • the quinonediazide compound can be synthesized from a specific phenol compound by the following method. For example, there is a method of reacting 5-naphthoquinonediazidesulfonyl chloride with a phenol compound in the presence of triethylamine. As a method for synthesizing a phenol compound, there is a method in which an ⁇ - (hydroxyphenyl) styrene derivative is reacted with a polyhydric phenol compound under an acid catalyst.
  • the insulating layer may contain (f) a phenolic compound as long as the shrinkage residual film ratio after curing is not reduced in order to improve sensitivity and resolution in patterning before curing. As a result, (c) the development time when patterning the insulating layer can be adjusted, and the residue of the pattern opening after development can be reduced.
  • the phenolic compound may be contained in the (c) insulating layer after curing.
  • a phenolic compound is a compound having a phenolic hydroxyl group.
  • Examples of these compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP- CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIP-PC, BIR-PC, BIR-PTBP BIR-BIPC-F (trade name, manufactured by Asahi Organic Materials Co., Ltd.), phenol resin, polyhydroxystyrene and the like. Two or more of these may be contained.
  • the phenol resin is obtained by polycondensing phenols and aldehydes by a known method.
  • phenols include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,5-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3, Examples thereof include 5-trimethylphenol and 3,4,5-trimethylphenol.
  • phenol, m-cresol, p-cresol, 2,3-xylenol, 2,5-xylenol, 3,4-xylenol, 3,5-xylenol or 2,3,5-trimethylphenol are preferable.
  • the resin having a phenolic hydroxyl group preferably includes an m-cresol residue or a cresol novolak resin containing an m-cresol residue and a p-cresol residue.
  • the molar ratio of m-cresol residue to p-cresol residue (m-cresol residue / p-cresol residue, m / p) in the cresol novolak resin is preferably 1.8 or more. If it is this range, the moderate solubility to an alkali developing solution will be shown, and favorable sensitivity will be obtained. More preferably, it is 4 or more.
  • aldehydes include formalin, paraformaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, chloroacetaldehyde, salicylaldehyde and the like. Of these, formalin is particularly preferred. Two or more of these aldehydes may be used in combination.
  • the amount of the aldehyde used is preferably 0.6 mol or more, more preferably 0.7 mol or more, and preferably 3.0 mol or less, with respect to 1.0 mol of phenols, from the viewpoint of pattern processability. More preferable is 5 mol or less.
  • an acidic catalyst is usually used.
  • the acidic catalyst include hydrochloric acid, nitric acid, sulfuric acid, formic acid, oxalic acid, acetic acid, p-toluenesulfonic acid, and the like.
  • the amount of these acidic catalysts used is preferably 1 ⁇ 10 ⁇ 5 to 5 ⁇ 10 ⁇ 1 mol with respect to 1 mol of phenols.
  • water is usually used as a reaction medium. However, when a heterogeneous system is formed from the beginning of the reaction, a hydrophilic solvent or a lipophilic solvent is used as the reaction medium.
  • hydrophilic solvent examples include alcohols such as methanol, ethanol, propanol, butanol and propylene glycol monomethyl ether; and cyclic ethers such as tetrahydrofuran and dioxane.
  • lipophilic solvent examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and 2-heptanone.
  • the amount of the reaction medium used is preferably 20 to 1,000 parts by mass per 100 parts by mass of the reaction raw material.
  • the reaction temperature of the polycondensation can be appropriately adjusted according to the reactivity of the raw material, but is preferably 10 to 200 ° C.
  • phenols, aldehydes, acidic catalysts, etc. are charged all at once and reacted, or phenols, aldehydes, etc. are added as the reaction proceeds in the presence of acidic catalysts, etc. Can be adopted as appropriate.
  • the reaction temperature is generally increased to 130 to 230 ° C., and volatile components are reduced under reduced pressure. The resin having a phenolic hydroxyl group is removed.
  • the polystyrene-reduced weight average molecular weight (Mw) of the phenol resin is preferably 2,000 to 15,000, more preferably 3,000 to 10,000. If it is this range, the pattern dimension dispersion
  • phenol resin examples include a resole resin and a novolac resin, and a novolac resin is preferable from the viewpoint of high sensitivity and storage stability.
  • the content ratio of one or more kinds of resins selected from polyimide, polyimide precursor, polyamideimide, polybenzoxazole precursor and polybenzoxazole and the phenol resin is a pattern processing.
  • resin / phenol resin 100/0 to 10/90 (mass ratio) is preferable.
  • resin / phenol resin 100/0 to 30/70 (mass ratio) is more preferable in terms of adhesion to the cured metal oxide layer.
  • the resin composition containing one or more kinds of resins selected from (d) polyimide, polyimide precursor, polyamideimide, polybenzoxazole precursor and polybenzoxazole may contain (g) a solvent.
  • Solvents include polar aprotic solvents such as ⁇ -butyrolactone; ethers such as tetrahydrofuran, dioxane and propylene glycol monomethyl ether; dialkylene glycol dialkyl ethers such as dipropylene glycol dimethyl ether, diethylene glycol dimethyl ether and diethylene glycol ethyl methyl ether; Ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, diacetone alcohol; N, N-dimethylformamide, N, N-dimethylacetamide; acetates such as 3-methoxybutyl acetate and ethylene glycol monoethyl ether acetate; ethyl acetate, prop
  • the content of the solvent is such that (d) a polyimide, a polyimide precursor, a polyamideimide, a polybenzoxazole precursor, and a resin film having a film thickness that functions as a protective film are obtained.
  • 50 mass parts or more are preferable with respect to 100 mass parts of one or more kinds of resins selected from polybenzoxazole, and 100 mass parts or more are more preferable.
  • 2000 mass parts or less are preferable, and 1500 mass parts or less are more preferable.
  • the resin composition may contain (h) a compound containing an alkoxymethyl group.
  • the compound containing an alkoxymethyl group is preferably a compound represented by the following general formula (2).
  • the alkoxymethyl group undergoes a crosslinking reaction in a temperature range of 150 ° C. or higher. Therefore, by containing the compound, the polyimide precursor or the polybenzoxazole precursor can be crosslinked by heat and cured by heat treatment to obtain a better pattern shape.
  • a compound having two or more alkoxymethyl groups is preferable for increasing the crosslinking density, and a compound having four or more alkoxymethyl groups is more preferable from the viewpoint of increasing the crosslinking density and further improving chemical resistance.
  • R 10 represents a 1 to 10 valent organic group having 0 to 30 carbon atoms.
  • organic groups include, but are not limited to, ethylidene groups, propylidene groups, isopropylidene groups, and the like.
  • R 11 may be the same or different and represents an alkyl group having 1 to 4 carbon atoms.
  • r represents an integer of 1 to 10.
  • compound (h) include, but are not limited to, the following compounds. Moreover, you may contain 2 or more types of these.
  • the content of the compound (h) is selected from (d) polyimide, polyimide precursor, polyamideimide, polybenzoxazole precursor and polybenzoxazole, from the viewpoint of increasing crosslink density and further improving chemical resistance and mechanical properties. 1 to 20 parts by mass is preferable with respect to 100 parts by mass of one or more kinds of resins.
  • the resin composition can contain (i) a silane compound and can improve the adhesion to the base substrate.
  • a silane compound include N-phenylaminoethyltrimethoxysilane, N-phenylaminoethyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N-phenylaminopropyltriethoxysilane, and N-phenyl.
  • silane compound is not limited thereto. Two or more of these may be contained.
  • (I) Content of a silane compound is 0.01 with respect to 100 mass parts of 1 or more types of resin selected from (d) a polyimide, a polyimide precursor, a polyamideimide, a polybenzoxazole precursor, and a polybenzoxazole. It is preferably no less than 15 parts by mass. Within this range, a sufficient effect as an adhesion aid can be obtained while maintaining the heat resistance of the positive photosensitive resin composition.
  • the resin composition may have an ester such as ethyl lactate or propylene glycol monomethyl ether acetate; an alcohol such as ethanol; cyclohexanone, methyl isobutyl ketone, etc. Ketones; ethers such as tetrahydrofuran and dioxane may be contained. Further, inorganic particles such as silicon dioxide and titanium dioxide, polyimide powder, and the like can also be contained.
  • the concentration of the hydroxyl group in the total solid content excluding the solvent in the resin composition is preferably 2.90 mmol / g or more from the viewpoint of improving the adhesion with the metal oxide layer after curing. More preferably, it is 30 mmol / g or more. Further, from the viewpoint of improving the adhesion with the metal oxide layer after the reliability test, the concentration of the hydroxyl group is preferably 6.00 mmol / g or less, and more preferably 5.30 mmol / g or less.
  • the hydroxyl group concentration in the total solid content excluding the solvent indicates the amount of the hydroxyl group contained in 1 g of the total solid content excluding the solvent, and is included in the resin composition except for the solvent.
  • the resin composition Exemplifies a method for producing the resin composition.
  • one or more resins selected from polyimide, polyimide precursor, polyamideimide, polybenzoxazole precursor and polybenzoxazole, (e) photoacid generator, (f) phenolic compound, (g ) Solvents and other components as required are placed in glass flasks and stainless steel containers and stirred and dissolved with a mechanical stirrer, etc., dissolved with ultrasonic waves, and stirred and dissolved with a planetary stirring and deaerator. Is mentioned.
  • the viscosity of the resin composition is preferably 200 to 10,000 mPa ⁇ s. Further, in order to remove the foreign matter, it may be filtered through a filter having a pore size of 0.1 ⁇ m to 5 ⁇ m.
  • the resin composition is applied to the upper surface of the (b) metal oxide layer as described later, and becomes a cured film through the steps of exposure, development and curing.
  • the cured film obtained by curing the above-described photosensitive resin composition as the (c) insulating layer, it is possible to improve the adhesion with the metal wiring layer and provide a highly reliable semiconductor device.
  • FIGS. 2A to 2G are process cross-sectional views illustrating an example of a method for manufacturing a semiconductor device according to the present embodiment.
  • an integrated circuit (not shown), a connection pad 2-1 made of aluminum light metal or the like connected to the integrated circuit, A film on which a passivation film 2-2 having an upper surface opened and an insulating layer 3 having an upper surface opened on a connection pad is prepared.
  • a typical example of the semiconductor substrate is a silicon wafer.
  • substrate materials other than silicon include, but are not limited to, ceramics, gallium arsenide, metal, glass, metal oxide insulating film, silicon nitride, ITO, and the like.
  • the material for the metal thin film include aluminum, copper, and nickel.
  • the titanium thin film and the metal thin film can be formed by using, for example, a sputtering method.
  • a plating resist film 4 made of a positive liquid resist is patterned on the upper surface side of the semiconductor substrate 1, that is, on the upper surface of the insulating layer 3.
  • a metal film 5 (c) is formed in the opening of the plating resist film 4 on the insulating layer 3.
  • the metal film 5 (c) can be formed in the opening of the plating resist film 4 by performing electrolytic plating using the metal thin film 5 (b) as a plating current path. it can. Thereafter, the plating resist film 4 is peeled off as shown in FIG.
  • the metal film 5 (c) is used as an etching mask and the region where the metal film 5 (c) is not formed (that is, the metal film 5 (c) is formed.
  • the metal thin film 5 (b) remains only immediately below the metal film 5 (c).
  • the metal thin film 5 (b) and the metal film 5 (c) as an etching mask, a region where the metal thin film 5 (b) and the metal film 5 (c) are not formed (that is, the metal thin film 5 (b ) And the titanium thin film 5 (a) in the exposed region that is not covered with the metal film 5 (c)) is removed by wet etching, so that the metal thin film 5 (b) and the metal film 5 (c) are directly underneath. Only the titanium thin film 5 (a) is left. As a result, the metal film 5 (c), the metal thin film 5 (b) and the titanium thin film 5 (a) remaining immediately below the metal film 5 (c) are integrally formed as the metal wiring layer 5.
  • the surface of the metal wiring layer 5 is oxidized to form the metal oxide layer 6.
  • the adhesiveness of the metal wiring layer 5 and the insulating layer 7 mentioned later improves.
  • the oxidation treatment method the above-described method can be used.
  • the insulating layer 7 is formed on the entire area of the upper surface side of the semiconductor wafer, that is, on the upper surface of the metal oxide layer 6, the region near both sides, and the portion corresponding to the upper surface of the insulating layer 3. Is formed.
  • the insulating layer 7 is formed with an opening through which a part of the metal oxide layer 6 formed on the surface of the metal wiring layer 5 is exposed.
  • solder balls 8 are formed.
  • a protruding electrode pad is formed by solder printing, which is applied to a land grid array (LGA) type package. May be.
  • the semiconductor wafer on which the insulating layer 7 and the solder balls 8 are formed as described above is further packaged with a sealing resin, the semiconductor wafer is cut into a required size and separated into individual pieces. A plurality of semiconductor devices can be obtained from the semiconductor wafer.
  • the method for forming the insulating layer includes a step of applying the resin composition to the substrate, a drying step, a patterning step, and a step of curing the resin composition by heat to obtain a cured film.
  • the substrate is obtained by forming the connection pad 2-1, the passivation film 2-2, the insulating layer 3, the metal wiring layer 5 and the metal oxide layer 6 on the upper surface of the semiconductor substrate 1 as described above.
  • the resin composition is preferably a photosensitive resin composition from the viewpoint that a pattern processing step using a resist is not necessary. Moreover, it is preferable that it is a positive photosensitive resin composition from a viewpoint of pattern resolution.
  • Application methods in the application process include spin coating, spray coating, roll coating, slit die coating, and the like.
  • the coating thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but it is preferable that the coating thickness is 5 to 30 ⁇ m after drying. From the viewpoint of chemical resistance in the flux treatment, the film thickness after drying is preferably 2 ⁇ m or more. Moreover, it is preferable that a film thickness is 15 micrometers or less from the point of adhesiveness with the metal wiring after a flux process.
  • the applied resin composition is dried to obtain a resin film. Drying is preferably performed using an oven, a hot plate, infrared rays, or the like at 50 to 150 ° C. for 1 minute to several hours.
  • a pattern processing step when the resin film is non-photosensitive, pattern processing using a resist is performed to process the resin film into a desired pattern.
  • the resin film is photosensitive, the resin film is irradiated with actinic radiation through a mask having a desired pattern and exposed.
  • the actinic radiation used for exposure includes ultraviolet rays, visible rays, electron beams, X-rays, etc., but it is preferable to use i-rays (365 nm), h-rays (405 nm) or g-rays (436 nm) of mercury lamps.
  • the exposed portion of the resin film may be removed using a developer after the exposure.
  • Developers include tetramethylammonium aqueous solution, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethyl
  • An aqueous solution of a compound showing alkalinity such as aminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine and the like is preferable.
  • polar solutions such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide; methanol, ethanol, One or more alcohols such as isopropanol; esters such as ethyl lactate and propylene glycol monomethyl ether acetate; ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added. After development, it is preferable to rinse with water.
  • alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
  • a temperature of 200 to 500 ° C. is applied to the resin film, the resin film is cured by heat, and converted into a cured film. From the viewpoint of preventing deterioration of the semiconductor element due to heat, it is preferable to perform curing at a temperature of 250 ° C. or lower.
  • the heat treatment is preferably carried out for 5 minutes to 5 hours while raising the temperature stepwise or selecting a certain temperature range and continuously raising the temperature. Examples include a method of performing heat treatment at 100 ° C., 120 ° C., and 250 ° C. for 30 minutes each, a method of linearly increasing the temperature from room temperature to 250 ° C. over 2 hours, and a method of performing a heat treatment at 250 ° C. for 1 hour. It is done.
  • ⁇ Measuring method of film thickness> A lambda ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. was used, and the film after pre-baking and development was measured at a refractive index of 1.629.
  • the imidization ratio of polyimide was such that a N-methylpyrrolidone solution having a solid content concentration of polyimide resin to be measured was applied onto a 6-inch (15.24 cm) silicon wafer by a spin coating method, followed by hot treatment at 120 ° C. A prebaked film (Y) having a thickness of 8 ⁇ m ⁇ 1 ⁇ m was produced by baking for 3 minutes with a plate (SKW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.).
  • This film was divided in half, and one side was placed in an inert oven (INH-21CD manufactured by Koyo Thermo Systems Co., Ltd.), raised to a curing temperature of 350 ° C. over 30 minutes, and subjected to heat treatment at 350 ° C. for 60 minutes. Then, it annealed until the inside of oven became 50 degrees C or less, and the fully hardened cured film (X) was obtained.
  • an infrared absorption spectrum was measured using a Fourier transform infrared spectrophotometer FT-720 (manufactured by Horiba, Ltd.).
  • a Ti sputtered film was prepared by laminating Ti with a thickness of 25 nm on an 8-inch (20.32 cm) silicon wafer by sputtering.
  • a copper substrate was produced by laminating copper with a thickness of 100 nm on the Ti sputtered film, and further laminating copper with a thickness of 3 ⁇ m thereon using electrolytic plating.
  • the copper substrate was immersed in any one of the following chemical solutions (T-1) to (T-4) at 25 ° C. for the time shown in Table 1.
  • the copper substrate was taken out from the chemical solution, immersed in pure water at 25 ° C. for 1 minute, blown off the surface moisture with dry air, and then heated on a hot plate at 100 ° C. for 1 minute to remove the moisture.
  • a copper substrate having a metal oxide layer formed on the copper surface was obtained.
  • the obtained patterned processed film was subjected to a vertical curing furnace VF-1000B (manufactured by Koyo Thermo Systems Co., Ltd.) under a nitrogen atmosphere at an oxygen concentration of 20 ppm or less at 250 ° C. for 60 minutes.
  • the heat treatment was performed to obtain a pattern cured film.
  • the pattern cured film is a film obtained by curing the resin film after being processed into a predetermined pattern.
  • Adhesion strength was measured using a die shear tester, Series 4000 (manufactured by DAGE ARCTEK). The conditions of die sharing were carried out under conditions of a shear test speed of 100 ⁇ m / sec. The pattern cured film was peeled off from the long side, and the maximum peel strength was measured. The measurement was performed at 7 locations, and the average value was defined as the adhesion strength.
  • the adhesion strength is good if it is 60 mN or more, more preferably 220 mN or more, and even more preferably 440 mN or more.
  • ⁇ Evaluation of adhesion of metal substrate> (Adhesion between cured film and metal substrate after reliability test) A cured film was formed in the same manner as in the above ⁇ Evaluation of adhesion strength> except that no pattern was formed on the surface-treated metal substrate.
  • a cut was cut into the cured film in a grid pattern so as to form 100 squares at intervals of 2 mm ⁇ 2 mm using a cutter guide (cross cut).
  • a metal substrate with a cut in the cured film was placed in a pressure cooker apparatus and treated for 100 hours under conditions of 121 ° C., 2 atm and 100% RH (PCT treatment).
  • a cellophane tape was applied to the cured film at the cross-cut portion, and then pulled in a direction of 90 ° with respect to the substrate to peel off the cured film from the substrate. At this time, the number of cured films peeled out of 100 pieces was counted. When the number of peeling is small, it indicates that the adhesiveness is high, and when the number of peeling is large, the adhesiveness is low.
  • the number of peeling is preferably 50 or less, and more preferably 20 or less.
  • Table 2 shows the results when using a copper substrate as the metal substrate. Moreover, when it evaluated similarly using an aluminum substrate, the number which peeled was 30 places among 100 places, and when a nickel substrate was used, it was 35 places in 100 places.
  • the surface of the cured film after drying was observed with an optical microscope to evaluate flux resistance. A good appearance was indicated as “A”, a discoloration was accepted as “B”, and a cracked product was designated as “C”.
  • the exposure time is changed and development is performed in the same manner as in the above ⁇ Evaluation of adhesion strength>, and the minimum exposure amount (Eth) at which the 50 ⁇ m pad pattern opens to 50 ⁇ m is obtained in the developed photosensitive resin film. It was. If Eth is 450 mJ / cm 2 or less, the pattern workability is good, and 300 mJ / cm 2 or less is more preferable.
  • the precipitate was dissolved in 200 mL of GBL, 3 g of 5% palladium-carbon was added, and the mixture was vigorously stirred. A balloon filled with hydrogen gas was attached thereto, and stirring was continued until the balloon of hydrogen gas did not contract any more at room temperature, and further stirred for 2 hours with the balloon of hydrogen gas attached. After the completion of stirring, the palladium compound as a catalyst was removed by filtration, and the solution was concentrated to a half amount by a rotary evaporator. Ethanol was added thereto for recrystallization to obtain a hydroxyl group-containing diamine (c) crystal represented by the following formula.
  • the solution was poured into 2 L of water and the polymer solid precipitate was filtered off.
  • the obtained polymer solid was dried with a vacuum dryer at 80 ° C. for 72 hours to obtain a polymer D of a polyimide precursor.
  • the obtained polymer solid was dried in a vacuum dryer at 80 ° C. for 20 hours to obtain a polybenzoxazole precursor polymer C4.
  • the temperature of the oil bath is raised over 3 hours, and then the pressure in the 1 L flask is reduced to 40 to 67 hPa to remove volatile components, and then cooled to room temperature to obtain a polymer solid of phenol resin F1. It was.
  • the weight average molecular weight was 6700.
  • the compounds used in Examples are shown below.
  • D1 75% of Q is represented by the following formula (3), and 25% is a hydrogen atom.
  • Example 2 A varnish was prepared in the same manner as in Example 1 except that the resin ratio or other additives were changed as shown in Table 1, and each evaluation test of pattern workability, flux resistance and adhesion to metal was conducted. I did it. The evaluation results are shown in Table 2.
  • Example 23 the surface treatment of the copper substrate was not performed, and a copper substrate having a metal oxide layer formed on the copper surface by natural oxidation was obtained.

