DE102014103959A1 - Motor-Pumpen-Einheit - Google Patents

Motor-Pumpen-Einheit Download PDF

Info

Publication number
DE102014103959A1
DE102014103959A1 DE102014103959.9A DE102014103959A DE102014103959A1 DE 102014103959 A1 DE102014103959 A1 DE 102014103959A1 DE 102014103959 A DE102014103959 A DE 102014103959A DE 102014103959 A1 DE102014103959 A1 DE 102014103959A1
Authority
DE
Germany
Prior art keywords
channel
leakage
rotor
motor
pinion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102014103959.9A
Other languages
English (en)
Inventor
Reinhard Pippes
Dominik KETTERER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eckerle Industrie Elektronik GmbH
Original Assignee
Eckerle Industrie Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eckerle Industrie Elektronik GmbH filed Critical Eckerle Industrie Elektronik GmbH
Priority to DE102014103959.9A priority Critical patent/DE102014103959A1/de
Priority to EP15158367.1A priority patent/EP2921702B1/de
Priority to US14/664,349 priority patent/US10060432B2/en
Publication of DE102014103959A1 publication Critical patent/DE102014103959A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/008Enclosed motor pump units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/04Draining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/04Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for reversible machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0019Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • F04C15/0046Internal leakage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/008Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0096Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/101Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with a crescent-shaped filler element, located between the inner and outer intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

Die Erfindung betrifft eine Motor-Pumpen-Einheit mit einem mehrteiligen Gehäuse (25), die eine reversible Innenzahnradmaschine (21) und einen Elektromotor (22) mit einem Rotor (22.1) und einem Stator (22.2) umfasst, der über eine in dem Gehäuse (25) drehbar gelagerte Welle (23) mit der Innenzahnradmaschine (21) gekoppelt ist. Die Welle (23) erstreckt sich mit einem Wellenende von der Innenzahnradmaschine (21) weg axial durch den von der Welle (23) getragenen Rotor (22.1). Ein erster Anschlusskanal und ein zweiter Anschlusskanal münden in eine Arbeitskammer der Innenzahnradmaschine (21) und sind über in dem Gehäuse (25) angeordnete Rückschlagventile mit einer Leckagekanalschleife verbunden, die mit wenigstens einem mit der Arbeitskammer fluidverbundenen Leckagekanal fluidverbunden ist und die einen sich axial durch die Welle (23) erstreckenden Leckage-Wellenkanal und einen damit fluidverbundenen, sich axial durch den Rotor (22.1) erstreckenden Leckage-Rotorkanal und/oder einen zwischen dem Rotor (22.1) und dem Stator (22.2) ausgebildeten Leckage-Spaltkanal aufweist, der mit dem Leckage-Wellenkanal fluidverbunden ist.

Description

  • Die Erfindung betrifft eine Motor-Pumpen-Einheit, die eine Innenzahnradmaschine für Reversierbetrieb und einen Elektromotor umfasst, der über eine Welle mit der Innenzahnradmaschine gekoppelt ist. Eine derartige Motor-Pumpen-Einheit kann beispielsweise zur Ansteuerung einer hochdynamischen, hydraulischen Achse eingesetzt werden.
  • Bei solchen Motor-Pumpen-Einheiten kommt es auf eine hohe Dynamik, Geräusch- und Pulsationsarmut, Rekupierbarkeit, lange Lebensdauer, Leckagefreiheit, lange Lebensdauer und Unempfindlichkeit gegen Schock, Schmutz, Wasser, insbesondere Salzwasser und Temperatur, insbesondere Kälte, an.
  • Bei den bislang bekannt gewordenen Motor-Pumpen-Einheiten kann es konstruktionsbedingt über der Einsatzzeit bzw. im Betrieb zu Störungen oder sogar zu einem vorzeitigen Totalausfall kommen. Außerdem sind diese Motor-Pumpen-Einheiten vergleichsweise aufwändig und teuer in der Herstellung.
  • Es ist eine Aufgabe der Erfindung, eine Motor-Pumpen-Einheit der eingangs genannten Art zur Verfügung zu stellen, die besonders kompakt aufgebaut ist, die möglichst lange störungsfrei betreibbar ist bzw. bei der die Lebensdauer erhöht ist und die, insbesondere bezüglich des Stators und der diesen aufnehmenden bzw. begrenzenden Gehäuseteile, vergleichsweise kostengünstig herstellbar ist, vorzugsweise wobei zusätzlich vorteilhafte Möglichkeiten für eine Zwangsschmierung eines dem Elektromotor zugeordneten Rotor- bzw. Wellenlagers vorhanden sind.
