WO2017077948A1 - 燃料ポンプ - Google Patents

燃料ポンプ Download PDF

Info

Publication number
WO2017077948A1
WO2017077948A1 PCT/JP2016/081992 JP2016081992W WO2017077948A1 WO 2017077948 A1 WO2017077948 A1 WO 2017077948A1 JP 2016081992 W JP2016081992 W JP 2016081992W WO 2017077948 A1 WO2017077948 A1 WO 2017077948A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
opening holes
gear
port portion
fuel
Prior art date
Application number
PCT/JP2016/081992
Other languages
English (en)
French (fr)
Inventor
酒井 博美
代司 古橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/768,592 priority Critical patent/US10557468B2/en
Priority to DE112016005039.9T priority patent/DE112016005039T5/de
Priority to KR1020187008940A priority patent/KR102042809B1/ko
Priority to CN201680063571.7A priority patent/CN108350875B/zh
Publication of WO2017077948A1 publication Critical patent/WO2017077948A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/008Pumps for submersible use, i.e. down-hole pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/203Fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet

Definitions

  • the present disclosure relates to a fuel pump that sucks and discharges fuel into a gear housing chamber.
  • a fuel pump in which fuel is sucked into a gear housing chamber and then discharged.
  • the fuel pump disclosed in Patent Document 1 includes an outer gear having a plurality of inner teeth, an inner gear having a plurality of outer teeth and meshing eccentrically with the outer gear, and a gear accommodating chamber in which the outer gear and the inner gear are rotatably accommodated. And a defining pump housing.
  • the fuel pump rotates while expanding and reducing the volume of a pump chamber in which a plurality of outer gears and inner gears are formed between the two gears, so that fuel is sucked into the gear housing chamber and then discharged.
  • the outer gear and the inner gear are sandwiched from both sides, so that fuel flows between a pair of sliding surfaces on which both gears slide and from the outside of the gear housing chamber to the inside. It has a suction port portion for sucking, and a discharge port portion for discharging fuel from the inside of the gear housing chamber to the outside.
  • suction port portion and the discharge port portion include two opening holes that are opened from the outside of the gear housing chamber to a position facing the pump chamber on the sliding surface, and one rib that is disposed between the two opening holes. ,have.
  • the deformation of the sliding surface can occur, for example, in the assembly of the fuel pump parts at the time of manufacture, or due to the temperature change during use, for example.
  • the rigidity of the pump housing is improved, the deformation of the sliding surface is suppressed, and the sliding resistance when the outer gear and the inner gear rotate is suppressed.
  • the opening hole in Patent Document 1 is directly open to the sliding surface, and the rib between the opening holes constitutes a part of the sliding surface. Therefore, the intake or discharge of fuel in the pump chamber facing the rib is hindered by the rib, leading to a decrease in pump efficiency.
  • the present disclosure has been made in view of the problems described above, and an object thereof is to provide a fuel pump with high pump efficiency.
  • one aspect of the present disclosure includes an outer gear having a plurality of inner teeth, an inner gear having a plurality of outer teeth and eccentrically meshing with the outer gear in an eccentric direction, and the outer gear and the inner gear are rotatable.
  • a pump housing defining a gear housing chamber housed in the housing, and the outer gear and the inner gear rotate while expanding or contracting the volume of the pump chamber formed between the two gears, thereby allowing the fuel to enter the gear housing chamber.
  • a suction port portion for sucking fuel; a discharge port portion for discharging fuel from the inside of the gear housing chamber to the outside; and the suction port portion and the discharge port At least one of them is a recess extending from the sliding surface and extending along the circumferential direction of the pump housing at a location facing the pump chamber, and a plurality of opening holes opening from the outside of the gear housing chamber to the extension groove.
  • a plurality of ribs arranged between the opening holes, and the opening holes and the ribs are alternately arranged along the extending direction of the extending groove.
  • the opening holes and the ribs are alternately arranged along the extending direction of the extending groove.
  • a plurality of the opening holes are provided in the extending groove from the outside of the gear housing chamber, and the rib is disposed between the opening holes.
  • the extending groove in which the plurality of opening holes are opened extends in the circumferential direction of the pump housing while being recessed from the sliding surface at a position facing the pump chamber formed between the outer gear and the inner gear.
  • the volume of each pump chamber facing the extending groove expands and contracts according to the rotation of both gears. By this expansion and contraction, the fuel is sucked into the gear housing chamber and then discharged.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1. It is the top view which looked at the pump cover in the IV direction of FIG. It is the top view which looked at the pump cover in the V direction of FIG.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIGS. It is the top view which looked at the pump casing in the VII direction of FIG. It is the top view which looked at the pump casing in the VIII direction of FIG. FIG.
  • FIG. 10 is a diagram for comparing each opening hole of the suction port portion and each opening hole of the discharge port portion in the second embodiment, where FIG. 10A shows the suction port portion and FIG. 10B shows the discharge port portion. Each is shown.
  • FIG. 7 is a diagram corresponding to FIG. 6 in Modification 1;
  • the fuel pump 100 is a positive displacement trochoid pump as shown in FIG.
  • the fuel pump 100 is a diesel pump that is mounted on a vehicle and used for combustion of an internal combustion engine, and is used for pressure-feeding light oil having a viscosity higher than that of gasoline.
  • the fuel pump 100 includes an electric motor 3, a pump main body 10, and an electric motor 3 housed in an annular pump body 2, and a side cover 5 projecting outward from the opposite side of the pump main body 10 with the electric motor 3 sandwiched in the axial direction Da. Is the main constituent.
  • the rotating shaft 3a of the electric motor 3 is rotationally driven by energization from an external circuit via the electrical connector 5a of the side cover 5.
  • the outer gear 30 and the inner gear 20 of the pump body 10 rotate using the driving force of the rotating shaft 3a.
  • the fuel that is sucked into the cylindrical gear housing chamber 70a in which both gears 20 and 30 are housed and pressurized is discharged from the discharge outlet 5b of the side cover 5 through the fuel passage 6 outside the gear housing chamber 70a. Discharged.
  • the electric motor 3 used in the fuel pump 100 is an inner rotor type brushless motor in which magnets are arranged in four poles and coils are formed in six slots.
  • the electric motor 3 causes the rotation shaft 3a to move to the drive rotation side or the drive rotation reverse side.
  • Positioning control for rotating is performed.
  • drive control for rotating the rotary shaft 3a to the drive rotation side from the position positioned by the positioning control is performed.
  • the drive rotation side refers to the side that is the positive direction (see FIG. 3) of the rotation direction Rig around the inner center line Cig of the inner gear 20. Further, the reverse side of the drive rotation indicates the side that is the negative direction of the rotation direction Rig (see FIG. 3).
  • the pump body 10 includes a joint member 60, an inner gear 20, an outer gear 30, and a pump housing 70.
  • the joint member 60 shown in FIGS. 1 to 3 is a member that is formed of a synthetic resin such as polyphenylene sulfide (PPS) resin and relays the rotating shaft 3a to the inner gear 20.
  • the joint member 60 integrally includes a main body portion 62 and an insertion portion 64.
  • the main body 62 is formed in a truncated cone shape and has a fitting hole 62a on the inner center line Cig.
  • the main body 62 is in a state of being fitted via the fitting hole 62a with the tip of the rotating shaft 3a penetrating the gear housing chamber 70a from the electric motor 3 side to the opposite side.
  • a plurality of insertion portions 64 are provided at equal intervals in the circumferential direction. Each insertion portion 64 has flexibility due to the shape extending from the outer peripheral side portion of the main body portion 62 to the gear housing chamber 70a side along the axial direction Da from the fitting hole 62a.
  • the inner gear 20 shown in FIGS. 1 and 3 is a so-called trochoid gear in which each tooth has a trochoid curve.
  • the inner gear 20 is arranged eccentrically in the gear housing chamber 70a by using the inner center line Cig, which is the center thereof, together with the rotary shaft 3a.
  • the inner gear 20 has an insertion hole 26 at a position facing the main body 62 of the joint member 60 in the axial direction Da.
  • a plurality of insertion holes 26 are provided at equal intervals in the circumferential direction corresponding to each insertion portion 64.
  • the insertion portion 64 and the insertion hole 26 of the present embodiment are numbers that avoid the number of poles and slots of the electric motor 3 in order to reduce the influence of torque ripple of the electric motor 3, and are particularly prime numbers. There are 5 each.
  • Each insertion hole 26 penetrates the inner gear 20 along the axial direction Da.
  • each insertion hole 26 a corresponding insertion portion 64 is inserted with a gap.
  • the insertion portion 64 presses against the insertion hole 26, whereby the driving force of the rotary shaft 3a is transmitted to the inner gear 20 via the joint member 60. That is, the inner gear 20 is rotatable in the rotation direction Rig around the inner center line Cig.
  • FIG. 3 only the insertion hole 26 and a part of the insertion portion 64 are denoted by reference numerals.
  • the inner gear 20 has a plurality of external teeth 24 a arranged at equal intervals in the rotation direction Rig on the outer peripheral portion 24.
  • Each outer tooth 24a is formed along an annular circumscribed circle (also referred to as a tooth tip circle) with its tooth tip protruding from the tooth bottom to the outer peripheral side.
  • the outer gear 30 shown in FIGS. 1 and 3 is also a so-called trochoid gear in which each tooth has a trochoid curve.
  • the outer gear 30 is arranged coaxially in the gear housing chamber 70 a by being eccentric with respect to the inner center line Cig of the inner gear 20.
  • the inner gear 20 is eccentric with respect to the outer gear 30 in an eccentric direction De as a radial direction of the outer gear 30.
  • the outer gear 30 is capable of rotating in the rotational direction Rog around the outer center line Cog that is eccentric from the inner center line Cig in conjunction with the inner gear 20.
  • the outer gear 30 has a plurality of inner teeth 32 a arranged at equal intervals in the rotation direction Rog in the inner peripheral portion 32.
  • the number of the inner teeth 32 a in the outer gear 30 is set to be one more than the number of the outer teeth 24 a in the inner gear 20.
  • the number of inner teeth 32a is ten and the number of outer teeth 24a is nine.
  • the inner gear 20 meshes with the outer gear 30 by relative eccentricity in the eccentric direction De.
  • the angles formed by the eccentric direction De with the center of the inner gear 20 intersecting the inner center line Cig as the apex are defined as the declination angles ⁇ e1 and ⁇ e2.
  • both gears 20 and 30 mesh with a small gap.
  • a plurality of pump chambers 40 are formed between the gears 20 and 30 at locations where the deflection angles ⁇ e1 and ⁇ e2 are large.
  • the outer gear 30 and the inner gear 20 are rotated so that the volume thereof is expanded and contracted.
  • the range in which the deflection angle ⁇ e1 of the gear accommodating chamber 70a slightly exceeds 180 ° from the 0 ° to the drive rotation side is an intake area AR1 used for fuel intake in accordance with the expansion of the pump chamber 40. It has become.
  • the range where the declination angle ⁇ e2 excluding the suction area AR1 is less than 180 ° from 0 ° to the opposite side of the driving rotation is reduced according to the reduction of the pump chamber 40. It is a discharge area AR2 used for discharge.
  • the pump housing 70 includes a cylindrical hole-shaped gear housing chamber 70 a that rotatably accommodates both the gears 20 and 30 by superimposing the pump cover 71 and the pump casing 80 in the axial direction Da. It is defined. Accordingly, the pump housing 70 sandwiches both the gears 20 and 30 from both sides in the axial direction Da, thereby forming a pair of sliding surfaces 72 and 82 on which the both gears 20 and 30 slide in a planar shape. .
  • the pump cover 71 shown in FIGS. 1 and 4 to 6 is a component of the pump housing 70.
  • the pump cover 71 is formed in a disk shape having wear resistance by performing a surface treatment such as plating on a base material made of a metal having rigidity such as a steel material.
  • the pump cover 71 projects outward from the opposite end of the pump body 2 with the electric motor 3 sandwiched in the axial direction Da.
  • the pump cover 71 has a joint housing chamber 71 b for housing the joint member 60.
  • the joint accommodating chamber 71b is recessed along the axial direction Da from the sliding surface 72 of the pump cover 71 at a location facing the inner gear 20 on the inner center line Cig.
  • the joint accommodating chamber 71b communicates with the gear accommodating chamber 70a to accommodate the main body 62 of the joint member 60 in a rotatable manner.
  • a thrust bearing 52 is fitted and fixed to the bottom of the joint accommodating chamber 71b on the inner center line Cig in order to support the rotating shaft 3a in the axial direction Da.
  • the pump cover 71 has a suction port portion 74 for sucking fuel from the outside to the inside of the gear housing chamber 70a on the outer peripheral side from the joint housing chamber 71b.
  • the suction port portion 74 has an extending groove 75, a plurality of opening holes 77a, 77b, 77c, 77d, and 77e, and a plurality of ribs 78a, 78b, 78c, and 78d.
  • the extending groove 75 has a sliding surface 72 that is the same as the sliding surface in which the joint housing chamber 71b is recessed at a position facing the pump chamber 40 located in the suction area AR1 in the gear housing chamber 70a. It is formed to be recessed from.
  • the extending groove 75 has an arcuate groove shape extending along the circumferential direction of the pump cover 71. More specifically, the inner peripheral contour 75a of the extending groove 75 extends to a length less than a half circumference along the rotation direction Rig. The outer peripheral contour 75b of the extending groove 75 extends to a length less than a half periphery along the rotation direction Rog.
  • the extending groove 75 is widened from the start end portion 75c toward the drive rotation end portion 75d.
