WO2014069091A1 - 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置 - Google Patents

感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置 Download PDF

Info

Publication number
WO2014069091A1
WO2014069091A1 PCT/JP2013/073542 JP2013073542W WO2014069091A1 WO 2014069091 A1 WO2014069091 A1 WO 2014069091A1 JP 2013073542 W JP2013073542 W JP 2013073542W WO 2014069091 A1 WO2014069091 A1 WO 2014069091A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
group
film
phenol
Prior art date
Application number
PCT/JP2013/073542
Other languages
English (en)
French (fr)
Inventor
裕馬 田中
大西 治
今村 裕治
正寛 岩井
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2014544365A priority Critical patent/JPWO2014069091A1/ja
Publication of WO2014069091A1 publication Critical patent/WO2014069091A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC

Definitions

  • the present invention relates to a photosensitive resin composition, a cured film, a protective film, an insulating film, and an electronic device.
  • a polyimide resin or a polybenzoxazole resin having excellent heat resistance and excellent electrical characteristics, mechanical characteristics, and the like has been used for a protective film and an insulating film in a semiconductor element.
  • a positive photosensitive resin composition in which a diazoquinone compound as a photoacid generator is combined with these resins is used. (For example, refer to Patent Document 1).
  • a protective film or insulating film of a semiconductor element using a positive photosensitive resin composition is performed by applying a positive photosensitive resin composition to a support, exposure with actinic radiation, development with an alkaline developer, It is performed through steps such as cleaning with pure water and curing by heating.
  • an exposure machine such as a reduction projection exposure machine or a broadband aligner is mainly used.
  • it is difficult to increase the number of exposure apparatuses because they are very expensive. Therefore, if the photosensitivity of the positive photosensitive resin composition is poor, the throughput is greatly deteriorated.
  • the present invention provides a photosensitive resin composition that can form a positive pattern with high sensitivity and obtain a cured film having sufficient heat resistance and mechanical properties.
  • the present invention is achieved by the following [1] to [14].
  • An alkali-soluble resin (A); A phenol resin (B) obtained by reacting a phenol compound represented by the following general formula (1) and an aromatic aldehyde compound represented by the following general formula (2) under an acid catalyst; A photoacid generator (C); A photosensitive resin composition comprising:
  • R 1 represents an organic group selected from an alkyl group having 1 to 20 carbon atoms and an alkoxy group, and p is an integer of 1 to 3)
  • R 2 represents an organic group selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, and a hydroxy group, and q is an integer of 0 to 3)
  • the aromatic aldehyde compound represented by the general formula (2) is one or more selected from the aromatic aldehyde compounds represented by the following formula (4) [1] to [6] The photosensitive resin composition as described in any one of these.
  • a photosensitive resin composition capable of forming a positive pattern with high sensitivity and obtaining a cured film having sufficient heat resistance and mechanical properties.
  • the present invention provides a phenol obtained by reacting an alkali-soluble resin (A), a phenol compound represented by the following general formula (1) and an aromatic aldehyde compound represented by the following general formula (2) in the presence of an acid catalyst.
  • R 1 represents an organic group selected from an alkyl group having 1 to 20 carbon atoms and an alkoxy group
  • p is an integer of 1 to 3 and preferably an integer of 2 to 3
  • R 2 represents an organic group selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, and a hydroxy group
  • q is an integer of 0 to 3
  • the protective film and the insulating film according to the present embodiment are formed of a cured film that is a cured product of the photosensitive resin composition.
  • an electronic device such as a semiconductor device or a display device according to the present embodiment is configured by the cured film.
  • alkali-soluble resin (A) As alkali-soluble resin (A) used for this embodiment, it has a hydroxyl group, especially a phenolic hydroxyl group and / or a carboxyl group in a principal chain or a side chain, for example, a phenol resin, a hydroxy styrene resin, a methacrylic acid resin And acrylic resins such as methacrylic ester resins, cyclic olefin resins, polyamide resins and the like.
  • a hydroxyl group especially a phenolic hydroxyl group and / or a carboxyl group in a principal chain or a side chain
  • acrylic resins such as methacrylic ester resins, cyclic olefin resins, polyamide resins and the like.
  • phenol resins, hydroxystyrene resins, and polyamide resins are preferable, and more preferable are polyamide resins such as polybenzoxazole, polybenzoxazole precursor, polyimide, and polyimide precursor that are particularly excellent in heat resistance and film toughness.
  • polyamide resins such as polybenzoxazole, polybenzoxazole precursor, polyimide, and polyimide precursor that are particularly excellent in heat resistance and film toughness.
  • alkali-soluble resins can be used alone or in combination.
  • Examples of the phenol resin in the alkali-soluble resin (A) include a reaction product of a phenol compound and an aldehyde compound typified by a novolak type phenol resin, a reaction product of a phenol compound and a dimethanol compound typified by a phenol aralkyl resin, and the like. Can be used. However, a phenol resin different from the phenol resin (B) is used as the phenol resin in the alkali-soluble resin (A).
  • Examples of the phenol compound used for the novolak type phenol resin in the alkali-soluble resin (A) include cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2, Dimethylphenols such as 4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, o-ethylphenol, m-ethylphenol, p-
  • ethylphenols such as ethylphenol
  • alkylphenols such as isopropylphenol, butylphenol, and p-tert-butylphenol
  • polyphenols such as resorcin, catechol, hydroquinone, pyrogallol, and phloroglucin That is not particularly limited.
  • These phenols can be used alone or in combination of two or more.
  • aldehyde compound used for the novolak type phenol resin in the alkali-soluble resin (A) examples include, but are not limited to, formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicylaldehyde, and the like. These aldehydes can also be used alone or in combination of two or more.
  • the same phenol compound as the phenol compound used for the novolak type phenol resin can be used.
  • dimethanol compounds used in the phenol aralkyl resin in the alkali-soluble resin (A) include 1,4-benzenedimethanol, 1,3-benzenedimethanol, 4,4′-biphenyldimethanol, 3,4 ′.
  • -Dimethanol compounds such as biphenyldimethanol, 3,3'-biphenyldimethanol and 2,6-naphthalenediethanol; 1,4-bis (methoxymethyl) benzene, 1,3-bis (methoxymethyl) benzene, 4 Bis (alkoxymethyl) such as 4,4′-bis (methoxymethyl) biphenyl, 3,4′-bis (methoxymethyl) biphenyl, 3,3′-bis (methoxymethyl) biphenyl and methyl 2,6-naphthalenedicarboxylate Compound; 1,4-bis (chloromethyl) benzene, 1,3-bis (chloromethyl) , 1,4-bis (bromomethyl) benzene, 1,3-bis (bro
  • hydroxystyrene resin in the alkali-soluble resin (A) hydroxystyrene, styrene, and derivatives thereof
  • a polymerization reaction product or a copolymerization reaction product obtained by radical polymerization, cationic polymerization, or anionic polymerization can be used.
  • the polyamide resin in the alkali-soluble resin (A) refers to a resin having a benzoxazole precursor structure and / or an imide precursor structure.
  • the polyamide resin is produced by a ring-closing reaction of a part of a benzoxazole structure, an imide precursor structure, a part of a benzoxazole precursor structure, a part of a benzoxazole structure or an imide precursor structure. It may have an imide structure or may have an amic acid ester structure.
  • the specific benzoxazole precursor structure refers to the structure represented by the following formula (5)
  • the imide precursor structure refers to the structure represented by the following formula (6)
  • the benzoxazole structure refers to the following
  • the structure represented by Formula (7) is pointed out, the imide structure refers to the structure represented by the following Formula (8), and the amido ester structure refers to the structure represented by the following Formula (9).
  • D and R ′ represent an organic group.
  • a polyamide resin having a repeating unit represented by the following general formula (10) is preferable from the viewpoint of heat resistance of the cured product of the photosensitive resin composition of the present embodiment.
  • R 2 is a hydroxyl group, —O—R 4 , an alkyl group, an acyloxy group or a cycloalkyl group.
  • R 3 is a hydroxyl group, a carboxyl group, —O—R 4 or —COO—R 4 , and when there are a plurality of R 3 s, they may be the same or different, and R 4 in R 2 and R 3 is In the formula (10), when R 2 does not have a hydroxyl group, at least one of R 3 is a carboxyl group, and R 3 represents a carboxyl group. In the absence of a group, at least one of R 2 is a hydroxyl group, m is an integer from 0 to 8, n is an integer from 0 to 8, and a is an integer from 2 to 100.)
  • a hydroxyl group and a carboxyl group are protected with a protecting group R 4 in order to adjust the solubility of the polyamide resin in an alkaline aqueous solution.
  • a radicals can be used -O-R 4 and -COO-R 4 as -O-R 4, R 3 as R 2.
  • Examples of the organic group having 1 to 15 carbon atoms as R 4 include formyl group, methyl group, ethyl group, propyl group, isopropyl group, tertiary butyl group, tertiary butoxycarbonyl group, phenyl group, benzyl group, Examples include a tetrahydrofuranyl group and a tetrahydropyranyl group.
  • the organic group as X of the polyamide resin having the structure represented by the general formula (10) is not particularly limited, but for example, an aromatic group having a structure such as a benzene ring, a naphthalene ring, and a bisphenol structure.
  • a heterocyclic organic group having a structure such as a pyrrole ring or a furan ring; a siloxane group; More specifically, what is represented by following formula (11) is preferable. These may be used alone or in combination of two or more.
  • * represents bonding to the NH group in the general formula (10).
  • A represents an alkylene group, a substituted alkylene group, —O—C 6 H 4 —O—, —O—, —S—, —SO 2 —, —C ( ⁇ O) —, —NHC ( ⁇ O) — or a single bond
  • R 5 represents one selected from an alkyl group, an alkyl ester group and a halogen atom
  • R 6 represents one selected from a hydrogen atom, an alkyl group, an alkyl ester group and a halogen atom, and s is an integer of 0 to 4.
  • 7 to R 10 each represents an organic group.
  • the substituent R 2 of X in the above general formula (10) is omitted.
  • Particularly preferred among the groups represented by the above formula (11) are those represented by the following formula (12) (some of them have R 2 in the general formula (10)).
  • A represents an alkylene group, a substituted alkylene group, —O—, —S—, —SO 2 —, — C ( ⁇ O) —, —NHC ( ⁇ O) —, —CH 3 —, —C (CH 3 ) H—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, or a single bond
  • R 11 is one selected from an alkyl group, an alkoxy group, an acyloxy group, and a cycloalkyl group, and when there are a plurality of R 11 s , they may be the same or different, and c is an integer of 0 or more and 3 or less. .
  • R 12 represents an alkylene group, a substituted alkylene group, —O—, —S—, —SO 2 —, —C ( ⁇ O) —, —NHC ( ⁇ O) —, —C (CF 3 ) 2 —, an organic group selected from a single bond.
  • alkylene group and substituted alkylene group as A in Formula (12) and Formula (13) and R 12 in Formula (13) include —CH 2 —, —CH (CH 3 ) —, -C (CH 3 ) 2- , -CH (CH 2 CH 3 )-, -C (CH 3 ) (CH 2 CH 3 )-, -C (CH 2 CH 3 ) (CH 2 CH 3 )-,- CH (CH 2 CH 2 CH 3 )-, -C (CH 3 ) (CH 2 CH 2 CH 3 )-, -CH (CH (CH 3 ) 2 )-, -C (CH 3 ) (CH (CH 3 ) 2 )-, -CH (CH 2 CH 2 CH 2 CH 3 )-, -C (CH 3 ) (CH 2 CH 2 CH 2 CH 3 )-, -CH (CH 2 CH 2 CH 3 )-, -C (CH 3 ) (CH 2 CH 2 CH 2 CH 3 )-, -CH (CH 2 CH (CH
  • —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 — has sufficient solubility in not only an alkaline aqueous solution but also a solvent, and a polyamide having a better balance.
  • a resin can be obtained, which is preferable.
  • Y in the polyamide resin having the structure represented by the general formula (10) is an organic group, and examples of such an organic group include those similar to the above X.
  • an aromatic group having a structure such as a benzene ring, a naphthalene ring and a bisphenol structure
  • a heterocyclic organic group having a structure such as a pyrrole ring, a pyridine ring and a furan ring
  • a siloxane group etc. What is shown by following formula (14) can be mentioned preferably. These may be used alone or in combination of two or more.
  • * represents bonding to the C ⁇ O group in the general formula (10).
  • J represents —CH 2 —, —C (CH 3 ) 2 —, —O—, —S —, —SO 2 —, —C ( ⁇ O) —, —NHC ( ⁇ O) —, —C (CF 3 ) 2 — or a single bond
  • R 13 represents an alkyl group, an alkyl ester group
  • R 14 represents one selected from a hydrogen atom, an alkyl group, an alkyl ester group and a halogen atom, each of which may be the same or different.
  • t is an integer of 0 to 2.
  • R 15 to R 18 are organic groups. In the above formula (14), the substituent R 3 for Y in the above general formula (10) is omitted. )
  • R 19 represents an alkyl group, an alkyl ester group, an alkyl ether group, a benzyl ether group, and a halogen atom. Each of which may be the same or different, and R 20 represents one selected from a hydrogen atom or an organic group having 1 to 15 carbon atoms, and may be partially substituted.
  • U is an integer from 0 to 2.
  • the terminal amino group of the polyamide resin is substituted with an alkenyl group, so as not to affect the mechanical properties and heat resistance of the cured product cured at low temperature.
  • the end-capping can also be performed as an amide using an acid anhydride or monocarboxylic acid containing an aliphatic group or a cyclic compound group having at least one organic group selected from an alkynyl group and a hydroxyl group.
  • Examples of the acid anhydride or monocarboxylic acid containing an aliphatic group or cyclic compound group having at least one organic group selected from the alkenyl group, alkynyl group and hydroxyl group include maleic anhydride, citraconic anhydride, and the like.
  • 2,3-dimethylmaleic anhydride 4-cyclohexene-1,2-dicarboxylic anhydride, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, 5-norbornene -2,3-dicarboxylic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride, itaconic anhydride, het acid anhydride, 5-norbornene-2-carboxylic acid, 4-ethynylphthalic anhydride And 4-phenylethynylphthalic anhydride, 4-hydroxyphthalic anhydride, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, etc. Rukoto can. These may be used alone or in combination of two or more, and a part of the end-capped amide moiety may be dehydrated and closed.
  • the method is not limited to this method, and the terminal carboxylic acid residue contained in the polyamide-based resin is an aliphatic group having at least one organic group selected from an alkenyl group, an alkynyl group, and a hydroxyl group.
  • An amine derivative containing a group or a cyclic compound group can be used to end-clamp as an amide.
  • At least one of the terminals is end-capped with a nitrogen-containing cyclic compound to the extent that it does not affect the mechanical properties and heat resistance of the cured product cured at low temperature. It may have a stopped group. Thereby, adhesiveness with a metal wiring (especially copper wiring) etc. can be improved.
  • the nitrogen-containing cyclic compound include 1- (5-1H-triazoyl) methylamino group, 3- (1H-pyrazoyl) amino group, 4- (1H-pyrazoyl) amino group, and 5- (1H-pyrazoyl) amino.
  • the polyamide resin having the structure represented by the general formula (10) is, for example, a compound selected from diamine, bis (aminophenol), 2,4-diaminophenol and the like containing X in the general formula (10) Can be synthesized by reacting Y and a compound selected from tetracarboxylic dianhydride, trimellitic anhydride, dicarboxylic acid, dicarboxylic acid dichloride, dicarboxylic acid derivative, and the like.
  • dicarboxylic acid an active ester type dicarboxylic acid derivative in which 1-hydroxy-1,2,3-benzotriazole or the like is previously reacted with dicarboxylic acid in order to increase the reaction yield of the polyamide resin. May be used.
  • the polyamide resin having the structure represented by the general formula (10) is dehydrated and closed by heating to obtain a heat resistant resin in the form of polyimide resin, polybenzoxazole resin, or copolymerization of both.
  • the dehydration ring closure can be performed at 280 ° C. to 380 ° C. when heated at a high temperature, and 150 ° C. to 280 ° C. when heated at a low temperature.
  • the phenol resin (B) in this embodiment is a phenol synthesized by reacting a phenol compound represented by the following general formula (1) and an aromatic aldehyde compound represented by the following general formula (2) under an acid catalyst.