Abstract

【課題】 半導体装置においてパターン硬化膜の熱硬化温度が250℃以下の低温でありながらパターン硬化膜と金属配線との密着性を向上させた半導体装置を提供することができる。 【解決手段】 接続パッドを有する半導体基板上に(a)金属配線層、(b)金属酸化物層および(c)絶縁層を有し、 前記(a)金属配線層の表面に前記(b)金属酸化物層が配置され、 前記(b)金属酸化物層を介して前記(c)絶縁層が前記(a)金属配線層と接しており、 前記(b)金属酸化物層における、金属総量(x)に対する二価の金属酸化物の総量(y)の比率(y/x)が、0.10~1.00(mol/mol)である半導体装置。

Description

半導体装置およびその製造方法
 本発明は、半導体装置、および半導体装置の製造方法に関する。
 近年、携帯電話機、スマートフォン等の携帯型の電子機器の普及が著しい。携帯型の電子機器においては、小型化や高機能化が求められており、そのためには電子機器に用いられる半導体装置が重要な役割を担っている。
 高密度実装技術を用いた半導体装置として、半導体装置の大きさを個々の半導体チップの外形寸法と略同じ外形寸法に近づけることができるチップサイズパッケージ(Chip Size Package;以下、「CSP」と略記する)と呼ばれるパッケージ構造を備えた半導体装置が知られている。近年では、半導体ウエハのサイズを維持した状態で封止樹脂でパッケージしたのち、個々のCSPに個片化して完成されるウエハレベルCSP(または、WLP;Wafer Level Package)と呼ばれる半導体装置が実用化されている。
 半導体装置は、半導体基板のいずれか一方の面(以下、便宜上、上面と称する。)側に所望の半導体素子や集積回路が形成されており、これらの半導体素子等を覆うように、当該上面側に絶縁層が設けられている。この絶縁層上には、さらに再配線層が設けられている。再配線層は、絶縁層上に任意の配線パターンを有して延在するように形成され、絶縁層に設けられた開口部を介して、半導体基板の上面に形成された半導体素子等の接続パッドと接続されている。そして、これらの再配線層および絶縁層を含む半導体基板の上面側には、さらに絶縁層が設けられている。ここで、絶縁層には、上記再配線層の一部が露出する開口部が設けられ、当該開口部を介して、外部接続用電極としての半田ボールや突起電極(半田バンプ)が接続されている。絶縁不良などを低減させ半導体の信頼性を向上させるためには絶縁層と配線層との密着性が非常に重要となる。
 ポリイミドやポリベンゾオキサゾールに代表される樹脂は、優れた耐熱性および電気絶縁性を有することから、半導体素子の表面保護膜、層間絶縁膜、有機電界発光素子の絶縁層等に用いられている。半導体素子の微細化に伴い、表面保護膜や層間絶縁膜などにも数μmレベルの解像度が要求されている。このため、このような用途において、微細加工可能なポジ型感光性ポリイミド樹脂組成物やポジ型感光性ポリベンゾオキサゾール樹脂組成物が多く用いられている。
 近年はコスト面や電気特性の点から銅を金属配線の部材とすることが多くなってきているため、銅と絶縁層の密着性を向上させることは非常に重要である。さらに、環境保護の点から鉛を含んでいない鉛フリー半田の使用が進んでいる。鉛フリー半田は融点が高く、リフロー処理の温度をより高温とする必要があるため、半導体用の絶縁層と配線層の間にはリフロー処理の温度に耐えうる密着性が必要である。
 銅との密着性を向上させることを目的として、絶縁層に用いる樹脂組成物に、例えば2-メルカプトベンゾオキサゾール誘導体、複素環を有する化合物であるトリアゾール化合物、または硫黄化合物を含有するポジ型フォトレジスト組成物を用いる半導体装置が提案されている(例えば、特許文献1~3参照)。また、アルミの電極パッドとチタン系金属のバリア層との密着性を向上させるために、バリア層を成膜する前に、電極パッド表面に形成されている自然酸化膜をスパッタエッチングにより除去すること(例えば、特許文献4)が提案されている。
特開2015-141352号公報 特開2013-152353号公報 特開2014-186186号公報 特開2011-29314号公報
 半導体装置に使用される絶縁層は、熱硬化性樹脂を用いて、高温で長時間の加熱、例えば約350℃で60分間の加熱を行うことにより形成することができる。絶縁層を形成した後、配線層の一部が露出する開口部に半田ボールなどの電極が接続されるときに半田ボールを溶融させるために250℃以上の高温でリフロー処理が行われる。
 露出したDRAM、SRAM等のメモリーセルを持つ半導体チップのWLP工程においては、高温でのメモリーセルの特性劣化を避けるために、絶縁層を形成する熱硬化性樹脂は、例えば250℃以下の低温で硬化することが望まれる。一方で、絶縁層形成後に行われるリフロー処理は250℃以上の温度で実施される。したがって、絶縁層形成時の硬化温度が低温であっても、絶縁層と配線層の密着性は、リフロー処理に耐えるのに十分であることが要求される。
 しかしながら、特許文献1に記載の硬化膜においては、金属配線層との密着性を十分に得るためには250℃以上の硬化温度が必要であり、低温硬化の要請に十分に応えられていない問題があった。
 特許文献2、3に記載の硬化膜においては、半導体の一般的な信頼性試験であるプレッシャー・クッカー・テスト(以降PCTと記載)後の密着性が十分に得られないという問題があった。
 また、特許文献4の技術では、無機物である配線層と有機物からなる絶縁体との間の密着性が依然十分に得られないという問題があった。
 本発明では、半田ボールのリフロー時の250℃以上の温度に耐え、その後の信頼性試験にも耐えうる、絶縁層と金属配線層との密着性が高い半導体装置を提供することを目的とする。
 上記課題を解決するため、本発明の半導体装置は下記の構成を有する。すなわち、接続パッドを有する半導体基板上に(a)金属配線層、(b)金属酸化物層および(c)絶縁層を有し、
前記(a)金属配線層の表面に前記(b)金属酸化物層が配置され、
前記(b)金属酸化物層を介して前記(c)絶縁層が前記(a)金属配線層と接しており、
前記(b)金属酸化物層における、金属総量(x)に対する二価の金属酸化物の総量(y)の比率(y/x)が、0.10~1.00(mol/mol)である半導体装置である。
 また、本発明は、上記の半導体装置を製造する方法であって、接続パッドを有する半導体基板上に(a)金属配線層を形成した後、該(a)金属配線層の表面の酸化処理を行うことにより、(b)金属酸化物層を形成する工程を含む半導体装置の製造方法を含む。
 本発明によれば、熱硬化温度が250℃以下の低温で形成された絶縁層であっても、絶縁層と金属配線層との密着性が高い半導体装置を得ることができる。これによって、絶縁層形成時の熱による半導体素子の特性劣化を避け、かつ、リフロー処理時の250℃以上の温度に耐え、その後の信頼性試験にも耐えうる半導体装置を提供することができる。
本発明の金属配線層、金属酸化物層、絶縁層を有する半導体装置の概略断面図である。 本発明の半導体装置の製造方法の一例を示す工程断面図である。 本発明の半導体装置の製造方法の一例を示す工程断面図である。 本発明の半導体装置の製造方法の一例を示す工程断面図である。 本発明の半導体装置の製造方法の一例を示す工程断面図である。 本発明の半導体装置の製造方法の一例を示す工程断面図である。 本発明の半導体装置の製造方法の一例を示す工程断面図である。 本発明の半導体装置の製造方法の一例を示す工程断面図である。
 本発明の半導体装置は、接続パッドを有する半導体基板上に(a)金属配線層、(b)金属酸化物層および(c)絶縁層を有し、
前記(a)金属配線層の表面に前記(b)金属酸化物層が配置され、
前記(b)金属酸化物層を介して前記(c)絶縁層が前記(a)金属配線層と接しており、
前記(b)金属酸化物層における、金属総量(x)に対する二価の金属酸化物の総量(y)の比率(y/x)が、0.10~1.00(mol/mol)である。
 <半導体装置>
 本実施形態に係る半導体装置は、所定の機能を有する集積回路が形成されたシリコン、GaAs等からなる半導体素子を備えている。ここで、集積回路は、周知のトランジスタやダイオード、抵抗、コンデンサ等の素子により形成されている。図1に、本実施形態に係る半導体装置の概略断面図の一例を示す。
 図1において、半導体基板1の上面には、上記集積回路の各素子に接続されたアルミニウム系金属等からなる複数の接続パッド2-1が設けられている。また、半導体基板1の上面には、酸化シリコンや窒化シリコン等からなるパッシベーション膜2-2が設けられている。
 パッシベーション膜2-2の上面には、ポリイミド系樹脂等からなる絶縁層3が設けられている。パッシベーション膜2-2および絶縁層3には、開口部が設けられており、各接続パッド2-1の上面は、該開口部を介して露出されている。絶縁層3の一部および接続パッドの上面には、金属配線層5および金属酸化物層6が設けられている。金属酸化物層6および絶縁層3の上面には、絶縁層7が設けられている。絶縁層7には、金属酸化物層6の一部の上面を露出させる開口部が設けられていても良い。絶縁層7の上面には、該開口部を介して露出するランドに接続された外部接続用の半田ボール8が設けられていても良い。
 絶縁層3の上面には、(a)金属配線層が設けられている。(a)金属配線層としては、例えば、下地金属層(アンダーバンプメタル;UBM)と、該下地金属層の上面に設けられた上部金属層とを積層した構造を有するものを好ましく適用することができる。下地金属層は、絶縁層3の上面に設けられるチタン(Ti)等の薄膜(以下、チタン薄膜と記す)と、該チタン薄膜の上面に設けられたアルミ、銅、ニッケルなどからなる金属薄膜の積層した構造を有するものを好ましく適用することができる。該金属薄膜は、銅薄膜であることが好ましい。下地金属層により、絶縁層3と(a)金属配線層の密着性を向上させることができる。
 具体的には、(a)金属配線層は、後述する製造方法に例示するように、上述した密着層であるチタン薄膜上に形成された金属薄膜をシード層として電解メッキを行い、当該金属薄膜の上面に上部金属層を成長させることにより形成することができる。(a)金属配線層の材料としては、銅、アルミニウム、クロム、金などが挙げられる。空気中における安定性および導電性の観点から、金属配線層が銅を含むことが好ましい。また、本発明の効果は(a)金属配線層が銅である場合に、より顕著な効果が得られる。
 また本発明の半導体装置においては、(a)金属配線層上に(b)金属酸化物層が設けられている。(b)金属酸化物層は、金属配線層の表面を酸化処理することにより形成することができる。酸化処理の方法としては、酸素プラズマによるプラズマ処理、酸素を含む混合ガスによるリアクティブイオンエッチング(RIE)、酸化作用のある薬液による処理などが挙げられる。酸化処理時の金属配線層以外の領域への膜物性などへの影響を防ぐ観点から、酸化作用のある薬液による処理が好ましい。
 酸素プラズマによるプラズマ処理および酸素を含む混合ガスによるRIEは、半導体基板の温度が20℃以上、200℃以下の条件下で行われることが好ましい。温度が20℃以上であれば(a)金属配線層と後述する(c)絶縁層の密着性を十分に向上することができる。温度が200℃以下であれば、(c)絶縁層の膜物性を損なうことなく(a)金属配線層との密着性を向上することができる。酸素プラズマによるプラズマ処理は、5Pa以上、1200Pa以下の圧力条件下で行われることが好ましい。圧力が上記範囲にあれば、(a)金属配線層と後述する(c)絶縁層の密着性を十分に向上することができる。
 酸素プラズマによるプラズマ処理および酸素を含む混合ガスによるRIEの処理時間は、1分以上、60分以下であることが好ましい。処理時間が1分以上であれば、(a)金属配線層と後述する(c)絶縁層の密着性を十分に向上することができる。処理時間が60分以下であれば、(c)絶縁層の膜物性を損なうことなく(a)金属配線層との密着性を向上することができる。
 酸素プラズマによるプラズマ処理にはOガスを用いる。酸素を含む混合ガスによるRIEの場合は、必要に応じてOガス以外にF含有ガス、不活性ガスであるNガスおよびArガスなどを用いることができる。F含有ガスとしては、Fガス、CFガス、CHFガスなどが挙げられる。
 酸素プラズマによるプラズマ処理および酸素を含む混合ガスによるRIEにおけるガス流量は、10sccm以上、5000sccmが好ましい。ガス流量が上記範囲にあれば、(a)金属配線層と後述する(c)絶縁層の密着性を十分に向上することができる。
 酸化作用のある薬液としては、金属配線層以外の領域への影響の観点から、過酸化水素を含む薬液が好ましく、水溶液であることがより好ましい。金属酸化物層を十分に形成する観点から、過酸化水素の濃度は、好ましくは10質量%以上、より好ましくは15質量%以上である。金属配線層以外の領域への影響の観点から、過酸化水素の濃度は、好ましくは50質量%以下、より好ましくは40質量部以下である。また、酸化作用のある薬液には、塩酸、硫酸、硝酸、フッ酸、酢酸等の酸や、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド等のアルカリをさらに含んでも良い。しかし、酸化作用のある薬液中に酸もしくはアルカリを含む場合、酸もしくはアルカリの濃度が高いと、あるいは、処理時間が長いと、エッチング作用により、いったん形成された金属酸化物層が除去されてしまう。そのため、薬液中の酸もしくはアルカリの濃度は、15質量%以下が好ましく、10質量%以下がより好ましく、全く含まないことが最も好ましい。
 酸化作用のある薬液による酸化処理は、20℃以上、100℃以下の温度条件下で行われることが好ましい。温度が20℃以上であれば(a)金属配線層と後述する(c)絶縁層の密着性を十分に向上することができる。温度が100℃以下であれば、(c)絶縁層の膜物性を損なうことなく(a)金属配線層との密着性を向上することができる。酸化作用のある薬液による酸化処理の時間は1分以上、180分以下であることが好ましい。処理時間が1分以上であれば、(a)金属配線層と後述する(c)絶縁層の密着性を十分に向上することができる。処理時間が180分以下であれば、(c)絶縁層の膜物性を損なうことなく(a)金属配線層との密着性を向上することができる。