  • the extending groove 75 is widened from the small declination side where the declination ⁇ e1 is small toward the large declination side where the declination ⁇ e1 is large.
  • an inclined surface 75e that is inclined with respect to the sliding surface 72 and has a predetermined width adjacent to the contours 75a and 75b is a flat groove bottom surface 75f. It is formed to be connected to Here, the groove depth, which is the height difference from the sliding surface 72 to the groove bottom surface 75 f, is made smaller than the width at the starting end portion 75 c of the extending groove 75.
  • the opening holes 77a to 77e are open to the extending groove 75 from the outside of the gear housing chamber 70a.
  • each of the opening holes 77a to 77e is formed in a cylindrical hole shape that penetrates the pump cover 71 along the axial direction Da.
  • the entire cylinder end surface EFo opens to the outside of the fuel pump 100 as the outside of the gear housing chamber 70a.
  • the entire cylinder end surface EFi opens into the extending groove 75 on the inner side of each of the opening holes 77a to 77e.
  • the inner diameter Dh in each of the opening holes 77a to 77e is substantially constant at each location from the outer side to the inner side as shown in FIG.
  • the hole length Lh is set larger than the inner diameter Dh.
  • the suction port portion 74 is provided with five opening holes 77a to 77e.
  • the ribs 78a to 78d are disposed between the opening holes 77a to 77e adjacent to the both sides in the extending direction on the opposite side of the extending groove 75 from the gear accommodating chamber 70a.
  • Each of the ribs 78a to 78d functions as a partition between the opening holes 77a to 77e and has a function of reinforcing the pump cover 71.
  • the number of the ribs 78a to 78d is one less than the number of the opening holes 77a to 77e. Particularly, the number of the ribs 78a to 78d is four.
  • the ribs 78a to 78d are formed so that the minimum widths Wr thereof are substantially equal to each other.
  • the portions having the minimum width Wr of the ribs 78a to 78d are located on virtual lines connecting the centers of the adjacent opening holes 77a to 77e on both sides.
  • Such opening holes 77a to 77e and ribs 78a to 78d form an array structure 76 that is alternately arranged one by one along the extending direction of the extending groove 75. Accordingly, each of the ribs 78a to 78d is formed so as to connect the inner peripheral contour 75a and the outer peripheral contour 75b of the extending groove 75 along the width direction of the extending groove 75. Each of the ribs 78a to 78d is formed in a column shape along the opening holes 77a to 77e adjacent to both sides in the extending direction from the outer cylinder end surface EFo to the inner cylinder end surface EFi.
  • the side surface 79a facing each side in the extending direction of each of the ribs 78a to 78d has a cylindrical concave shape.
  • Each of the opening holes 77a to 77e is open on the inner side of the extending groove 75 than the inner and outer peripheral contours 75a and 75b of the extending groove 75. Accordingly, the inner diameter Dh of each opening hole 77a to 77e is set smaller than the width of the extending groove 75 where the opening holes 77a to 77e are disposed. More specifically, each of the opening holes 77a to 77e opens so as to reach the inclined surfaces 75e on both sides in the width direction. Thus, the inclined surface 75e has a shape lacking a part due to the openings of the opening holes 77a to 77e.
  • the inner diameter Dh and the opening area of each of the opening holes 77a to 77e arranged in the suction port portion 74 are set in accordance with the width of the extending groove 75 that widens from the small deflection angle side toward the large deflection angle side.
  • the width of the extending groove 75 that widens from the small deflection angle side toward the large deflection angle side.
  • the inner diameter Dh of the first opening hole 77a is the largest as shown in FIGS.
  • the inner diameter Dh of the second opening hole 77b is smaller than the inner diameter Dh of the first opening hole 77a and larger than the inner diameter Dh of the third to fifth opening holes 77c to 77e.
  • the inner diameter Dh of the third opening hole 77c is substantially equal to the inner diameter Dh of the fourth opening hole 77d.
  • the inner diameter Dh of the third to fourth opening holes 77c to 77d is smaller than the inner diameter Dh of the first and second opening holes 77a to 77b and larger than the inner diameter Dh of the fifth opening hole 77e. Therefore, the inner diameter Dh of the fifth opening hole 77e is the smallest.
  • the opening area of the opening holes 77a to 77e to the extending groove 75 corresponds to the area of the cylinder end surface EFi in the cylindrical opening holes 77a to 77e, it corresponds to the inner diameter Dh of each of the opening holes 77a to 77e. Yes.
  • the opening area of the opening hole 77a located at the position where the deflection angle ⁇ e1 is the largest among the opening holes 77a to 77e is larger than the opening area of the other opening holes 77b to 77e. .
  • the opening areas of specific opening holes 77a to 77b and 77d are the opening areas of the opening holes 77b to 77c adjacent to each other with the ribs 78a to b and d sandwiched on the small declination side. Is bigger than.
  • the relationship with the opening hole 77e corresponds to this opening area relationship.
  • the array structure 76 is formed from the terminal end 75d where the deflection angle ⁇ e1 is 90 ° or more in the extending groove 75 to a predetermined boundary position Pb where the deflection angle ⁇ e1 is less than 90 °.
  • the bottom surface extending portion 75g is formed by the groove bottom surface 75f extending from the boundary position Pb to the starting end portion 75c without forming the array structure 76.
  • the pump casing 80 shown in FIGS. 1 and 7 to 9 is a component part of the pump housing 70.
  • the pump casing 80 is formed in a bottomed cylindrical shape having wear resistance by performing a surface treatment such as plating on a base material made of a metal having rigidity such as a steel material.
  • the opening 80 c of the pump casing 80 is covered with the pump cover 71 so as to be closed over the entire circumference.
  • the inner peripheral portion 80d of the pump casing 80 is formed in a cylindrical hole shape that is eccentric from the inner center line Cig and coaxial with the outer center line Cog.
  • a radial bearing 50 is fitted and fixed on the inner center line Cig of the concave bottom portion 80e of the pump casing 80 in order to radially support the rotating shaft 3a of the electric motor 3 passing through the concave bottom portion 80e. .
  • the pump casing 80 has a discharge port portion 84 for discharging fuel from the inside of the gear housing chamber 70a to the outside on the outer peripheral side of the radial bearing 50.
  • the discharge port portion 84 has an extending groove 85, a plurality of opening holes 87a, 87b, 87c, 87d, 87e, and a plurality of ribs 88a, 88b, 88c, 88d.
  • the extending groove 85 is a sliding surface that constitutes a part of the concave bottom 80e of the pump casing 80 at a location facing the pump chamber 40 located in the discharge area AR2 in the gear housing chamber 70a. It is recessed from 82.
  • the extending groove 85 has an arcuate groove shape extending along the circumferential direction of the pump casing 80. More specifically, the inner peripheral contour 85a of the extending groove 85 extends to a length less than a half circumference along the rotation direction Rig.
  • the outer peripheral contour 85b of the extending groove 85 extends to a length less than a half periphery along the rotation direction Rog.
  • the extending groove 85 is reduced in width toward the end portion 85d on the drive rotation side from the start end portion 85c.
  • the extending groove 85 is widened from the small deflection angle side where the deflection angle ⁇ e2 is small toward the large deflection angle side where the deflection angle ⁇ e2 is large.
  • an inclined surface 85e that is inclined with respect to the sliding surface 82 and has a predetermined width adjacent to the contours 85a to 85b is a flat groove bottom surface 85f. It is formed to be connected to Here, the groove depth, which is the height difference from the sliding surface 82 to the groove bottom surface 85f, is made smaller than the width at the terminal end portion 85d of the extending groove 85.
  • the opening holes 87a to 87e are open to the extending groove 75 from the outside of the gear housing chamber 70a.
  • each of the opening holes 87a to 87e is formed in a cylindrical hole shape that penetrates the pump casing 80 along the axial direction Da.
  • the entire cylinder end surface EFo opens to the outside of the fuel pump 100 as the outside of the gear housing chamber 70a.
  • the entire cylinder end surface EFi opens into the extending groove 85 on the inner side of each of the opening holes 87a to 87e.
  • the inner diameter Dh in each of the opening holes 87a to 87e is substantially constant at each location from the outer side to the inner side, as shown particularly in FIG.
  • the hole length Lh is set larger than the inner diameter Dh.
  • the discharge port portion 84 is provided with five opening holes 87a to 87e.
  • the ribs 88a to 88d are disposed between the opening holes 87a to 87e adjacent to the both sides in the extending direction on the opposite side of the extending groove 85 from the gear accommodating chamber 70a.
  • Each of the ribs 88a to 88d functions as a partition wall between the opening holes 87a to 87e and has a function of reinforcing the pump casing 80.
  • the number of the ribs 88a to 88d is one less than the number of the opening holes 87a to 87e.
  • the ribs 78a to 78d are formed so that the minimum widths Wr thereof are substantially equal to each other.
  • Such opening holes 87a to 87e and ribs 88a to 88d form an array structure 86 that is alternately arranged one by one along the extending direction of the extending groove 85. Accordingly, each of the ribs 88a to 88d is formed so as to connect the inner peripheral contour 85a and the outer peripheral contour 85b of the extending groove 85 along the width direction of the extending groove 85. Each of the ribs 88a to 88d is formed in a column shape along the opening holes 87a to 87e adjacent to both sides in the extending direction from the outer cylinder end surface EFo to the inner cylinder end surface EFi.
  • a side surface 89a facing each side in the extending direction of each rib is a cylindrical concave shape.
  • Each of the opening holes 87a to 87e is open on the inner side of the extending groove 85 than the inner and outer peripheral contours 85a and 85b of the extending groove 85. Accordingly, the inner diameter Dh of each of the opening holes 87a to 87e is set smaller than the width of the extending groove 85 where the opening holes 87a to 87e are disposed. More specifically, each of the opening holes 87a to 87e opens so as to reach the inclined surfaces 85e on both sides in the width direction. As a result, the inclined surface 85e has a shape lacking a part due to the openings of the opening holes 87a to 87e.
  • the inner diameter Dh and the opening area of each of the opening holes 87a to 87e arranged in the discharge port portion 84 are in accordance with the width of the extending groove 85 that is reduced in width from the large declination side to the small declination side. Is set. Comparing each of the opening holes 87a to 87e, as shown in FIGS. 7 and 8 in particular, the inner diameter Dh of the first opening hole 87a counted from the large deflection angle side is the largest.
  • the inner diameter Dh of the second opening hole 87b is smaller than the inner diameter Dh of the first opening hole 87a and larger than the inner diameter Dh of the third to fifth opening holes 87c to 87e.
  • the inner diameter Dh of the third opening hole 87c is substantially equal to the inner diameter Dh of the fourth opening hole 87d.
  • the inner diameter Dh of the third to fourth opening holes 87c to 87d is smaller than the inner diameter Dh of the first and second opening holes 87a to 87b and larger than the inner diameter Dh of the fifth opening hole 87e. Therefore, the inner diameter Dh of the fifth opening hole 87e is the smallest.
  • the opening area of the opening holes 87a to 87e to the extending groove 85 corresponds to the area of the cylinder end surface EFi in the cylindrical opening holes 87a to 87e, it corresponds to the inner diameter Dh of each of the opening holes 87a to 87e. Yes.
  • the opening area of the opening hole 87a located at the position where the deflection angle ⁇ e2 is the largest among the opening holes 87a to 87e is larger than the opening areas of the other opening holes 87b to 87e. .
  • the opening areas of specific opening holes 87a to 87b, and the opening areas of the adjacent opening holes 87b to 87c, e sandwiching the ribs 88a to 88b on the small declination side. Is bigger than.
  • the relationship with the opening hole 87e corresponds to this opening area relationship.
  • this array structure 86 is formed from the starting end portion 85c of the extending groove 85 where the deflection angle ⁇ e2 is 90 ° or more to a predetermined boundary position Pb where the deflection angle ⁇ e2 is less than 90 °.
  • the bottom structure 85g is formed because the groove bottom surface 85f of the extending groove 85 extends from the boundary position Pb to the terminal end portion 85d without forming the array structure 86. Has been.
  • the suction port part 74 and the discharge port part 84 are compared with each other with reference to FIGS.
  • the first opening hole 77a of the suction port portion 74 and the first opening hole 87a of the discharge port portion 84 have substantially the same inner diameter Dh and substantially the same opening area.
  • the nth opening holes 77a to 77e from the large deflection angle side of the suction port portion 74 and the nth opening holes 84a to 84e from the large deflection angle side of the discharge port portion 84 are substantially It has the same inner diameter ID and substantially the same opening area.
  • the sum of the opening areas of the plurality of opening holes 77a to 77e in the suction port portion 74 is equal to the sum of the opening areas of the plurality of opening holes 87a to 87e in the discharge port portion 84.
  • the extension groove 75 is projected in the axial direction Da as shown in FIG. 7, particularly at a position facing the extension groove 75 of the suction port part 74 across the pump chamber 40.
  • a suction groove 80a having an arc groove shape is formed.
  • the suction facing groove 80a is recessed from the sliding surface 82 and opens toward the gear housing chamber 70a.
  • the extending groove 85 of the discharge port portion 84 is provided with the suction facing groove 80a and its outlines 85a and 85b substantially symmetrical with respect to the line.
  • the extending groove 85 of the discharge port portion 84 and the suction facing groove 80a are separated by the sliding surface 82.
  • an inner diameter corner portion 80 f that is on the outer peripheral side of the discharge port portion 84 and the suction facing groove 80 a in the concave bottom portion 80 e of the pump casing 80 and that faces the outer peripheral portion 34 of the outer gear 30, extends axially from the sliding surface 82.
  • An annular groove 80b that is recessed in Da is formed. The annular groove 80b is formed by connecting the suction area AR1 on the outer peripheral side with respect to the suction opposing groove 80a and the discharge area AR2 on the outer peripheral side with respect to the discharge port portion 84 over the entire periphery.