  • Diese Aufgabe wird durch die Merkmale des Anspruches 1 gelöst. Demgemäß betrifft die Erfindung eine Motor-Pumpen-Einheit mit einem mehrteiligen Gehäuse, die eine Innenzahnradmaschine für Reversierbetrieb und einen Elektromotor mit einem Rotor und einem Stator umfasst, der über wenigstens eine in dem Gehäuse um eine Wellendrehachse drehbar gelagerte Welle mit der Innenzahnradmaschine gekoppelt ist, wobei der Elektromotor einen in einem Gehäuseteil des Gehäuses angeordneten, um eine Rotordrehachse drehbaren Rotor und einen Stator umfasst, und wobei die Innenzahnradmaschine eine Arbeitskammer umfasst, die von wenigstens zwei Gehäuseteilen des Gehäuses begrenzt ist und in der zwei Zahnräder angeordnet sind, bei denen es sich um ein Ritzelzähne aufweisendes außenverzahntes Ritzel und um ein Hohlradzähne aufweisendes innenverzahntes Hohlrad handelt, das mit Bezug auf das Ritzel exzentrisch gelagert ist, wobei Hohlradzähne der Hohlradzähne des Hohlrads in einem Zahneingriffsbereich mit Ritzelzähnen der Ritzelzähne des Ritzels kämmen, und wobei das Ritzel um eine Ritzeldrehachse und das Hohlrad um eine parallel zu der Ritzeldrehachse angeordnete Hohlraddrehachse drehbar gelagert sind, und wobei sich die Hohlraddrehachse und die Ritzeldrehachse in einer Axialrichtung erstrecken, und wobei die Innenzahnradmaschine als Innenzahnradpumpe arbeitet und in einer ersten Betriebsrichtung, in welcher sich das Ritzel und das Hohlrad in einer ersten Drehrichtung drehen, die Arbeitskammer, vorzugsweise in einem ersten Hochdruckbereich, mit Fluidhochdruck eines fluiden Druckmittels beaufschlagt, die bzw. der mit einem ersten Anschlusskanal fluidverbunden ist, vorzugsweise wobei in einem anderen Bereich der Arbeitskammer ein erster Niederdruckbereich ausgebildet ist, der mit einem zweiten Anschlusskanal fluidverbunden ist, und in einer zweiten Betriebsrichtung, in welcher sich das Ritzel und das Hohlrad in einer zweiten Drehrichtung entgegengesetzt zu der ersten Drehrichtung drehen, die Arbeitskammer, vorzugsweise in einem zweiten Hochdruckbereich, mit Fluidhochdruck des fluiden Druckmittels beaufschlagt, die bzw. der mit einem bzw. dem zweiten Anschlusskanal fluidverbunden ist, vorzugsweise wobei in einem anderen Bereich der Arbeitskammer ein zweiter Niederdruckbereich ausgebildet ist, der mit dem ersten Anschlusskanal fluidverbunden ist, und wobei in einem Gehäuseteil der die Arbeitskammer begrenzenden Gehäuseteile wenigstens ein mit der Arbeitskammer 24 fluidverbunder Leckagekanal zur Ableitung eines sich im Betrieb der Innenzahnradmaschine, insbesondere bei einer Radial- und/oder Axialspaltabdichtung, vorzugsweise mittels Radialdichtsegmenten und/oder wenigstens einer Axialdichtplatte, bildenden, aus dem fluiden Druckmittel bestehenden Leckagefluids angeordnet ist. Die Welle erstreckt sich mit einem Wellenende von dem Ritzel weg in der Axialrichtung durch den von der Welle getragenen Rotor. Der erste Anschlusskanal und der zweite Anschlusskanal sind über in dem Gehäuse oder in einem die Arbeitskammer begrenzenden Gehäuseteil des Gehäuses angeordnete Rückschlagventile mit einer mit dem wenigstens einen Leckagekanal fluidverbunden Leckagekanalschleife verbunden, die sich wenigstens bis in einen Bereich eines von dem Ritzel weg erstreckenden Rotorendes des Rotors erstreckt und die einen sich in der Axialrichtung in der Welle bzw. durch die Welle erstreckenden Leckage-Wellenkanal und wenigstens einen mit dem Leckage-Wellenkanal fluidverbundenen, sich, vorzugsweise in einem radialen Abstand zu dem Leckage-Wellenkanal, in der Axialrichtung in dem Rotor bzw. durch den Rotor erstreckenden Leckage-Rotorkanal und/oder einen mit dem Leckage-Wellenkanal fluidverbundenen, in Radialrichtung betrachtet zwischen dem Rotor und dem Stator ausgebildeten, sich in der Axialrichtung erstreckenden Leckage-Spaltkanal aufweist. Die Rückschlageventile sperren in einer Fluidströmungsrichtung von der Leckagekanalschleife zu, vorzugsweise dem jeweils aktiven Niederdruckbereich, der Arbeitskammer öffnen und in einer Gegenrichtung bzw. entgegen gesetzten Fluidströmungsrichtung, vorzugsweise von dem jeweils aktiven Hochdruckbereich der Arbeitskammer zu der Leckagekanalschleife, sperren, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid von dem wenigstens einen Leckagekanal durch die Leckagekanalschleife in die Arbeitskammer, vorzugsweise und von dort im Wesentlichen, also bis auf einen Leckageanteil, in den dem jeweils aktiven Niederdruckbereich zugeordneten Anschlusskanal, strömt.