 金属酸化物層において、金属総量(x)に対する二価の金属酸化物の総量(y)の比率(y/x)は、0.10以上、1.00以下(mol/mol)である。比率(y/x)は、好ましくは0.65以上、より好ましくは0.75以上、さらに好ましくは0.90以上である。比率(y/x)が0.10以上であれば、(a)金属配線層と後述する(c)絶縁層の密着性を向上することができ、比率(y/x)が0.65以上であれば、より向上することができる。金属酸化層を構成する金属元素が銅元素の場合、比率(y/x)が1.00であることは金属酸化物層の成分がすべて二価の酸化膜になることを示しており、比率(y/x)が1.00より大きくなることはない。
 本発明において(b)金属酸化物層中の、金属総量、および二価の金属酸化物の総量は、X線光電子分光法(XPS)を用いて測定された、金属酸化物層表面から深さ5nmまでに存在する金属元素量から算出される値である。高真空中で資料表面に軟X線を照射し、表面から放出される光電子を検出し、光電子のエネルギーより価数の異なる元素を帰属し、そのピーク面積を用いて定量される。
 従来、有機物からなる絶縁層は無機物である金属配線層との密着性が低いとされていた。また、金属配線層の表面の酸化膜は、密着性の障害になると考えられており、絶縁層と金属配線層を積層する前に除去することが行われていた。しかし、本発明においては、意外なことに、むしろ積極的に金属配線層の表面に金属酸化物層を設けることによって、金属配線層と絶縁層の密着性が向上することを見出した。このメカニズムは明らかではないが、上述の比率で金属酸化物層中に酸素原子が存在することによって、無機物である金属中の酸素原子と有機物からなる絶縁層が相互作用することによって、密着性が向上するものと推定される。
 次に、(c)絶縁層について説明する。本発明における(c)絶縁層は、有機物からなる。(c)絶縁層は、(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂を含む樹脂組成物を硬化した硬化膜であることが好ましい。ここで、硬化膜とは、前記の樹脂組成物の硬化物からなる膜のことである。
 前記(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールのうち、ポリアミド酸、ポリアミドイミド、ポリベンゾオキサゾール前駆体は、下記一般式(1)で表される構造を主成分とする樹脂であることが好ましい。これらの樹脂は、加熱あるいは適当な触媒により、イミド環、オキサゾール環、その他の環状構造を有するポリマーとなり得るものである。好ましくは、ポリイミド前駆体のポリアミド酸やポリアミド酸エステル、ポリベンゾオキサゾール前駆体のポリヒドロキシアミドなどが挙げられる。これらの樹脂は、環状構造を有することで、耐熱性および耐溶剤性が飛躍的に向上する。ここで、主成分とは、一般式(1)で表される構造単位を、ポリマーの構造単位のうち50モル%以上有することを意味する。耐熱性、耐薬品性および機械特性を保持する点で、一般式(1)で表される構造単位が70モル%以上が好ましく、90モル%以上がより好ましい。
Figure JPOXMLDOC01-appb-C000001
一般式(1)中、RおよびRは、それぞれ同じでも異なっていてもよく、炭素数2以上の2~8価の有機基を示す。RおよびRは、それぞれ同じでも異なっていてもよく、水素または炭素数1~20の有機基を示す。nは10~100,000の範囲の整数、mおよびfはそれぞれ独立に0~2の整数、pおよびqはそれぞれ独立に0~4の整数を示す。ただし、m+q≠0、p+q≠0である。
 上記一般式(1)中、Rは炭素数2以上の2~8価の有機基を示し、酸由来の構造成分を表している。Rが2価となる酸としては、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸、ビス(カルボキシフェニル)プロパンなどの芳香族ジカルボン酸;シクロヘキサンジカルボン酸、アジピン酸などの脂肪族ジカルボン酸などを挙げることができる。Rが3価となる酸としては、トリメリット酸、トリメシン酸などのトリカルボン酸を挙げることができる。Rが4価となる酸としては、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ジフェニルエーテルテトラカルボン酸などのテトラカルボン酸を挙げることができる。また、ヒドロキシフタル酸、ヒドロキシトリメリット酸などの水酸基を有する酸も挙げることができる。これら酸成分を2種以上用いてもよい。耐熱性の点で、酸由来の構造成分のうち、テトラカルボン酸由来の構造成分を50モル%以上含むことが好ましい。
 Rは、耐熱性の面から芳香族環を含有することが好ましく、パターン加工性の観点から炭素数6~30の2価または3価の有機基がさらに好ましい。具体的には、Rとして、ベンゼン環、ビフェニル基、ジフェニルエーテル基、ジフェニルヘキサフルオロプロパン基、ジフェニルプロパン基、ジフェニルスルホン基などが挙げられる。一般式(1)のR(COOR(OH)の具体例として、下記構造が挙げられるがこれらに限定されない。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)中、Rは炭素数2以上の2~8価の有機基を示し、ジアミン由来の構造成分を表している。得られる樹脂の耐熱性の点より、芳香族環を有するものが好ましい。ジアミンの具体的な例としては、例えば、ポリオキシプロピレンジアミンのD-200、D-400、D-2000、D-4000(以上商品名、HUNTSMAN(株)製);ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミン;3-スルホン酸-4,4’-ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン;ジメルカプトフェニレンジアミンなどのチオール基含有ジアミン;3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどの芳香族ジアミン;これらの芳香族ジアミンの芳香族環の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物;シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの脂環式ジアミンなどの残基を挙げることができる。一般式(1)のR(COOR(OH)の具体例として下記に示す構造が挙げられるが、これらに限定されない。これらジアミンを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 一般式(1)のRおよびRは、各々同じでも異なっていてもよく、水素または炭素数1~20の1価の有機基を示す。RおよびRの炭素数が20以内であればアルカリ水溶液への溶解性を維持できる。RおよびRは、水素または炭素数1~16の炭化水素基が好ましい。RおよびRとしては、得られる感光性樹脂組成物の溶液安定性の観点からは、有機基が好ましいが、アルカリ水溶液に対する溶解性の観点からは、水素が好ましい。水素原子と有機基を混在させることもできる。このRおよびRの水素と有機基の量を調整することで、アルカリ水溶液に対する溶解速度が変化するので、この調整により適度な溶解速度を有した感光性樹脂組成物を得ることができる。好ましい範囲は、RおよびRの各々10~90モル%が水素原子である。
 また、一般式(1)のmおよびfは、カルボキシル基およびエステル基の数を示しており、それぞれ独立に0~2の整数を示す。mおよびfは、パターン加工性の観点から好ましくは0である。一般式(1)のpおよびqはそれぞれ独立に0~4の整数を示し、m+q≠0、かつ、p+q≠0である。アルカリ水溶液に対する溶解性の観点から、p+q≠0であることが必要である。
 一般式(1)のnは、樹脂の構造単位の繰り返し数を示し、10~100,000の範囲内である。nが10以上であれば、樹脂のアルカリ水溶液に対する溶解性が過大とならず、露光部と未露光部のコントラストが良好となり、所望のパターンを形成しやすい。一方、nが100,000以下であれば、樹脂のアルカリ水溶液に対する溶解性の低下が抑えられ、露光部の溶解により、所望のパターンを形成できる。樹脂のアルカリ水溶液に対する溶解性の面から、nは1,000以下が好ましく、100以下がより好ましい。また、伸度向上の面から、nは20以上が好ましい。
 一般式(1)のnは、一般式(1)で表される構造を主成分とする樹脂の重量平均分子量(Mw)をゲルパーミエーションクロマトグラフィー(GPC)で求め、その値から容易に算出できる。
 さらに、基板との接着性を向上させるために、耐熱性を低下させない範囲で一般式(1)のRおよび/またはRとして、シロキサン構造を有する脂肪族の基を共重合してもよい。具体的には、ジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノ-フェニル)オクタメチルペンタシロキサンなどを1~10モル%共重合することなどが挙げられる。
 また、一般式(1)で表される構造を主成分とする樹脂の末端に末端封止剤を反応させることができる。樹脂の末端を水酸基、カルボキシル基、スルホン酸基、チオール基、ビニル基、エチニル基、アリル基などの官能基を有するモノアミン、酸無水物、酸クロリド、モノカルボン酸などにより封止することで、樹脂のアルカリ水溶液に対する溶解速度を好ましい範囲に調整することができる。末端封止剤の含有量は、全アミン成分に対して5~50モル%が好ましい。
 樹脂中に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を酸性溶液に溶解し、樹脂の構成単位であるアミン成分と酸無水成分に分解し、これをガスクロマトグラフ(GC)や、NMRを用いて測定することにより、末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13C-NMRスペクトル測定することにより検出することが可能である。
 一般式(1)で表される構造を主成分とする樹脂は、例えば次の方法により合成することができる。
 ポリイミド前駆体のポリアミド酸またはポリアミド酸エステルの場合、例えば、低温中でテトラカルボン酸二無水物とジアミン化合物および末端封止に用いるモノアミノ化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミン化合物、モノアミノ化合物および縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後残りのジカルボン酸を酸クロリド化し、ジアミン化合物およびモノアミノ化合物と反応させる方法などがある。
 ポリベンゾオキサゾール前駆体のポリヒドロキシアミドの場合、ビスアミノフェノール化合物、ジカルボン酸およびモノアミノ化合物を縮合反応させる方法が挙げられる。具体的には、ジシクロヘキシルカルボジイミド(DCC)などの脱水縮合剤と酸を反応させ、ここにビスアミノフェノール化合物およびモノアミノ化合物を加える方法や、ピリジンなどの3級アミンを加えたビスアミノフェノール化合物およびモノアミノ化合物の溶液にジカルボン酸ジクロリドの溶液を滴下する方法などがある。
 一般式(1)で表される構造を主成分とする樹脂は、上記の方法で重合させた後、多量の水やメタノール/水の混合液などに投入し、沈殿させて濾別乾燥し、単離することが望ましい。この沈殿操作によって未反応のモノマーや、2量体や3量体などのオリゴマー成分が除去され、熱硬化後の膜特性が向上する。
 前記(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールのうち、ポリイミドおよびポリベンゾオキサゾールは、一般式(1)で表される構造を主成分とする樹脂を加熱あるいは適当な触媒により閉環させることにより得られる、イミド環、オキサゾール環、その他の環状構造を有するポリマーである。これらの樹脂は、環状構造を有することで、耐熱性および耐溶剤性が飛躍的に向上する。
 本発明におけるポリイミドとは、ポリイミド前駆体のイミド化率が90モル%以上のものをいい、ポリベンゾオキサゾールとは、ポリベンゾオキサゾール前駆体のオキサゾール環の環化率が90モル%以上のものをいう。イミド化率は赤外吸収スペクトルのイミド環のC-N伸縮振動による1377cm-1付近のピーク強度より算出でき、オキサゾール環の環化率は赤外吸収スペクトルのオキサゾール環に由来する1045cm-1付近強度より算出することができる。
 前記(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールのうち、機械特性および耐熱性の観点からポリイミドおよびポリベンゾオキサゾールから選択される1種類以上の樹脂を含むことが好ましく、(b)金属酸化物層との密着性の観点からポリイミドを含むことがより好ましい。
 また、(c)絶縁層が、(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体、およびポリベンゾオキサゾールから選択される2種類以上の樹脂を含んでも良い。2種類以上を含む場合には250℃以下の低温での硬化後の機械特性および耐熱性の観点から、(d)ポリイミド、ポリアミド酸、ポリアミドイミド、ポリベンゾオキサゾール前駆体、およびポリベンゾオキゾールから選択される樹脂の総量100重量%に対して、ポリイミドが60重量%以上であることが好ましく、80重量%以上であればより好ましい。また、感度を向上させる目的で、ポリイミドと、ポリアミド酸、ポリアミドイミド、ポリベンゾオキサゾール前駆体、およびポリベンゾオキゾールから選択される樹脂とを併用することも好ましい。