  • the pump cover 71 has a shape in which the extending groove 85 is projected in the axial direction Da at a position facing the extending groove 85 of the discharge port portion 84 with the pump chamber 40 interposed therebetween.
  • a discharge groove 71a having an arc groove shape is formed.
  • the discharge facing groove 71 a is recessed from the sliding surface 72 and opens to the gear housing chamber 70 a side of the pump cover 71.
  • the extending groove 75 of the suction port portion 74 is provided with the discharge facing groove 71a and its outlines 75a to 75b substantially symmetrical with respect to the joint housing chamber 71b.
  • the extending groove 75 of the suction port portion 74 and the discharge facing groove 71 a are separated by the sliding surface 72.
  • the inner gear 20 is formed with a thickness dimension slightly smaller than the dimension between the pair of sliding surfaces 72 and 82. is doing.
  • the inner gear 20 has its inner peripheral portion 22 radially supported by the radial bearing 50 and is also supported by a pair of sliding surfaces 82 and 82 on both sides in the axial direction Da.
  • the outer gear 30 has an outer diameter slightly smaller than the inner diameter of the pump casing 80. At the same time, the outer gear 30 is formed so that its thickness dimension is slightly smaller than the dimension between the pair of sliding surfaces 72 and 82. Thus, the outer gear 30 has its outer peripheral portion 34 supported by the inner peripheral portion 80d of the pump casing 80, and both sides in the axial direction Da are supported by the pair of sliding surfaces 72 and 82.
  • the volume of the pump chamber 40 increases in the pump chamber 40 that communicates with the suction port portion 74 and the suction facing groove 80a.
  • the fuel is sucked into the pump chamber 40 in the gear housing chamber 70a through the respective opening holes 77a to 77e of the suction port portion 74.
  • the ribs 78a to 78d provided between the opening holes 77a to 77e opened in the extending groove 75 recessed from the sliding surface 72 are opposed to the pump chamber 40 through the space of the extending groove 75. Therefore, when the pump chamber 40 faces each of the ribs 78a to 78d, the intake of fuel from the opening holes 77a to 77e adjacent to both sides in the extending direction is continued.
  • the fuel that is sequentially sucked into the pump chamber 40 in the gear housing chamber 70 a through the suction port portion 74 and then discharged through the discharge port portion 84 passes through the fuel passage 6 from the discharge outlet 5 b of the side cover 5. It is discharged to the outside of 100.
  • the fuel pressure of the fuel passing through the discharge port portion 84 becomes higher than the fuel pressure of the fuel passing through the suction port portion 74 due to the pump action described above.
  • the opening holes 77a to e or 87a to e and the ribs 78a to d or 88a to d are along the extending direction of the extending groove 75 or 85. They are arranged alternately.
  • a plurality of the opening holes 77a to 77e or 87a to e are provided to open to the extending grooves 75 or 85 from the outside of the gear housing chamber 70a, and the ribs 78a to d or 88a to d are formed of the opening holes 77a to e or 87a to 87a. e.
  • the rigidity of the pump housing 70 can be improved even if a plurality of opening holes 77a to 77e or 87a to 87e are provided.
  • the extending grooves 75 or 85 having the plurality of opening holes 77a to 77e or 87a to 87e are formed on the sliding surface at locations facing the pump chamber 40 formed between the outer gear 30 and the inner gear 20. It is recessed from 72 or 82 and is provided extending along the circumferential direction of the pump housing 70. The volume of each pump chamber 40 facing the extending groove 75 or 85 expands or contracts according to the rotation of both gears 20 and 30. Due to this expansion / contraction, the fuel is sucked into the gear housing chamber 70a and then discharged.
  • the fuel is directly drawn into or discharged from the corresponding opening holes 77a to e or 87a to e into the pump chamber 40 facing the opening holes 77a to e or 87a to e.
  • the extending grooves 75 or 85 are formed in the opening holes 77a to e or 87a to e on both sides of the ribs 78a to d or 88a to d. Fuel is sucked or discharged through the space.
  • suction or discharge can be continuously performed in each pump chamber 40 facing the port portion 74 or 84, suction or discharge utilizing the expansion or contraction of the volume of the pump chamber 40 is realized. Therefore, the fuel pump 100 with high pump efficiency can be provided.
  • the opening area of the opening hole 77a or 87a located at the position where the declination is the largest among the opening holes 77a to e or 87a to e arranged in each other is the same as each other opening. It is larger than the opening area of the holes 77b to e or 87b to e. According to this, since suction or discharge can be performed in accordance with the volume of the pump chamber 40 which is large at a location where the deflection angle is large, the expansion and contraction of the volume of the pump chamber 40 can be effectively utilized to increase pump efficiency. be able to.
  • the opening area of the specific opening holes 77a to 77d or 87a to 87b is adjacent to the small declination side with the ribs 78a to 82b or 88a to 88b interposed therebetween.
  • the relationship is large with respect to the opening areas of the matching opening holes 77b to c, e or 87b to c, e.
  • the small declination side is small and the large declination side is large, so that suction or discharge in accordance with expansion or contraction of the volume of the pump chamber 40 is possible.
  • the specific opening holes 77a to b, d or 87a to b, d and the adjacent opening holes 77b to c, e or 87b to c, e As a result, the flow rate of the passing fuel becomes close.
  • the fuel is located between the specific opening holes 77a to 77d and 87a to 87b, and the adjacent opening holes 77b to 77c, 87b to 87c, or 87b to 87c.
  • more direct suction or discharge with the opposing pump chamber 40 is performed. Therefore, the suction or discharge of the fuel becomes smoother and the pump efficiency increases.
  • the extending groove 75 or 85 widens from the small deflection angle side toward the large deflection angle side, and the opening area of each of the opening holes 77a to 77a or 87a to 87e It is set according to the width of 85.
  • the opening area is set in accordance with the pump chamber 40 in which the volume increases as the declination angle ⁇ e1 or ⁇ e2 increases, the flow velocity of the fuel passing through each of the opening holes 77a to 87a or 87a to 87e can be made closer.
  • the entire cylindrical end face EFi opens into the extending groove 75 or 85 in the cylindrical opening holes 77a to 77e or 87a to 87e. For this reason, compared with the case where only a part of the cylinder end surface EFi is open, the generation of cavitation due to a rapid pressure change at the opening location is suppressed, and more direct suction or discharge with the opposing pump chamber 40 is performed. Done. Therefore, the pump efficiency is increased.
  • the opening holes 77a to e or 87a to e are cylindrical holes, the flow rate is increased with respect to the cross-sectional area of the opening holes 77a to e or 87a to e, and the fuel is sucked or discharged. be able to.
  • the side surfaces 79a or 89a of the ribs 78a to d or 88a to d between the opening holes 77a to e or 87a to e can be formed in a cylindrical concave shape, the ribs 78a to d or 88a to d can be formed at specific positions. By suppressing the stress concentration, the strength of the ribs 78a-d or 88a-d can be increased.
  • each of the opening holes 77a to e or 87a to e is opened on the inner side of the outline 75a to b or 85a to b of the extending groove 75 or 85.
  • the joint accommodation chamber 71b that accommodates the joint member 60 has the same sliding surface 72 as the sliding surface in which the extending groove 75 in which the opening holes 77a to 77e and the ribs 78a to 78d are recessed is recessed. Is recessed from. Even in the pump housing 70 in which the rigidity is liable to be reduced by the joint housing chamber 71b, a plurality of ribs 78a to 78d are provided on the extending groove 75 side recessed from the same sliding surface 72 as the joint housing chamber 71b. Therefore, the decrease in the rigidity can be suppressed. Therefore, an increase in sliding resistance accompanying deformation of the sliding surface 72 in which the joint housing chamber 71b is recessed can be suppressed, and a fuel pump with high pump efficiency can be provided.
  • the arrangement structure 76 or 86 of the opening holes 77a to e or 87a to e and the ribs 78a to d or 88a to d arranged alternately is provided with the suction port portion 74 and the discharge port portion 84.
  • each pump chamber 40 facing the suction port portion 74 can continuously perform suction
  • each pump chamber 40 facing the discharge port portion 84 can perform discharge continuously. In this way, suction and discharge utilizing the expansion and contraction of the volume of the pump chamber 40 are realized, and the pump efficiency is increased.
  • the sum of the opening areas of the plurality of opening holes 77a to 77e in the suction port portion 74 is equal to the sum of the opening areas of the plurality of opening holes 87a to 87e in the discharge port portion 84.
  • the minimum widths Wr of the ribs 78a to 78d or 88a to 88d arranged with each other are equal to each other.
  • the rigidity of the port portion 74 or 84 is homogenized in the circumferential direction of the pump housing 70, and for example, it is possible to prevent stress from concentrating on one rib 78a to d or 87a to 87d and serving as a starting point of deformation.
  • the second embodiment is a modification of the first embodiment.
  • the second embodiment will be described with a focus on differences from the first embodiment.
  • the suction port portion 274 and the discharge port portion 284 of the fuel pump in the second embodiment will be compared.
  • the inner diameter Dh1 of the first opening hole 277a of the suction port portion 274 is larger than the inner diameter Dh2 of the first opening hole 287a of the discharge port portion 284.
  • a similar relationship with respect to the inner diameter Dh is also established between the second to fifth opening holes 277 b to e of the suction port portion 274 and the second to fifth opening holes 287 b to e of the discharge port portion 284.
  • the inner diameter Dh of the nth opening hole 277a-e from the large deflection angle side of the suction port portion 274 is equal to that of the nth opening hole 287a-e from the large deflection angle side of the discharge port portion 284. It is larger than the inner diameter Dh.
  • the opening area of the first opening hole 277a of the suction port portion 274 is larger than the opening area of the first opening hole 287a of the discharge port portion 284.
  • the same relationship regarding the opening area is established between the second to fifth opening holes 277b to e of the suction port portion 274 and the second to fifth opening holes 287b to 287b of the discharge port portion 284, respectively.
  • the opening area of the nth opening hole 277a-e from the large deflection angle side of the suction port portion 274 is larger than the opening area of the nth opening hole 287a-e from the large deflection angle side of the discharge port portion 284. It has become.
  • the sum of the opening areas of the plurality of opening holes 277a to 277e in the suction port portion 274 is larger than the sum of the opening areas of the plurality of opening holes 287a to 287e in the discharge port portion 284.
  • the opening holes 277a to e and the ribs 278a to d are alternately arranged along the extending direction of the extending groove 75. Also in the discharge port portion 284, the opening holes 287 a to e and the ribs 288 a to d are alternately arranged along the extending direction of the extending groove 85. Therefore, it is possible to achieve the operational effects according to the first embodiment.
  • the sum of the opening areas of the plurality of opening holes 277a to 277e in the suction port portion 274 is larger than the sum of the opening areas of the plurality of opening holes 287a to 287e in the discharge port portion 284.
  • one of the suction port portions 274 can suck a larger amount of fuel from the opening holes 277a to 277e.
  • the rigidity of the pump housing 70 can be increased by not opening the opening holes 287a to 287e more than necessary with respect to the suction capability of the suction port portion 274, so that the pump efficiency is increased.
  • the inner diameter Dh may be different in each part from the outer side to the inner side of the gear housing chamber 70a. Good.
  • each of the opening holes 77a to 77e of the suction port portion 74 is formed such that the inner diameter Dh gradually decreases from the outside to the inside.
  • some or all of the opening holes 77a-e and 87a-e may be formed in a rectangular tube hole shape, a triangular tube hole shape, or the like other than the cylindrical hole shape.
  • some or all of the opening holes 77a to 77e and 87a to 87e are formed on the outer peripheral contours 75a and 85a or the outer peripheral contours 75b and 85b.
  • the part may protrude and open.
  • the opening area may be larger than the opening area of adjacent opening holes 77b to e or 78b to e sandwiching the ribs 78a to d or 88a to d on the small deflection angle side.
  • the opening areas of the opening holes 77b to e or 87b to e other than the opening hole 77a or 87a on the most declination side among the opening holes 77a to 87e or 87a to e arranged with each other are as follows: You may be larger than the opening area of the other opening hole arranged mutually.
  • the number of the opening holes 77a to 77e in the suction port portion 74 may be three, four, or six or more.
  • the number of the opening holes 87a to 87e in the discharge port portion 84 may be three, four, six, or more.
  • the number of the opening holes 77a to 77e in the suction port portion 74 may be different from the number of the opening holes 87a to 87e in the discharge port portion 84.
  • the number of ribs 78a to 78d in the suction port portion 74 may be different from the number of ribs 88a to d in the discharge port portion 84.
  • one of the suction port portion 74 and the discharge port portion 84 includes an opening hole 77a to e or 87a to e and a rib 78a to d or 88a to d along the extending direction of the extending groove 75 or 85.
  • the arrangement structure 76 or 86 to be arranged may not be formed.
  • the suction port portion 74 and the discharge port portion 84 may be provided on the same side in the axial direction Da with respect to the gear housing chamber 70a.
  • the fuel pump 100 may not include the joint member 60, and the pump housing 70 may not include the joint housing chamber 71b.
  • the rotating shaft 3a and the inner gear 20 are directly connected can be cited.
  • the pump housing 70 may be partially or entirely formed of aluminum, or may be formed of a material other than metal, such as a synthetic resin.
  • the fuel pump 100 may be a pump that sucks and discharges gasoline other than light oil or liquid fuel based on these as fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