  • Gemäß einer bevorzugten Ausgestaltung kann vorgesehen sein, dass zwischen dem Ritzel und dem Hohlrad ein sichelförmiger Freiraum ausgebildet ist. In dem sichelförmigen Freiraum kann ein einteiliges oder mehrteiliges Füllstück angeordnet sein.
  • Gemäß einer besondere bevorzugten Ausführungsvariante kann vorgesehen sein, dass zwischen dem Ritzel und dem Hohlrad ein sichelförmiger Freiraum ausgebildet ist, in dem ein mehrteiliges Füllstück angeordnet ist, das mehrere in radialer Richtung relativ zueinander bewegliche Radialdichtsegmente zur radialen Abdichtung eines Hochdruckbereichs der Arbeitskammer umfasst, von denen ein erstes Radialdichtsegment ein an Ritzelzähnen der Ritzelzähne des Ritzels anlegbares oder anliegendes Ritzelsegment bildet und von denen ein zweites Radialdichtsegment ein an Hohlradzähnen der Hohlradzähne des Hohlrads anlegbares oder anliegendes Hohlradsegment bildet. Durch diese Maßnahmen lässt sich eine vorteilhafte Radialkompensation erreichen.
  • Alternativ oder zusätzlich zu den in dem vorstehenden Absatz erwähnten Merkmalen kann vorgesehen sein, dass zwischen axialen Stirnfächen der Zahnräder und zumindest einem Gehäuseteil des Gehäuses wenigstens eine in der Axialrichtung bewegliche Axialdichtplatte zur axialen Abdichtung des Hochdruckbereichs der Arbeitskammer angeordnet ist. Durch diese Maßnahmen lässt sich eine vorteilhafte Axialkompensation erreichen.
  • Gemäß einer Ausgestaltung kann vorgesehen sein, dass zwischen einer radial nach außen zu dem Hohlradsegment weisenden Innenfläche des Ritzelsegments und einer dieser gegenüber liegenden, radial nach innen zu dem Ritzelsegment weisenden Innenfläche des Hohlradsegments ein Radialspalt ausgebildet ist.
  • Gemäß einer Weiterbildung kann vorgesehen sein, dass der wenigstens eine Leckagekanal unmittelbar mit dem Leckage-Wellenkanal der Leckagekanalschleife fluidverbunden ist und dass der wenigstens eine Leckage-Rotorkanal der Leckage-Kanalschleife unmittelbar mit einem in einem Gehäuseteil des Gehäuses oder in dem den wenigstens einen Leckagekanal enthaltenden Gehäuseteil des Gehäuses angeordneten Verbindungskanal oder Verbindungsraum fluidverbunden ist, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid entweder von dem wenigstens einen Leckagekanal durch den Leckage-Wellenkanal sowie in und durch den wenigstens einen Leckage-Rotorkanal der Leckage-Kanalschleife und von dort in den Verbindungskanal oder in den Verbindungsraum fließt, oder umgekehrt, oder dass der wenigstens eine Leckagekanal unmittelbar mit dem wenigstens einen Leckage-Rotorkanal der Leckagekanalschleife fluidverbunden ist und dass der wenigstens eine Leckage-Wellenkanal der Leckage-Kanalschleife unmittelbar mit einem in einem Gehäuseteil des Gehäuses oder in dem den wenigstens einen Leckagekanal enthaltenden Gehäuseteil des Gehäuses angeordneten Verbindungskanal oder Verbindungsraum fluidverbunden ist, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid entweder von dem wenigstens einen Leckagekanal durch den wenigstens einen Leckage-Rotorkanal sowie in und durch den Leckage-Wellenkanal der Leckage-Kanalschleife und von dort in den Verbindungskanal oder in den Verbindungsraum fließt, oder umgekehrt.