  • Resin can be used.
  • R 1 represents an organic group selected from an alkyl group having 1 to 20 carbon atoms and an alkoxy group
  • p is an integer of 1 to 3, and preferably an integer of 2 to 3.
  • R 2 represents an organic group selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, and a hydroxy group
  • q is an integer of 0 to 3
  • phenol resin (B) by using only an aromatic aldehyde compound as the aldehyde, it is possible to suppress intramolecular rotation and to impart high heat resistance. Even if dimers and trimers remain, the molecular weight of the dimers and trimers is higher than when formaldehyde is used, and the heat resistance of the system can be kept high.
  • the phenol compound represented by the general formula (1) is a phenol compound having a substituent of 1 to 3 and preferably 2 to 3, and the substituent has 1 to 20 carbon atoms.
  • a phenol compound for example, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2-methyl-3-ethyl-phenol, 2-methyl-3-methoxyphenol, 2,3,4-trimethylphenol, 2,3,5-trimethylphenol, 2,3,6- Trimethylphenol or the like can be used.
  • these phenols can be used alone or in combination of two or more.
  • a phenol compound having a substituent of 1 or more and 3 or less, preferably 2 or more and 3 or less for the phenol compound the phenol having sufficient heat resistance necessary for the photosensitive resin composition is suppressed.
  • a resin can be obtained.
  • an aromatic aldehyde compound which is unsubstituted or has 3 or less substituents is used, and the substituent has 1 to 20 carbon atoms.
  • aromatic aldehyde compounds include benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehuman, 2,3-dimethylbenzaldehyde, 2,4-dimethylbenzaldehyde, 2,5-dimethylbenzaldehyde, 2,6-dimethylbenzaldehyde, 3,4-dimethylbenzaldehyde, 3,5-dimethylbenzaldehyde, 2,3,4-trimethylbenzaldehyde, 2,3,5-trimethylbenzaldehyde, 2,3,6-trimethylbenzaldehyde, 2, 4,5-trimethylbenzaldehyde, 2,4,6-trimethylbenzaldehyde, 3,4,5-trimethylbenzaldehyde, 4-ethylbenzaldehyde, 4-tert-butylbenzaldehyde, 4-i Butylbenzaldehyde, 4-methoxybenzaldehyde, salicylaldehyde, 4-
  • the aldehyde compound is preferably reacted in an amount of 0.5 mol to 2 mol with respect to 1 mol of the phenol compound, and is reacted in an amount of 0.6 mol to 1.2 mol. Is more preferable, and it is particularly preferable that the reaction be performed at 0.7 mol or more and 1.0 mol or less. By setting it as the said molar ratio, the molecular weight which can exhibit a characteristic sufficient as a photosensitive resin composition can be obtained.
  • Examples of the acid catalyst used in the synthesis reaction of the phenol resin (B) include oxalic acid, nitric acid, sulfuric acid, diethyl sulfate, acetic acid, p-toluenesulfonic acid, phenolsulfonic acid, benzenesulfonic acid, and xylenesulfonic acid. However, it is not limited to these. Among these, benzenesulfonic acid, p-toluenesulfonic acid, xylenesulfonic acid, phenolsulfonic acid, and sulfuric acid are preferable in terms of reactivity.
  • the addition amount is preferably 0.1 parts by mass or more and 10 parts by mass or less, and more preferably 0.5 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the phenol charge.
  • the polycondensation reaction in the synthesis of the phenol resin (B) proceeds by stirring for several hours under heating.
  • the reaction temperature is preferably 50 ° C to 160 ° C.
  • a solvent can be added during the reaction to carry out the reaction in the solvent.
  • the reaction solvent include alcohols such as methanol, ethanol, isopropanol, diethylene glycol monomethyl ether and diethylene glycol; ketone solvents such as acetone, methyl ethyl ketone and methyl amyl ketone; ethers such as diethylene glycol monomethyl ether acetate; cyclic ethers such as tetrahydrofuran and dioxane. Lactones such as ⁇ -butyrolactone; pure water and the like, but not limited thereto.
  • the addition amount of the solvent is preferably 10 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the phenol charge.
  • a monomer removal step is usually performed.
  • a solvent fractionation method in which a solvent and water are added to remove the aqueous layer, a method in which the monomer is volatilized by heating while reducing pressure, or the like can be selected.
  • a solvent such as acetone, methanol, isopropanol, and butanol that is a good solubility solvent for a phenol resin, and a solvent such as pure water that is a poor solubility solvent for a phenol resin.
  • the monomer that has moved to the aqueous layer side can be removed by removing the aqueous layer separated after standing.
  • the monomer can be volatilized and removed by heating and stirring from 150 ° C. to 250 ° C. while reducing the pressure to 50 mmHg or less.
  • a solvent, pure water, water vapor, N 2 gas or the like may be added in order to increase the monomer removal efficiency.
  • the solvent in this case is not particularly limited as long as it does not affect the phenol resin, and examples thereof include ethylene glycol, ethylene glycol alkyl ether, propylene glycol alkyl ether, propylene glycol alkyl ether acetate, diethylene glycol, diethylene glycol alkyl ether, Glycols such as triethylene glycol and triethylene glycol alkyl ether; Lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -valerolactone; N-methylpyrrolidone, N, N-dimethylacetamide, N, N— Examples include polar aprotic solvents such as dimethylformamide, N, N-diethylformamide, dimethyl sulfoxide, dimethylimidazolidinone, and the like. In both the fractionation method and the monomer volatilization method, the efficiency of monomer removal can be increased by repeating the operation according to the residual amount of monomer.
  • the polystyrene-reduced weight average molecular weight measured by gel permeation chromatography of the phenol resin (B) thus obtained is preferably 500 or more and 10,000 or less, more preferably 1000 or more and 5000 or less.
  • the weight average molecular weight is not less than the above lower limit, the heat resistance and film toughness of the photosensitive resin composition can be further improved.
  • produces in an opening part by patterning can be further suppressed as a weight average molecular weight is below the said upper limit.
  • the phenol resin (B) thus obtained can be finally recovered as flakes or a solvent-dissolved product.
  • the solvent that can be recovered as a solvent-soluble product include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, Dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, ethyl pyruvate And methyl-3-methoxypropionate and the like may be used alone or in admixture.
  • the alkali-soluble resin (A) is preferably 5/95 or more, more preferably 20/80 or more, and still more preferably 40/60 or more by weight ratio (A / B) with respect to the phenol resin (B). . And preferably it is 95/5 or less, More preferably, it is 90/10 or less, More preferably, it is 80/20 or less. Moreover, it is preferably 20/80 or more and 95/5 or less, more preferably 20/80 or more and 80/20 or less, and further preferably 40/60 or more and 80/20 or less. By using together in this range, it is possible to realize good characteristics as a photosensitive resin composition.
  • the weight ratio (A / B) is not less than the above lower limit, the heat resistance and film characteristics required for the photosensitive resin composition can be further improved. Further, when the weight ratio (A / B) is not more than the above upper limit value, the sensitivity at the time of patterning can be improved, and the throughput can be further improved.
  • the photoacid generator (C) used in the present embodiment is a compound that generates an acid by light.
  • a photosensitizer capable of positive patterning can be used, and a wavelength of 200 to 500 nm, particularly A compound that generates an acid upon irradiation with actinic radiation having a wavelength of 350 to 450 nm is preferable.
  • photosensitive diazoquinone compounds diaryliodonium salts, triarylsulfonium salts, onium salts such as sulfonium borate salts, 2-nitrobenzyl ester compounds, N-iminosulfonate compounds, imide sulfonate compounds, 2,6-bis (Trichloromethyl) -1,3,5-triazine compound, dihydropyridine compound and the like can be used.
  • a photosensitive diazoquinone compound excellent in sensitivity and solvent solubility is preferable.
  • Examples of the photosensitive diazoquinone compound include esters of a phenol compound and 1,2-naphthoquinone-2-diazide-5-sulfonic acid or 1,2-naphthoquinone-2-diazide-4-sulfonic acid.
  • the photoacid generator remaining in the relief pattern of the unexposed area is considered to decompose by heat at the time of curing to generate acid, and the photoacid generator plays an important role as a reaction accelerator. Plays.
  • an ester of 1,2-naphthoquinone-2-diazide-4-sulfonic acid which is more easily decomposed by heat is preferable.
  • the content of the photoacid generator (C) in the photosensitive resin composition of the present embodiment is not particularly limited, but the total weight of the alkali-soluble resin (A) and the phenol resin (B) is 100 parts by mass. On the other hand, it is preferably 1 part by mass or more and 50 parts by mass or less, and more preferably 5 parts by mass or more and 20 parts by mass or less. When the addition amount is within the above range, good patterning performance can be exhibited.
  • the photosensitive resin composition of the present embodiment can be used by dissolving the above components in a solvent (D) and forming a varnish.
  • solvent (D) include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene Glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, ethyl pyruvate and methyl -3-Methoxypropionate and the like may be mentioned, and these may be used alone or in combination.
  • content of the solvent in the photosensitive resin composition of this embodiment is not specifically limited, 50 mass parts with respect to 100 mass parts of total weight of alkali-soluble resin (A) and a phenol resin (B).
  • the amount is preferably 300 parts by mass or less and more preferably 100 parts by mass or more and 200 parts by mass or less.
  • the resin can be sufficiently dissolved and a varnish with high handling properties can be produced.
  • thermal crosslinking agent (E) In the photosensitive resin composition of the present embodiment, a thermal crosslinking agent (E) can be further used.
  • a thermal crosslinking agent include the alkali-soluble resin (A) and the phenol resin (B) and heat.
  • the compound is not particularly limited as long as it has a group capable of reacting with, for example, 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 1,3,5-benzenetrimethyl From methanol, 4,4-biphenyldimethanol, 2,6-pyridinedimethanol, 2,6-bis (hydroxymethyl) -p-cresol, 4,4'-methylenebis (2,6-dialkoxymethylphenol), etc.
  • Representative compounds having a methylol group 1,4-bis (methoxymethyl) benzene, 1,3-bis (methoxymethyl) benzene, 4,4′-bis ( Toximethyl) biphenyl, 3,4'-bis (methoxymethyl) biphenyl, 3,3'-bis (methoxymethyl) biphenyl, methyl 2,6-naphthalenedicarboxylate, 4,4'-methylenebis (2,6-dimethoxymethyl)
  • a compound having an alkoxymethyl group typified by phenol), etc .
  • a methylol melamine compound typified by hexamethylolmelamine, hexabutanol melamine, etc .
  • an alkoxymelamine compound typified by hexamethoxymelamine, etc .
  • content of the thermal crosslinking agent (E) in the photosensitive resin composition of this embodiment is not specifically limited, With respect to 100 mass parts of total weight of alkali-soluble resin (A) and a phenol resin (B). It is preferably 1 part by mass or more and 50 parts by mass or less, and more preferably 2 parts by mass or more and 20 parts by mass or less. When the addition amount is within the above range, a cured film having excellent residual film ratio and heat resistance upon curing can be formed.
  • silane coupling agent (F) A silane coupling agent (F) can be used for the photosensitive resin composition of this embodiment, when improving adhesiveness.
  • silane coupling agent (F) include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, and p-styryltrimethoxy.
  • Silane 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N- 2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3 -Aminopro Rutrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (
  • the silicon compound having an amino group is not particularly limited, and examples thereof include 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyl. Examples include methyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, and 3-aminopropyltriethoxysilane.
  • the acid dianhydride or acid anhydride is not particularly limited.
  • the addition amount of the silane coupling agent (F) is not particularly limited, but is 0.05 to 50 parts by mass with respect to 100 parts by mass of the total weight of the alkali-soluble resin (A) and the phenol resin (B). The amount is preferably 0.1 to 20 parts by mass. When the addition amount is within the above range, both the adhesion to the substrate and the storage stability of the photosensitive resin composition can be suitably achieved.
  • the photosensitive resin composition of the present embodiment may contain a dissolution accelerator.
  • the dissolution accelerator is a component capable of improving the solubility of the exposed portion of the coating film formed using the photosensitive resin composition in the developer and improving scum during patterning.
  • a compound having a phenolic hydroxyl group is particularly preferable.
  • additives such as an antioxidant, a filler, a surfactant, a photopolymerization initiator, a terminal blocking agent and a sensitizer are added as necessary. Also good.
  • the ratio of each component is as follows, for example.
  • the proportion of the alkali-soluble resin (A) is preferably 20% by mass to 80% by mass.
  • the ratio of the phenol resin (B) is 5% by mass or more and 70% by mass or less, and the ratio of the photoacid generator (C) is 1% by mass or more and 30% by mass or less. More preferably, the proportion of the alkali-soluble resin (A) is 30% by mass or more and 70% by mass or less, the proportion of the phenol resin (B) is 5% by mass or more and 50% by mass or less, and the photoacid generator (C).
  • the ratio is 5 mass% or more and 20 mass% or less.
  • the composition is first applied to a suitable support, for example, a silicon wafer, a ceramic substrate, an aluminum substrate or the like.
  • a suitable support for example, a silicon wafer, a ceramic substrate, an aluminum substrate or the like.
  • the application amount is generally such that the final film thickness after curing is 0.1 to 30 ⁇ m.
  • Application methods include spin coating using a spin coater, spray coating using a spray coater, dipping, printing, roll coating, and the like.
  • a relief pattern is formed after prebaking at 60 to 130 ° C.
  • actinic radiation is irradiated to a desired pattern shape.
  • actinic radiation X-rays, electron beams, ultraviolet rays, visible rays and the like can be used, but those having a wavelength of 200 to 500 nm are preferable.
  • Developers include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia; primary amines such as ethylamine and n-propylamine; diethylamine and di- Secondary amines such as n-propylamine; Tertiary amines such as triethylamine and methyldiethylamine; Alcohol amines such as dimethylethanolamine and triethanolamine; Secondary amines such as tetramethylammonium hydroxide and tetraethylammonium hydroxide An aqueous solution of an alkali such as a quaternary ammonium salt; and an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as alcohols such as methanol and ethanol, or a surfactant to these can be preferably used
  • the relief pattern formed by development is rinsed. Distilled water is used as the rinse liquid.
  • heat treatment (curing) is performed to obtain a cured film as a cured product having excellent heat resistance.
  • the heat treatment can be performed at high temperature or low temperature, and the heat treatment temperature at high temperature is preferably 280 ° C. to 380 ° C., more preferably 290 ° C. to 350 ° C.
  • the heat treatment temperature at a low temperature is preferably 150 ° C. to 280 ° C., more preferably 180 ° C. to 260 ° C.
  • An oven, a hot plate, an electric furnace (furnace), infrared rays, microwaves, etc. are used for the heat treatment.
  • the glass transition temperature by differential scanning calorimetry (temperature increase rate 5 ° C./min) of the cured product obtained by heat curing the photosensitive resin composition is preferably 200 ° C. or higher, more preferably 220 ° C. or higher. Yes, particularly preferably 250 ° C. or higher.
  • the upper limit of glass transition temperature is not specifically limited, For example, it is 400 degrees C or less.
  • the elongation percentage of a cured product (dimension: 10 mm ⁇ 60 mm ⁇ 10 ⁇ m thickness) obtained by heat curing the photosensitive resin composition is preferably 20% or more, more preferably 20% or more. Preferably it is 30% or more.
  • the upper limit value of the tensile elongation is not particularly limited, but is, for example, 300% or less.
  • the tensile modulus of elasticity of a cured product (dimensions: 10 mm ⁇ 60 mm ⁇ 10 ⁇ m thickness) obtained by heat curing the photosensitive resin composition is preferably 0.5 GPa or more and 10 GPa or less. More preferably, it is 1.0 GPa or more and 8.0 GPa or less.
  • the resulting cured film can have sufficient strength, and the reliability as a protective film can be further improved.