ポンプハウジング(70)は、アウタギヤ(30)及びインナギヤ(20)を両側から挟むことでそれら両ギヤ(20,30)が摺動する一対の摺動面(72,82)と、ギヤ収容室(70a)の外部から内部へと燃料を吸入する吸入ポート部(74,274)と、ギヤ収容室の内部から外部へと燃料を吐出する吐出ポート部(84,284)と、を有する。吸入ポート部及び吐出ポート部のうち少なくとも一方は、ポンプ室(40)と対向する箇所において、摺動面から凹んでポンプハウジングの周方向に沿って延伸する延伸溝(75,85)と、ギヤ収容室の外部から延伸溝に開口する複数の開口穴(77a~77e,87a~87e,277a~277e,287a~287e)と、開口穴間に配置される複数のリブ(78a~78d,88a~88d,277a~277d,288a~288d)と、を有する。開口穴とリブとは延伸溝の延伸方向に沿って交互に配列されている。

Description

燃料ポンプ 関連出願の相互参照
 本出願は、2015年11月3日に出願された日本特許出願番号2015-216225号に基づくもので、ここにその記載内容を援用する。
 本開示は、燃料をギヤ収容室に吸入してから吐出する燃料ポンプに関する。
 従来、燃料をギヤ収容室に吸入してから吐出する燃料ポンプが知られている。特許文献1に開示の燃料ポンプは、内歯を複数有するアウタギヤと、外歯を複数有し、アウタギヤに対して偏心して噛合するインナギヤと、アウタギヤ及びインナギヤが回転可能に収容されるギヤ収容室を画成するポンプハウジングと、を備える。燃料ポンプは、アウタギヤ及びインナギヤがそれら両ギヤ間に複数形成されたポンプ室の容積を拡縮させつつ回転することにより、燃料をギヤ収容室に吸入してから吐出するのである。
 より詳細に、特許文献1に開示のポンプハウジングは、アウタギヤ及びインナギヤを両側から挟むことで、それら両ギヤが摺動する一対の摺動面と、ギヤ収容室の外部から内部へと、燃料を吸入する吸入ポート部と、ギヤ収容室の内部から外部へと、燃料を吐出する吐出ポート部と、を有している。
 さらに、吸入ポート部及び吐出ポート部は、ギヤ収容室の外部から摺動面のポンプ室と対向する箇所に開口する2つの開口穴と、この2つの開口穴間に配置される1つのリブと、を有している。
特開2004-301044号公報
 さて、燃料ポンプにおいて、摺動面の変形が、例えば製造時における燃料ポンプ各部品の組み付けにおいて、また例えば使用時における温度変化によって、発生し得る。しかしながら、特許文献1のリブによれば、ポンプハウジングの剛性が向上するので、摺動面の変形が抑制され、アウタギヤ及びインナギヤが回転する際の摺動抵抗が抑制される。
 その一方で、特許文献1における開口穴は、摺動面に直接開口しており、開口穴間のリブは、摺動面の一部を構成している。したがって、リブと対向するポンプ室における燃料の吸入又は吐出は、リブによって妨げられ、ポンプ効率の低下を招いていた。
 本開示は、以上説明した問題に鑑みてなされたものであって、その目的は、ポンプ効率の高い燃料ポンプを提供することにある。
 上記目的を達成するため、本開示の1つの態様は、内歯を複数有するアウタギヤと、外歯を複数有し、アウタギヤに対して偏心方向に偏心して噛合するインナギヤと、アウタギヤ及びインナギヤが回転可能に収容されるギヤ収容室を画成するポンプハウジングと、を備え、アウタギヤ及びインナギヤがそれら両ギヤ間に複数形成されたポンプ室の容積を拡縮させつつ回転することにより、燃料をギヤ収容室に吸入してから吐出する燃料ポンプであって、ポンプハウジングは、アウタギヤ及びインナギヤを両側から挟むことで、それら両ギヤが摺動する一対の摺動面と、ギヤ収容室の外部から内部へと、燃料を吸入する吸入ポート部と、ギヤ収容室の内部から外部へと、燃料を吐出する吐出ポート部と、を有し、吸入ポート部及び吐出ポート部のうち少なくとも一方は、ポンプ室と対向する箇所において、摺動面から凹んでポンプハウジングの周方向に沿って延伸する延伸溝と、ギヤ収容室の外部から延伸溝に開口する複数の開口穴と、開口穴間に配置される複数のリブと、を有し、開口穴とリブとは、延伸溝の延伸方向に沿って交互に配列されている。
 このような態様によると、吸入ポート部及び吐出ポート部のうち少なくとも一方において、開口穴とリブとは、延伸溝の延伸方向に沿って交互に配列されている。この開口穴は、ギヤ収容室の外部から延伸溝に開口する複数設けられ、リブは、これら開口穴間に配置される。こうした交互配列により、開口穴を複数設けたとしても、ポンプハウジングの剛性を向上させることができる。
 このように複数の開口穴が開口された延伸溝は、アウタギヤとインナギヤとの間に複数形成されたポンプ室と対向する箇所において、摺動面から凹んでポンプハウジングの周方向に沿って延伸して設けられる。こうした延伸溝と対向した各ポンプ室の容積が両ギヤの回転に応じて拡縮する。この拡縮によって燃料は、ギヤ収容室に吸入されてから吐出される。
 ここで、開口穴と対向するポンプ室には、対応する開口穴に対して燃料が直接的に吸入又は吐出される。また一方、リブと対向するポンプ室には、リブの両側の開口穴に対して、延伸溝の空間を通じて燃料が吸入又は吐出される。こうして、ポート部と対向する各ポンプ室において吸入又は吐出を連々と行なうことができるので、ポンプ室の容積の拡縮を上手く活用した吸入又は吐出が実現される。したがって、ポンプ効率の高い燃料ポンプを提供することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態における燃料ポンプを示す部分断面正面図である。 第1実施形態におけるジョイント部材を示す正面図である。 図1のIII-III線断面図である。 図1のIV方向にポンプカバーを見た平面図である。 図1のV方向にポンプカバーを見た平面図である。 図4,5のVI-VI線断面図である。 図1のVII方向にポンプケーシングを見た平面図である。 図1のVIII方向にポンプケーシングを見た平面図である。 図7,8のIX-IX線断面図である。 第2実施形態における吸入ポート部の各開口穴と吐出ポート部の各開口穴を比較するための図であって、図10(a)は吸入ポート部、図10(b)は吐出ポート部をそれぞれ示している。 変形例1における図6に対応する図である。
 以下、複数の実施形態を図面に基づいて説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。
(第1実施形態)
 第1実施形態による燃料ポンプ100は、図1に示すように、容積式のトロコイドポンプである。また、燃料ポンプ100は、車両に搭載され、内燃機関の燃焼に用いる燃料であって、ガソリンよりも粘性の高い軽油を、圧送するために用いられるディーゼルポンプである。燃料ポンプ100は、円環状のポンプボディ2内部に収容された電動モータ3、ポンプ本体10、及び電動モータ3を軸方向Daに挟んでポンプ本体10とは反対側から外部に張り出したサイドカバー5を主体として構成されている。
 こうした燃料ポンプ100では、サイドカバー5の電気コネクタ5aを介した外部回路からの通電により、電動モータ3の回転軸3aが回転駆動される。回転軸3aの駆動力を利用して、ポンプ本体10のアウタギヤ30及びインナギヤ20が回転する。これにより、両ギヤ20,30が収容されている円筒状のギヤ収容室70aに吸入され、加圧された燃料は、ギヤ収容室70a外の燃料通路6を通じて、サイドカバー5の吐出出口5bから吐出される。
 このような本実施形態の燃料ポンプ100に用いられる電動モータ3は、マグネットを4極、及びコイルを6スロットに形成配置されたインナロータ型のブラシレスモータとなっている。例えば、車両のイグニッションキーをオン状態とする操作がされる、又は車両のアクセルペダルが踏込操作されると、これに応じて電動モータ3にて、駆動回転側又は駆動回転逆側に回転軸3aを回転させる位置決め制御が行なわれる。その後、位置決め制御にて位置決めされた位置から、駆動回転側に回転軸3aを回転させる駆動制御が行なわれる。
 なお、駆動回転側とは、インナギヤ20のインナ中心線Cigを中心とした回転方向Rigの正方向(図3を参照)となる側を示す。また、駆動回転逆側とは、回転方向Rigの負方向(図3を参照)となる側を示す。
 以下図2~9も用いつつ、ポンプ本体10について詳細に説明する。ポンプ本体10は、ジョイント部材60、インナギヤ20、アウタギヤ30、及びポンプハウジング70を備えている。
 図1~3に示すジョイント部材60は、例えばポリフェニレンサルファイド(PPS)樹脂等の合成樹脂により形成され、回転軸3aをインナギヤ20と中継する部材である。ジョイント部材60は、本体部62及び挿入部64を一体的に有している。特に図2に詳細を示すように、本体部62は、円錐台形状に形成され、インナ中心線Cig上に嵌合穴62aを有している。本体部62は、電動モータ3側から反対側へギヤ収容室70aを貫通している回転軸3aの先端部と、嵌合穴62aを介して嵌合された状態となっている。挿入部64は、周方向に等間隔に複数設けられている。各挿入部64は、本体部62の嵌合穴62aよりも外周側箇所から軸方向Daに沿ってギヤ収容室70a側に延伸している形状により、可撓性を有している。
 図1,3に示すインナギヤ20は、それぞれの歯をトロコイド曲線とした、所謂トロコイドギヤとなっている。インナギヤ20は、その中心であるインナ中心線Cigを回転軸3aと共にすることで、ギヤ収容室70a内では偏心して配置されている。
 インナギヤ20は、ジョイント部材60の本体部62と軸方向Daに対向する箇所において、挿入穴26を有している。挿入穴26は、各挿入部64に対応して、周方向に等間隔に複数設けられている。具体的に本実施形態の挿入部64及び挿入穴26は、電動モータ3のトルクリップルの影響を低減するために、当該電動モータ3の極数及びスロット数を避けた数であり、特に素数である5つずつ設けられている。各挿入穴26は、軸方向Daに沿ってインナギヤ20を貫通している。
 各挿入穴26には、それぞれ対応する挿入部64が隙間をあけて挿入されている。回転軸3aが駆動回転側に回転駆動されると、挿入部64が挿入穴26に押し当たることで、当該回転軸3aの駆動力がジョイント部材60を介してインナギヤ20に伝達される。すなわち、インナギヤ20は、インナ中心線Cig周りとなる回転方向Rigへ回転可能となっている。なお、図3では、挿入穴26及び挿入部64の一部にのみ符号が付されている。
 また、インナギヤ20は、図3に示すように、回転方向Rigに等間隔に並ぶ複数の外歯24aを、外周部24に有している。各外歯24aは、歯底から外周側に突出するその歯先を円環状の外接円(歯先円とも呼ばれる)に沿って形成されている。
 図1,3に示すアウタギヤ30も、それぞれの歯をトロコイド曲線とした、所謂トロコイドギヤとなっている。アウタギヤ30は、インナギヤ20のインナ中心線Cigに対して偏心することで、ギヤ収容室70a内では同軸上に配置されている。これによりアウタギヤ30に対しては、当該アウタギヤ30の一径方向としての偏心方向Deにインナギヤ20が偏心している。
 アウタギヤ30は、インナギヤ20と連動して、インナ中心線Cigから偏心したアウタ中心線Cog周りとなる回転方向Rogへ回転可能となっている。アウタギヤ30は、そうした回転方向Rogに等間隔に並ぶ複数の内歯32aを内周部32に有している。ここでアウタギヤ30における内歯32aの数は、インナギヤ20における外歯24aの数よりも1つ多くなるように、設定されている。本実施形態では、内歯32aの数は10つ、外歯24aの数は9つとなっている。
 アウタギヤ30に対してインナギヤ20は、偏心方向Deへの相対的な偏心により噛合している。ここで図3に示すように、軸方向Daと垂直な平面上において、インナ中心線Cigと交わるインナギヤ20の中心を頂点として偏心方向Deとなす角度を偏角θe1,θe2と定義すると、偏角θe1,θe2が小さい箇所では両ギヤ20,30は隙間少なく噛合している。一方、偏角θe1,θe2が大きい箇所では、両ギヤ20,30の間には、ポンプ室40が複数連なって形成されている。
 このようなポンプ室40では、アウタギヤ30及びインナギヤ20が回転することにより、その容積が拡縮するようになっている。例えば本実施形態では、ギヤ収容室70aのうち偏角θe1が0°から駆動回転側に180°を少し越えた範囲は、ポンプ室40の拡大に応じて、燃料の吸入に用いられる吸入エリアAR1となっている。その一方で例えば、ギヤ収容室70aのうち、吸入エリアAR1を除いた、偏角θe2が0°から駆動回転逆側に180°未満である範囲は、ポンプ室40の縮小に応じて、燃料の吐出に用いられる吐出エリアAR2となっている。
 ポンプハウジング70は、図1に示すように、ポンプカバー71とポンプケーシング80とを軸方向Daに重ね合わせることで、両ギヤ20,30を回転可能に収容する円筒穴状のギヤ収容室70aを画成している。これにより、ポンプハウジング70は、両ギヤ20,30を軸方向Daの両側から挟むことで、それら両ギヤ20,30が摺動する一対の摺動面72,82を平面状に形成している。
 図1,4~6に示すポンプカバー71は、ポンプハウジング70の一構成部品である。ポンプカバー71は、鉄鋼材等の剛性を有する金属からなる基材に、めっき等の表面処理を施すことにより、耐摩耗性を有する円盤状に形成されている。ポンプカバー71は、ポンプボディ2のうち電動モータ3を軸方向Daに挟んで反対側端から外部に張り出している。
 ポンプカバー71は、ジョイント部材60を収容するジョイント収容室71bを有している。具体的に、ジョイント収容室71bは、インナ中心線Cig上のインナギヤ20と対向する箇所において、ポンプカバー71の摺動面72から軸方向Daに沿って凹んでいる。ジョイント収容室71bは、ギヤ収容室70aと連通することで、ジョイント部材60の本体部62を回転可能に収容しているのである。また、インナ中心線Cig上のジョイント収容室71b底部には、回転軸3aを軸方向Daに軸受するために、スラスト軸受52が嵌合固定されている。
 ジョイント収容室71bより外周側において、ポンプカバー71は、ギヤ収容室70aの外部から内部へと、燃料を吸入する吸入ポート部74を有している。吸入ポート部74は、延伸溝75、複数の開口穴77a,77b,77c,77d,77e、及び複数のリブ78a,78b,78c,78dを有している。
 延伸溝75は、特に図4に示すように、ギヤ収容室70aのうち吸入エリアAR1に位置するポンプ室40と対向する箇所において、ジョイント収容室71bが凹む摺動面と同一の摺動面72から凹んで形成されている。延伸溝75は、ポンプカバー71の周方向に沿って延伸する円弧溝状を呈している。より詳細に、延伸溝75の内周輪郭75aは、回転方向Rigに沿って半周未満の長さに延伸している。延伸溝75の外周輪郭75bは、回転方向Rogに沿って半周未満の長さに延伸している。