  • Gemäß einer besonders bevorzugten Ausführungsvariante kann vorgesehen sein, dass in einem Gehäuseteil des Gehäuses zwischen der Arbeitskammer und dem Verbindungskanal oder dem Verbindungsraum ein erster Rückströmkanal und ein zweiter Rückströmkanal angeordnet sind, die jeweils einerends in den Verbindungskanal oder Verbindungsraum und andernends, vorzugsweise in einem jeweils einer Mündung des jeweiligen Anschlusskanals in die Arbeitskammer gegenüber liegenden Mündungsbereich, in die Arbeitskammer münden, wobei der erste Rückströmkanal ein erstes Rückschlagventil der Rückschlagventile enthält und wobei der zweite Rückströmkanal ein zweites Rückschlagventil der Rückschlagventile enthält, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid durch die Leckagekanalschleife, vorzugsweise von dem Leckagekanal durch den Leckage-Wellenkanal in und durch den wenigstens einen Leckage-Rotorkanal der Leckagekanalschleife, oder umgekehrt, in und durch den Verbindungskanal oder den Verbindungsraum und von dort entweder in und durch den ersten Rückströmkanal über das erste Rückschlagventil in die Arbeitskammer oder in und durch den zweiten Rückströmkanal über das zweite Rückschlagventil in die Arbeitskammer strömt.
  • Dabei kann vorgesehen sein, dass ein in die Arbeitskammer mündender erster Kanalteil des ersten Rückströmkanals und der erste Anschlusskanal sich in der Axialrichtung, vorzugsweise koaxial zueinander, erstrecken und dass ein in die Arbeitskammer mündender zweiter Kanalteil des zweiten Rückströmkanals und der zweite Anschlusskanal sich in der Axialrichtung, vorzugsweise koaxial zueinander, erstrecken.
  • Gemäß einer bevorzugten Ausgestaltung kann vorgesehen sein, dass es sich bei dem Leckage-Wellenkanal um eine Axialbohrung handelt, deren Bohrungslängsachse koaxial zu der Rotordrehachse und/oder koaxial zu der Wellendrehachse angeordnet ist. Ferner oder alternativ kann vorgesehen sein, dass es sich bei dem wenigstens einen Leckage-Rotorkanal um eine Axialausnehmung handelt, deren Ausnehmungslängsachse parallel zu der Ritzeldrehachse und/oder parallel zu der Wellendrehachse angeordnet ist.
  • Gemäß einer besonders bevorzugten Ausführungsvariante kann vorgesehen sein, dass der Rotor eine Mehrzahl von sich durch diesen in der Axialrichtung erstreckende Leckage-Rotorkanäle enthält, die jeweils einerends mit dem Leckage-Wellenkanal fluidverbunden sind und die jeweils andernends mit der Arbeitskammer und/oder mit dem Verbindungskanal oder mit dem Verbindungsraum fluidverbunden sind.
  • Gemäß einer bevorzugten Weiterbildung kann vorgesehen sein, dass sich der wenigstens eine Leckage-Rotorkanal durch den Rotor hindurch erstreckt und zu in der Axialrichtung voneinander weg weisenden Rotorenden des Rotors hin offen ist oder dass sich die Leckage-Rotorkanäle durch den Rotor hindurch erstrecken und zu in der Axialrichtung voneinander weg weisenden Rotorenden des Rotors hin offen sind.
  • Gemäß einer besonders bevorzugten Ausgestaltung kann vorgesehen sein, dass die Welle wenigstens eine Radialausnehmung aufweist, die einerends in den Leckage-Wellenkanal mündet und die andernends radial nach außen offen ist und im Bereich des zu der Welle hin offenen, vorzugsweise als Ringraum gestalteten, wenigstens einen Leckagekanals zur Aufnahme des Leckagefluids angeordnet ist, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid von dem wenigstens einen Leckagekanal, vorzugsweise unmittelbar, in den Leckage-Wellenkanal strömt.
  • Gemäß einer ganz besonders vorteilhaften Ausführungsvariante kann vorgesehen sein, dass die Welle im Bereich ihres dem Rotor zugeordneten Wellenendes oder an ihrem dem Rotor zugeordneten Wellenende über ein Rotorlager des Rotors an einem dem Elektromotor zugeordneten Gehäuseteil des Gehäuses um ihre Rotordrehachse und/oder um ihre Wellen-Drehachse drehbar gelagert ist, und dass der Leckage-Wellenkanal der Welle und der wenigstens eine Leckage-Rotorkanal des Rotors mit einem Lagerspalt des Rotorlagers fluidverbunden sind, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid zu dem Lagerspalt des Rotorlagers oder durch den Lagerspalt des Rotorlagers strömt. Bei dem Rotorlager kann es sich bevorzugt um ein Wälzlager oder um ein Kugellager handeln.