 前記樹脂組成物には硬化前のパターン加工のための感光性を付与する目的で(e)光酸発生剤を含有することができる。光酸発生剤は硬化後の(c)絶縁層に含有されていてもよい。
 光酸発生剤は、紫外線、遠紫外線、X線などの放射線に感応して酸を発生する化合物であり、具体的にはジアリールヨードニウム塩、トリアリールスルフォニウム塩、フェニルジアゾニウム塩などのオニウム化合物、キノンジアジド化合物、イミドスルフォネート誘導体、トシラート化合物、ベンジル誘導体のカルボナート化合物、トリアジン誘導体のハロゲン化合物などが挙げられる。このなかでも汎用性の面から一般的な紫外線である水銀灯のi線(365nm)、h線(405nm)またはg線(436nm)に感光するキノンジアジド化合物が好ましい。
 キノンジアジド化合物としては、5-ナフトキノンジアジドスルホニルエステル化合物および4-ナフトキノンジアジドスルホニルエステル化合物のいずれも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物または5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基および5-ナフトキノンジアジドスルホニル基の両方を有するナフトキノンジアジドスルホニルエステル化合物を得ることもできるし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を混合して使用することもできる。
 また、キノンジアジド化合物の分子量が1500以下の場合には、その後の熱処理においてキノンジアジド化合物が十分に熱分解し、得られる膜の耐熱性、機械的特性、および接着性を維持できるので好ましい。耐熱性、機械的特性および接着性に優れた膜を形成する観点から、好ましいキノンジアジド化合物の分子量は300~1500、より好ましくは、350~1200である。
 キノンジアジド化合物の含有量は、現像後における未露光部の膜厚を維持する点で、(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。また、パターン加工性の点で50質量部以下が好ましく、40質量部以下がより好ましい。
 キノンジアジド化合物は、特定のフェノール化合物から、次の方法により合成することができる。例えば5-ナフトキノンジアジドスルホニルクロライドとフェノール化合物をトリエチルアミン存在下で反応させる方法などがある。フェノール化合物の合成方法は、酸触媒下で、α-(ヒドロキシフェニル)スチレン誘導体を多価フェノール化合物と反応させる方法などがある。
 (c)絶縁層は、硬化前のパターン加工における感度および解像度を向上させるために、硬化後の収縮残膜率を小さくしない範囲で、(f)フェノール性化合物を含有してもよい。これにより、(c)絶縁層をパターン加工する際の現像時間を調整し、現像後のパターン開口部の残渣を低減することができる。(f)フェノール性化合物は硬化後の(c)絶縁層に含有されていてもよい。(f)フェノール性化合物とは、フェノール性水酸基を有する化合物である。これらの化合物としては、例えば、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X(以上、商品名、本州化学工業(株)製)、BIP-PC、BIR-PC、BIR-PTBP、BIR-BIPC-F(以上、商品名、旭有機材工業(株)製)、フェノール樹脂、ポリヒドロキシスチレンなどが挙げられる。これらを2種以上含有してもよい。
 フェノール樹脂は、フェノール類とアルデヒド類とを公知の方法で重縮合することによって得られる。フェノール類の好ましい例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,5-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール等を挙げることができる。特に、フェノール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,5-キシレノール、3,4-キシレノール、3,5-キシレノールまたは2,3,5-トリメチルフェノールが好ましい。これらのフェノール類を2種以上組み合わせて用いてもよい。アルカリ現像液に対する溶解性の観点から、m-クレゾールが好ましく、m-クレゾールおよびp-クレゾールの組み合わせもまた好ましい。すなわち、フェノール性水酸基を有する樹脂として、m-クレゾール残基、または、m-クレゾール残基とp-クレゾール残基を含むクレゾールノボラック樹脂を含むことが好ましい。このとき、クレゾールノボラック樹脂中のm-クレゾール残基とp-クレゾール残基のモル比(m-クレゾール残基/p-クレゾール残基、m/p)は1.8以上が好ましい。この範囲であればアルカリ現像液への適度な溶解性を示し、良好な感度が得られる。より好ましくは4以上である。
 また、アルデヒド類の好ましい例としては、ホルマリン、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロアセトアルデヒド、サリチルアルデヒド等を挙げることができる。これらのうち、ホルマリンが特に好ましい。これらのアルデヒド類を2種以上組み合わせて用いてもよい。このアルデヒド類の使用量は、パターン加工性の点より、フェノール類1.0モルに対し、0.6モル以上が好ましく、0.7モル以上がより好ましく、3.0モル以下が好ましく、1.5モル以下がより好ましい。
 フェノール類とアルデヒド類との重縮合の反応には、通常、酸性触媒が使用される。この酸性触媒としては、例えば、塩酸、硝酸、硫酸、ギ酸、シュウ酸、酢酸、p-トルエンスルホン酸等を挙げることができる。これらの酸性触媒の使用量は、フェノール類1モルに対し、1×10-5~5×10-1モルが好ましい。重縮合の反応においては、通常、反応媒質として水が使用されるが、反応初期から不均一系になる場合は、反応媒質として親水性溶媒または親油性溶媒が用いられる。親水性溶媒としては、例えばメタノール、エタノール、プロパノール、ブタノール、プロピレングリコールモノメチルエーテル等のアルコール類;テトラヒドロフラン、ジオキサン等の環状エーテル類が挙げられる。親油性溶媒としては、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン等のケトン類が挙げられる。これらの反応媒質の使用量は、反応原料100質量部当り20~1,000質量部が好ましい。
 重縮合の反応温度は、原料の反応性に応じて適宜調整することができるが、10~200℃が好ましい。重縮合の反応方法としては、フェノール類、アルデヒド類、酸性触媒等を一括して仕込み、反応させる方法、または酸性触媒の存在下にフェノール類、アルデヒド類等を反応の進行とともに加えていく方法等を適宜採用することができる。重縮合の反応終了後、系内に存在する未反応原料、酸性触媒、反応媒質等を除去するために、一般的には、反応温度を130~230℃に上昇させ、減圧下で揮発分を除去し、フェノール性水酸基を有する樹脂を回収する。
 フェノール樹脂のポリスチレン換算重量平均分子量(Mw)は、好ましくは2,000以上15,000以下、より好ましくは3,000以上10,000以下である。この範囲であれば、高感度・高解像度でありながら硬化後のパターン寸法ばらつきを低減することができる。
 フェノール樹脂としてはレゾール樹脂、ノボラック樹脂などが挙げられるが、高感度化および保存安定性の観点からノボラック樹脂が好ましい。
 フェノール樹脂を添加する場合、(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂と、フェノール樹脂との含有量比は、パターン加工性の点から(d)樹脂/フェノール樹脂=100/0~10/90(質量比)が好ましい。また、硬化後の金属酸化物層との密着性の点で(d)樹脂/フェノール樹脂=100/0~30/70(質量比)がさらに好ましい。
 前記(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂を含む樹脂組成物は、(g)溶剤を含有しても良い。溶剤としては、γ-ブチロラクトンなどの極性の非プロトン性溶媒;テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテルなどのエーテル類;ジプロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテルなどのジアルキレングリコールジアルキルエーテル類;アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド;3-メトキシブチルアセテート、エチレングリコールモノエチルエーテルアセテートなどのアセテート類;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどのエステル類;トルエン、キシレンなどの芳香族炭化水素類などの溶剤を単独、または混合して使用することができる。前記樹脂組成物において、(g)溶剤の含有量は、保護膜として機能する膜厚となる樹脂膜が得られる点で、(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂100質量部に対して、50質量部以上が好ましく、100質量部以上がより好ましい。また、2000質量部以下が好ましく、1500質量部以下がより好ましい。
 前記樹脂組成物は、(h)アルコキシメチル基を含む化合物を含有してもよい。(h)アルコキシメチル基を含む化合物としては、下記一般式(2)で表される化合物が好ましい。アルコキシメチル基は150℃以上の温度領域で架橋反応が生じる。そのため該化合物を含有することで、ポリイミド前駆体またはポリベンゾオキサゾール前駆体を熱により閉環させ硬化させる熱処理により架橋し、より良好なパターン形状を得ることができる。架橋密度を上げるためにアルコキシメチル基を2個以上有する化合物が好ましく、架橋密度を上げ、耐薬品性をより向上させる点から、アルコキシメチル基を4個以上有する化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000005
一般式(2)中、R10は炭素数0~30の1~10価の有機基を示す。有機基の例としては、エチリデン基、プロピリデン基、イソプロピリデン基などが挙げられるがこれらに限定されない。R11は同じでも異なっていてもよく、炭素数1~4のアルキル基を示す。rは1~10の整数を示す。
 化合物(h)の具体例としては以下の化合物が挙げられるが、これらに限定されない。また、これらを2種以上含有してもよい。
Figure JPOXMLDOC01-appb-C000006
 化合物(h)の含有量は、架橋密度を上げ、耐薬品性および機械特性をより向上させる観点から、(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂100質量部に対して、1質量部以上20質量部以下が好ましい。
 前記樹脂組成物は、(i)シラン化合物を含有することができ、下地基板との接着性を向上させることができる。(i)シラン化合物の具体例としては、N-フェニルアミノエチルトリメトキシシラン、N-フェニルアミノエチルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリエトキシシラン、N-フェニルアミノブチルトリメトキシシラン、N-フェニルアミノブチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシランや、以下に示す構造を有するシラン化合物を挙げることができるが、これらに限定されない。これらを2種以上含有してもよい。
Figure JPOXMLDOC01-appb-C000007
 (i)シラン化合物の含有量は、(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂100質量部に対して、0.01質量部以上15質量部以下が好ましい。この範囲内であれば、ポジ型感光性樹脂組成物の耐熱性を保ったまま、接着助剤として十分な効果を得ることができる。
 また、前記樹脂組成物には、必要に応じて基板との濡れ性を向上させる目的で、乳酸エチルやプロピレングリコールモノメチルエーテルアセテートなどのエステル類;エタノールなどのアルコール類;シクロヘキサノン、メチルイソブチルケトンなどのケトン類;テトラヒドロフラン、ジオキサンなどのエーテル類を含有してもよい。また、二酸化ケイ素、二酸化チタンなどの無機粒子、あるいはポリイミドの粉末などを含有することもできる。
 前記樹脂組成物における、溶剤を除く全固形分中の水酸基の濃度は、硬化後の金属酸化物層との密着性を向上させる観点から、2.90mmol/g以上であることが好ましく、3.30mmol/g以上であることがより好ましい。また、信頼性試験後の金属酸化物層との密着性を向上させる観点から、水酸基の濃度は、6.00mmol/g以下が好ましく、5.30mmol/g以下であることがより好ましい。ここでいう、溶剤を除く全固形分中の水酸基濃度は、溶剤を除く全固形分1g中に含有される水酸基の量を示しており、前記樹脂組成物中に含まれる、溶剤を除く化合物の含有量、分子量および該化合物に含まれる水酸基の数から、「水酸基数(mmol)/溶剤を除く全固形分の総量(g)」で算出することができる。溶剤を除く全固形分中に水酸基を有する化合物を複数含有する場合には、それらに含まれる水酸基の総量が「水酸基数」として算出される。
 前記樹脂組成物の製造方法を例示する。例えば、(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂、(e)光酸発生剤、(f)フェノール性化合物、(g)溶剤、および必要によりその他成分を、ガラス製のフラスコやステンレス製の容器に入れてメカニカルスターラーなどによって撹拌溶解させる方法、超音波で溶解させる方法、遊星式撹拌脱泡装置で撹拌溶解させる方法などが挙げられる。樹脂組成物の粘度は200~10,000mPa・sが好ましい。また、異物を除去するために0.1μm~5μmのポアサイズのフィルターで濾過してもよい。