 ここで延伸溝75は、始端部75cから駆動回転側の終端部75dへ向かう程、拡幅している。換言すると、延伸溝75は、偏角θe1が小さな小偏角側から偏角θe1が大きな大偏角側へ向かう程、拡幅している。また、延伸溝75の内周輪郭75a及び外周輪郭75bよりも内側において、当該輪郭75a~bに隣接する所定幅に、摺動面72に対して傾斜する傾斜面75eが平面状の溝底面75fへと接続されるように形成されている。ここで、摺動面72から溝底面75fまでの高低差である溝深さは、延伸溝75の始端部75cにおける幅よりも小さくされている。
 各開口穴77a~eは、ギヤ収容室70aの外部から延伸溝75に開口している。具体的に、各開口穴77a~eは、軸方向Daに沿ってポンプカバー71を貫通する円筒穴状に形成されている。特に図5に示すように、各開口穴77a~eの外部側では、筒端面EFoの全体がギヤ収容室70aの外部としての燃料ポンプ100外部に開口している。特に図4に示すように、各開口穴77a~eの内部側では、筒端面EFiの全体が延伸溝75に開口している。こうして一開口穴77a~eにおける内径Dhは、特に図6に示すように、外部側から内部側までの各箇所において実質一定となっている。また、各開口穴77a~eにおいて穴長さLhは、その内径Dhよりも大きく設定されている。本実施形態では、吸入ポート部74において、開口穴77a~eが5つ設けられている。
 各リブ78a~dは、延伸溝75よりもギヤ収容室70aとは反対側において、それぞれ延伸方向両側に隣接する開口穴77a~e間に配置されている。各リブ78a~dは、各開口穴77a~e間の隔壁として機能すると共に、ポンプカバー71を補強する機能を有している。リブ78a~dは、開口穴77a~eの数よりも1つ少ない数設けられ、特に本実施形態では4つとなっている。また各リブ78a~dは、その最小幅Wrが互いに実質等しくなるように形成されている。なお、リブ78a~dの最小幅Wrとなる箇所は、隣り合う両側の開口穴77a~eの中心を結ぶ仮想直線上に位置する。
 このような開口穴77a~eとリブ78a~dとは、延伸溝75の延伸方向に沿って1つずつ交互に配列されている配列構造76をなしている。したがって各リブ78a~dは、延伸溝75の幅方向に沿って、延伸溝75の内周輪郭75aと外周輪郭75bを接続するように形成されている。また、各リブ78a~dは、外部側の筒端面EFoから内部側の筒端面EFiまでの間、延伸方向両側に隣接する開口穴77a~eに沿う柱状に形成されている。ここで、各開口穴77a~eが円筒穴状に形成されているから、各リブ78a~dにおいて延伸方向両側を向く側面79aは、円柱凹面状となっている。
 このような各開口穴77a~eは、延伸溝75の内周輪郭75a及び外周輪郭75bよりも当該延伸溝75の内側にて開口している。したがって、各開口穴77a~eの内径Dhは、各開口穴77a~eが配置される箇所の延伸溝75の幅よりも小さく設定されている。より詳細には、各開口穴77a~eは、幅方向両側の傾斜面75eに達するように開口している。こうして、傾斜面75eは、開口穴77a~eの開口により一部を欠いた形状となっている。
 ここで、吸入ポート部74において互いに配列されている各開口穴77a~eの内径Dh及び開口面積は、小偏角側から大偏角側へ向かう程拡幅する延伸溝75の幅に応じて設定されている。すなわち、各開口穴77a~eの内径Dh及び開口面積と、各開口穴77a~eの位置に対応する延伸溝75の幅との間には、正の相関がある。
 具体的に、各開口穴77a~eを比較すると、特に図4,5に示すように、大偏角側から数えて1番目の開口穴77aの内径Dhが最も大きい。2番目の開口穴77bの内径Dhは1番目の開口穴77aの内径Dhよりも小さく、かつ、3~5番目の開口穴77c~eの内径Dhよりも大きい。3番目の開口穴77cの内径Dhは4番目の開口穴77dの内径Dhと実質等しい。また3~4番目の開口穴77c~dの内径Dhは、1~2番目の開口穴77a~bの内径Dhよりも小さく、かつ、5番目の開口穴77eの内径Dhよりも大きい。したがって、5番目の開口穴77eの内径Dhが最も小さい。
 開口穴77a~eの延伸溝75への開口面積は、筒状の開口穴77a~eにおいて筒端面EFiの面積に相当するので、各開口穴77a~eの内径Dhに応じたものとなっている。これを踏まえて整理すると、各開口穴77a~eのうち偏角θe1が最も大きい箇所に位置する開口穴77aの開口面積は、他の各開口穴77b~eの開口面積よりも大きくなっている。
 また、各開口穴77a~eのうち特定の開口穴77a~b,dの開口面積は、小偏角側にリブ78a~b,dを挟んで隣り合う開口穴77b~c,eの開口面積よりも大きくなっている。本実施形態においては1番目の開口穴77aと2番目の開口穴77bとの関係、2番目の開口穴77bと3番目の開口穴77cとの関係、及び4番目の開口穴77dと5番目の開口穴77eとの関係がこの開口面積の関係に該当する。
 またこの配列構造76は、延伸溝75のうち偏角θe1が90°以上となる終端部75dから偏角θe1が90°未満となる所定の境界位置Pbまで形成されている。一方、境界位置Pbより小偏角側では、配列構造76が形成されずに、溝底面75fが境界位置Pbから始端部75cまで延伸していることで、底面延伸部75gが形成されている。
 図1,7~9に示すポンプケーシング80は、ポンプハウジング70の一構成部品である。ポンプケーシング80は、鉄鋼材等の剛性を有する金属からなる基材に、めっき等の表面処理を施すことにより、耐摩耗性を有する有底円筒状に形成されている。ポンプケーシング80のうち開口部80cは、ポンプカバー71により覆われることで、全周に亘って閉じられている。ポンプケーシング80の内周部80dは、インナ中心線Cigから偏心し、かつ、アウタ中心線Cogと同軸上の円筒穴状に形成されている。
 ポンプケーシング80の凹底部80eのうちインナ中心線Cig上には、当該凹底部80eを貫通する電動モータ3の回転軸3aを径方向に軸受するために、ラジアル軸受50が嵌合固定されている。
 ポンプケーシング80は、ラジアル軸受50より外周側に、ギヤ収容室70aの内部から外部へと、燃料を吐出する吐出ポート部84を有している。吐出ポート部84は、延伸溝85、複数の開口穴87a,87b,87c,87d,87e、及び複数のリブ88a,88b,88c,88dを有している。
 延伸溝85は、特に図7に示すように、ギヤ収容室70aのうち吐出エリアAR2に位置するポンプ室40と対向する箇所において、ポンプケーシング80の凹底部80eの一部を構成する摺動面82から凹んで形成されている。延伸溝85は、ポンプケーシング80の周方向に沿って延伸する円弧溝状を呈している。より詳細に、延伸溝85の内周輪郭85aは、回転方向Rigに沿って半周未満の長さに延伸している。延伸溝85の外周輪郭85bは、回転方向Rogに沿って半周未満の長さに延伸している。
 ここで延伸溝85は、始端部85cから駆動回転側の終端部85dに向かう程、縮幅している。換言すると、延伸溝85は、偏角θe2が小さな小偏角側から偏角θe2が大きな大偏角側へ向かう程、拡幅している。また、延伸溝85の内周輪郭85a及び外周輪郭85bよりも内側において、当該輪郭85a~bに隣接する所定幅に、摺動面82に対して傾斜する傾斜面85eが平面状の溝底面85fへと接続されるように形成されている。ここで、摺動面82から溝底面85fまでの高低差である溝深さは、延伸溝85の終端部85dにおける幅よりも小さくされている。
 各開口穴87a~eは、ギヤ収容室70aの外部から延伸溝75に開口している。具体的に、各開口穴87a~eは、軸方向Daに沿ってポンプケーシング80を貫通する円筒穴状に形成されている。特に図8に示すように、各開口穴87a~eの外部側では、筒端面EFoの全体がギヤ収容室70aの外部としての燃料ポンプ100外部に開口している。特に図7に示すように、各開口穴87a~eの内部側では、筒端面EFiの全体が延伸溝85に開口している。こうして一開口穴87a~eにおける内径Dhは、特に図9に示すように、外部側から内部側までの各箇所において実質一定となっている。また、各開口穴87a~eにおいて穴長さLhは、その内径Dhよりも大きく設定されている。本実施形態では、吐出ポート部84において、開口穴87a~eが5つ設けられている。
 各リブ88a~dは、延伸溝85よりもギヤ収容室70aとは反対側において、それぞれ延伸方向両側に隣接する開口穴87a~e間に配置されている。各リブ88a~dは、各開口穴87a~e間の隔壁として機能すると共に、ポンプケーシング80を補強する機能を有している。リブ88a~dは、開口穴87a~eよりも1つ少ない数設けられ、特に本実施形態では4つとなっている。また各リブ78a~dは、その最小幅Wrが互いに実質等しくなるように形成されている。
 このような開口穴87a~eとリブ88a~dとは、延伸溝85の延伸方向に沿って1つずつ交互に配列されている配列構造86をなしている。したがって各リブ88a~dは、延伸溝85の幅方向に沿って、延伸溝85の内周輪郭85aと外周輪郭85bを接続するように形成されている。また、各リブ88a~dは、外部側の筒端面EFoから内部側の筒端面EFiまでの間、延伸方向両側に隣接する開口穴87a~eに沿う柱状に形成されている。ここで、各開口穴87a~eが円筒穴状に形成されているから、各リブにおいて延伸方向両側を向く側面89aは、円柱凹面状となっている。
 このような各開口穴87a~eは、延伸溝85の内周輪郭85a及び外周輪郭85bよりも当該延伸溝85の内側にて開口している。したがって、各開口穴87a~eの内径Dhは、各開口穴87a~eが配置される箇所の延伸溝85の幅よりも小さく設定されている。より詳細には、各開口穴87a~eは、幅方向両側の傾斜面85eに達するように開口している。これにより傾斜面85eは、開口穴87a~eの開口により一部を欠いた形状となっている。
 ここで、吐出ポート部84において互いに配列されている各開口穴87a~eの内径Dh及び開口面積は、大偏角側から小偏角側へ向かう程縮幅する延伸溝85の幅に応じて設定されている。各開口穴87a~eを比較すると、特に図7,8に示すように、大偏角側から数えて1番目の開口穴87aの内径Dhが最も大きい。2番目の開口穴87bの内径Dhは1番目の開口穴87aの内径Dhよりも小さく、かつ、3~5番目の開口穴87c~eの内径Dhよりも大きい。3番目の開口穴87cの内径Dhは4番目の開口穴87dの内径Dhと実質等しい。また3~4番目の開口穴87c~dの内径Dhは、1~2番目の開口穴87a~bの内径Dhよりも小さく、かつ、5番目の開口穴87eの内径Dhよりも大きい。したがって、5番目の開口穴87eの内径Dhが最も小さい。
 開口穴87a~eの延伸溝85への開口面積は、筒状の開口穴87a~eにおいて筒端面EFiの面積に相当するので、各開口穴87a~eの内径Dhに応じたものとなっている。これを踏まえて整理すると、各開口穴87a~eのうち偏角θe2が最も大きい箇所に位置する開口穴87aの開口面積は、他の各開口穴87b~eの開口面積よりも大きくなっている。
 また、各開口穴87a~eのうち特定の開口穴87a~b,dの開口面積は、小偏角側にリブ88a~b,dを挟んで隣り合う開口穴87b~c,eの開口面積よりも大きくなっている。本実施形態においては1番目の開口穴87aと2番目の開口穴87bとの関係、2番目の開口穴87bと3番目の開口穴87cとの関係、及び4番目の開口穴87dと5番目の開口穴87eとの関係がこの開口面積の関係に該当する。
 またこの配列構造86は、延伸溝85のうち偏角θe2が90°以上となる始端部85cから偏角θe2が90°未満となる所定の境界位置Pbまで形成されている。一方、当該所定位置より小偏角側では、配列構造86が形成されずに、延伸溝85の溝底面85fが境界位置Pbから終端部85dまで延伸していることで、底面延伸部85gが形成されている。
 ここで、図4,7により吸入ポート部74と吐出ポート部84を比較する。吸入ポート部74の1番目の開口穴77aと吐出ポート部84の1番目の開口穴87aとは、実質等しい内径Dh及び実質等しい開口面積となっている。吸入ポート部74の2~5番目の開口穴77b~eと吐出ポート部84の2~5番目の開口穴87b~eとにも、同様の関係がそれぞれ成立している。したがって、nを自然数とすると、吸入ポート部74の大偏角側からn番目の開口穴77a~eと、吐出ポート部84の大偏角側からn番目の開口穴84a~eとは、実質同じ内径ID及び実質等しい開口面積となっている。こうして、吸入ポート部74における複数の開口穴77a~eの開口面積の総和は、吐出ポート部84における複数の開口穴87a~eの開口面積の総和と等しくなっている。
 ポンプケーシング80の凹底部80eのうち、ポンプ室40を挟んで吸入ポート部74の延伸溝75と対向する箇所には、特に図7に示すように、同延伸溝75を軸方向Daに投影した形状と対応させて、円弧溝状の吸入対向溝80aが形成されている。吸入対向溝80aは、摺動面82から凹んでおり、ギヤ収容室70a側に開口している。これにより、ポンプケーシング80では、吐出ポート部84の延伸溝85が吸入対向溝80aとその輪郭85a~bを実質線対称に設けられている。こうして、吐出ポート部84の延伸溝85と吸入対向溝80aとの間は、摺動面82によって隔てられている。
 さらに、ポンプケーシング80の凹底部80eにおいて吐出ポート部84及び吸入対向溝80aよりも外周側であって、アウタギヤ30の外周部34と対向する内径コーナー部80fには、摺動面82から軸方向Daに凹む円環溝80bが形成されている。円環溝80bは、吸入対向溝80aよりも外周側となる吸入エリアAR1と、吐出ポート部84よりも外周側となる吐出エリアAR2とを、全周に亘って連通して形成されている。
 一方で特に図4に示すように、ポンプカバー71のうち、ポンプ室40を挟んで吐出ポート部84の延伸溝85と対向する箇所には、同延伸溝85を軸方向Daに投影した形状と対応させて、円弧溝状の吐出対向溝71aが形成されている。吐出対向溝71aは、摺動面72から凹んでおり、ポンプカバー71のうちギヤ収容室70a側に開口している。これによりポンプカバー71では、ジョイント収容室71bを挟んで、吸入ポート部74の延伸溝75が吐出対向溝71aとその輪郭75a~bを実質線対称に設けられている。こうして、吸入ポート部74の延伸溝75と吐出対向溝71aとの間は、摺動面72によって隔てられている。
 図1,3に示すように、こうしたポンプハウジング70によって画成されたギヤ収容室70aにおいて、インナギヤ20は、その厚み寸法を、一対の摺動面72,82間の寸法よりも僅かに小さく形成している。こうしてインナギヤ20は、その内周部22をラジアル軸受50により径方向に軸受されていると共に、軸方向Daの両側を、一対の摺動面82,82により軸受されている。