  • Gemäß einer vorteilhaften Weiterbildung kann vorgesehen sein, dass die Welle wenigstens eine Radialausnehmung aufweist, die im Bereich des Rotor-Lagers angeordnet ist und die einerends in den Leckage-Wellenkanal mündet und die andernends radial nach außen zu einem mit dem Lagerspalt des Rotor-Lagers fluidverbunden ersten Verbindungskanal oder, vorzugsweise als Ringraum gestalteten, Verbindungsraum offen ist, der mit dem wenigstens einen Leckage-Rotorkanal fluidverbunden ist oder in den der wenigstens eine Leckage-Rotorkanal mündet, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid von dem Leckage-Wellenkanal in den mit dem Lagerspalt des Rotor-Lagers fluidverbundenen Verbindungskanal oder in den, vorzugsweise als Ringraum gestalteten, Verbindungsraum und von dort in den wenigstens einen Leckage-Rotorkanal, oder umgekehrt.
  • Gemäß einer bevorzugten Ausgestaltung kann vorgesehen sein, dass an der Welle im Bereich ihres dem Rotor zugeordneten Wellenendes ein Lagerbefestigungs- und/oder Sensorkörper befestigt ist, mittels dessen das Rotorlager an der Welle befestigt ist und/oder der einen Sensor, vorzugsweise einen Drehzahlsensor, enthält.
  • Gemäß einer vorteilhaften Weiterbildung kann vorgesehen sein, dass der Leckage-Wellenkanal im Bereich des dem Rotor zugeordneten Wellenendes der Welle mittels des Lagerbefestigungs- und/oder Sensorkörpers lösbar verschlossen ist.
  • Gemäß einer weiteren Verbesserung kann vorgesehen sein, dass es sich bei dem Lagerbefestigungs- und/oder Sensorkörper um eine Lagerbefestigungs- und/oder Sensorschraube handelt, die mit der Welle verschraubt ist.
  • Vorzugsweise kann der Lagerbefestigungs- und/oder Sensorkörper aus einem nicht-magnetischen Werkstoff bestehen und der Sensor kann magnetische Signale erzeugen bzw. erzeugt magnetische Signale.
  • Gemäß einer ganz besonders vorteilhaften Ausführungsvariante kann vorgesehen sein, dass in dem Lagerbefestigungs- und/oder Sensorkörper eine mit dem Leckage-Wellenkanal fluidverbundene Axialausnehmung angeordnet ist, die in eine Radialausnehmung des Lagerbefestigungs- und/oder Sensorkörpers mündet, die radial nach außen zu einem oder dem mit dem Lagerspalt des Rotor-Lagers fluidverbunden Verbindungskanal oder, vorzugsweise als Ringraum gestalteten, Verbindungsraum offen ist, der auf einer von dem Ritzel weg weisenden Seite des Rotor-Lagers angeordnet ist, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid von dem Leckage-Wellenkanal über die Axialausnehmung und die Radialausnehmung des Lagerbefestigungs- und/oder Sensorkörpers und über den Verbindungskanal oder Verbindungsraum durch den Lagerspalt des Rotor-Lagers hindurch in den wenigstens einen Leckage-Rotorkanal strömt, oder umgekehrt.
  • Gemäß einer ganz besonders bevorzugten Ausgestaltung kann vorgesehen sein, dass zwischen dem Rotor und dem in der Axialrichtung betrachtet eine Länge aufweisenden Stator ein sich in der Axialrichtung im Wesentlichen über die gesamte Länge des Stators erstreckendes Dichtrohr aus einem nicht-magnetischen Werkstoff angeordnet ist, das an dem Stator befestigt ist und das mit dem Stator gegen ein Eindringen des fluiden Druckmittels bzw. Leckagefluids dicht verbunden ist.
  • Dabei kann gemäß einer weiteren Verbesserung vorgesehen sein, dass das Dichtrohr mit dem Stator einschließlich dessen Wicklungen bzw. den aufgewickelten Phasenleitungen und einem den Stator aufnehmenden Gehäuseteil des Gehäuses mittels einer nicht-magnetischen Vergussmasse zu einer gegen ein Eindringen des fluiden Druckmittels bzw. des Leckagefluids dichten Einheit vergossen ist.
  • Gemäß einer bevorzugten Weiterbildung kann vorgesehen sein, dass der Leckage-Spaltkanal in Radialrichtung betrachtet zwischen dem Dichtrohr und dem Rotor ausgebildet ist.
  • Gemäß einer weiteren Verbesserung kann vorgesehen sein, dass es sich bei dem Leckage-Spaltkanal um einen Leckage-Ringspaltkanal handelt.