  • the cured film formed using the photosensitive resin composition of the present embodiment is used not only for semiconductor devices such as semiconductor elements, but also for display devices such as TFT-type liquid crystals and organic EL, interlayer insulating films for multilayer circuits, etc. It is also useful as a cover coat for flexible copper-clad plates, solder resist films, and liquid crystal alignment films.
  • Examples of semiconductor device applications include a passivation film formed by forming a cured film of the above-described photosensitive resin composition on a semiconductor element, and a buffer formed by forming a cured film of the above-described photosensitive resin composition on the passivation film.
  • Protective film such as a coating film, insulating film such as an interlayer insulating film formed by forming a cured film of the above-mentioned photosensitive resin composition on a circuit formed on a semiconductor element, ⁇ -ray blocking film, planarizing film, protrusion (Resin post), partition walls and the like.
  • Examples of display device applications include a protective film formed by forming a cured film of the photosensitive resin composition of the present embodiment on a display element, an insulating film or a planarizing film for TFT elements, color filters, and the like, MVA Protrusions for a liquid crystal display device, partition walls for an organic EL element cathode, and the like.
  • the use method is based on forming the photosensitive resin composition layer patterned on the substrate on which the display element and the color filter are formed according to the semiconductor device application by the above method.
  • a semiconductor chip As a semiconductor device, a semiconductor chip (element) is formed on a semiconductor substrate and sealed with an airtight seal or a molding material. Specific examples include transistors, solar cells, diodes, solid-state imaging devices, various semiconductor packages in which semiconductor chips are stacked and sealed, and wafer level chip size packages (WLP). Examples of the display device include a TFT liquid crystal, an organic EL, and a color filter.
  • WLP wafer level chip size packages
  • ⁇ Electronic device> 1 and 2 are cross-sectional views showing examples of the electronic device 100 according to the present embodiment. In any case, a part of the electronic device 100 including an insulating film is shown.
  • the electronic device 100 according to the present embodiment includes an insulating film that is a permanent film formed of, for example, the photosensitive resin composition of the present embodiment.
  • the electronic device 100 according to the present embodiment is shown in FIG.
  • the electronic device 100 according to the present embodiment is not limited to the liquid crystal display device, and includes other electronic devices including a permanent film made of the photosensitive resin composition of the present embodiment.
  • an electronic device 100 that is a liquid crystal display device includes, for example, a substrate 10, a transistor 30 provided on the substrate 10, and an insulating film 20 provided on the substrate 10 so as to cover the transistor 30. And a wiring 40 provided on the insulating film 20.
  • the substrate 10 is, for example, a glass substrate.
  • the transistor 30 is a thin film transistor that constitutes a switching element of a liquid crystal display device, for example. On the substrate 10, for example, a plurality of transistors 30 are arranged in an array.
  • the transistor 30 according to the present embodiment includes, for example, a gate electrode 31, a source electrode 32, a drain electrode 33, a gate insulating film 34, and a semiconductor layer 35.
  • the gate electrode 31 is provided on the substrate 10, for example.
  • the gate insulating film 34 is provided on the substrate 10 so as to cover the gate electrode 31.
  • the semiconductor layer 35 is provided on the gate insulating film 34.
  • the semiconductor layer 35 is, for example, a silicon layer.
  • the source electrode 32 is provided on the substrate 10 so that a part thereof is in contact with the semiconductor layer 35.
  • the drain electrode 33 is provided on the substrate 10 so as to be separated from the source electrode 32 and partially in contact with the semiconductor layer 35.
  • the insulating film 20 functions as a planarization film for eliminating a step due to the transistor 30 and the like and forming a flat surface on the substrate 10. Moreover, the insulating film 20 is comprised with the hardened
  • the insulating film 20 is provided with an opening 22 that penetrates the insulating film 20 so as to be connected to the drain electrode 33.
  • a wiring 40 connected to the drain electrode 33 is formed on the insulating film 20 and in the opening 22.
  • the wiring 40 functions as a pixel electrode that constitutes a pixel together with the liquid crystal.
  • An alignment film 90 is provided on the insulating film 20 so as to cover the wiring 40.
  • a counter substrate 12 is disposed above one surface of the substrate 10 where the transistor 30 is provided so as to face the substrate 10.
  • a wiring 42 is provided on one surface of the counter substrate 12 facing the substrate 10. The wiring 42 is provided at a position facing the wiring 40.
  • An alignment film 92 is provided on the one surface of the counter substrate 12 so as to cover the wiring 42.
  • the liquid crystal constituting the liquid crystal layer 14 is filled between the substrate 10 and the counter substrate 12.
  • the electronic device 100 shown in FIG. 1 is formed as follows, for example. First, the transistor 30 is formed over the substrate 10. Next, a photosensitive resin composition is applied to one surface of the substrate 10 on which the transistor 30 is provided by a printing method or a spin coating method to form the insulating film 20 that covers the transistor 30. Thus, a planarization film that covers the transistor 30 provided over the substrate 10 is formed. Next, the insulating film 20 is exposed and developed to form an opening 22 in a part of the insulating film 20. At this time, the unexposed portion is dissolved in the developer, and the exposed portion remains. This also applies to each example of the electronic device 100 described later. Next, the insulating film 20 is heated and cured.
  • a wiring 40 connected to the drain electrode 33 is formed in the opening 22 of the insulating film 20.
  • the counter substrate 12 is disposed on the insulating film 20, and liquid crystal is filled between the counter substrate 12 and the insulating film 20 to form the liquid crystal layer 14.
  • the electronic device 100 shown in FIG. 1 is formed.
  • FIG. 2 shows a semiconductor device in which the rewiring layer 80 is formed of a permanent film made of a photosensitive resin composition.
  • An electronic device 100 shown in FIG. 2 includes a semiconductor substrate provided with a semiconductor element such as a transistor, and a multilayer wiring layer provided on the semiconductor substrate (not shown).
  • An insulating film 50 that is an interlayer insulating film and an uppermost layer wiring 72 provided on the insulating film 50 are provided in the uppermost layer of the multilayer wiring layer.
  • the uppermost layer wiring 72 is made of, for example, Al.
  • a rewiring layer 80 is provided on the insulating film 50.
  • the rewiring layer 80 includes an insulating film 52 provided on the insulating film 50 so as to cover the uppermost wiring 72, a rewiring 70 provided on the insulating film 52, and on the insulating film 52 and the rewiring 70. And an insulating film 54 provided.
  • An opening 24 connected to the uppermost layer wiring 72 is formed in the insulating film 52.
  • the rewiring 70 is formed on the insulating film 52 and in the opening 24, and is connected to the uppermost layer wiring 72.
  • the insulating film 54 is provided with an opening 26 connected to the rewiring 70.
  • the insulating film 52 and the insulating film 54 are constituted by permanent films made of a photosensitive resin composition.
  • the insulating film 52 is obtained, for example, by forming the opening 24 by performing exposure and development on the photosensitive resin composition applied on the insulating film 50 and then heat-curing the opening 24.
  • the insulating film 54 is obtained, for example, by forming the opening 26 by exposing and developing the photosensitive resin composition applied on the insulating film 52, and then heat-curing the opening 26.
  • bumps 74 are formed.
  • the electronic device 100 is connected to a wiring board or the like via bumps 74, for example.
  • the electronic device 100 may be an optical device that constitutes a microlens with a permanent film made of a photosensitive resin composition.
  • the optical device include a liquid crystal display device, a plasma display, a field emission display, and an electroluminescence display.
  • the weight average molecular weight of the obtained compound was 13,040.
  • the temperature of the mixture was heated to 40 ° C. and stirred for 2 hours, and then 30.0 g (0.218 mol) of potassium carbonate was gradually added and further stirred for 2 hours. Heating was stopped and the mixture was further stirred at room temperature for 18 hours. Thereafter, while vigorously stirring the mixture, an aqueous sodium hydroxide solution was gradually added. After the addition, the mixture was heated to 55 ° C. and further stirred for 30 minutes. After completion of the stirring, the mixture was cooled to room temperature, and a 37% by weight hydrochloric acid aqueous solution and 500 ml of water were added to adjust the pH of the solution to be in the range of 6.0 to 7.0.
  • the mixture was heated to 50 ° C. and stirred for 3 hours, and then 5.2 g (0.044 mol) of N, N-dimethylformamide dimethylacetal and 10.0 g of ⁇ -butyrolactone were added, and the mixture was further stirred at 50 ° C. for 1 hour. After completion of the reaction, the reaction mixture was cooled to room temperature to obtain the target polyamide resin (A-2). In addition, the weight average molecular weight of the obtained compound was 13,200.
  • Example 1 14 g of the polyamide resin (A-1) synthesized above, 6 g of the wholly aromatic phenol resin (B-1) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above were used as ⁇ - After mixing and dissolving in 25 g of butyrolactone, the mixture was filtered through a fluororesin filter having a pore size of 0.2 ⁇ m to obtain a photosensitive resin composition of Example 1.
  • Example 2 >> 10 g of the polyamide resin (A-1) synthesized above, 10 g of the wholly aromatic phenol resin (B-1) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above were used as ⁇ - After being mixed and dissolved in 25 g of butyrolactone, it was filtered through a fluororesin filter having a pore size of 0.2 ⁇ m to obtain a photosensitive resin composition of Example 2.
  • Example 3 6 g of the polyamide resin (A-1) synthesized above, 14 g of the wholly aromatic phenol resin (B-1) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above were used as ⁇ - After being mixed and dissolved in 25 g of butyrolactone, it was filtered through a fluororesin filter having a pore size of 0.2 ⁇ m to obtain a photosensitive resin composition of Example 3.
  • Example 4 10 g of the polyamide resin (A-1) synthesized above, 10 g of the wholly aromatic phenol resin (B-2) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above were used as ⁇ - After mixing and dissolving in 25 g of butyrolactone, the mixture was filtered through a fluororesin filter having a pore size of 0.2 ⁇ m to obtain a photosensitive resin composition of Example 4.
  • Example 5 10 g of the polyamide resin (A-2) synthesized above, 10 g of the wholly aromatic phenol resin (B-1) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above were used as ⁇ - After mixing and dissolving in 25 g of butyrolactone, it was filtered through a fluororesin filter having a pore size of 0.2 ⁇ m to obtain a photosensitive resin composition of Example 5.
  • Example 6 10 g of the polyamide resin (A-2) synthesized above, 10 g of the wholly aromatic phenol resin (B-2) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above were used as ⁇ - After mixing and dissolving in 25 g of butyrolactone, the mixture was filtered through a fluororesin filter having a pore size of 0.2 ⁇ m to obtain a photosensitive resin composition of Example 6.
  • Example 7 10 g of the novolac phenol resin (A-3) synthesized above, 10 g of the wholly aromatic phenol resin (B-1) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above, After mixing and dissolving in 25 g of ⁇ -butyrolactone, the mixture was filtered through a fluororesin filter having a pore size of 0.2 ⁇ m to obtain a photosensitive resin composition of Example 7.
  • Example 8 Polyhydroxystyrene / styrene copolymer resin having a weight average molecular weight of 3,500 (manufactured by Maruzen Petrochemical Co., Ltd., trade name: Marcalinker CST-60) (A-4) 10 g, wholly aromatic phenolic resin (B -1) 10 g and 1.5 g of the photoacid generator (Q-1) synthesized above were mixed and dissolved in 25 g of ⁇ -butyrolactone, and then filtered through a fluororesin filter having a pore size of 0.2 ⁇ m. 8 photosensitive resin composition was obtained.
  • Example 9 10 g of the polyamide resin (A-1) synthesized above, 10 g of the wholly aromatic phenol resin (B-1) synthesized above, 1.5 g of the photoacid generator (Q-1) synthesized above, and a crosslinking agent 1 g of 1,4-benzenedimethanol (E-1) was mixed and dissolved in 25 g of ⁇ -butyrolactone, and then filtered through a fluororesin filter having a pore size of 0.2 ⁇ m, whereby the photosensitive resin composition of Example 9 was obtained. Obtained.
  • Example 10 10 g of the polyamide resin (A-1) synthesized above, 10 g of the wholly aromatic phenol resin (B-1) synthesized above, 1.5 g of the photoacid generator (Q-1) synthesized above and silane coupling
  • As the agent 0.5 g of 3-methacryloxypropyltrimethoxysilane (F-1) was mixed with 25 g of ⁇ -butyrolactone and dissolved, and then filtered through a fluororesin filter having a pore size of 0.2 ⁇ m. A functional resin composition was obtained.
  • ⁇ Comparative example 1 20 g of the polyamide resin (A-1) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above were mixed and dissolved in 25 g of ⁇ -butyrolactone, and then fluorine having a pore size of 0.2 ⁇ m. The mixture was filtered through a resin filter to obtain a photosensitive resin composition of Comparative Example 1.
  • ⁇ Comparative example 2 10 g of the polyamide resin (A-1) synthesized above, 10 g of the novolac-type phenol resin (A-3) synthesized above, and 1.5 g of the photoacid generator (Q-1) synthesized above were used as ⁇ -butyrolactone. After mixing and dissolving in 25 g, the mixture was filtered with a fluororesin filter having a pore size of 0.2 ⁇ m to obtain a photosensitive resin composition of Comparative Example 2.
  • Comparative Example 3 After mixing 20 g of the novolak-type phenol resin (A-3) synthesized above and 1.5 g of the photoacid generator (Q-1) synthesized above in 25 g of ⁇ -butyrolactone, the mixture was dissolved, and then the pore size was 0.2 ⁇ m. The photosensitive resin composition of Comparative Example 3 was obtained.
  • a 2.38% tetramethylammonium hydroxide aqueous solution is used as a developing solution, and the developing time is adjusted so that the difference between the film thickness after pre-baking and the film thickness after developing is 1.0 ⁇ m, and paddle twice.
  • the exposed portion was dissolved and removed by developing, and then rinsed with pure water for 10 seconds.
  • the value of the minimum exposure amount at which a 100 ⁇ m square via hole pattern was formed was evaluated as sensitivity.
  • each of the photosensitive resin compositions of Examples 1 to 10 was applied so as to have a final thickness of 5 ⁇ m using a simulated element wafer having an aluminum circuit on the surface, followed by patterning and curing. After that, each chip size is divided and mounted on a 16-pin DIP (Dual Inline Package) lead frame using a conductive paste, and then sealed with an epoxy resin for semiconductor encapsulation (EME-6300H, manufactured by Sumitomo Bakelite Co., Ltd.) The semiconductor device was fabricated by molding. These semiconductor devices (semiconductor packages) were treated at 85 ° C./85% humidity for 168 hours, then immersed in a 260 ° C.
  • DIP Direct Inline Package
  • Table 1 below shows examples and comparative examples.
  • R 1 represents an organic group selected from an alkyl group having 1 to 20 carbon atoms and an alkoxy group
  • p is an integer of 1 to 3
  • R 2 represents an organic group selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, and a hydroxy group
  • q is an integer of 0 to 3 2.
  • the said phenol resin (B) is chosen from the phenol represented by following formula (3) as a phenol compound.
  • the said phenol resin (B) is chosen from the aromatic aldehyde compounds represented by following formula (4) as an aldehyde compound. Or 2.
  • the alkali-soluble resin (A) is selected from polybenzoxazole, polybenzoxazole precursor, polyimide, polyimide precursor and polyamide.
  • the photosensitive resin composition as described in any one of these. 5.
  • the ratio of the alkali-soluble resin (A) and the phenol resin (B) is in the range of 5/95 to 95/5 in weight ratio (A / B). To 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Polyamides (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