 またアウタギヤ30は、その外径をポンプケーシング80の内径よりも僅かに小さく形成している。これと共に、アウタギヤ30は、その厚み寸法を一対の摺動面72,82間の寸法よりも僅かに小さく形成している。こうしてアウタギヤ30は、その外周部34をポンプケーシング80の内周部80dに軸受されていると共に、軸方向Daの両側を、一対の摺動面72,82により軸受されている。
 両ギヤ20,30の回転に伴って、吸入ポート部74及び吸入対向溝80aと対向して連通するポンプ室40にて、その容積が拡大する。その結果として、吸入ポート部74の各開口穴77a~eを通じて燃料がギヤ収容室70a内のポンプ室40に吸入される。ここで、摺動面72から凹む延伸溝75に開口する開口穴77a~e間に設けられる各リブ78a~dは、延伸溝75の空間を介してポンプ室40と対向している。したがって、ポンプ室40が各リブ78a~dと対向する時にも、延伸方向両側に隣接する開口穴77a~eからの燃料の吸入が継続される。
 両ギヤ20,30の回転に伴って、吐出ポート部84及び吐出対向溝71aと対向して連通するポンプ室40にて、その容積が縮小する。その結果として、吸入機能と同時に、ポンプ室40から燃料が吐出ポート部84の各開口穴87aを通じてギヤ収容室70a外に吐出される。ここで、摺動面82から凹む延伸溝85に開口する開口穴87a~e間に設けられる各リブ88a~dは、延伸溝85の空間を介してポンプ室40と対向している。したがって、ポンプ室40が各リブ88a~dと対向する時にも、延伸方向両側に隣接する開口穴87a~eへの燃料の吐出が継続される。
 このようにして、吸入ポート部74を通じてギヤ収容室70a内のポンプ室40に順次吸入されてから吐出ポート部84を通じて吐出された燃料は、燃料通路6を通じてサイドカバー5の吐出出口5bから燃料ポンプ100の外部に吐出されるのである。ここで、上述のポンプ作用により、吐出ポート部84を通る燃料の燃料圧力は、吸入ポート部74を通る燃料の燃料圧力と比較して高圧となる。
 以上説明した第1実施形態の作用効果を以下に説明する。
 第1実施形態によると、吸入ポート部74及び吐出ポート部84において、開口穴77a~e又は87a~eとリブ78a~d又は88a~dとは、延伸溝75又は85の延伸方向に沿って交互に配列されている。この開口穴77a~e又は87a~eは、ギヤ収容室70aの外部から延伸溝75又は85に開口する複数設けられ、リブ78a~d又は88a~dは、これら開口穴77a~e又は87a~e間に配置される。こうした交互配列により、開口穴77a~e又は87a~eを複数設けたとしても、ポンプハウジング70の剛性を向上させることができる。
 このように複数の開口穴77a~e又は87a~eが開口された延伸溝75又は85は、アウタギヤ30とインナギヤ20との間に複数形成されたポンプ室40と対向する箇所において、摺動面72又は82から凹んでポンプハウジング70の周方向に沿って延伸して設けられる。こうした延伸溝75又は85と対向した各ポンプ室40の容積が両ギヤ20,30の回転に応じて拡縮する。この拡縮によって燃料は、ギヤ収容室70aに吸入されてから吐出される。
 ここで、開口穴77a~e又は87a~eと対向するポンプ室40には、対応する開口穴77a~e又は87a~eに対して燃料が直接的に吸入又は吐出される。また一方、リブ78a~d又は88a~dと対向するポンプ室40には、リブ78a~d又は88a~dの両側の開口穴77a~e又は87a~eに対して、延伸溝75又は85の空間を通じて燃料が吸入又は吐出される。こうして、ポート部74又は84と対向する各ポンプ室40において吸入又は吐出を連々と行なうことができるので、ポンプ室40の容積の拡縮を上手く活用した吸入又は吐出が実現される。したがって、ポンプ効率の高い燃料ポンプ100を提供することができる。
 また、第1実施形態によると、互いに配列されている各開口穴77a~e又は87a~eのうち、偏角が最も大きい箇所に位置する開口穴77a又は87aの開口面積は、他の各開口穴77b~e又は87b~eの開口面積よりも大きい。これによれば、偏角が大きい箇所において大きくなっているポンプ室40の容積に合わせて、吸入又は吐出を行なうことができるので、ポンプ室40の容積の拡縮を上手く活用してポンプ効率を高めることができる。
 また、第1実施形態によると、特定の開口穴77a~b,d又は87a~b,dの開口面積は、リブ78a~b,d又は88a~b,dを挟んで小偏角側に隣り合う開口穴77b~c,e又は87b~c,eの開口面積に対して、大きい関係となる。一方のポンプ室40の容積についても小偏角側が小さく、大偏角側が大きい関係となっているので、ポンプ室40の容積の拡縮に合わせた吸入又は吐出が可能となる。
 より詳細には、ポンプ室40の容積に応じた開口面積により、特定の開口穴77a~b,d又は87a~b,dと、隣り合う開口穴77b~c,e又は87b~c,eとで、通過する燃料の流速が近くなる。これにより、延伸溝75又は85の空間において、燃料が特定の開口穴77a~b,d又は87a~b,d側と隣り合う開口穴77b~c,e又は87b~c,e側との間を行き来することが抑制され、対向するポンプ室40とのより直接的な吸入又は吐出が行われることとなる。したがって、燃料の吸入又は吐出がより円滑となり、ポンプ効率が高まる。
 また、第1実施形態によると、延伸溝75又は85は、小偏角側から大偏角側へ向かう程拡幅し、各開口穴77a~e又は87a~eの開口面積は、延伸溝75又は85の幅に応じて設定されている。このように偏角θe1又はθe2が大きくなるほど容積が大きくなるポンプ室40に合わせた開口面積に設定すると、各開口穴77a~e又は87a~eにおいて通過する燃料の流速を近づけることができる。このため、延伸溝75又は85の空間において、燃料が大偏角側と小偏角側との間を行き来することが抑制され、対向する開口穴77a~e又は87a~eとポンプ室40との間にてより直接的な吸入又は吐出が行われることとなる。したがって、燃料の吸入又は吐出がより円滑となり、ポンプ効率が高まる。
 また、第1実施形態によると、筒状の開口穴77a~e又は87a~eにおいて、筒端面EFiの全体が延伸溝75又は85に開口する。このため、筒端面EFiの一部しか開口していない場合と比較して開口箇所での急激な圧力変化によるキャビテーションの発生を抑制しつつ、対向するポンプ室40とより直接的な吸入又は吐出が行われる。したがって、ポンプ効率が高まる。
 また、第1実施形態によると、開口穴77a~e又は87a~eが円筒穴状なので、開口穴77a~e又は87a~eの断面積に対して流量を高めて燃料の吸入又は吐出を行なうことができる。さらに、開口穴77a~e又は87a~e間のリブ78a~d又は88a~dの側面79a又は89aが円柱凹面状に形成可能となるため、リブ78a~d又は88a~dの特定箇所への応力集中を抑制することで、リブ78a~d又は88a~dの強度を高めることができる。
 また、第1実施形態によると、各開口穴77a~e又は87a~eは、延伸溝75又は85の輪郭75a~b又は85a~bよりも内側にて開口する。このようにすることで、開口穴77a~e又は87a~eの開口により摺動面72又は82と両ギヤ20,30との摺動面積が減少することを抑制できる。こうして摺動面72又は82と両ギヤ20,30との間のシール性が確保されて、ポンプ室40からの燃料の漏れを抑制できる。したがって、ポンプ効率が高まる。
 また、第1実施形態によると、ジョイント部材60を収容するジョイント収容室71bは、開口穴77a~e及びリブ78a~dを配置する延伸溝75が凹む摺動面と、同一の摺動面72から凹んでいる。このようなジョイント収容室71bにより剛性低下が懸念されるポンプハウジング70であっても、ジョイント収容室71bと同一の摺動面72から凹む延伸溝75側に、複数のリブ78a~dが設けられているため、当該剛性の低下を抑制することができる。したがって、ジョイント収容室71bが凹む摺動面72の変形に伴う摺動抵抗の増大を抑制することができ、ポンプ効率が高い燃料ポンプを提供することができる。
 また、第1実施形態によると、交互に配列されている開口穴77a~e又は87a~e及びリブ78a~d又は88a~dの配列構造76又は86は、吸入ポート部74及び吐出ポート部84の両方に設けられる。このようにすることで、吸入ポート部74と対向する各ポンプ室40では吸入を連々と行なうことができ、吐出ポート部84と対向する各ポンプ室40では吐出を連々と行なうことができる。こうしてポンプ室40の容積の拡縮を上手く活用した吸入及び吐出が実現され、ポンプ効率が高まる。
 また、第1実施形態によると、吸入ポート部74における複数の開口穴77a~eの開口面積の総和は、吐出ポート部84における複数の開口穴87a~eの開口面積の総和と等しい。このようにすることで、吸入ポート部74と吐出ポート部84における開口穴77a~e,87a~eの形状を共通化することができるため、製造容易にポンプ効率が高い燃料ポンプ100を提供することができる。
 また、第1実施形態によると、互いに配列されている各リブ78a~d又は88a~dの最小幅Wrは、互いに等しい。こうしてポート部74又は84における剛性がポンプハウジング70の周方向において均質化され、例えば一つのリブ78a~d又は87a~dに応力が集中して変形の起点となることを抑制することができる。
(第2実施形態)
 図10に示すように、第2実施形態は第1実施形態の変形例である。第2実施形態について、第1実施形態とは異なる点を中心に説明する。
 第2実施形態における燃料ポンプの吸入ポート部274と吐出ポート部284を比較する。吸入ポート部274の1番目の開口穴277aの内径Dh1は、吐出ポート部284の1番目の開口穴287aの内径Dh2よりも大きくなっている。吸入ポート部274の2~5番目の開口穴277b~eと吐出ポート部284の2~5番目の開口穴287b~eとにも、内径Dhについての同様の関係がそれぞれ成立している。したがって、nを自然数とすると、吸入ポート部274の大偏角側からn番目の開口穴277a~eの内径Dhは、吐出ポート部284の大偏角側からn番目の開口穴287a~eの内径Dhよりも、大きくなっている。
 この結果、吸入ポート部274の1番目の開口穴277aの開口面積は、吐出ポート部284の1番目の開口穴287aの開口面積よりも大きくなっている。吸入ポート部274の2~5番目の開口穴277b~eと吐出ポート部284の2~5番目の開口穴287b~eとにも、開口面積についての同様の関係がそれぞれ成立している。したがって、吸入ポート部274の大偏角側からn番目の開口穴277a~eの開口面積は、吐出ポート部284の大偏角側からn番目の開口穴287a~eの開口面積よりも、大きくなっている。
 こうして、吸入ポート部274における複数の開口穴277a~eの開口面積の総和は、吐出ポート部284における複数の開口穴287a~eの開口面積の総和よりも大きくなっている。
 このような第2実施形態においても、吸入ポート部274において、開口穴277a~eとリブ278a~dとは、延伸溝75の延伸方向に沿って交互に配列されている。また、吐出ポート部284においても、開口穴287a~eとリブ288a~dとは、延伸溝85の延伸方向に沿って交互に配列されている。したがって、第1実施形態に準じた作用効果を奏することが可能となる。
 また、第2実施形態によると、吸入ポート部274における複数の開口穴277a~eの開口面積の総和は、吐出ポート部284における複数の開口穴287a~eの開口面積の総和よりも大きい。このようにすることで、吸入時よりも吐出時に高圧となる燃料を考慮して、一方の吸入ポート部274では開口穴277a~eから多くの燃料を吸入することができる。これと共に、他方の吐出ポート部284では吸入ポート部274の吸入能力に対して必要以上に開口穴287a~eを開口させないことでポンプハウジング70の剛性を高めることができるので、ポンプ効率が高まる。
 以上、複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。上記実施形態の変形例1~12について述べる。
 具体的に変形例1としては、各開口穴77a~e,87a~eのうち一部又は全部において、内径Dhは、ギヤ収容室70aの外部側から内部側までの各箇所において異なっていてもよい。図11では、吸入ポート部74の各開口穴77a~eにおいて、外部側から内部側に向かう程、内径Dhが漸次小さくなるように形成されている。
 変形例2としては、各開口穴77a~e,87a~eのうち一部又は全部が、円筒穴状以外の、矩形筒穴状、三角筒穴状等に形成されていてもよい。
 変形例3としては、各開口穴77a~e,87a~eのうち一部又は全部が、延伸溝75,85の内周輪郭75a,85a又は外周輪郭75b,85bの外側に筒端面EFiの一部をはみ出して開口していてもよい。
 変形例4としては、互いに配列されている各開口穴77a~e又は87a~eのうち、最も小偏角側の開口穴77e又は87eを除く全ての開口穴77a~d又は87a~dについて、その開口面積は、小偏角側にリブ78a~d又は88a~dを挟んで隣り合う開口穴77b~e又は78b~eの開口面積よりも大きくなっていてもよい。
 変形例5としては、互いに配列されている開口穴77a~e又は87a~eのうち、最も大偏角側の開口穴77a又は87a以外の開口穴77b~e又は87b~eの開口面積が、互いに配列されている他の開口穴の開口面積よりも大きくなっていてもよい。
 変形例6としては、吸入ポート部74における開口穴77a~eの数は、3つ、4つ、又は6つ以上でもよい。同様に、吐出ポート部84における開口穴87a~eの数は、3つ、4つ、又は6つ以上であってもよい。
 変形例7としては、吸入ポート部74における開口穴77a~eの数と、吐出ポート部84における開口穴87a~eの数とが異なっていてもよい。これと共に、吸入ポート部74におけるリブ78a~dの数と、吐出ポート部84におけるリブ88a~dの数とが異なっていてもよい。
 変形例8としては、吸入ポート部74及び吐出ポート部84の一方は、開口穴77a~e又は87a~eとリブ78a~d又は88a~dとが延伸溝75又は85の延伸方向に沿って配列される配列構造76又は86を、形成していなくてもよい。
 変形例9としては、吸入ポート部74及び吐出ポート部84は、互いに、ギヤ収容室70aに対して軸方向Daの同じ側に設けられるものであってもよい。
 変形例10としては、燃料ポンプ100がジョイント部材60を備えておらず、ポンプハウジング70がジョイント収容室71bを有していないものであってもよい。この例として、回転軸3aとインナギヤ20とが直結されているものが挙げられる。
 変形例11としては、ポンプハウジング70は、その一部又は全部をアルミにより形成してもよく、また金属以外の例えば合成樹脂等により形成していてもよい。
 変形例12としては、燃料ポンプ100は、燃料として、軽油以外のガソリン、又はこれらに準じた液体燃料を吸入してから吐出するものであってもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (12)