  • Gemäß einer besonders bevorzugten Ausgestaltung kann vorgesehen sein, dass es sich bei der Welle um eine einteilige und/oder aus einem Stück hergestellte Motorpumpenwelle handelt, an welcher der Rotor drehfest, vorzugsweise kraftschlüssig, insbesondere durch Aufpressen oder Aufschrumpfen, befestigt ist und an welcher das Ritzel drehfest, vorzugsweise formschlüssig, insbesondere lösbar, befestigt ist.
  • Gemäß einer besonders vorteilhaften Ausgestaltung kann vorgesehen sein, dass es sich bei dem Elektromotor um einen bürstenlosen Gleichstrommotor (EC-Motor) handelt.
  • Es versteht sich, dass die vorstehenden Merkmale und Maßnahmen im Rahmen der Ausführbarkeit der Erfindung beliebig kombiniert werden können.
  • Weitere Merkmale, Vorteile und Gesichtspunkte der Erfindung ergeben sich aus den Ansprüchen und den Zeichnungen sowie aus dem nachfolgenden Beschreibungsteil, in dem ein bevorzugtes Ausführungsbeispiel der Erfindung anhand von Figuren beschrieben ist.
  • Es zeigen:
  • 1 Eine perspektivische Ansicht einer erfindungsgemäßen Motor-Pumpen-Einheit;
  • 2 einen Längsschnitt eines Abschnitts der Motor-Pumpen-Einheit im Bereich der Innenzahnradmaschine in einer Schnittebene, welche die Ritzel-Drehachse des Ritzels und die Hohlrad-Drehachse des Hohlrads enthält;
  • 3 einen Querschnitt der Innenzahnradmaschine der Motor-Pumpeneinheit entlang der Schnittlinien 3-3 in 2;
  • 4 eine perspektivische Ansicht einer Axialdichtplatte der Innenzahnradmaschine;
  • 5 eine Draufsicht auf die Axialdichtplatte gemäß 4, wobei in punktierten Linien die Maschinenelemente gemäß der Ansicht nach 3 eingezeichnet sind, um die Lage und Anordnung der Elemente zueinander zu veranschaulichen;
  • 6 eine perspektivische Ansicht von das Füllstück bildenden und dieses lagernden Bauteilen, in einer Explosionsdarstellung;
  • 7 eine Draufsicht auf ein der Axialdichtplatte auf ihrer von den Zähnen abgewandten Seite gegenüber liegendes Gehäuseteil des Gehäuses der Innenzahnradmaschine;
  • 8 eine perspektivische Ansicht einer Anordnung eines Dichtrings und eines Stützrings für den Dichtring in einer Explosionsdarstellung;
  • 9 eine perspektivische Ansicht einer Anordnung, bei welcher der Stützring und der Dichtring in einer Einbaustellung zusammengesteckt sind;
  • 10 einen vergrößerten Ausschnitt eines Querschnitts der Anordnung gemäß 9, entlang der Schnittlinien 10-10;
  • 11 einen Längsschnitt der Motor-Pumpen-Einheit in einer Schnittebene, welche die Ritzel-Drehachse des Ritzels und die Hohlrad-Drehachse des Hohlrads enthält;
  • 12 einen Längsschnitt der Motor-Pumpen-Einheit in einer Schnittebene gemäß den Schnittlinien 12-12 in 11;
  • 13 einen stark vergrößerten Ausschnitt gemäß dem in 12 markierten Kreis;
  • 14 einen Querschnitt der Motor-Pumpen-Einheit in einer Schnittebene gemäß den Schnittlinien 14-14 in 11;
  • 15 einen stark vergrößerten Ausschnitt gemäß dem in 14 markierten Teilkreis.
  • Die Motor-Pumpen-Einheit 20 umfasst eine Innenzahnradmaschine 21 für Reversierbetrieb, einen Elektromotor 22 und eine integrierte Elektronik 74 insbesondere zur Drehzahlregelung. Der Elektromotor 22 umfasst einen Rotor 22.1 und einen Stator 22.2. Der relativ zu dem Stator 22.2 um eine Rotordrehachse 34.1 drehbare Rotor 22.1 ist drehfest mit einer um eine Wellendrehachse 35 drehbare Welle 23 verbunden. Der Rotor 22.1 ist über die Welle 23 mit dem Getriebe der Innenzahnradmaschine 21 gekoppelt. Vorzugsweise handelt es sich bei der Welle 23 um eine gemeinsame einteilige Motorpumpenwelle. Die Motorpumpenwelle 23 ist um eine Wellendrehachse 35 drehbar in dem Gehäuse 25 gelagert. Die Motor-Pumpen-Einheit 20 kann bevorzugt für die Ansteuerung einer hochdynamischen hydraulischen Achse eingesetzt werden, das bzw. die in den Figuren nicht gezeigt sind.