 前記樹脂組成物は、後述のようにして、(b)金属酸化物層の上面に塗布され、露光、現像および硬化の工程を経て硬化膜となる。上記の感光性樹脂組成物を硬化した硬化膜を(c)絶縁層に用いることで、金属配線層との密着性を向上させて信頼性の高い半導体装置を提供することができる。
 <半導体装置の製造方法>
 次に、本実施形態に係る半導体装置の製造方法について説明する。
 図2(a)~図2(g)は、本実施形態に係る半導体装置の製造方法の一例を示す工程断面図である。
 まず、図2(a)に示すように、ウエハ状態の半導体基板1の上面に、図示を省略した集積回路、当該集積回路に接続されたアルミニウム軽金属等からなる接続パッド2-1、接続パッドの上面を開口したパッシベーション膜2-2、および接続パッドの上面を開口した絶縁層3が形成されたものを準備する。
 半導体基板の例としては、シリコンウエハが代表的である。シリコン以外の基板材料の例として、セラミックス類、ガリウムヒ素、金属、ガラス、金属酸化絶縁膜、窒化ケイ素、ITOなどが挙げられるが、これらに限定されない。
 次いで、図示しないが、絶縁層3、および接続パッド2-1と後述する金属配線層の密着性を向上させる目的で、半導体基板1の上面側の全域、すなわち絶縁層3の各開口部を介して露出された接続パッド2-1の上面および絶縁層3の上面の全域に、下地金属層を構成するチタン薄膜5(a)および金属薄膜5(b)を形成することが好ましい。金属薄膜の材料としては、アルミ、銅、ニッケルなどが挙げられる。ここで、チタン薄膜および、金属薄膜は、例えばスパッタリング法を用いて形成することができる。
 次いで、図2(b)に示すように、半導体基板1の上面側、すなわち絶縁層3の上面にポジ型の液状レジストからなるメッキレジスト膜4をパターン形成する。次いで、図2(c)に示すように、絶縁層3上のメッキレジスト膜4の開口部内に金属膜5(c)が形成される。前記下地金属層が形成されている場合は、金属薄膜5(b)をメッキ電流路とした電解メッキを行なうことにより、メッキレジスト膜4の開口部内に金属膜5(c)を形成することができる。その後、図2(d)に示すようにメッキレジスト膜4が剥離される。
 次いで、前記下地金属層が形成されている場合は、金属膜5(c)をエッチングマスクとして用いて、当該金属膜5(c)が形成されていない領域(すなわち、金属膜5(c)に被覆されず露出している領域)の金属薄膜5(b)をエッチングして除去することにより、金属膜5(c)の直下にのみ金属薄膜5(b)を残存させる。次いで、金属薄膜5(b)および金属膜5(c)をエッチングマスクとして用いて、当該金属薄膜5(b)および金属膜5(c)が形成されていない領域(すなわち、金属薄膜5(b)および金属膜5(c)に被覆されず露出している領域)のチタン薄膜5(a)をウェットエッチングにより除去することにより、金属薄膜5(b)および金属膜5(c)の直下にのみチタン薄膜5(a)を残存させる。これにより、金属膜5(c)とその直下に残存する金属薄膜5(b)およびチタン薄膜5(a)が金属配線層5として一体的に形成される。
 次いで、図2(e)に示すように金属配線層5の表面の酸化処理を行うことにより、金属酸化物層6を形成する。これにより、金属配線層5と後述する絶縁層7との密着性が向上する。酸化処理の方法としては、前述の方法を用いることができる。
 次いで、図2(f)に示すように、半導体ウエハの上面側の全域、すなわち、金属酸化物層6の上面と両側近傍領域、および、絶縁層3の上面に対応する部分に、絶縁層7が形成される。ここで、絶縁層7には、金属配線層5の表面に形成された金属酸化物層6の一部が露出する開口部が形成される。
 そして、図2(g)に示すように、絶縁層7に形成された開口部を介して、金属配線層5の表面に形成された金属酸化物層6に接続されるように外部接続用の半田ボール8が形成される。半田ボール8の形成時には、金属配線層5の表面に形成された金属酸化物層6との濡れ性を向上させるためにフラックスを塗布した後に熱処理(リフロー)されることが好ましい。なお、ここでは半田ボール8を形成する場合について説明したが、ランドグリッドアレイ(Land grid array;LGA)型のパッケージに適用されるような、半田印刷による突起状の電極パッドを形成するものであってもよい。
 上記のようにして、絶縁層7および半田ボール8が形成された半導体ウエハを、さらに封止樹脂でパッケージした後、該半導体ウエハを必要サイズに切断して個片化することにより、1枚の半導体ウエハより半導体装置を複数個得ることができる。
 次に、絶縁層7を形成する方法について詳しく説明する。
 絶縁層の形成方法は、樹脂組成物の基板への塗布工程、乾燥工程、パターン加工工程および熱により樹脂組成物を硬化させ硬化膜を得る工程を含有する。
 ここで、基板は、上記のとおり半導体基板1の上面に、接続パッド2-1、パッシベーション膜2-2、絶縁層3、金属配線層5および金属酸化物層6が形成されたものである。
 樹脂組成物は、レジストを用いたパターン加工工程が必要ない観点から、感光性樹脂組成物であることが好ましい。また、パターン解像度の観点からポジ型感光性樹脂組成物であることが好ましい。
 塗布工程における塗布方法としては、スピンコート法による塗布、スプレー塗布、ロールコーティング、スリットダイコーティングなどの方法がある。塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、乾燥後の膜厚が、5~30μmになるように塗布されることが好ましい。フラックス処理における耐薬品性の点より、乾燥後の膜厚が2μm以上であることが好ましい。また、膜厚は、フラックス処理後の金属配線との密着性の点より15μm以下であることが好ましい。
 次に、乾燥工程では、塗布した樹脂組成物を乾燥して、樹脂膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用し、50~150℃の範囲で1分間~数時間行うことが好ましい。
 次に、パターン加工工程として、樹脂膜が非感光性である場合には、レジストを用いたパターン加工を行い、樹脂膜を所望のパターンに加工する。樹脂膜が感光性である場合には、所望のパターンを有するマスクを通して、樹脂膜に化学線を照射し、露光する。露光に用いられる化学線としては、紫外線、可視光線、電子線、X線などがあるが、水銀灯のi線(365nm)、h線(405nm)またはg線(436nm)を用いることが好ましい。
 感光性樹脂膜のパターンを形成するには、露光後、現像液を用いて樹脂膜の露光部を除去すればよい。現像液としては、テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒;メタノール、エタノール、イソプロパノールなどのアルコール類;乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類;シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを1種以上添加してもよい。現像後は水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 現像後、樹脂膜に200~500℃の温度を加えて、熱により樹脂膜を硬化させ、硬化膜に変換する。半導体素子の熱による劣化を防止する観点から、250℃以下の温度で硬化を行うことが好ましい。加熱処理は、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施することが好ましい。一例としては、100℃、120℃および、250℃で各30分間ずつ熱処理する方法、室温から250℃まで2時間かけて直線的に昇温する方法、250℃で1時間熱処理する方法などが挙げられる。
 以下、実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 <膜厚の測定方法>
 大日本スクリーン製造(株)製ラムダエースSTM-602を使用し、プリベーク後および現像後の膜は、屈折率1.629で測定した。
 <ポリイミドのイミド化率の測定>
 ポリイミドのイミド化率は、6インチ(15.24cm)のシリコンウエハ上に、測定するポリイミド樹脂の固形分濃度50質量%のN-メチルピロリドン溶液をスピンコート法で塗布し、次いで120℃のホットプレート(大日本スクリーン製造(株)製SKW-636)で3分間ベークし、厚さ8μm±1μmのプリベーク膜(Y)を作製した。この膜を半分に割り、片方をイナートオーブン(光洋サーモシステム製INH-21CD)に投入し、350℃の硬化温度まで30分間かけて上昇させ、350℃で60分間加熱処理を行った。その後、オーブン内が50℃以下になるまで徐冷し、十分に硬化された硬化膜(X)を得た。得られた硬化膜(X)とプリベーク膜(Y)について、フーリエ変換赤外分光光度計FT-720(堀場製作所製)を用いて赤外吸収スペクトルを測定した。イミド環のC-N伸縮振動による1377cm-1付近のピーク強度を求め、「プリベーク膜(Y)のピーク強度/硬化膜(X)のピーク強度」の値をイミド化率とした。
 <分子量測定>
 (d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールのうち、ポリアミド酸、ポリアミドイミド、ポリベンゾオキサゾール前駆体、およびフェノール樹脂の重量平均分子量(Mw)は、GPC(ゲルパーミエーションクロマトグラフィー)装置Waters2690-996(日本ウォーターズ(株)製)を用いて確認した。展開溶媒をN-メチルピロリドンとして測定し、標準ポリスチレン換算の重量平均分子量(Mw)及び分散度(PDI=Mw/Mn)を計算した。
 <金属基板の作製>
 8インチ(20.32cm)のシリコンウエハ上にスパッタリングによりTiを25nmの厚さで積層したTiスパッタ膜を作製した。Tiスパッタ膜上にスパッタリングにより銅を100nmの厚さで積層し、さらにその上に電解めっきを用いて銅を3μmの厚さで積層した銅基板を作製した。
 <金属基板の表面処理>
 以下に記載の方法で、上記のようにして得られた銅基板の表面処理を行った。
 (1)薬液による表面処理
 銅基板を25℃の条件下で、下記の(T-1)~(T-4)のいずれかの薬液に表1に記載の時間浸漬した。銅基板を、薬液から取り出した後、25℃の純水に1分間浸漬させ、ドライエアーで表面の水分を吹き飛ばした後に、100℃のホットプレートで1分間加熱し、水分を除去した。このようにして銅の表面に金属酸化物層が形成された銅基板を得た。
表面処理薬液:
(T-1):硫酸/過酸化水素/水=20/0/80 (wt%)
(T-2):硫酸/過酸化水素/水=16/4/80 (wt%)
(T-3):硫酸/過酸化水素/水=10/10/80 (wt%)
(T-4):硫酸/過酸化水素/水=0/20/80 (wt%)。
 (2)酸素プラズマによる表面処理
 銅基板の表面を酸素プラズマにより表面処理し、銅の表面に金属酸化物層が形成された銅基板を得た。
処理条件は以下の通りである。
(P-1):酸素プラズマ処理
装置:RIE-10N(SAMCO製)
出力:150W
ガス:酸素
流量:40sccm
処理時間:表1に記載した。
 <金属基板の表面の元素分析>
 表面処理を行った金属基板の表面元素分析を行った。測定条件は以下の通りである。
手法:X線光電子分光法(XPS)
装置:ESCALAB220iXL
励起X線:monochromatic Al K 1、2線(1486.6eV)
 Cu2のスペクトルピークを、銅または一価の酸化銅に帰属される成分と二価の酸化銅に帰属される成分に分割し、それぞれに帰属されるピークの面積比より銅元素の総量(x)に対する二価の銅酸化物の総量(y)の比率(y/x)を算出した。
 <密着強度の評価>(硬化膜と金属基板の密着性)
 上記のようにして表面処理を行った金属基板上に以下に記載の方法で、縦120μm、横30μmの長方形のパターン硬化膜を作製した。
 (1)樹脂膜の作製
 表面処理を行った金属基板上に、各実施例で調製したワニスをプリベーク後の膜厚T1(塗布後膜厚)=7.0μmとなるようにスピンコート法により塗布し、ついでホットプレート(東京エレクトロン(株)製の塗布現像装置ACT8)を用いて、120℃で3分間プリベークすることにより、樹脂膜を得た。
 (2)露光
 露光機(Nicon社製i線ステッパーNSR2005i9C)に、長方形のパターンの切られたレチクルをセットし、800mJ/cmの強度で上記樹脂膜をi線(365nm)で露光した。
 (3)現像
 東京エレクトロン(株)製ACT8の現像装置を用い、50回転で水酸化テトラメチルアンモニウムの2.38質量%水溶液を10秒間、露光後の樹脂膜に噴霧した。この後、0回転で40秒間静置した。現像液を振り切り、再度水酸化テトラメチルアンモニウムを噴霧した後、20秒間静置した。この後、400回転で水にてリンス処理した後、3,000回転で10秒振り切り乾燥し、パターン加工膜を得た。
 (4)加熱処理による硬化膜の形成
 得られたパターン加工膜を縦型キュア炉 VF-1000B(光洋サーモシステム社製)にて窒素雰囲気下で酸素濃度20ppm以下の条件で、250℃で60分間の熱処理を実施し、パターン硬化膜を得た。ここで、パターン硬化膜とは、前記樹脂膜が所定のパターンに加工された後、硬化されて得られた膜のことである。
 (5)密着強度の評価
 ダイシェアテスター、Series4000(DAGE ARCTEK製)を用いて、密着強度の測定を行った。ダイシェアの条件は、シェアテストスピード100μm/secの条件にて実施した。パターン硬化膜を長辺側より剥離させ、剥離最大強度を測定した。7箇所で測定し、その平均値を密着強度とした。密着強度は60mN以上であれば良好であり、220mN以上であればより好ましく、440mN以上であればさらに好ましい。