 アルカリ可溶性樹脂(A)と、下記一般式(1)で表されるフェノール化合物と下記一般式(2)で表される芳香族アルデヒド化合物を酸触媒下で反応させて得られるフェノール樹脂(B)と、光酸発生剤(C)と、を含む感光性樹脂組成物。[化1](式中Rは炭素数1以上20以下のアルキル基及びアルコキシ基から選ばれる有機基を示し、pは1以上3以下の整数である。) [化2](式中Rは水素、炭素数1以上20以下のアルキル基、アルコキシ基及びヒドロキシ基から選ばれる有機基を示し、qは0以上3以下の整数である。)

Description

感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
 本発明は、感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置に関するものである。
 従来、半導体素子における保護膜、絶縁膜には、耐熱性が優れ、かつ卓越した電気特性、機械特性等を有するポリイミド樹脂やポリベンゾオキサゾール樹脂等が用いられていた。
 ここで、ポリベンゾオキサゾール樹脂やポリイミド樹脂を用いた場合のプロセスを簡略化するために、光酸発生剤のジアゾキノン化合物を、これらの樹脂と組み合わせたポジ型感光性樹脂組成物が使用されている(例えば、特許文献1参照)。
 通常、ポジ型感光性樹脂組成物を使用した半導体素子の保護膜または絶縁膜の作製は、ポジ型感光性樹脂組成物の支持体への塗布、化学線による露光、アルカリ現像液での現像、純水による洗浄、加熱による硬化などの工程を経て行われる。
 上記露光工程においては、縮小投影露光機やブロードバンドアライナー等の露光機が主に用いられている。しかし、これら露光機は非常に高価であるため増台するのは難しい。そのため、ポジ型感光性樹脂組成物の光感度が悪いと、スループットが大きく悪化してしまう。
特開昭56-27140号公報 特開2008-268788号公報
 近年、光感度を上げるために、ポリイミド樹脂またはポリベンゾオキサゾール樹脂に、ノボラック樹脂やポリヒドロキシスチレン樹脂を混合することが検討されている。しかし、通常のノボラック樹脂やポリヒドロキシスチレン樹脂は、要求される耐熱性に対し十分とは言えないため、半導体工程を満足する耐熱性が得られない場合がある(例えば、特許文献2参照)。
 そこで、本発明は、高感度でポジ型パターンを形成できると共に、十分な耐熱性、機械特性を有する硬化膜を得ることができる感光性樹脂組成物を提供する。
 本発明は、下記[1]~[14]により達成される。
[1]
 アルカリ可溶性樹脂(A)と、
 下記一般式(1)で表されるフェノール化合物と下記一般式(2)で表される芳香族アルデヒド化合物を酸触媒下で反応させて得られるフェノール樹脂(B)と、
 光酸発生剤(C)と、
を含む感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
(式中Rは炭素数1以上20以下のアルキル基及びアルコキシ基から選ばれる有機基を示し、pは1以上3以下の整数である。)
Figure JPOXMLDOC01-appb-C000006
(式中Rは水素、炭素数1以上20以下のアルキル基、アルコキシ基及びヒドロキシ基から選ばれる有機基を示し、qは0以上3以下の整数である。)
[2]
 上記フェノール樹脂(B)に対する上記アルカリ可溶性樹脂(A)の重量比(A/B)が20/80以上95/5以下である[1]に記載の感光性樹脂組成物。
[3]
 上記フェノール樹脂(B)に対する上記アルカリ可溶性樹脂(A)の重量比(A/B)が20/80以上80/20以下である[1]に記載の感光性樹脂組成物。
[4]
 当該感光性樹脂組成物を加熱硬化させて得られる硬化物の示差走査熱量測定によるガラス転移温度が、200℃以上である[1]乃至[3]のいずれか1つに記載の感光性樹脂組成物。
[5]
 当該感光性樹脂組成物を加熱硬化させて得られる硬化物の引張試験による引張弾性率が、0.5GPa以上である[1]乃至[4]のいずれか1つに記載の感光性樹脂組成物。
[6]
 上記一般式(1)で表される上記フェノール化合物が、下記式(3)で表されるフェノール類の中から選ばれる1種または2種以上である[1]乃至[5]のいずれか1つに記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
[7]
 上記一般式(2)で表される上記芳香族アルデヒド化合物が、下記式(4)で表される芳香族アルデヒド化合物の中から選ばれる1種または2種以上である[1]乃至[6]のいずれか1つに記載の感光性樹脂組成物。
[8]
 上記アルカリ可溶性樹脂(A)が、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリイミド、及びポリイミド前駆体から選ばれるものである[1]乃至[7]のいずれか1つに記載の感光性樹脂組成物。
[9]
 更に熱架橋剤(E)を含有する[1]乃至[8]のいずれか1つに記載の感光性樹脂組成物。
[10]
 更にシランカップリング剤(F)を含有する[1]乃至[9]のいずれか1つに記載の感光性樹脂組成物。
[11]
 [1]乃至[10]のいずれか1つに記載の感光性樹脂組成物の硬化物で構成されている硬化膜。
[12]
 [11]に記載の硬化膜で構成されている保護膜。
[13]
 [11]に記載の硬化膜で構成されている絶縁膜。
[14]
 [11]に記載の硬化膜を有している電子装置。
 本発明によれば、高感度でポジ型パターンを形成できると共に、十分な耐熱性、機械特性を有する硬化膜を得ることができる感光性樹脂組成物を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態に係る電子装置の一例を示す断面図である。 本実施形態に係る電子装置の一例を示す断面図である。
 以下、実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、「~」はとくに断りがなければ、以上から以下を表す。
 本発明は、アルカリ可溶性樹脂(A)と、下記一般式(1)で表されるフェノール化合物と下記一般式(2)で表される芳香族アルデヒド化合物を酸触媒下で反応させて得られるフェノール樹脂(B)と、光酸発生剤(C)と、を含む感光性樹脂組成物である。このような構成とすることにより、高感度にてポジ型パターンの形成が可能であり、表面保護膜、層間絶縁膜用途として十分な耐熱性、機械特性を有する感光性樹脂組成物を提供できるものである。
Figure JPOXMLDOC01-appb-C000009
(式中Rは炭素数1以上20以下のアルキル基及びアルコキシ基から選ばれる有機基を示し、pは1以上3以下の整数であり、好ましくは2以上3以下の整数である。)
Figure JPOXMLDOC01-appb-C000010
(式中Rは水素、炭素数1以上20以下のアルキル基、アルコキシ基及びヒドロキシ基から選ばれる有機基を示し、qは0以上3以下の整数である。)
 また、本実施形態に係る保護膜、絶縁膜は、上記感光性樹脂組成物の硬化物である硬化膜で構成されていることを特徴とする。
 また、本実施形態に係る半導体装置、表示体装置等の電子装置は、上記硬化膜で構成されていることを特徴とする。
 以下に,本実施形態に係る感光性樹脂組成物の各成分について詳細に説明する。なお下記は例示であり、本発明は何ら下記に限定されるものではない。
[アルカリ可溶性樹脂(A)]
 本実施形態に用いるアルカリ可溶性樹脂(A)としては、主鎖又は側鎖に、水酸基、特にフェノール性水酸基および/またはカルボキシル基を有するものであり、例えば、フェノール樹脂、ヒドロキシスチレン樹脂、メタクリル酸樹脂、メタクリル酸エステル樹脂等のアクリル系樹脂、環状オレフィン系樹脂、ポリアミド樹脂等が挙げられる。これらの中でも、フェノール樹脂、ヒドロキシスチレン樹脂、ポリアミド樹脂が好ましく、更に好ましくは、特に耐熱性、膜靭性に優れたポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリイミド、及びポリイミド前駆体等のポリアミド樹脂から選択される一種または二種以上である。これらアルカリ可溶性樹脂は1種または2種以上混合して用いることができる。
 上記アルカリ可溶性樹脂(A)におけるフェノール樹脂としては、ノボラック型フェノール樹脂に代表されるフェノール化合物とアルデヒド化合物との反応物やフェノールアラルキル樹脂に代表されるフェノール化合物とジメタノール化合物類との反応物等を用いることができる。ただし、アルカリ可溶性樹脂(A)におけるフェノール樹脂にはフェノール樹脂(B)と異なるフェノール樹脂を用いる。
 上記アルカリ可溶性樹脂(A)におけるノボラック型フェノール樹脂に使用されるフェノール化合物としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類、2,3-ジメチルフェノール、2,4-ジメチルフェノール、2,5-ジメチルフェノール、2,6-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール等のジメチルフェノール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール類、イソプロピルフェノール、ブチルフェノール、p-tert-ブチルフェノール等のアルキルフェノール類のほか、レゾルシン、カテコール、ハイドロキノン、ピロガロール、フロログルシン等の多価フェノール類が挙げられるが特に限定されない。これらのフェノール類は、単独でまたは2種以上組合せて用いることができる。
 上記アルカリ可溶性樹脂(A)におけるノボラック型フェノール樹脂に使用されるアルデヒド化合物としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド等が挙げられるがこれらに限定されない。これらのアルデヒド類も単独でまたは2種以上を組合せて用いることができる。
 上記アルカリ可溶性樹脂(A)における上記フェノールアラルキル樹脂に用いるフェノール化合物としては、上記ノボラック型フェノール樹脂に使用されるフェノール化合物と、同様のフェノール化合物を用いることができる。
 上記アルカリ可溶性樹脂(A)における上記フェノールアラルキル樹脂に用いるジメタノール化合物類としては、1,4-ベンゼンジメタノール、1,3-ベンゼンジメタノール、4,4'-ビフェニルジメタノール、3,4'-ビフェニルジメタノール、3,3'-ビフェニルジメタノール及び2,6-ナフタレンジメタノール等のジメタノール化合物;1,4-ビス(メトキシメチル)ベンゼン、1,3-ビス(メトキシメチル)ベンゼン、4,4'-ビス(メトキシメチル)ビフェニル、3,4'-ビス(メトキシメチル)ビフェニル、3,3'-ビス(メトキシメチル)ビフェニル及び2,6-ナフタレンジカルボン酸メチル等のビス(アルコキシメチル)化合物;1,4-ビス(クロロメチル)ベンゼン、1,3-ビス(クロロメチル)ベンゼン,1,4-ビス(ブロモメチル)ベンゼン、1,3-ビス(ブロモメチル)ベンゼン、4,4'-ビス(クロロメチル)ビフェニル、3,4'-ビス(クロロメチル)ビフェニル、3,3'-ビス(クロロメチル)ビフェニル、4,4'-ビス(ブロモメチル)ビフェニル、3,4'-ビス(ブロモメチル)ビフェニル及び3,3'-ビス(ブロモメチル)ビフェニル等のビス(ハロゲンアルキル)化合物等;が挙げられるがこれに限定されない。またこれらジメタノール化合物類は1種または2種以上を組み合わせて用いることができる。
 上記アルカリ可溶性樹脂(A)における上記ヒドロキシスチレン樹脂としては、ヒドロキシスチレンやスチレン及びこれらの誘導体を、ラジカル重合、カチオン重合やアニオン重合によって得られた重合反応物又は共重合反応物を用いることができる。
 上記アルカリ可溶性樹脂(A)における上記ポリアミド樹脂とは、ベンゾオキサゾール前駆体構造および/またはイミド前駆体構造を有する樹脂を指す。また、ポリアミド樹脂は、ベンゾオキサゾール前駆体構造、イミド前駆体構造、ベンゾオキサゾール前駆体構造の一部が閉環反応することにより生じるベンゾオキサゾール構造、イミド前駆体構造の一部が閉環反応することにより生じるイミド構造を有していてもよく、また、アミド酸エステル構造を有していてもよい。
 具体的なベンゾオキサゾール前駆体構造とは、下記式(5)で表される構造を指し、イミド前駆体構造とは、下記式(6)で表わされる構造を指し、ベンゾオキサゾール構造とは、下記式(7)で表される構造を指し、イミド構造とは、下記式(8)で表される構造を指し、アミド酸エステル構造とは、下記式(9)で表される構造を指す。
Figure JPOXMLDOC01-appb-C000011
 なお、上記式(5)~(9)中のDおよびR'は有機基を示す。これらポリアミド樹脂の中でも、本実施形態の感光性樹脂組成物の硬化物の耐熱性の観点から、下記一般式(10)で表される繰り返し単位を有するポリアミド樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000012
(式中、X、Yは、有機基である。Rは、水酸基、-O-R、アルキル基、アシルオキシ基又はシクロアルキル基であり、複数有する場合、それぞれ同一であっても異なってもよい。Rは、水酸基、カルボキシル基、-O-R又は-COO-Rであり、複数有する場合、それぞれ同一であっても異なってもよい。R及びRにおけるRは、炭素数1~15の有機基である。ここで、式(10)において、Rに、水酸基がない場合は、Rの少なくとも1つはカルボキシル基である。また、Rに、カルボキシル基がない場合は、Rの少なくとも1つは水酸基である。mは0~8の整数、nは0~8の整数である。aは2~100の整数である。)
 上記一般式(10)で表される構造を有するポリアミド樹脂において、R及びRとしては、ポリアミド樹脂のアルカリ水溶液に対する溶解性を調節する上で、水酸基及びカルボキシル基を保護基Rで保護された基である、Rとしての-O-R、Rとしての-O-R及び-COO-Rを用いることができる。このようなRとしての炭素数1~15の有機基としては、ホルミル基、メチル基、エチル基、プロピル基、イソプロピル基、ターシャリーブチル基、ターシャリーブトキシカルボニル基、フェニル基、ベンジル基、テトラヒドロフラニル基、テトラヒドロピラニル基等が挙げられる。
 上記一般式(10)で表される構造を有するポリアミド樹脂のXとしての有機基は、特に限定されるものではないが、例えば、ベンゼン環、ナフタレン環及びビスフェノール構造等の構造からなる芳香族基;ピロール環及びフラン環等の構造からなる複素環式有機基;シロキサン基等が挙げられる。より具体的には下記式(11)で表されるものが好ましい。これらは、必要により1種類または2種類以上組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000013
(式(11)中、*は、一般式(10)におけるNH基に結合することを示す。Aは、アルキレン基、置換アルキレン基、-O-C-O-、-O-、-S-、-SO-、-C(=O)-、-NHC(=O)-または単結合である。Rは、アルキル基、アルキルエステル基及びハロゲン原子から選ばれた1つを示し、それぞれ同一であっても異なっていてもよい。Rは、水素原子、アルキル基、アルキルエステル基及びハロゲン原子から選ばれた1つを示す。sは0~4の整数である。R~R10はそれぞれ有機基である。
 なお、上記式(11)において、上記一般式(10)におけるXの置換基Rは省略している。)
 上記式(11)で表わされる基の中で特に好ましいものとしては、下記式(12)で表されるもの(一般式(10)中のRを有するものもあり)が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式(12)中、*は一般式(10)におけるNH基に結合することを示す。式中Aは、アルキレン基、置換アルキレン基、-O-、-S-、-SO-、-C(=O)-、-NHC(=O)-、-CH-、-C(CH)H-、-C(CH-、-C(CF-、又は単結合である。R11は、アルキル基、アルコキシ基、アシルオキシ基及びシクロアルキル基から選ばれる1つであり、R11が複数ある場合、それぞれ同じでも異なってもよい。cは0以上3以下の整数である。)
 上記式(12)で表わされる基の中で特に好ましいものとしては、下記式(13)で表されるもの(一般式(10)中のRを有するものもあり)が挙げられる。
Figure JPOXMLDOC01-appb-C000015
(式(13)中、*は一般式(10)におけるNH基に結合することを示す。R12はアルキレン基、置換アルキレン基、-O-、-S-、-SO-、-C(=O)-、-NHC(=O)-、―C(CF―、単結合から選ばれる有機基である。)
 上記式(12)及び式(13)におけるA及び上記式(13)におけるR12としてのアルキレン基、置換アルキレン基の具体的な例としては、-CH-、-CH(CH)-、-C(CH-、-CH(CHCH)-、-C(CH)(CHCH)-、-C(CHCH)(CHCH)-、-CH(CHCHCH)-、-C(CH)(CHCHCH)-、-CH(CH(CH)-、-C(CH)(CH(CH)-、-CH(CHCHCHCH)-、-C(CH)(CHCHCHCH)-、-CH(CHCH(CH)-、-C(CH)(CHCH(CH)-、-CH(CHCHCHCHCH)-、-C(CH)(CHCHCHCHCH)-、-CH(CHCHCHCHCHCH)-及び-C(CH)(CHCHCHCHCHCH)-等が挙げられる。これらの中でも、-CH-、-CH(CH)-、-C(CH-が、アルカリ水溶液だけでなく、溶剤に対しても十分な溶解性を持つ、よりバランスに優れるポリアミド樹脂を得ることができて好ましい。
 また、上記一般式(10)で表される構造を有するポリアミド樹脂におけるYは有機基であり、このような有機基としては上記Xと同様のものが挙げられる。例えば、ベンゼン環、ナフタレン環及びビスフェノール構造等の構造からなる芳香族基;ピロール環、ピリジン環及びフラン環等の構造からなる複素環式有機基;シロキサン基等が挙げられ、より具体的には下記式(14)で示されるものを好ましく挙げることができる。これらは1種類又は2種類以上組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000016
(式(14)中、*は、一般式(10)におけるC=O基に結合することを示す。Jは、-CH-、-C(CH-、-O-、-S-、-SO-、-C(=O)-、-NHC(=O)-、-C(CF-または単結合である。R13は、アルキル基、アルキルエステル基、アルキルエーテル基、ベンジルエーテル基及びハロゲン原子から選ばれた1つを示し、それぞれ同じでも異なってもよい。R14は、水素原子、アルキル基、アルキルエステル基及びハロゲン原子から選ばれた1つを示す。tは0以上2以下の整数である。R15~R18は、有機基である。
 なお、上記式(14)において、上記一般式(10)におけるYの置換基Rは省略している。)
 これら式(14)で表わされる基の中で特に好ましいものとしては、下記式(15)で表されるもの(一般式(10)中のRを有するものもあり)が挙げられる。