  1.  内歯(32a)を複数有するアウタギヤ(30)と、外歯(24a)を複数有し、前記アウタギヤ(30)に対して偏心方向(De)に偏心して噛合するインナギヤ(20)と、前記アウタギヤ(30)及び前記インナギヤ(20)が回転可能に収容されるギヤ収容室(70a)を画成するポンプハウジング(70)と、を備え、前記アウタギヤ(30)及び前記インナギヤ(20)がそれら両ギヤ(20,30)間に複数形成されたポンプ室(40)の容積を拡縮させつつ回転することにより、燃料を前記ギヤ収容室(70a)に吸入してから吐出する燃料ポンプであって、
     前記ポンプハウジング(70)は、
     前記アウタギヤ(30)及び前記インナギヤ(20)を両側から挟むことで、それら両ギヤ(20,30)が摺動する一対の摺動面(72,82)と、
     前記ギヤ収容室(70a)の外部から内部へと、前記燃料を吸入する吸入ポート部(74,274)と、
     前記ギヤ収容室(70a)の内部から外部へと、前記燃料を吐出する吐出ポート部(84,284)と、を有し、
     前記吸入ポート部(74,274)及び前記吐出ポート部(84,284)のうち少なくとも一方は、
     前記ポンプ室(40)と対向する箇所において、前記摺動面(72,82)から凹んで前記ポンプハウジング(70)の周方向に沿って延伸する延伸溝(75,85)と、
     前記ギヤ収容室(70a)の外部から前記延伸溝(75,85)に開口する複数の開口穴(77a~77e,87a~87e,277a~277e,287a~287e)と、
     前記開口穴(77a~77e,87a~87e,277a~277e,287a~287e)間に配置される複数のリブ(78a~78d,88a~88d,277a~277d,288a~288d)と、を有し、
     前記開口穴(77a~77e,87a~87e,277a~277e,287a~287e)と前記リブ(78a~78d,88a~88d,277a~277d,288a~288d)とは、前記延伸溝(75,85)の延伸方向に沿って交互に配列されている燃料ポンプ。
  2.  前記インナギヤ(20)の中心を頂点として前記偏心方向(De)となす角度を偏角(θe1,θe2)と定義すると、
     互いに配列されている各前記開口穴(77a~77e,87a~87e)のうち、前記偏角(θe1,θe2)が最も大きい箇所に位置する前記開口穴(77a,87a)の開口面積は、他の各前記開口穴(77b~77e,87b~87e)の開口面積よりも大きい請求項1に記載の燃料ポンプ。
  3.  前記偏角(θe1,θe2)が小さくなる小偏角側に前記リブ(78a,78b,78d,88a,88b,88d)を挟んで隣り合う前記開口穴(77b,77c,77e,87b,87c,87e)の開口面積よりも、開口面積が大きい特定の前記開口穴(77a,77b,77d,87a,87b,87d)を含む請求項2に記載の燃料ポンプ。
  4.  前記インナギヤ(20)の中心を頂点として前記偏心方向(De)となす角度を偏角(θe1,θe2)と定義すると、
     前記延伸溝(75,85)は、前記偏角(θe1,θe2)が小さな小偏角側から前記偏角(θe1,θe2)が大きな大偏角側へ向かう程拡幅し、
     各開口穴(77a~77e,87a~87e)の開口面積は、前記延伸溝(75,85)の幅に応じて設定されている請求項1に記載の燃料ポンプ。
  5.  各前記開口穴(77a~77e,87a~87e)は、筒端面(EFi)の全体が前記延伸溝(75,85)に開口する筒状である請求項1から4のいずれか1項に記載の燃料ポンプ。
  6.  各前記開口穴(77a~77e,87a~87e)は、円筒穴状である請求項5に記載の燃料ポンプ。
  7.  各前記開口穴(77a~77e,87a~87e)は、前記延伸溝(75,85)の輪郭(75a,75b,85a,85b)よりも内側にて開口する請求項1から6のいずれか1項に記載の燃料ポンプ。
  8.  回転駆動される回転軸(3a)と、
     前記回転軸(3a)を前記インナギヤ(20)と中継することで、前記アウタギヤ(30)及び前記インナギヤ(20)を回転させるジョイント部材(60)と、を備え、
     前記ポンプハウジング(70)は、前記ジョイント部材(60)を収容するジョイント収容室(71b)を、さらに有し、
     前記ジョイント収容室(71b)は、前記開口穴(77a~77e)及び前記リブ(78a~78d)を配置する前記延伸溝(75)が凹む前記摺動面(72)と、同一の前記摺動面(72)から凹む請求項1から7のいずれか1項に記載の燃料ポンプ。
  9.  交互に配列されている前記開口穴(77a~77e,87a~87e)及び前記リブ(78a~78d,88a~88d)の配列構造(76,86)は、前記吸入ポート部(74)及び前記吐出ポート部(84)の両方に設けられる請求項1から8のいずれか1項に記載の燃料ポンプ。
  10.  前記吸入ポート部(74)における前記複数の開口穴(77a~77e)の開口面積の総和は、前記吐出ポート部(84)における前記複数の開口穴(87a~87e)の開口面積の総和と等しい請求項9に記載の燃料ポンプ。
  11.  前記吸入ポート部(274)における前記複数の開口穴(277a~277e)の開口面積の総和は、前記吐出ポート部(284)における前記複数の開口穴(287a~287e)の開口面積の総和よりも大きい請求項9に記載の燃料ポンプ。
  12.  互いに配列されている各前記リブ(78a~78d,88a~88d)の最小幅(Wr)は、互いに等しい請求項1から11のいずれか1項に記載の燃料ポンプ。
PCT/JP2016/081992 2015-11-03 2016-10-28 燃料ポンプ WO2017077948A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/768,592 US10557468B2 (en) 2015-11-03 2016-10-28 Fuel pump
DE112016005039.9T DE112016005039T5 (de) 2015-11-03 2016-10-28 Kraftstoffpumpe
KR1020187008940A KR102042809B1 (ko) 2015-11-03 2016-10-28 연료펌프
CN201680063571.7A CN108350875B (zh) 2015-11-03 2016-10-28 燃料泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015216225A JP6507998B2 (ja) 2015-11-03 2015-11-03 燃料ポンプ
JP2015-216225 2015-11-03