 <金属基板の密着性の評価>(信頼性試験後の硬化膜と金属基板の密着性)
 表面処理を行った金属基板上にパターン形成をしなかった以外は上記<密着強度の評価>と同様にして硬化膜を形成した。金属基板上の硬化膜の中央に、カッターガイドを用いて2mm×2mmの間隔で100個の正方形ができるように碁盤目状に硬化膜に切れ目を入れた(クロスカット)。加速試験を行うため、硬化膜に切れ目を入れた金属基板をプレッシャークッカー装置に入れ、121℃、2気圧、100%RHの条件下で100時間処理した(PCT処理)。PCT処理後に、クロスカットした部分の硬化膜にセロハンテープをはりつけた後、基板に対して90°の方向に引っ張り、硬化膜を基板から剥がした。この際に100個のうちで剥離された硬化膜の数を数えた。剥離する数が少ないと密着性が高いことを示しており、剥離する数が多いと密着性が低いことを示している。剥離する数が50以下であることが好ましく、20以下であることがより好ましい。
 金属基板として銅基板を用いた場合の結果を表2に示す。また、アルミニウム基板を用いて同様に評価したところ、剥離した数は100箇所のうち30箇所であり、ニッケル基板を用いた場合、100箇所中35箇所であった。
 <フラックス耐性の評価>
 上記<金属基板の作製>の記載のとおり、各実施例ごとに表面処理を行った金属基板上に以下に記載の方法で、50~60μmのパッドパターンの硬化膜を作製した。
 (1)樹脂膜の作製
 表面処理を行った金属基板上に、各実施例で調製したワニスをプリベーク後の膜厚T1(塗布後膜厚)=7.0μmとなるようにスピンコート法により塗布した。ついでホットプレート(東京エレクトロン(株)製の塗布現像装置ACT8)を用いて、120℃で3分間プリベークすることにより、樹脂膜を得た。
 (2)露光
 露光機(Nicon社製i線ステッパーNSR2005i9C)に、パッドパターンの切られたレチクルをセットし、i線(365nm)で露光量800mJ/cmの強度で上記樹脂膜を露光した。
 (3)現像
 上記<密着強度の評価>と同様に現像を行い、縦50~60μm、横50~60μmの開口部を有するパターンを作製した。
 (4)加熱処理による硬化膜の形成
 上記<密着強度の評価>と同様に加熱処理を行い、縦50~60μm、横50~60μmの開口部を有するパターン硬化膜を作製した。
 (5)フラックス耐性の評価
 金属基板上のパターン硬化膜にフラックスWS9160(アレントジャパン社製)を塗布後、当該パターン硬化膜付きウエハを、リフロー炉RN-S ANUR820iN(パナソニックデバイスSUNX竜野社製)にて、リフロー処理した。リフロー処理条件は、酸素濃度1,000ppm以下で、ヒーター温度、コンベア速度を調整し、ウエハを270℃で60秒以上加熱する条件とした。処理後、50℃の水で洗浄し、風乾後、23℃、50%RH雰囲気下で1時間以上乾燥させた。
 乾燥後の硬化膜表面を光学顕微鏡で観察し、フラックス耐性を評価した。外観異常の無いものを良好としてA、変色のあったものを可としてB、クラックの発生したものを不良としてCとした。
 <パターン加工性の評価>
 (1)樹脂膜の作製
 8インチ(20.32cm)シリコンウエハ上に各実施例で調製したワニスをプリベーク後の膜厚T1(塗布後膜厚)=7.0μmとなるようにスピンコート法により塗布し、ついでホットプレート(東京エレクトロン(株)製の塗布現像装置ACT8)を用いて、120℃で3分間プリベークすることにより、樹脂膜を得た。
 (2)露光
 露光機(Nicon社製i線ステッパーNSR2005i9C)に、パッドパターンの切られたレチクルをセットし、i線(365nm)で上記感光性樹脂膜を所定の時間露光した。
 上記露光工程において、露光時間を変化させ、上記<密着強度の評価>と同様に現像を行い、現像後の感光性樹脂膜において、50μmパッドパターンが50μmに開口する最小露光量(Eth)を求めた。Ethが450mJ/cm以下であればパターン加工性は良好であり、300mJ/cm以下がより好ましい。
 <合成例1 ヒドロキシル基含有酸無水物(a)の合成>
 乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF)18.3g(0.05モル)とアリルグリシジルエーテル34.g(0.3モル)をγ-ブチロラクトン(以下、GBL)100gに溶解させ、-15℃に冷却した。ここにGBL50gに溶解させた無水トリメリット酸クロリド22.1g(0.11モル)を反応液の温度が0℃を越えないように滴下した。滴下終了後、0℃で4時間反応させた。この溶液をロータリーエバポレーターで濃縮して、トルエン1Lに投入して、下記式で表されるヒドロキシル基含有酸無水物(a)を得た。
Figure JPOXMLDOC01-appb-C000008
 <合成例2 ヒドロキシル基含有ジアミン化合物(b)の合成>
 BAHF18.3g(0.05モル)をアセトン100mLおよびプロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
 得られた固体30gを300mLのステンレスオートクレーブに入れ、メチルセルソルブ250mLに分散させ、5%パラジウム-炭素を2g加えた。ここに水素を風船で導入して、激しく撹拌した。約2時間後、風船がこれ以上収縮しないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物(b)を得た。
Figure JPOXMLDOC01-appb-C000009
 <合成例3 ヒドロキシル基含有ジアミン(c)の合成>
 2-アミノ-4-ニトロフェノール15.4g(0.1モル)をアセトン50mLおよびプロピレンオキシド30g(0.34モル)に溶解させ、-15℃に冷却した。ここにイソフタル酸クロリド11.2g(0.055モル)をアセトン60mLに溶解させた溶液を徐々に滴下した。滴下終了後、-15℃で4時間反応させた。その後、室温に戻して生成している沈殿をろ別した。
 この沈殿をGBL200mLに溶解させて、5%パラジウム-炭素3gを加えて、激しく撹拌した。ここに水素ガスを入れた風船を取り付け、室温で水素ガスの風船がこれ以上縮まない状態になるまで撹拌を続け、さらに2時間水素ガスの風船を取り付けた状態で撹拌した。撹拌終了後、ろ過して触媒であるパラジウム化合物を除き、溶液をロータリーエバポレーターで半量になるまで濃縮した。ここにエタノールを加えて、再結晶を行い、下記式で表されるヒドロキシル基含有ジアミン(c)の結晶を得た。
Figure JPOXMLDOC01-appb-C000010
 <合成例4 ポリマーC1の合成>
 乾燥窒素気流下、4,4’-ジアミノフェニルエーテル(DAE)4.60g(0.023モル)および1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(SiDA)1.24g(0.005モル)をN-メチル-2-ピロリドン(NMP)50gに溶解させた。ここに合成例1で得られたヒドロキシル基含有酸無水物(a)21.4g(0.030モル)をNMP14gとともに加えて、20℃で1時間撹拌し、次いで40℃で2時間撹拌した。その後、N,N-ジメチルホルムアミドジメチルアセタール7.14g(0.06モル)をNMP5gで希釈した溶液を10分かけて滴下した。滴下後、40℃で3時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ別した。得られたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリイミド前駆体のポリマーCを得た。GPCにより得られたポリマーの重量平均分子量を測定し、n=10~100,000の範囲内にあることを確認した。
 <合成例5 ポリマーC2の合成>
 乾燥窒素気流下、合成例2で得られたヒドロキシル基含有ジアミン(b)13.90g(0.023モル)をNMP50gに溶解させた。ここに合成例1で得られたヒドロキシル基含有酸無水物(a)17.5g(0.025モル)をピリジン30gとともに加えて、40℃で2時間撹拌した。その後、N,N-ジメチルホルムアミドジエチルアセタール7.35g(0.05モル)をNMP5gで希釈した溶液を10分かけて滴下した。滴下後、40℃で2時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ別した。得られたポリマー固体を80℃の真空乾燥機で72時間乾燥しポリイミド前駆体のポリマーDを得た。GPCにより得られたポリマーの重量平均分子量を測定し、n=10~100,000の範囲内にあることを確認した。
 <合成例6 ポリマーC3の合成>
 乾燥窒素気流下、合成例3で得られたヒドロキシル基含有ジアミン化合物(c)15.13g(0.040モル)、SiDA1.24g(0.005モル)をNMP50gに溶解させた。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸無水物(ODPA)15.51g(0.05モル)をNMP21gとともに加えて、20℃で1時間撹拌し、次いで50℃で1時間撹拌した。その後、N,N-ジメチルホルムアミドジエチルアセタール13.2g(0.09モル)をNMP15gで希釈した溶液を10分かけて滴下した。滴下後、40℃で3時間撹拌した。反応終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ別した。得られたポリマー固体を80℃の真空乾燥機で72時間乾燥しポリイミド前駆体のポリマーC3を得た。GPCにより得られたポリマーの重量平均分子量を測定し、n=10~100,000の範囲内にあることを確認した。
 <合成例8 ポリマーC4の合成>
 乾燥窒素気流下、ジフェニルエーテル-4,4’-ジカルボン酸ジクロライド(DEDC)1モルと1-ヒドロキシベンゾトリアゾール2モルとを反応させて得られたジカルボン酸誘導体19.70g(0.040モル)とBAHF18.31g(0.050モル)をNMP200gに溶解させ、75℃で12時間撹拌し反応を終了した。反応終了後、溶液を水/メタノール=3/1(体積比)の溶液3Lに投入して、ポリマー固体の沈殿をろ別した。得られたポリマー固体を80℃の真空乾燥機で20時間乾燥し、ポリベンゾオキサゾール前駆体のポリマーC4を得た。GPCにより得られたポリマーの重量平均分子量を測定し、n=10~100,000の範囲内にあることを確認した。
 <合成例9 ポリマーC5の合成>
 乾燥窒素気流下、ODPA15g(0.048モル)をN-メチルピロリドン119gに溶解させた。ここにDAE6.9g(0.034モル)、SiDA3.7g(0.015モル)を加えて、60℃で1時間反応させ、次いで200℃で6時間反応させた。反応終了後、溶液を室温まで冷却した後、溶液を水2.5Lに投入して白色沈殿を得た。この沈殿をろ別して、水で3回洗浄した後、80℃の真空乾燥機で40時間乾燥し、目的の樹脂であるポリイミドの重合体C5を得た。イミド化率は96%であった。
 <合成例10 ポリマーC6の合成>
 乾燥窒素気流下、ODPA15.0g(0.048モル)をN-メチルピロリドン119gに溶解させた。ここにBAHF12.45g(0.034モル)、SiDA3.7g(0.015モル)を加えて、60℃で1時間反応させ、次いで200℃で6時間反応させた。反応終了後、溶液を室温まで冷却した後、溶液を水2.5Lに投入して白色沈殿を得た。この沈殿をろ別して、水で3回洗浄した後、80℃の真空乾燥機で40時間乾燥し、目的の樹脂であるポリイミドの重合体C6を得た。イミド化率は96%であった。
 <合成例12 フェノール樹脂F1の合成>
 乾燥窒素気流下、m-クレゾール70.2g(0.65モル)、p-クレゾール37.8g(0.35モル)、37質量%ホルムアルデヒド水溶液75.5g(ホルムアルデヒド0.93モル)、シュウ酸二水和物0.63g(0.005モル)、メチルイソブチルケトン264gを1Lフラスコに仕込んだ後、1Lフラスコを油浴中に浸し、反応液を還流させながら、6時間重縮合反応を行った。その後、油浴の温度を3時間かけて昇温し、その後に、1Lフラスコ内の圧力を40~67hPaまで減圧して揮発分を除去し、室温まで冷却してフェノール樹脂F1のポリマー固体を得た。得られたポリマーをGPCにより測定した結果、重量平均分子量は6700であった。
その他、実施例に用いた化合物を以下に示す。
 <光酸発生剤>
D1:
Figure JPOXMLDOC01-appb-C000011
なお、D1中、Qの75%は下記式(3)であり、25%は水素原子である。
Figure JPOXMLDOC01-appb-C000012
 <フェノール化合物>
E1:TrisP-PA(商品名、本州化学工業(株)製)
 <溶剤>
GBL:γ-ブチロラクトン
 [実施例1]
 ポリマーC1 12.0g、光酸発生剤(D1)1.5g、フェノール化合物(E1)1.5gを測りとり、GBL20.0gに溶解させてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のようにパターン加工性およびフラックス耐性を評価した。また、20%の過酸化水素水で表面処理した金属基板を用いて、金属基板との密着性の評価を行った。
 [実施例2~28、比較例1~3]
 (d)樹脂の比率またはその他添加剤を表1のように変更した以外は実施例1と同様の方法でワニスを作製し、パターン加工性、フラックス耐性および金属との密着性の各評価試験を行なった。評価結果を表2に示す。なお、実施例23においては、銅基板の表面処理は行わず、自然酸化によって銅の表面に金属酸化物層が形成された銅基板を得た。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
1 半導体基板
2-1 接続パッド
2-2 パッシベーション膜
3 絶縁層
4 メッキレジスト膜
5 金属配線層(a)
6 金属酸化物層(b)
7 絶縁層(c)
8 半田ボール