 下記式(15)中のテトラカルボン酸二無水物由来の構造については、一般式(10)におけるC=O基に結合する位置が両方メタ位であるもの、両方パラ位であるものを挙げているが、メタ位とパラ位をそれぞれ含む構造でもよい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(式(15)中、*は一般式(10)におけるC=O基に結合することを示す。R19は、アルキル基、アルキルエステル基、アルキルエーテル基、ベンジルエーテル基及びハロゲン原子の内から選ばれた1つを表し、それぞれ同じでも異なっていてもよい。R20は、水素原子又は炭素数1以上15以下の有機基から選ばれた1つを示し、一部が置換されていてもよい。uは0以上2以下の整数である。)
 また、上記一般式(10)で表されるポリアミド樹脂の場合、低温で硬化した硬化物の機械物性、耐熱性に影響を及ぼさない程度に、該ポリアミド樹脂の末端のアミノ基を、アルケニル基、アルキニル基および水酸基の内から選ばれた有機基を少なくとも1個有する脂肪族基または環式化合物基を含む酸無水物又はモノカルボン酸を用いて、アミドとして末端封止することもできる。
 上記アルケニル基、アルキニル基および水酸基の内から選ばれた有機基を少なくとも1個有する脂肪族基または環式化合物基を含む酸無水物又はモノカルボン酸としては、例えばマレイン酸無水物、シトラコン酸無水物、2,3-ジメチルマレイン酸無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、exo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、イタコン酸無水物、ヘット酸無水物、5-ノルボルネン-2-カルボン酸、4-エチニルフタル酸無水物及び4-フェニルエチニルフタル酸無水物、4-ヒドロキシフタル酸無水物、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸等を挙げることができる。これらは単独で用いてもよいし、2種類以上組み合わせて用いても良く、末端封止したアミド部分の一部が脱水閉環していてもよい。
 また、この方法に限定されることはなく、該ポリアミド系樹脂中に含まれる末端のカルボン酸残基を、アルケニル基、アルキニル基および水酸基の内から選ばれた有機基を少なくとも1個有する脂肪族基又は環式化合物基を含むアミン誘導体を用いて、アミドとして末端封止することもできる。
 さらに、上記一般式(10)で表されるポリアミド樹脂の場合、低温で硬化した硬化物の機械物性、耐熱性に影響を及ぼさない程度に、末端の少なくとも一方に、窒素含有環状化合物により末端封止した基を有してもよい。これにより、金属配線(特に銅配線)等との密着性を向上することができる。
 上記窒素含有環状化合物としては、例えば1-(5-1H-トリアゾイル)メチルアミノ基、3-(1H-ピラゾイル)アミノ基、4-(1H-ピラゾイル)アミノ基、5-(1H-ピラゾイル)アミノ基、1-(3-1H-ピラゾイル)メチルアミノ基、1-(4-1H-ピラゾイル)メチルアミノ基、1-(5-1H-ピラゾイル)メチルアミノ基、(1H-テトラゾル-5-イル)アミノ基、1-(1H-テトラゾル-5-イル)メチル-アミノ基、3-(1H-テトラゾル-5-イル)ベンズ-アミノ基等が挙げられる。
 このような一般式(10)で表される構造を有するポリアミド樹脂は、例えば、一般式(10)におけるXを含む、ジアミン、ビス(アミノフェノール)又は2,4-ジアミノフェノール等から選ばれる化合物と、Yを含む、テトラカルボン酸二無水物、トリメリット酸無水物、ジカルボン酸、ジカルボン酸ジクロライド又はジカルボン酸誘導体等から選ばれる化合物とを反応させて合成することができる。
 なお、ジカルボン酸を用いる場合には、ポリアミド樹脂の反応収率等を高めるため、ジカルボン酸に、1-ヒドロキシ-1,2,3-ベンゾトリアゾール等を予め反応させた活性エステル型のジカルボン酸誘導体を用いてもよい。
 上記一般式(10)で表される構造を有するポリアミド樹脂を、加熱することにより脱水閉環し、ポリイミド樹脂、またはポリベンゾオキサゾール樹脂、或いは両者の共重合という形で耐熱性樹脂が得られる。なお、脱水閉環を行う温度としては、高温で加熱する場合は280℃~380℃、低温で加熱する場合は150℃~280℃で処理することができる。
[フェノール樹脂(B)]
 本実施形態におけるフェノール樹脂(B)には、下記一般式(1)で表されるフェノール化合物と下記一般式(2)で表される芳香族アルデヒド化合物を酸触媒の下で反応させ合成したフェノール樹脂を用いることができる。
Figure JPOXMLDOC01-appb-C000020
(式中Rは炭素数1~20のアルキル基、アルコキシ基から選ばれる有機基を示し、pは1以上3以下の整数であり、好ましくは2以上3以下の整数である。)
Figure JPOXMLDOC01-appb-C000021
(式中Rは水素、炭素数1~20のアルキル基、アルコキシ基、ヒドロキシ基から選ばれる有機基を示し、qは0~3の整数。)
 上記フェノール樹脂(B)において、アルデヒドに芳香族アルデヒド化合物のみを用いることで、分子内回転を抑制し、高い耐熱性を付与することが可能である。また、ダイマー、トリマーが残存したとしても、ホルムアルデヒドを使用した場合に比べダイマー、トリマーの分子量が高く、系の耐熱性を高く保つことができる。
 上記一般式(1)で表されるフェノール化合物としては、置換基が1以上3以下、好ましくは2以上3以下のフェノール化合物を用いるものであり、上記置換基として、炭素数が1以上20以下のアルキル基及びアルコキシ基から選ばれる有機基である。なお、上記炭素数が1以上20以下のアルキル基及びアルコキシ基としては、具体的には、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基等が挙げられる。このようなフェノール化合物として好ましくは、例えばo-クレゾール、m-クレゾール、p-クレゾール、2,3-ジメチルフェノール、2,4-ジメチルフェノール、2,5-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール、2-メチル-3-エチル-フェノール、2-メチル-3-メトキシフェノール、2,3,4-トリメチルフェノール、2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール等を使用することができる。これらの中でも特に限定されないが、下記式(3)で表される2,3-ジメチルフェノール、2,4-ジメチルフェノール、2,5-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール、2,6-ジメチルフェノールの中から選ばれるものが好ましい。更にこれらフェノール類は1種または2種以上を混合して用いることが可能である。
 上記フェノール化合物に、置換基が1以上3以下、好ましくは2以上3以下のフェノール化合物を用いることで、分子内回転を抑制し、感光性樹脂組成物に必要な十分な耐熱性を持ったフェノール樹脂を得ることができる。
Figure JPOXMLDOC01-appb-C000022
 上記一般式(2)で表される芳香族アルデヒド化合物としては、無置換又は、置換基が3以下の芳香族アルデヒド化合物を用いるものであり、上記置換基として、炭素数が1以上20以下のアルキル基、アルコキシ基及びヒドロキシ基から選ばれる有機基である。なお、上記炭素数が1以上20以下のアルキル基及びアルコキシ基としては、具体的には、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基等が挙げられる。このような芳香族アルデヒド化合物として、例えば、ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒト、2,3-ジメチルベンズアルデヒド、2,4-ジメチルベンズアルデヒド、2,5-ジメチルベンズアルデヒド、2,6-ジメチルベンズアルデヒド、3,4-ジメチルベンズアルデヒド、3,5-ジメチルベンズアルデヒド、2,3,4-トリメチルベンズアルデヒド、2,3,5-トリメチルベンズアルデヒド、2,3,6-トリメチルベンズアルデヒド、2,4,5-トリメチルベンズアルデヒド、2,4,6-トリメチルベンズアルデヒド、3,4,5-トリメチルベンズアルデヒド、4-エチルベンズアルデヒド、4-tert-ブチルベンズアルデヒド、4-イソブチルベンズアルデヒド、4-メトキシベンズアルデヒド、サリチルアルデヒド、3-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド、3-メチルサリチルアルデヒド、4-メチルサリチルアルデヒド、2-ヒドロキシ-5-メトキシベンズアルデヒド、2,4-ジヒドロキシベンズアルデヒド、2,5-ジヒドロキシベンズアルデヒド、2,3,4-トリヒドロキシベンズアルデヒド、等を使用することができ、これらに限定されないが、これらの中でも、一般式(2)におけるRが、水素、メチル基、ヒドロキシ基である芳香族アルデヒド化合物が好ましく、下記式(4)で表される芳香族アルデヒド化合物の中から選ばれるものがより好ましい。更にこれらアルデヒド類は1種または2種以上を混合して用いることが可能である。
Figure JPOXMLDOC01-appb-C000023
 上記アルデヒド化合物に芳香族アルデヒド化合物を用いることで、分子内回転を抑制し、感光性樹脂組成物に必要な十分な耐熱性を持ったフェノール樹脂を得ることができる。
 上記フェノール樹脂(B)の合成反応において、フェノール化合物1モルに対してアルデヒド化合物を0.5モル以上2モル以下で反応させることが好ましく、0.6モル以上1.2モル以下で反応させることがより好ましく、0.7モル以上1.0モル以下で反応させることが特に好ましい。上記モル比とすることで、感光性樹脂組成物として十分な特性を発揮できる分子量を得ることができる。
 上記フェノール樹脂(B)の合成反応に用いられる酸触媒としては、例えばシュウ酸、硝酸、硫酸、硫酸ジエチル、酢酸、p-トルエンスルホン酸、フェノールスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸等を使用することができるが、これらに限定されない。これらの中でも、ベンゼンスルホン酸、p-トルエンスルホン酸、キシレンスルホン酸、フェノールスルホン酸、硫酸が反応性の面で好ましい。添加量はフェノール仕込み量100質量部に対し0.1質量部以上10質量部以下が好ましく、更に好ましくは0.5質量部以上8質量部以下である。
 上記フェノール樹脂(B)の合成における重縮合反応は加温下で数時間撹拌を行うことで進行する。反応温度としては50℃から160℃が好ましい。また、反応の際に溶媒を添加し溶媒中で反応を行うこともできる。反応溶媒としては、メタノール、エタノール、イソプロパノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルアミルケトン等のケトン系溶媒;ジエチレングリコールモノメチルエーテルアセテート等のエーテル類;テトラヒドロフラン、ジオキサン等の環状エーテル類;γ-ブチロラクトン等のラクトン類;純水等が挙げられるがこれらに限定されない。溶剤の添加量はフェノール仕込み量100質量部に対し、10質量部以上200質量部以下が好ましい。
 反応終了後は、ピリジン、トリエチルアミン、水酸化ナトリウム等の塩基を用いて酸触媒を中和し、必要に応じてその中和塩を水層へ抽出することで除去した後、脱水、モノマー除去工程を行い回収される。
 上記フェノール樹脂(B)の合成後には、通常、モノマーの除去工程が行われる。モノマー除去の方法は溶剤と水を添加し水層を除去する溶剤分画方法や減圧しながら加熱を行うことでモノマーを揮発させる方法等を選択することができる。上記溶剤分画方法においては、フェノール樹脂に対して良溶解性溶媒である、アセトン、メタノール、イソプロパノール、ブタノール等の溶媒と、フェノール樹脂に対して難溶解性溶媒である、純水等の溶媒とを一定の比率で添加撹拌し、静置後に分離した水層を除去することで、水層側に移動したモノマーを除去することができる。上記モノマーを揮発する方法においては圧力50mmHg以下まで減圧しながら150℃から250℃に加熱撹拌を行い、モノマーを揮発させて除去することができる。モノマーを揮発させて除去する場合に、モノマー除去効率を高めるために、溶剤、純水、水蒸気、Nガスなどを添加してもよい。この際の溶剤としては、フェノール樹脂に影響を及ぼさないものであれば、特に限定されず、例えばエチレングリコール、エチレングリコールアルキルエーテル、プロピレングリコールアルキルエーテル、プロピレングリコールアルキルエーテルアセテート、ジエチレングリコール、ジエチレングリコールアルキルエーテル、トリエチレングリコール、トリエチレングリコールアルキルエーテル、などのグリコール類;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、などのラクトン類;N-メチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、ジメチルスルホキシド、ジメチルイミダゾリジノン、などの極性の非プロトン性溶媒が挙げられる。分画方法、モノマー揮発方法ともに、モノマーの残存量に応じて、作業を繰り返すことで、モノマーの除去効率を上げることができる。
 このようにして得られたフェノール樹脂(B)のゲルパーミレーションクロマトグラフィーにて測定したポリスチレン換算の重量平均分子量は500以上10000以下が好ましく、更に好ましくは1000以上5000以下である。重量平均分子量が上記下限値以上であると、感光性樹脂組成物としての耐熱性、膜靭性をより一層向上させることができる。また、重量平均分子量が上記上限値以下であると、パターニングで開口部に発生する残渣をより一層抑制できる。
 また、このようにして得られるフェノール樹脂(B)は、最終的にフレーク状または溶剤溶解品として回収することができる。溶剤溶解品として回収できる溶剤としては、例えば、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル及びメチル-3-メトキシプロピオネート等が挙げられ、単独でも混合して用いてもよい。
 上記アルカリ可溶性樹脂(A)は上記フェノール樹脂(B)に対して、重量比(A/B)で好ましくは5/95以上、より好ましくは20/80以上、さらに好ましくは40/60以上である。そして、好ましくは95/5以下、より好ましくは90/10以下、さらに好ましくは80/20以下である。また、好ましくは20/80以上95/5以下であり、より好ましくは20/80以上80/20以下、さらに好ましくは40/60以上80/20以下である。この範囲で合わせて使用することで感光性樹脂組成物として良好な特性を実現することができる。重量比(A/B)が上記下限値以上であると、感光性樹脂組成物として必要な耐熱性、膜特性をより一層向上させることができる。また、重量比(A/B)が上記上限値以下であると、パターニング時の感度を向上でき、スループットをより一層向上させることができる。
[光酸発生剤(C)]
 本実施形態に用いる光酸発生剤(C)としては、光により酸を発生する化合物であり、例えば、ポジ型のパターニングが可能となる感光剤を用いることができ、200~500nmの波長、特に好ましくは350~450nmの波長を持つ化学線の照射により酸を発生する化合物が好ましい。
 具体的には、感光性ジアゾキノン化合物、ジアリールヨードニウム塩、トリアリールスルホニウム塩、スルホニウム・ボレート塩などのオニウム塩、2-ニトロベンジルエステル化合物、N-イミノスルホネート化合物、イミドスルホネート化合物、2,6-ビス(トリクロロメチル)-1,3,5-トリアジン化合物、ジヒドロピリジン化合物などを用いることができる。この中でも、感度や溶剤溶解性に優れる感光性ジアゾキノン化合物が好ましい。
 上記感光性ジアゾキノン化合物は、例えば、フェノール化合物と1,2-ナフトキノン-2-ジアジド-5-スルホン酸または1,2-ナフトキノン-2-ジアジド-4-スルホン酸とのエステルが挙げられる。
 ポジ型の場合、未露光部のレリーフパターン中に残存する光酸発生剤は、硬化時における熱で分解し酸を発生させると考えられ、反応促進剤としても光酸発生剤は重要な役割を果たしている。このような感光性ジアゾキノン化合物の場合、より熱で分解し易い1,2-ナフトキノン-2-ジアジド-4-スルホン酸のエステルが好ましい。
 本実施形態の感光性樹脂組成物における光酸発生剤(C)の含有量は、特に限定されるものではないが、アルカリ可溶性樹脂(A)とフェノール樹脂(B)の総重量100質量部に対して、1質量部以上50質量部以下であるのが好ましく、5質量部以上20質量部以下であるのがより好ましい。添加量が上記範囲内であることで良好なパターニング性能を発揮することができる。
[溶剤(D)]
 本実施形態の感光性樹脂組成物は、上記の成分を溶剤(D)に溶解し、ワニス状にして使用することができる。このような溶剤(D)としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル及びメチル-3-メトキシプロピオネート等が挙げられ、単独でも混合して用いてもよい。
 本実施形態の感光性樹脂組成物における溶剤の含有量は、特に限定されるものではないが、アルカリ可溶性樹脂(A)とフェノール樹脂(B)の総重量100質量部に対して、50質量部以上300質量部以下であるのが好ましく、100質量部以上200質量部以下であるのがより好ましい。添加量が上記範囲内であると、樹脂を十分に溶解し、ハンドリング性の高いワニスを作成することができる。
[熱架橋剤(E)]
 本実施形態の感光性樹脂組成物には、さらに熱架橋剤(E)を用いることができるが、このような熱架橋剤としては、上記アルカリ可溶性樹脂(A)及びフェノール樹脂(B)と熱により反応可能な基を有する化合物であれば特に限定されず、たとえば、1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール、1,3,5-ベンゼントリメタノール、4,4-ビフェニルジメタノール、2,6-ピリジンジメタノール、2,6-ビス(ヒドロキシメチル)-p-クレゾール、4,4'-メチレンビス(2,6-ジアルコキシメチルフェノール)等から代表されるメチロール基を有する化合物;1,4-ビス(メトキシメチル)ベンゼン、1,3-ビス(メトキシメチル)ベンゼン、4,4'-ビス(メトキシメチル)ビフェニル、3,4'-ビス(メトキシメチル)ビフェニル、3,3'-ビス(メトキシメチル)ビフェニル、2,6-ナフタレンジカルボン酸メチル、4,4'-メチレンビス(2,6-ジメトキシメチルフェノール)等から代表されるアルコキシメチル基を有する化合物;ヘキサメチロールメラミン、ヘキサブタノールメラミン等から代表されるメチロールメラミン化合物;ヘキサメトキシメラミン等から代表されるアルコキシメラミン化合物;テトラメトキシメチルグリコールウリル等から代表されるアルコキシメチルグリコールウリル化合物;メチロールベンゾグアナミン化合物、ジメチロールエチレンウレア等から代表されるメチロールウレア化合物;ジシアノアニリン、ジシアノフェノール、シアノフェニルスルホン酸等から代表されるシアノ化合物;1,4-フェニレンジイソシアナート、3,3'-ジメチルジフェニルメタン-4,4'-ジイソシアナート等から代表されるイソシアナート化合物;エチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、イソシアヌル酸トリグリシジル、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン系エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック樹脂型エポキシ樹脂等から代表されるエポキシ基含有化合物;N,N'-1,3-フェニレンジマレイミド、N,N'-メチレンジマレイミド等から代表されるマレイミド化合物等が挙げられるがこれらに限定されない。これら熱架橋剤は1種または2種以上を組み合わせて使用することができる。