  • Die Motor-Pumpen-Einheit 20 umfasst ein mehrteiliges Gehäuse 25, das sowohl den Elektromotor 22 als auch die Innenzahnradmaschine 10 enthält. In dem gezeigten Ausführungsbeispiel sind sowohl der Rotor 22.1 als auch der Stator 22.2 in einem dem Motor 22 zugeordneten rohrförmigen Gehäuseteil 25.3 des Gehäuses 25 angeordnet. Es versteht sich jedoch, dass der Stator auch einen Bestandteil eines Gehäuseteils des Gehäuses der Motor-Pumpen-Einheit bilden könnte bzw. als ein Gehäuseteil des Gehäuses der Motor-Pumpen-Einheit ausgebildet sein könnte. Bei der Innenzahnradmaschine 21 handelt es sich um eine Hydraulikmaschine in Form einer kompensierten Vier-Quadranten-Innenzahnradmaschine 21. Vorzugsweise ist die Motor-Pumpen-Einheit 20 in einem geschlossenen Hydrauliksystem eingesetzt. Die Motor-Pumpen-Einheit 20 zeichnet sich durch eine hohe Dynamik, Geräusch- und Pulsationsarmut, Rekupierbarkeit, eine lange Lebensdauer, absolute Leckagefreiheit, Lebensdauerfüllung des Systems, Schockunempfindlichkeit und Unempfindlichkeit gegen Schmutz, Wasser, insbesondere Salzwasser, und Temperatur, insbesondere Kälte, aus. Dazu weist die Motor-Pumpen-Einheit 20 insbesondere die folgenden Konstruktionsmerkmale auf:
  • Innenzahnradmaschine:
  • Als Innenzahnradmaschine 21 kommt eine Hydraulikpumpe in Form einer Innenzahnradpumpe mit axialer und radialer Dichtspaltkompensation zum Einsatz. Die Innenzahnradmaschine 21 umfasst eine Arbeitskammer 24, die von vorzugsweise zwei Gehäuseteilen 25.1 und 25.2 des Gehäuses 25 der Motor-Pumpen-Einheit 20 begrenzt ist. In dem Gehäuse 25 bzw. in der Arbeitskammer 24 sind zwei Zahnräder 26, 30 angeordnet. Dabei handelt es sich um ein Ritzelzähne 28 aufweisendes außenverzahntes Ritzel 26 und um ein Hohlradzähne 31 aufweisendes innenverzahntes Hohlrad 30. Das Hohlrad 30 ist mit Bezug auf das Ritzel 26 exzentrisch in einem Lagerring 27 gelagert. Der Lagerring 27 ist drehfest mit dem Gehäuseteil 25.2 des Gehäuses 25 verbunden, vorzugsweise eingepresst. Das Hohlrad 30 ist derart angeordnet, dass Hohlradzähne der Hohlradzähne 31 des Hohlrads 30 in einem Zahneingriffsbereich 33 mit Ritzelzähnen der Ritzelzähne 28 des Ritzels 26 kämmen. Das Ritzel 26 ist um eine Ritzeldrehachse 34.2 drehbar gelagert. Die Ritzeldrehachse 34.2 ist koaxial zu der Wellendrehachse 35 der Welle 23 angeordnet. Das Hohlrad 30 ist um eine Hohlraddrehachse 36 drehbar gelagert. Die Drehrichtungen von Ritzel 26 und Hohlrad 30 sind gleichgerichtet. Dies bedeutet, dass wenn sich beispielsweise das Ritzel 26 im Uhrzeigersinn dreht, sich dann zwangsweise auch das Hohlrad 30 im Uhrzeigersinn dreht. Vorzugsweise ist das Ritzel 26 mit der Welle 23 lösbar verbunden, beispielsweise über eine Passfeder 37, die in passende Nuten 38.1, 38.2 sowohl der Welle 23 als auch des Ritzels 26 formschlüssig eingreift (siehe 3). Folglich sind das Ritzel 26 und die Welle 23 formschlüssig drehfest miteinander verbunden. Die Hohlraddrehachse 36 und die Ritzeldrehachse 34.2 erstrecken sich in einer Axialrichtung 39 parallel zueinander.