Publications (1)

Publication Number Publication Date
WO2017077948A1 true WO2017077948A1 (ja) 2017-05-11

Family

ID=58663015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081992 WO2017077948A1 (ja) 2015-11-03 2016-10-28 燃料ポンプ

Country Status (6)

Country Link
US (1) US10557468B2 (ja)
JP (1) JP6507998B2 (ja)
KR (1) KR102042809B1 (ja)
CN (1) CN108350875B (ja)
DE (1) DE112016005039T5 (ja)
WO (1) WO2017077948A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380364B2 (ja) * 2015-12-17 2018-08-29 株式会社デンソー 燃料ポンプ及び燃料ポンプモジュール
US12018680B2 (en) * 2022-04-12 2024-06-25 Phinia Delphi Luxembourg Sarl Fluid pump with thrust bearing driver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149086U (ja) * 1984-09-05 1986-04-02
JPH11512798A (ja) * 1995-09-26 1999-11-02 フラウンホーファー−ゲゼルシャフト、ツール、フェルデルング、デァ、アンゲヴァンテン、フォルシュング、エー、ファウ マイクロモータ及びマイクロポンプ
JP2008215100A (ja) * 2007-02-28 2008-09-18 Miura Co Ltd 内接歯車ポンプ

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380783A (en) * 1941-04-07 1945-07-31 Gerotor May Company Pump structure
US2417701A (en) * 1944-07-17 1947-03-18 John B Parsons Compensating device for rotary pumps
US3303783A (en) * 1964-07-01 1967-02-14 Tuthill Pump Co Fluid pump apparatus
US3356032A (en) * 1966-01-13 1967-12-05 Emerson Electric Co Hydraulic circuit
US4008018A (en) * 1975-11-28 1977-02-15 Mcdermott Hugh L Rotary fluid displacement device having improved porting
DE3005657A1 (de) * 1980-02-15 1981-08-20 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Zahnradpumpe
US4596519A (en) * 1982-07-29 1986-06-24 Walbro Corporation Gear rotor fuel pump
JPS60247080A (ja) * 1984-05-21 1985-12-06 Yamada Seisakusho:Kk エンジン潤滑用トロコイドポンプ
JPS6149086A (ja) 1984-08-14 1986-03-10 アルプス電気株式会社 ウインドガラス自動昇降装置
DE4021500C3 (de) * 1990-07-05 1998-10-22 Mannesmann Vdo Ag Förderaggregat, insbesondere zum Fördern von Kraftstoff
DE4102162A1 (de) * 1991-01-25 1992-07-30 Bosch Gmbh Robert Vorrichtung zum foerdern von kraftstoff aus einem vorratstank zur brennkraftmaschine eines kraftfahrzeuges
JP3394544B2 (ja) * 1991-11-05 2003-04-07 株式会社デンソー ギヤポンプ
JPH0942169A (ja) * 1995-07-31 1997-02-10 Aisin Seiki Co Ltd ポンプ装置
DE19651683A1 (de) * 1996-12-12 1998-06-18 Otto Eckerle Füllstücklose Innenzahnradpumpe
US5997262A (en) * 1997-04-10 1999-12-07 Walbro Corporation Screw pins for a gear rotor fuel pump assembly
US6109615A (en) * 1998-06-05 2000-08-29 Skf Usa Inc. Plenum oil seal
DE19927789A1 (de) * 1999-06-18 2000-12-21 Bosch Gmbh Robert Flüssigkeitspumpe, insbesondere zum Fördern von Kraftstoff
JP3930243B2 (ja) * 2000-11-06 2007-06-13 本田技研工業株式会社 マグネットポンプ
US7207786B2 (en) * 2002-10-31 2007-04-24 Grant Barry S Fuel pump with filter-absent safety valve and universal inlet and outlet
JP3861835B2 (ja) 2003-03-31 2006-12-27 株式会社デンソー 燃料噴射ポンプ
US6769889B1 (en) * 2003-04-02 2004-08-03 Delphi Technologies, Inc. Balanced pressure gerotor fuel pump
JP2005069004A (ja) 2003-08-21 2005-03-17 Nissan Motor Co Ltd オイルポンプ
DE10341841A1 (de) * 2003-09-09 2005-04-07 Siemens Ag Nach dem Gerotorprinzip arbeitende Kraftstoffpumpe
IN266866B (ja) * 2005-06-22 2015-06-10 Magna Powertrain Usa Inc
JP2007009787A (ja) * 2005-06-30 2007-01-18 Hitachi Ltd モータ一体型内接歯車式ポンプ及び電子機器
JP2007263019A (ja) * 2006-03-29 2007-10-11 Jtekt Corp 内接ギヤポンプ
US7722344B2 (en) 2006-11-15 2010-05-25 Airtex Products, Llc Impeller-drive shaft construction for a fuel pump
JP2008128050A (ja) 2006-11-17 2008-06-05 Aisan Ind Co Ltd トロコイド型流体ポンプ
JP2008231982A (ja) * 2007-03-19 2008-10-02 Jtekt Corp 内接型ギアポンプにおけるチップクリアランスの調整方法、内接型ギアポンプ、及び電動オイルポンプ
JP5316876B2 (ja) 2009-09-03 2013-10-16 株式会社ジェイテクト ポンプ装置
DE102011083425A1 (de) 2011-09-26 2013-03-28 Robert Bosch Gmbh Innenzahnradpumpe
DE102014103959A1 (de) * 2014-03-21 2015-09-24 Eckerle Industrie-Elektronik Gmbh Motor-Pumpen-Einheit
JP2015216225A (ja) 2014-05-09 2015-12-03 キヤノン株式会社 リソグラフィ装置及び方法、並びに物品の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149086U (ja) * 1984-09-05 1986-04-02
JPH11512798A (ja) * 1995-09-26 1999-11-02 フラウンホーファー−ゲゼルシャフト、ツール、フェルデルング、デァ、アンゲヴァンテン、フォルシュング、エー、ファウ マイクロモータ及びマイクロポンプ
JP2008215100A (ja) * 2007-02-28 2008-09-18 Miura Co Ltd 内接歯車ポンプ

Also Published As

Publication number Publication date
DE112016005039T5 (de) 2018-08-09
CN108350875B (zh) 2020-08-04
KR20180048870A (ko) 2018-05-10
JP6507998B2 (ja) 2019-05-08
JP2017089401A (ja) 2017-05-25
US20180306148A1 (en) 2018-10-25
KR102042809B1 (ko) 2019-11-08
US10557468B2 (en) 2020-02-11
CN108350875A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
US10550840B2 (en) Vane pump device
US9638190B2 (en) Oil pump
JP6418094B2 (ja) 燃料ポンプ
WO2017077948A1 (ja) 燃料ポンプ
US10934985B2 (en) Fuel pump
JP6361561B2 (ja) 流体ポンプ
US10302084B2 (en) Supplying pressurized fluid to the vane groove for a vane pump device
WO2017033720A1 (ja) 燃料ポンプ
KR20180086326A (ko) 하우징 일체형 분리판을 갖는 지로터 펌프
US10584703B2 (en) Vane pump device for controlling fluid supplied to vane grooves
WO2017104420A1 (ja) 燃料ポンプ
JP6745132B2 (ja) 複合ポンプ
US20170184106A1 (en) Vane pump device
US20170184104A1 (en) Vane pump device
JP6361573B2 (ja) 燃料ポンプ
WO2016117316A1 (ja) 燃料ポンプ及びその製造方法
JP2014070545A (ja) 可変容量型ベーンポンプ
WO2016103663A1 (ja) 燃料ポンプ
KR101851537B1 (ko) 연료 펌프
JP6418059B2 (ja) 燃料ポンプ
JP2022162691A (ja) ポンプ装置
JPWO2020026410A1 (ja) ベーンポンプ装置
JP2017008720A (ja) オイルポンプの油路構成部材
JPH051878U (ja) ベーンポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187008940

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15768592

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005039

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862008

Country of ref document: EP

Kind code of ref document: A1