 本実施形態の感光性樹脂組成物における熱架橋剤(E)の含有量は、特に限定されるものではないが、アルカリ可溶性樹脂(A)とフェノール樹脂(B)の総重量100質量部に対して、1質量部以上50質量部以下であるのが好ましく、2質量部以上20質量部以下であるのがより好ましい。添加量が上記範囲内であることで硬化時の残膜率、耐熱性に優れた硬化膜を形成することができる。
[シランカップリング剤(F)]
 本実施形態の感光性樹脂組成物には、密着性を向上させる上で、シランカップリグ剤(F)を用いることができる。このようなシランカップリング剤(F)としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、及びアミノ基を有するケイ素化合物と酸二無水物または酸無水物とを反応することにより得られるケイ素化合物などが挙げられるが、これらに限定されるものではない。
 上記アミノ基を有するケイ素化合物としては、特に制限されるわけではないが、例えば、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン等が挙げられる。
 上記酸二無水物または酸無水物としては、特に制限されるわけではないが、例えば、無水マレイン酸、クロロ無水マレイン酸、シアノ無水マレイン酸、シトコン酸、無水フタル酸、ピロメリット酸無水物、4,4'-ビフタル酸二無水物、4,4'-オキシジフタル酸二無水物、4,4'-カルボニルジフタル酸無水物等などが挙げられる。また、使用にあたっては単独、または2種類以上を併用して使用することができる。
 シランカップリング剤(F)の添加量は、特に限定されるものではないが、アルカリ可溶性樹脂(A)とフェノール樹脂(B)の総重量100質量部に対して、0.05~50質量部であるのが好ましく、0.1~20質量部であるのがより好ましい。添加量が上記範囲内であることで、基板との密着性と感光性樹脂組成物の保存性とを好適に両立することができる。
[溶解促進剤]
 また、本実施形態の感光性樹脂組成物中には、溶解促進剤が含まれていてもよい。
 溶解促進剤は、感光性樹脂組成物を用いて形成された塗膜の露光部の現像液に対する溶解性を向上させ、パターニング時のスカムを改善することが可能な成分である。
 溶解促進剤としては、フェノール性水酸基を有する化合物が特に好ましい。
 また、本実施形態の感光性樹脂組成物中には、必要に応じて酸化防止剤、フィラー、界面活性剤、光重合開始剤、末端封止剤および増感剤等の添加物を添加してもよい。
 以上の感光性樹脂組成物において、各成分の割合はたとえば、以下のようである。
 感光性樹脂組成物の全固形分(すなわち、溶剤(D)を除く成分)を100質量%としたとき、好ましくは、アルカリ可溶性樹脂(A)の割合が20質量%以上80質量%以下であり、フェノール樹脂(B)の割合が5質量%以上70質量%以下であり、光酸発生剤(C)の割合が1質量%以上30質量%以下である。
 より好ましくは、アルカリ可溶性樹脂(A)の割合が30質量%以上70質量%以下であり、フェノール樹脂(B)の割合が5質量%以上50質量%以下であり、光酸発生剤(C)の割合が5質量%以上20質量%以下である。
[硬化膜]
 本実施形態の感光性樹脂組成物の使用方法は、まず該組成物を適当な支持体、例えば、シリコンウエハ、セラミック基板、アルミ基板等に塗布する。塗布量は、半導体素子上に塗布する場合、一般的に硬化後の最終膜厚が0.1~30μmになるよう塗布する。このような数値範囲とすることにより、半導体素子の保護膜、絶縁膜としての機能を十分に発揮され、微細なレリーフパターンを得ることができる。
 塗布方法としては、スピンコーターを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング等がある。
 次に、60~130℃でプリベークして塗膜を乾燥後、レリーフパターンを形成する場合、所望のパターン形状に化学線を照射する。化学線としては、X線、電子線、紫外線、可視光線等が使用できるが、200~500nmの波長のものが好ましい。
 次に、照射部を現像液で溶解除去することにより、レリーフパターンを得る。現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム及びアンモニア水等の無機アルカリ類;エチルアミン及びn-プロピルアミン等の第1級アミン類;ジエチルアミン及びジ-n-プロピルアミン等の第2級アミン類;トリエチルアミン及びメチルジエチルアミン等の第3級アミン類;ジメチルエタノールアミン及びトリエタノールアミン等のアルコールアミン類;テトラメチルアンモニウムヒドロキシド及びテトラエチルアンモニウムヒドロキシド等の第4級アンモニウム塩等のアルカリ類の水溶液;並びにこれらに、メタノール及びエタノールなどのアルコール類等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液を好適に使用することができる。現像方法としては、スプレー、パドル、浸漬、超音波等の方式が可能である。
 次に、現像によって形成したレリーフパターンをリンスする。リンス液としては、蒸留水を使用する。次に加熱処理(硬化)を行い、耐熱性に優れる硬化物としての硬化膜を得る。
 加熱処理は高温でも低温でも可能であり、高温での加熱処理温度は、280℃~380℃が好ましく、より好ましくは290℃~350℃である。低温での加熱処理温度は150℃~280℃が好ましく、より好ましくは180℃~260℃である。加熱処理にはオーブン、ホットプレート、電気炉(ファーネス)、赤外線、マイクロ波などが使われる。
 当該感光性樹脂組成物を加熱硬化させて得られる硬化物の示差走査熱量測定(昇温速度5℃/min)によるガラス転移温度は、好ましくは200℃以上であり、より好ましくは220℃以上であり、特に好ましくは250℃以上である。ガラス転移温度の上限値は特に限定されないが、例えば、400℃以下である。上記硬化物のガラス転移温度が上記範囲内であると、得られる硬化膜の耐熱性、機械特性をより一層向上させることができる。
 当該感光性樹脂組成物を加熱硬化させて得られる硬化物(寸法:10mm×60mm×10μm厚)の引張試験(延伸速度:5mm/分)による伸び率は、好ましくは20%以上であり、より好ましくは30%以上である。引張伸び率の上限値は特に限定されないが、例えば、300%以下である。上記硬化物の伸び率が上記範囲内であると、膜変形時の応力によるクラックのリスクが低減し、保護膜としての信頼性を一層向上させることができる。
 当該感光性樹脂組成物を加熱硬化させて得られる硬化物(寸法:10mm×60mm×10μm厚)の引張試験(延伸速度:5mm/分)による引張弾性率は、好ましくは0.5GPa以上10GPa以下であり、より好ましくは1.0GPa以上8.0GPa以下である。上記硬化物の引張弾性率が上記範囲内であると、得られる硬化膜が十分な強度を有することができ、保護膜としての信頼性をより一層向上させることができる。
<用途>
 次に、感光性樹脂組成物の用途について説明する。
 本実施形態の感光性樹脂組成物を用いて形成される硬化膜は、半導体素子等の半導体装置用途のみならず、TFT型液晶や有機EL等の表示体装置用途、多層回路の層間絶縁膜やフレキシブル銅張板のカバーコート、ソルダーレジスト膜や液晶配向膜としても有用である。
 半導体装置用途の例としては、半導体素子上に上述の感光性樹脂組成物の硬化膜を形成してなるパッシベーション膜、パッシベーション膜上に上述の感光性樹脂組成物の硬化膜を形成してなるバッファーコート膜等の保護膜、半導体素子上に形成された回路上に上述の感光性樹脂組成物の硬化膜を形成してなる層間絶縁膜等の絶縁膜、α線遮断膜、平坦化膜、突起(樹脂ポスト)、隔壁等を挙げることができる。
 表示体装置用途の例としては、表示体素子上に本実施形態の感光性樹脂組成物の硬化膜を形成してなる保護膜、TFT素子やカラーフィルター用等の絶縁膜または平坦化膜、MVA型液晶表示装置用等の突起、有機EL素子陰極用等の隔壁等を挙げることができる。
 その使用方法は、半導体装置用途に準じ、表示体素子やカラーフィルターを形成した基板上にパターン化された感光性樹脂組成物層を、上記の方法で形成することによるものである。表示体装置用途、特に絶縁膜や平坦化膜用途では、高い透明性が要求されるが、本実施形態の感光性樹脂組成物の塗膜の硬化前に、後露光工程を導入することにより、透明性に優れた樹脂層が得られることもでき、実用上さらに好ましい。
 半導体装置としては、半導体チップ(素子)が半導体基板上に形成され、気密封止やモールド材料を用いて封止したものである。具体的には、トランジスタ、太陽電池、ダイオード、固体撮像素子、半導体チップを積層、封止した各種の半導体パッケージ、ウエハレベルチップサイズパッケージ(WLP)などが挙げられる。
 表示体装置としては、TFT型液晶、有機EL、カラーフィルターなどが挙げられる。
 以下、本実施形態の感光性樹脂組成物を用いて形成された膜を有する電子装置の一例を説明する。
 <電子装置>
 図1および図2は、それぞれ本実施形態に係る電子装置100の一例を示す断面図である。いずれにおいても、電子装置100のうちの絶縁膜を含む一部が示されている。
 本実施形態に係る電子装置100は、たとえば本実施形態の感光性樹脂組成物により形成される永久膜である絶縁膜を備えている。
 本実施形態に係る電子装置100の一例として、図1では液晶表示装置が示されている。しかしながら、本実施形態に係る電子装置100は、液晶表示装置に限定されず、本実施形態の感光性樹脂組成物からなる永久膜を備える他の電子装置を含むものである。
 図1に示すように、液晶表示装置である電子装置100は、たとえば基板10と、基板10上に設けられたトランジスタ30と、トランジスタ30を覆うように基板10上に設けられた絶縁膜20と、絶縁膜20上に設けられた配線40と、を備えている。
 基板10は、たとえばガラス基板である。
 トランジスタ30は、たとえば液晶表示装置のスイッチング素子を構成する薄膜トランジスタである。基板10上には、たとえば複数のトランジスタ30がアレイ状に配列されている。本実施形態に係るトランジスタ30は、たとえばゲート電極31と、ソース電極32と、ドレイン電極33と、ゲート絶縁膜34と、半導体層35と、により構成される。ゲート電極31は、たとえば基板10上に設けられている。ゲート絶縁膜34は、ゲート電極31を覆うように基板10上に設けられる。半導体層35は、ゲート絶縁膜34上に設けられている。また、半導体層35は、たとえばシリコン層である。ソース電極32は、一部が半導体層35と接触するよう基板10上に設けられる。ドレイン電極33は、ソース電極32と離間し、かつ一部が半導体層35と接触するよう基板10上に設けられる。
 絶縁膜20は、トランジスタ30等に起因する段差をなくし、基板10上に平坦な表面を形成するための平坦化膜として機能する。また、絶縁膜20は、本実施形態の感光性樹脂組成物の硬化物により構成される。絶縁膜20には、ドレイン電極33に接続するよう絶縁膜20を貫通する開口22が設けられている。
 絶縁膜20上および開口22内には、ドレイン電極33と接続する配線40が形成されている。配線40は、液晶とともに画素を構成する画素電極として機能する。
 また、絶縁膜20上には、配線40を覆うように配向膜90が設けられている。
 基板10のうちトランジスタ30が設けられている一面の上方には、基板10と対向するよう対向基板12が配置される。対向基板12のうち基板10と対向する一面には、配線42が設けられている。配線42は、配線40と対向する位置に設けられる。また、対向基板12の上記一面上には、配線42を覆うように配向膜92が設けられている。
 基板10と当該対向基板12との間には、液晶層14を構成する液晶が充填される。
 図1に示す電子装置100は、たとえば次のように形成される。
 まず、基板10上にトランジスタ30を形成する。次いで、基板10のうちトランジスタ30が設けられた一面上に、印刷法あるいはスピンコート法により感光性樹脂組成物を塗布し、トランジスタ30を覆う絶縁膜20を形成する。これにより、基板10上に設けられたトランジスタ30を覆う平坦化膜が形成される。
 次いで、絶縁膜20を露光現像して、絶縁膜20の一部に開口22を形成する。このとき、未露光部分が現像液に溶解し、露光部分が残ることとなる。この点は、後述する電子装置100の各例においても同様である。
 次いで、絶縁膜20を加熱硬化させる。そして、絶縁膜20の開口22内に、ドレイン電極33に接続された配線40を形成する。その後、絶縁膜20上に対向基板12を配置し、対向基板12と絶縁膜20との間に液晶を充填し、液晶層14を形成する。
 これにより、図1に示す電子装置100が形成されることとなる。
 また、本実施形態に係る電子装置100の一例として、図2では感光性樹脂組成物からなる永久膜により再配線層80が構成される半導体装置が示されている。
 図2に示す電子装置100は、トランジスタ等の半導体素子が設けられた半導体基板と、半導体基板上に設けられた多層配線層と、を備えている(図示せず)。多層配線層のうち最上層には、層間絶縁膜である絶縁膜50と、絶縁膜50上に設けられた最上層配線72が設けられている。最上層配線72は、たとえばAlにより構成される。
 また、絶縁膜50上には、再配線層80が設けられている。再配線層80は、最上層配線72を覆うように絶縁膜50上に設けられた絶縁膜52と、絶縁膜52上に設けられた再配線70と、絶縁膜52上および再配線70上に設けられた絶縁膜54と、を有する。
 絶縁膜52には、最上層配線72に接続する開口24が形成されている。再配線70は、絶縁膜52上および開口24内に形成され、最上層配線72に接続されている。絶縁膜54には、再配線70に接続する開口26が設けられている。
 これらの絶縁膜52および絶縁膜54は、感光性樹脂組成物からなる永久膜により構成される。絶縁膜52は、たとえば絶縁膜50上に塗布された感光性樹脂組成物に対し露光・現像を行うことにより開口24を形成した後、これを加熱硬化することにより得られる。また、絶縁膜54は、たとえば絶縁膜52上に塗布された感光性樹脂組成物に対し露光・現像を行うことにより開口26を形成した後、これを加熱硬化することにより得られる。
 開口26内には、たとえばバンプ74が形成される。電子装置100は、たとえばバンプ74を介して配線基板等に接続されることとなる。
 さらに、本実施形態に係る電子装置100は、感光性樹脂組成物からなる永久膜によりマイクロレンズを構成する光デバイスであってもよい。光デバイスとしては、たとえば液晶表示装置、プラズマディスプレイ、電界放出型ディスプレイまたはエレクトロルミネセンスディスプレイが挙げられる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
 以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれに限定されるものでない。
<アルカリ可溶性樹脂(A-1)の合成>
 温度計、攪拌機、原料投入口および乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに、ジフェニルエーテル-4,4'-ジカルボン酸21.43g(0.083モル)と1-ヒドロキシ-1,2,3-ベンゾトリアゾール・一水和物22.43g(0.166モル)とを反応させて得られたジカルボン酸誘導体の混合物40.87g(0.083モル)と、ヘキサフルオロ-2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン36.62g(0.100モル)とを入れ、N-メチル-2-ピロリドン296.96gを加えて溶解させた。その後、オイルバスを用いて75℃にて15時間反応させた。
 次に、N-メチル-2-ピロリドン34.88gに溶解させた3,6-エンドメチレン-1,2,3,6-テトラヒドロフタル酸無水物6.98g(0.0425モル)を加え、さらに3時間攪拌して反応を終了した。
 反応混合物を濾過した後、反応混合物を水/イソプロパノール=3/1(容積比)の溶液に投入、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥し、目的のポリアミド樹脂(A-1)を得た。なお、得られた化合物の重量平均分子量は、13,040であった。
<アルカリ可溶性樹脂(A-2)の合成>
 温度計、攪拌機、原料投入口および乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン30.0g(0.082モル)を入れ、アセトン400mlを加えて溶解させた。
 次に、アセトン100mLに溶解したパラ-ニトロベンゾイルクロリド12.4g(0.18モル)を、温度が20℃未満になるよう冷却しながら30分かけて滴下し、混合物を得た。滴下後、混合物の温度を40℃に加熱し、2時間撹拌し、次に、炭酸カリウム30.0g(0.218モル)を徐々に添加して、さらに2時間撹拌した。加熱をやめて、混合物を、さらに室温にて18時間撹拌した。その後、混合物を激しく撹拌しながら、水酸化ナトリウム水溶液を徐々に添加し、添加後55℃に加温して、さらに30分間撹拌した。撹拌終了後、室温まで冷却し、37重量%の塩酸水溶液と水500mlを加え、溶液のpHが6.0~7.0の範囲になるよう調整した。次いで、得られた析出物を、ろ別し、ろ過液を水で洗浄後、60~70℃にて乾燥を行い、ビス-N,N'-(パラ-ニトロベンゾイル)ヘキサフルオロ-2,2-ビス(4-ヒドロキシフェニル)プロパンの固体を得た。
 得られた固体51.0gに、アセトン316gとメタノール158gを加え、50℃に加熱し完全に溶解させた。そこに、300mLの50℃の純水を30分かけて加え、65℃まで加熱した。その後室温まで、ゆっくり冷却して析出した結晶を濾過し、結晶を70℃にて乾燥を行うことで精製し、ビス-N,N'-(パラ-ニトロベンゾイル)ヘキサフルオロ-2,2-ビス(4-ヒドロキシフェニル)プロパンを得た。