Claims (12)

  1. 接続パッドを有する半導体基板上に(a)金属配線層、(b)金属酸化物層および(c)絶縁層を有し、
    前記(a)金属配線層の表面に前記(b)金属酸化物層が配置され、
    前記(b)金属酸化物層を介して前記(c)絶縁層が前記(a)金属配線層と接しており、
    前記(b)金属酸化物層における、金属総量(x)に対する二価の金属酸化物の総量(y)の比率(y/x)が、0.10~1.00(mol/mol)である半導体装置。
  2. 前記(b)金属酸化物層における、金属総量(x)に対する二価の金属酸化物の総量(y)の比率(y/x)が、0.65~1.00(mol/mol)である請求項1に記載の半導体装置。
  3. 前記(a)金属配線層および前記(b)金属酸化物層が銅元素を含む請求項1または2に記載の半導体装置。
  4. 前記(c)絶縁層が(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂を含む樹脂組成物を硬化した硬化膜である、請求項1~3のいずれかに記載の半導体装置。
  5. 前記(d)ポリイミド、ポリイミド前駆体、ポリアミドイミド、ポリベンゾオキサゾール前駆体およびポリベンゾオキサゾールから選択される1種類以上の樹脂が、ポリイミドである、請求項4に記載の半導体装置。
  6. 前記樹脂組成物における、溶剤を除く全固形分中の水酸基の濃度が2.90mmol/g以上、6.00mmol/g以下である、請求項4または5に記載の半導体装置。
  7. 前記樹脂組成物が、さらに(e)光酸発生剤および(f)フェノール性化合物を含む、請求項4~6のいずれかに記載の半導体装置。
  8. 前記(e)光酸発生剤がキノンジアジド化合物である、請求項7に記載の半導体装置。
  9. 前記(f)フェノール性化合物がノボラック樹脂を含む、請求項7または8に記載の半導体装置。
  10. 請求項1~9のいずれかに記載の半導体装置を製造する方法であって、
    接続パッドを有する半導体基板上に(a)金属配線層を形成した後、該(a)金属配線層の表面の酸化処理を行うことにより、(b)金属酸化物層を形成する工程を含む半導体装置の製造方法。
  11. 前記酸化処理が、半導体基板を過酸化水素水を含む薬液に浸漬する工程である、請求項10に記載の半導体装置の製造方法。
  12. 前記酸化処理工程の後、(b)金属酸化物層の上に(c)絶縁層を形成する工程、半導体基板を封止樹脂でパッケージする工程、および、半導体基板を切断して個片化する工程を含む、請求項10または11に記載の半導体装置の製造方法。
PCT/JP2016/076407 2015-11-11 2016-09-08 半導体装置およびその製造方法 WO2017081922A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016557087A JPWO2017081922A1 (ja) 2015-11-11 2016-09-08 半導体装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-220939 2015-11-11
JP2015220939 2015-11-11

Publications (1)

Publication Number Publication Date
WO2017081922A1 true WO2017081922A1 (ja) 2017-05-18

Family

ID=58695129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076407 WO2017081922A1 (ja) 2015-11-11 2016-09-08 半導体装置およびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2017081922A1 (ja)
TW (1) TW201727370A (ja)
WO (1) WO2017081922A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066942A (ko) * 2017-12-06 2019-06-14 삼성전자주식회사 재배선의 형성 방법 및 이를 이용하는 반도체 소자의 제조 방법
JP2019140343A (ja) * 2018-02-15 2019-08-22 ローム株式会社 半導体装置および半導体装置の製造方法
CN111816608A (zh) * 2020-07-09 2020-10-23 电子科技大学 玻璃盲孔加工方法
WO2021172420A1 (ja) * 2020-02-28 2021-09-02 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198562A (ja) * 1992-01-23 1993-08-06 Toray Ind Inc ポリイミド・パタ−ンの形成方法
JPH08139422A (ja) * 1994-11-04 1996-05-31 Mitsui Toatsu Chem Inc 金属酸化物層を有するフレキシブル回路基板
JP2004165234A (ja) * 2002-11-11 2004-06-10 Casio Comput Co Ltd 半導体装置およびその製造方法
JP2012014932A (ja) * 2010-06-30 2012-01-19 Sanyo Chem Ind Ltd 感光性樹脂組成物
JP2013164432A (ja) * 2012-02-09 2013-08-22 Toray Ind Inc ポジ型感光性樹脂組成物
JP2014127649A (ja) * 2012-12-27 2014-07-07 Hitachi Chemical Dupont Microsystems Ltd 半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198562A (ja) * 1992-01-23 1993-08-06 Toray Ind Inc ポリイミド・パタ−ンの形成方法
JPH08139422A (ja) * 1994-11-04 1996-05-31 Mitsui Toatsu Chem Inc 金属酸化物層を有するフレキシブル回路基板
JP2004165234A (ja) * 2002-11-11 2004-06-10 Casio Comput Co Ltd 半導体装置およびその製造方法
JP2012014932A (ja) * 2010-06-30 2012-01-19 Sanyo Chem Ind Ltd 感光性樹脂組成物
JP2013164432A (ja) * 2012-02-09 2013-08-22 Toray Ind Inc ポジ型感光性樹脂組成物
JP2014127649A (ja) * 2012-12-27 2014-07-07 Hitachi Chemical Dupont Microsystems Ltd 半導体装置の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066942A (ko) * 2017-12-06 2019-06-14 삼성전자주식회사 재배선의 형성 방법 및 이를 이용하는 반도체 소자의 제조 방법
JP2019102804A (ja) * 2017-12-06 2019-06-24 三星電子株式会社Samsung Electronics Co.,Ltd. 再配線の形成方法及びこれを利用する半導体素子の製造方法
KR102486561B1 (ko) * 2017-12-06 2023-01-10 삼성전자주식회사 재배선의 형성 방법 및 이를 이용하는 반도체 소자의 제조 방법
JP2019140343A (ja) * 2018-02-15 2019-08-22 ローム株式会社 半導体装置および半導体装置の製造方法
WO2021172420A1 (ja) * 2020-02-28 2021-09-02 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
CN111816608A (zh) * 2020-07-09 2020-10-23 电子科技大学 玻璃盲孔加工方法
CN111816608B (zh) * 2020-07-09 2023-05-09 电子科技大学 玻璃盲孔加工方法

Also Published As

Publication number Publication date
TW201727370A (zh) 2017-08-01
JPWO2017081922A1 (ja) 2018-08-23

Similar Documents

Publication Publication Date Title
JP7003659B2 (ja) 樹脂組成物
JP5494766B2 (ja) ポジ型感光性樹脂組成物、レジストパターンの製造方法、半導体装置及び電子デバイス
JP7059632B2 (ja) 樹脂組成物
WO2016035593A1 (ja) 樹脂および感光性樹脂組成物
CN107407878B (zh) 感光性树脂组合物
JP5034996B2 (ja) ポジ型感光性樹脂組成物
JP6645424B2 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
JP5904211B2 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
JP2010008851A (ja) ポジ型感光性樹脂組成物
JP6939553B2 (ja) 樹脂組成物
WO2014069091A1 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
WO2017081922A1 (ja) 半導体装置およびその製造方法
JP6451065B2 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
JP2019183122A (ja) 感光性樹脂組成物
JP2009258634A (ja) ポジ型感光性樹脂組成物
JP2023029564A (ja) 感光性樹脂組成物
JP5176600B2 (ja) ポジ型感光性樹脂組成物
JP6102389B2 (ja) 樹脂組成物
WO2015137281A1 (ja) 感光性樹脂組成物
WO2017038828A1 (ja) ポジ型感光性樹脂組成物、その樹脂組成物により形成された未硬化の樹脂パターン、硬化樹脂パターン、およびそれを用いた半導体装置とその製造方法
WO2022239232A1 (ja) 感光性樹脂組成物の選定方法、パターン硬化膜の製造方法、硬化膜、半導体装置、及び半導体装置の製造方法
TWI793136B (zh) 感光性樹脂組成物、樹脂膜及電子裝置
JP2021096311A (ja) 感光性樹脂組成物、硬化膜、電子部品および半導体装置
TW202309141A (zh) 樹脂組成物、樹脂組成物膜、硬化膜、以及半導體裝置
JP2015176962A (ja) 樹脂膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016557087

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863886

Country of ref document: EP

Kind code of ref document: A1