 1Lのフラスコに、上記で得たビス-N,N'-(パラ-ニトロベンゾイル)ヘキサフルオロ-2,2-ビス(4-ヒドロキシフェニル)プロパン20gを入れ、5%パラジウム-炭素触媒1.0gと酢酸エチル180.4gを加え、懸濁状態とした。そこに、水素ガスをパージし、50~55℃に加熱しながら、35分間振盪させ還元反応を行った。反応終了後35℃まで冷却し、懸濁液に窒素をパージした。ろ別により触媒を取り除いた後、ろ液をエバポレーターにかけ、溶媒を蒸発させた。得られた生成物を90℃にて乾燥して、ビス-N,N'-(パラ-アミノベンゾイル)ヘキサフルオロ-2,2-ビス(4-ヒドロキシフェニル)プロパンを得た。
 温度計、攪拌機、原料投入口および乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに、上記で得たビス-N,N'-(パラ-アミノベンゾイル)ヘキサフルオロ-2,2-ビス(4-ヒドロキシフェニル)プロパン14.5g(0.024mol)を入れ、γ-ブチロラクトン40gを加え溶解し、撹拌しながら15℃まで冷却した。そこに、4,4'-オキシジフタル酸無水物6.8質量部(0.022mol)とγ-ブチロラクトン12.0質量部を加え、20℃にて1.5時間撹拌した。その後、50℃まで加温し3時間撹拌後、N,N-ジメチルホルムアミドジメチルアセタール5.2g(0.044mol)とγ-ブチロラクトン10.0gを加え、50℃にて、さらに1時間撹拌した。反応終了後室温まで冷却し、目的のポリアミド樹脂(A-2)を得た。なお、得られた化合物の重量平均分子量は、13,200であった。
<アルカリ可溶性樹脂(A-3)の合成>
 温度計、攪拌機、原料投入口および乾燥窒素ガス導入管を備えた4つ口丸底フラスコに、乾燥窒素気流下、m-クレゾール64.9g(0.60モル)、p-クレゾール43.3g(0.40モル)、30重量%ホルムアルデヒド水溶液65.1g(ホルムアルデヒド0.65モル)、及びシュウ酸二水和物0.63g(0.005モル)を仕込んだ後、油浴中に浸し、反応液を還流させながら100℃で4時間重縮合反応を行った。その後、油浴の温度を200℃まで3時間かけて昇温した。その後に、フラスコ内の圧力を50mmHg以下まで減圧し、水分及び揮発分を除去した後、樹脂を室温まで冷却して、重量平均分子量3200のノボラック型フェノール樹脂(A-3)を得た。
<フェノール樹脂(B-1)の合成>
 温度計、攪拌機、原料投入口および乾燥窒素ガス導入管を備えた4つ口丸底フラスコに、乾燥窒素気流下、2,3-ジメチルフェノール122.2g(1.00モル)、サリチルアルデヒド116.0g(0.95モル)、及びパラトルエンスルホン酸3.4g(0.02モル)を仕込んだ後、油浴中に浸し、反応液を還流させながら100℃で4時間重縮合反応を行った。その後、フラスコを冷却しながらアセトン100gとトリエチルアミン2.0g(0.02モル)を加え30分撹拌した後、更に純水300gを加え30分撹拌した。室温まで冷却したら、撹拌を停止し、分離した水層を取り除いた後、γ-ブチロラクトンを20g加え、油浴の温度を200℃まで3時間かけて昇温し、その後に、フラスコ内の圧力を50mmHg以下まで減圧し、揮発分を除去した後、樹脂を室温まで冷却して、重量平均分子量3300の全芳香族型フェノール樹脂(B-1)を得た。
<フェノール樹脂(B-2)の合成>
 温度計、攪拌機、原料投入口および乾燥窒素ガス導入管を備えた4つ口丸底フラスコに、乾燥窒素気流下、2,3-ジメチルフェノール61.11g(0.50モル)、3,5-ジメチルフェノール61.11g(0.50モル)、サリチルアルデヒド61.1g(0.5モル)、ベンズアルデヒド47.8g(0.45モル)及びパラトルエンスルホン酸3.4g(0.02モル)を仕込んだ後、油浴中に浸し、反応液を還流させながら100℃で4時間重縮合反応を行った。その後、フラスコを冷却しながらアセトン100gとトリエチルアミン2.0g(0.02モル)を加え30分撹拌した後、更に純水300gを加え30分撹拌した。室温まで冷却したら、撹拌を停止し、分離した水層を取り除いた後、ジエチレングリコールモノメチルエーテルを20g加え、油浴の温度を200℃まで3時間かけて昇温し、その後に、フラスコ内の圧力を50mmHg以下まで減圧し、揮発分を除去した後、樹脂を室温まで冷却して、重量平均分子量3050の全芳香族型フェノール樹脂(B-2)を得た。
<光酸発生剤(C)の合成>
 温度計、攪拌機、原料投入口、乾燥窒素ガス導入管を備えた4つ口のセパラブルフラスコに、式(C-1)で表されるフェノール化合物11.04g(0.026モル)と、1,2-ナフトキノン-2-ジアジド-4-スルホニルクロライド18.81g(0.070モル)とアセトン170gとを入れて撹拌、溶解させた。
 次に、反応溶液の温度が35℃以上にならないように、ウォーターバスでフラスコを冷やしながら、トリエチルアミン7.78g(0.077モル)とアセトン5.5gの混合溶液を、ゆっくり滴下した。そのまま室温で3時間反応させた後、酢酸1.05g(0.017モル)を添加し、さらに30分反応させた。次いで、反応混合物をろ過した後、ろ液を水/酢酸(990ml/10ml)の混合溶液に投入し、その後、沈殿物を濾集し水で充分洗浄した後、真空下で乾燥することで、式(Q-1)の構造で表される光酸発生剤を得た。
Figure JPOXMLDOC01-appb-C000024
≪実施例1≫
 上記で合成したポリアミド樹脂(A-1)14g、上記で合成した全芳香族型フェノール樹脂(B-1)6g及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例1の感光性樹脂組成物を得た。
≪実施例2≫
 上記で合成したポリアミド樹脂(A-1)10g、上記で合成した全芳香族型フェノール樹脂(B-1)10g及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例2の感光性樹脂組成物を得た。
≪実施例3≫
 上記で合成したポリアミド樹脂(A-1)6g、上記で合成した全芳香族型フェノール樹脂(B-1)14g及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例3の感光性樹脂組成物を得た。
≪実施例4≫
 上記で合成したポリアミド樹脂(A-1)10g、上記で合成した全芳香族型フェノール樹脂(B-2)10g及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例4の感光性樹脂組成物を得た。
≪実施例5≫
 上記で合成したポリアミド樹脂(A-2)10g、上記で合成した全芳香族型フェノール樹脂(B-1)10g及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例5の感光性樹脂組成物を得た。
≪実施例6≫
 上記で合成したポリアミド樹脂(A-2)10g、上記で合成した全芳香族型フェノール樹脂(B-2)10g及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例6の感光性樹脂組成物を得た。
≪実施例7≫
 上記で合成したノボラック型フェノール樹脂(A-3)10g、上記で合成した全芳香族型フェノール樹脂(B-1)10g及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例7の感光性樹脂組成物を得た。
≪実施例8≫
 重量平均分子量3,500のポリヒドロキシスチレン/スチレン共重合樹脂(丸善石油化学社製、商品名:マルカリンカーCST-60)(A-4)10g、上記で合成した全芳香族型フェノール樹脂(B-1)10g及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例8の感光性樹脂組成物を得た。
≪実施例9≫
 上記で合成したポリアミド樹脂(A-1)10g、上記で合成した全芳香族型フェノール樹脂(B-1)10g、上記で合成した光酸発生剤(Q-1)1.5g及び架橋剤として1,4-ベンゼンジメタノール(E-1)1gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例9の感光性樹脂組成物を得た。
≪実施例10≫
 上記で合成したポリアミド樹脂(A-1)10g、上記で合成した全芳香族型フェノール樹脂(B-1)10g、上記で合成した光酸発生剤(Q-1)1.5g及びシランカップリング剤として3-メタクリロキシプロピルトリメトキシシラン(F-1)0.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、実施例10の感光性樹脂組成物を得た。
≪比較例1≫
 上記で合成したポリアミド樹脂(A-1)20g、及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、比較例1の感光性樹脂組成物を得た。
≪比較例2≫
 上記で合成したポリアミド樹脂(A-1)10g、上記で合成したノボラック型フェノール樹脂(A-3)10g、及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、比較例2の感光性樹脂組成物を得た。
≪比較例3≫
 上記で合成したノボラック型フェノール樹脂(A-3)20g、及び上記で合成した光酸発生剤(Q-1)1.5gを、γ-ブチロラクトン25gに混合して溶解した後、孔径0.2μmのフッ素樹脂製フィルターで濾過し、比較例3の感光性樹脂組成物を得た。
<加工性評価>
 上記で得た感光性樹脂組成物を、それぞれ、8インチシリコンウエハ上にスピンコーターを用いて塗布した後、ホットプレートにて120℃で3分間プリベークし、膜厚約7.5μmの塗膜を得た。この塗膜に凸版印刷社製マスク(テストチャートNo.1:幅0.88~50μmの残しパターン及び抜きパターンが描かれている)を通して、i線ステッパー(ニコン社製・NSR-4425i)を用いて、露光量を変化させて照射した。
 次に、現像液として2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用い、プリベーク後の膜厚と現像後の膜厚の差が1.0μmになるように現像時間を調節して2回パドル現像を行うことによって露光部を溶解除去した後、純水で10秒間リンスした。100μmの正方形のビアホールのパターンが形成される最低露光量の値を感度として評価した。
<硬化残膜率評価>
 上記で得た感光性樹脂組成物を、それぞれ、8インチシリコンウエハ上にスピンコーターを用いて塗布した後、ホットプレートにて120℃で3分間プリベークし、膜厚約7.5μmの塗膜を得た。塗布膜を、酸素濃度を1000ppm以下に保ちながら、オーブンにて150℃で30分間、続いて300℃で30分間加熱し、室温に戻した後の膜厚を測定した。硬化後の膜厚と硬化前の膜厚の膜厚変化率を下記式より算出し、硬化残膜率として評価した。
 硬化残膜率=硬化後の膜厚/硬化前の膜厚*100
 なお、硬化残膜率は半導体素子を保護するための十分な膜厚を保持するために高い方がよい。
<耐熱性評価>
 硬化残膜率評価にて得た硬化膜について、示差走査熱量測定(DSC6000 セイコーインスツルメンツ社製)にて昇温5℃/分の条件で昇温し、外挿点よりガラス転移温度(Tg)を算出した。また、Tg-DTA装置(TG/DTA6200 セイコーインスツルメンツ社製)にて昇温10℃/分の条件で昇温し10%熱重量減少温度(Td10)を測定した。
<伸び率及び弾性率の評価>
 実施例1から6、9から11および比較例1,2については、得られた感光性樹脂材料を窒素雰囲気下、300℃、30分の条件下で硬化して得られる試験片(10mm×60mm×10μm厚)に対して引張試験(延伸速度:5mm/分)を23℃雰囲気中で実施した。引張試験は、オリエンテック社製引張試験機(テンシロンRTC-1210A)を用いて行った。試験片5本を測定し、破断した距離と初期距離から引張伸び率を算出し、平均化したものを伸び率とした。得られた応力-歪曲線の初期の勾配からそれぞれ引張弾性率を算出し、平均化したものを弾性率とした。表1に結果を示す。
 <半導体装置の作製>
 表面にアルミ回路を備えた模擬素子ウエハを用いて、実施例1~10の感光性樹脂組成物を、それぞれ、最終5μmとなるよう塗布した後、パターン加工を施して硬化した。その後、チップサイズ毎に分割して16Pin DIP(Dual Inline Package)用のリードフレームに導電性ペーストを用いてマウントした後、半導体封止用エポキシ樹脂(住友ベークライト社製、EME-6300H)で封止成形して、半導体装置を作製した。これらの半導体装置(半導体パッケージ)を85℃/85%湿度の条件で168時間処理した後、260℃半田浴槽に10秒間浸漬し、次いで、高温、高湿のプレッシャークッカー処理(125℃、2.3atm、100%相対湿度)を施してアルミ回路のオープン不良をチェックした。その結果、腐食などはみられず半導体装置として問題無く使用できるものと予想される。
 以下に、実施例および比較例を記した表1を示す。
Figure JPOXMLDOC01-appb-T000025
 本発明は以下の態様を含む。
1.アルカリ可溶性樹脂(A)と、下記一般式(1)で表されるフェノール化合物と下記一般式(2)で表される芳香族アルデヒド化合物を酸触媒下で反応させて得られるフェノール樹脂(B)と、光酸発生剤(C)と、溶剤(D)を含む感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000026
(式中Rは炭素数1以上20以下のアルキル基及びアルコキシ基から選ばれる有機基を示し、pは1以上3以下の整数である。
Figure JPOXMLDOC01-appb-C000027
(式中Rは水素、炭素数1以上20以下のアルキル基、アルコキシ基及びヒドロキシ基から選ばれる有機基を示し、qは0以上3以下の整数である。)
2.上記フェノール樹脂(B)が、フェノール化合物として、下記式(3)で表されるフェノールの中から選ばれるものである1.に記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000028
3.上記フェノール樹脂(B)が、アルデヒド化合物として、下記式(4)で表される芳香族アルデヒド化合物の中から選ばれるものである1.又は2.に記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000029
4.上記アルカリ可溶性樹脂(A)が、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリイミド、ポリイミド前駆体及びポリアミドから選ばれるものである1.乃至3.のいずれか1つに記載の感光性樹脂組成物。
5.上記アルカリ可溶性樹脂(A)と上記フェノール樹脂(B)の割合が重量比(A/B)で5/95から95/5の範囲である1.乃至4.のいずれか1つに記載の感光性樹脂組成物。
6.更に熱架橋剤(E)を含有する1.乃至5.のいずれか1つに記載の感光性樹脂組成物。
7.更にシランカップリング剤(F)を含有する1.乃至6.のいずれか1つに記載の感光性樹脂組成物。
8.1.乃至7.のいずれか1つに記載の感光性樹脂組成物の硬化物で構成されている硬化膜。
9.8.に記載の硬化膜で構成されている保護膜。
10.8.に記載の硬化膜で構成されている絶縁膜。
11.8.に記載の硬化膜を有している半導体装置。
12.8.に記載の硬化膜を有している表示体装置。
 この出願は、2012年10月30日に出願された日本特許出願特願2012-239018を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1.  アルカリ可溶性樹脂(A)と、
     下記一般式(1)で表されるフェノール化合物と下記一般式(2)で表される芳香族アルデヒド化合物を酸触媒下で反応させて得られるフェノール樹脂(B)と、
     光酸発生剤(C)と、
    を含む感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中Rは炭素数1以上20以下のアルキル基及びアルコキシ基から選ばれる有機基を示し、pは1以上3以下の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中Rは水素、炭素数1以上20以下のアルキル基、アルコキシ基及びヒドロキシ基から選ばれる有機基を示し、qは0以上3以下の整数である。)
  2.  前記フェノール樹脂(B)に対する前記アルカリ可溶性樹脂(A)の重量比(A/B)が20/80以上95/5以下である請求項1に記載の感光性樹脂組成物。
  3.  前記フェノール樹脂(B)に対する前記アルカリ可溶性樹脂(A)の重量比(A/B)が20/80以上80/20以下である請求項1に記載の感光性樹脂組成物。
  4.  当該感光性樹脂組成物を加熱硬化させて得られる硬化物の示差走査熱量測定によるガラス転移温度が、200℃以上である請求項1乃至3のいずれか1項に記載の感光性樹脂組成物。
  5.  当該感光性樹脂組成物を加熱硬化させて得られる硬化物の引張試験による引張弾性率が、0.5GPa以上である請求項1乃至4のいずれか1項に記載の感光性樹脂組成物。
  6.  前記一般式(1)で表される前記フェノール化合物が、下記式(3)で表されるフェノール類の中から選ばれる1種または2種以上である請求項1乃至5のいずれか1項に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
  7.  前記一般式(2)で表される前記芳香族アルデヒド化合物が、下記式(4)で表される芳香族アルデヒド化合物の中から選ばれる1種または2種以上である請求項1乃至6のいずれか1項に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
  8.  前記アルカリ可溶性樹脂(A)が、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリイミド、及びポリイミド前駆体から選ばれるものである請求項1乃至7のいずれか1項に記載の感光性樹脂組成物。
  9.  更に熱架橋剤(E)を含有する請求項1乃至8のいずれか1項に記載の感光性樹脂組成物。
  10.  更にシランカップリング剤(F)を含有する請求項1乃至9のいずれか1項に記載の感光性樹脂組成物。
  11.  請求項1乃至10のいずれか1項に記載の感光性樹脂組成物の硬化物で構成されている硬化膜。
  12.  請求項11に記載の硬化膜で構成されている保護膜。
  13.  請求項11に記載の硬化膜で構成されている絶縁膜。
  14.  請求項11に記載の硬化膜を有している電子装置。
PCT/JP2013/073542 2012-10-30 2013-09-02 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置 WO2014069091A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014544365A JPWO2014069091A1 (ja) 2012-10-30 2013-09-02 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-239018 2012-10-30
JP2012239018 2012-10-30

Publications (1)

Publication Number Publication Date
WO2014069091A1 true WO2014069091A1 (ja) 2014-05-08

Family

ID=50627012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073542 WO2014069091A1 (ja) 2012-10-30 2013-09-02 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置

Country Status (3)

Country Link
JP (1) JPWO2014069091A1 (ja)
TW (1) TW201426167A (ja)
WO (1) WO2014069091A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211517A (ja) * 2013-04-18 2014-11-13 住友ベークライト株式会社 ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
JPWO2014046062A1 (ja) * 2012-09-18 2016-08-18 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
WO2017116858A1 (en) * 2015-12-30 2017-07-06 Fujifilm Electronic Materials U.S.A., Inc. Photosensitive stacked structure
WO2017169009A1 (ja) * 2016-03-28 2017-10-05 東レ株式会社 樹脂組成物、その硬化レリーフパターン、およびそれを用いた半導体電子部品または半導体装置の製造方法
WO2018047770A1 (ja) * 2016-09-08 2018-03-15 住友ベークライト株式会社 半導体装置の製造方法
CN110989294A (zh) * 2018-10-02 2020-04-10 三星Sdi株式会社 感光性树脂组合物、感光性树脂层以及电子装置
JP2020098244A (ja) * 2018-12-17 2020-06-25 旭化成株式会社 感光性樹脂積層体及びレジストパターンの製造方法
WO2021085321A1 (ja) * 2019-10-29 2021-05-06 東レ株式会社 樹脂組成物、樹脂シート、硬化膜、硬化膜の製造方法、半導体装置、有機el表示装置および表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284414A (ja) * 1988-03-31 1990-03-26 Morton Thiokol Inc ノボラック樹脂、フォトレジスト及びレジストパターンの形成方法
JPH0561195A (ja) * 1991-09-02 1993-03-12 Tokyo Ohka Kogyo Co Ltd ポジ型ホトレジスト組成物
JPH1115151A (ja) * 1997-05-01 1999-01-22 Tokyo Ohka Kogyo Co Ltd コンタクトホール形成用ポジ型ホトレジスト組成物およびコンタクトホールの形成方法
JP2002107925A (ja) * 2000-09-28 2002-04-10 Sumitomo Bakelite Co Ltd フォトレジスト用フェノ−ル樹脂
JP2007304592A (ja) * 2006-05-08 2007-11-22 Dongjin Semichem Co Ltd フォトレジスト組成物
JP2009230124A (ja) * 2008-02-25 2009-10-08 Hitachi Chem Co Ltd ポジ型感光性樹脂組成物、レジストパターンの製造方法及び電子部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284414A (ja) * 1988-03-31 1990-03-26 Morton Thiokol Inc ノボラック樹脂、フォトレジスト及びレジストパターンの形成方法
JPH0561195A (ja) * 1991-09-02 1993-03-12 Tokyo Ohka Kogyo Co Ltd ポジ型ホトレジスト組成物
JPH1115151A (ja) * 1997-05-01 1999-01-22 Tokyo Ohka Kogyo Co Ltd コンタクトホール形成用ポジ型ホトレジスト組成物およびコンタクトホールの形成方法
JP2002107925A (ja) * 2000-09-28 2002-04-10 Sumitomo Bakelite Co Ltd フォトレジスト用フェノ−ル樹脂
JP2007304592A (ja) * 2006-05-08 2007-11-22 Dongjin Semichem Co Ltd フォトレジスト組成物
JP2009230124A (ja) * 2008-02-25 2009-10-08 Hitachi Chem Co Ltd ポジ型感光性樹脂組成物、レジストパターンの製造方法及び電子部品

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014046062A1 (ja) * 2012-09-18 2016-08-18 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
JP2014211517A (ja) * 2013-04-18 2014-11-13 住友ベークライト株式会社 ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
WO2017116858A1 (en) * 2015-12-30 2017-07-06 Fujifilm Electronic Materials U.S.A., Inc. Photosensitive stacked structure
EP3398202B1 (en) * 2015-12-30 2023-08-09 FujiFilm Electronic Materials USA, Inc. Photosensitive stacked structure
WO2017169009A1 (ja) * 2016-03-28 2017-10-05 東レ株式会社 樹脂組成物、その硬化レリーフパターン、およびそれを用いた半導体電子部品または半導体装置の製造方法
CN108779331B (zh) * 2016-03-28 2020-08-25 东丽株式会社 树脂组合物、其固化浮凸图案、及使用其的半导体电子部件或半导体器件的制造方法
CN108779331A (zh) * 2016-03-28 2018-11-09 东丽株式会社 树脂组合物、其固化浮凸图案、及使用其的半导体电子部件或半导体器件的制造方法
JPWO2017169009A1 (ja) * 2016-03-28 2019-01-31 東レ株式会社 樹脂組成物、その硬化レリーフパターン、およびそれを用いた半導体電子部品または半導体装置の製造方法
CN109690759A (zh) * 2016-09-08 2019-04-26 住友电木株式会社 半导体装置的制造方法
JPWO2018047770A1 (ja) * 2016-09-08 2018-09-06 住友ベークライト株式会社 半導体装置の製造方法
WO2018047770A1 (ja) * 2016-09-08 2018-03-15 住友ベークライト株式会社 半導体装置の製造方法
CN110989294A (zh) * 2018-10-02 2020-04-10 三星Sdi株式会社 感光性树脂组合物、感光性树脂层以及电子装置
JP2020098244A (ja) * 2018-12-17 2020-06-25 旭化成株式会社 感光性樹脂積層体及びレジストパターンの製造方法
JP7340329B2 (ja) 2018-12-17 2023-09-07 旭化成株式会社 感光性樹脂積層体及びレジストパターンの製造方法
WO2021085321A1 (ja) * 2019-10-29 2021-05-06 東レ株式会社 樹脂組成物、樹脂シート、硬化膜、硬化膜の製造方法、半導体装置、有機el表示装置および表示装置
CN114502659A (zh) * 2019-10-29 2022-05-13 东丽株式会社 树脂组合物、树脂片材、固化膜、固化膜的制造方法、半导体装置、有机el显示装置及显示装置
KR20220092851A (ko) 2019-10-29 2022-07-04 도레이 카부시키가이샤 수지 조성물, 수지 시트, 경화막, 경화막의 제조 방법, 반도체 장치, 유기 el 표시 장치 및 표시 장치

Also Published As

Publication number Publication date
TW201426167A (zh) 2014-07-01
JPWO2014069091A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2014069091A1 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
JP6645424B2 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
JP6451065B2 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
CN109863206B (zh) 树脂组合物、树脂片材、固化膜、有机el显示装置、半导体电子部件及半导体器件
WO2016035593A1 (ja) 樹脂および感光性樹脂組成物
JP2014041264A (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜、およびそれを用いた半導体装置、表示体装置
JP6291718B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
JP6255740B2 (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、表示体装置、およびポジ型感光性樹脂組成物の製造方法
JP2013152381A (ja) ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜、半導体装置、および表示体装置
JPWO2013088852A1 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
WO2015137281A1 (ja) 感光性樹脂組成物
WO2017081922A1 (ja) 半導体装置およびその製造方法
KR102153873B1 (ko) 감광성 수지 재료 및 수지막
JP5488752B1 (ja) 感光性樹脂材料および樹脂膜
JP7066978B2 (ja) 感光性樹脂組成物
JP2015049508A (ja) 感光性樹脂材料および樹脂膜
CN110967928B (zh) 正感光性树脂组合物、感光性树脂层以及电子装置
CN110874015B (zh) 感光性树脂组合物、使用其的感光性树脂层和电子装置
CN110501874B (zh) 感光性树脂组合物、感光性树脂层以及电子装置
JP5648725B1 (ja) 感光性樹脂材料、電子装置および感光性樹脂材料の製造方法
JP2013076748A (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜、およびそれを用いた半導体装置、表示体装置
JP5213518B2 (ja) 耐熱性樹脂組成物
CN116194840A (zh) 感光性树脂组合物、永久抗蚀剂、永久抗蚀剂的形成方法、及永久抗蚀剂用固化膜的检查方法
JP2011100097A (ja) 感光性樹脂組成物、硬化レリーフパターン及び半導体装置
JP2015212801A (ja) 感光性樹脂材料および樹脂膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851314

Country of ref document: EP

Kind code of ref document: A1