  • Zwischen dem Ritzel 26 und dem Hohlrad 30 ist ein sichelförmiger Freiraum 40 der Arbeitskammer 24 ausgebildet. In dem Freiraum 40 ist ein mehrteiliges sichelförmiges Füllstück 41 angeordnet. Das Füllstück 41 umfasst mehrere in radialer Richtung relativ zueinander bewegliche Radialdichtsegmente 42; 43.1, 43.2 zur radialen Abdichtung des jeweils von der Drehrichtung 104.1, 104.2 abhängigen „aktiven“ Hochdruckbereichs 44.1, 44.2 der Arbeitskammer 24. Der Hochdruckbereich 44.1, 44.2 ist demjenigen Bereich der Arbeitskammer 24 zugeordnet, der sich ausgehend von einem Druckaufbaubereich der Arbeitskammer 24, der im Betrieb der Innenzahnradmaschine 21 etwa demjenigen Bereich entspricht, in dem die Zähne 28, 31 der Zahnräder 26, 30 das Füllstück 41 bzw. den Bereich des Füllstücks 41 erreichen, in dem wenigstens ein, vorzugsweise zwei, Haltestift/e bzw. Haltebolzen 45.1, 45.2 für das Füllstück 41 bzw. für dessen Radialdichtsegmente 42; 43.1, 43.2 angeordnet ist, in der jeweiligen Drehrichtung 104.1, 104.2 von Ritzel 26 bzw. Hohlrad 30 betrachtet, bis zu dem Zahneingriffsbereich 33 erstreckt, in dem die Zähne 28, 31 der Zahnräder 26, 30 miteinander kämmen. Der jeweilige aktive Hochdruckbereich 44.1, 44.2 ist halbsichelförmig bzw. nierenförmig ausgebildet. Wenn sich die Innenzahnradpumpe 21 in ihrer ersten Betriebsrichtung dreht, in der sich das Ritzel 26 und das Hohlrad 30 in ihrer ersten Drehrichtung 104.1 drehen, bildet sich Fluidhochdruck in einem ersten Bereich 44.1 der Arbeitskammer 24 aus, bei dem es sich dann um den aktiven ersten Hochdruckbereich 44.1 handelt. Demgegenüber bildet sich dann in dem zweiten Bereich 44.2 der Arbeitskammer ein Fluidniederdruck aus. Wenn sich die Innenzahnradpumpe 21 in ihrer zweiten Betriebsrichtung entgegengesetzt zu der ersten Betriebsrichtung dreht, in der sich also das Ritzel 26 und das Hohlrad 30 in ihrer zweiten Drehrichtung 104.2 entgegengesetzt zu der ersten Drehrichtung 104.1 drehen, bildet sich Fluidhochdruck in dem zweiten Bereich 44.2 der Arbeitskammer 24 aus, bei dem es sich dann um den aktiven zweiten Hochdruckbereich 44.2 handelt. Demgegenüber bildet sich dann in dem ersten Bereich 44.1 der Arbeitskammer ein Fluidniederdruck aus. In den besagten ersten Bereich 44.1 der Arbeitskammer 24 mündet ein erster Anschlusskanal 105.1 und in den besagten zweiten Bereich 44.2 der Arbeitskammer mündet ein zweiter Anschlusskanal 105.2. (siehe 12). Wenn sich also die Innenzahnradpumpe 21 in ihrer ersten Betriebsrichtung 104.1 dreht, ist bzw. wird der erste Arbeitskanal 105.1 mit Fluidhochdruck beaufschlagt und wenn sich die Innenzahnradpumpe 21 in ihrer zweiten Betriebsrichtung 104.2 dreht, ist bzw. wird der zweite Arbeitskanal 105.2 mit Fluidhochdruck des fluiden Druckmittels beaufschlagt. Vorzugsweise erstrecken sich der erste Anschlusskanal 105.2 und der zweite Anschlusskanal 105. in der Axialrichtung 39 parallel zueinander
  • Die Radialdichtsegmente 42; 43.1, 43.2 umfassen ein erstes Radialdichtsegment, das ein auch als Segmentträger bezeichenbares Ritzelsegment 42 bildet, das an Ritzelzähnen der Ritzelzähne 28 des Ritzels 26 anlegbar ist bzw. anliegt. Das Ritzelsegment 42 ist einteilig ausgebildet und aus einem Teil hergestellt, beispielsweise durch Fräsen.
  • Die Radialdichtsegmente 42; 43.1, 43.2 umfassen außerdem wenigstens ein zweites Radialdichtsegement, das ein Hohlradsegment 43.1, 43.2 bildet und das an Hohlradzähnen der Hohlradzähne 31 des Hohlrads 30 anlegbar ist bzw. anliegt. In dem in den Figuren gezeigten bevorzugten Ausführungsbeispiel sind zwei separate Hohlradsegmente 43.1, 43.2 vorgesehen, von denen jedes Hohlradsegment 43.1, 43.2 an Hohlradzähnen der Hohlradzähne 31 des Hohlrads 30 anlegbar ist bzw. anliegt. Das Ritzelsegment 42 weist jeweils im Bereich jedes Hohlradsegments 43.1, 43.2 eine radial nach außen zu dem jeweiligen Hohlradsegment 43.1, 43.2 hin weisende Innenfläche 72 auf. Jedes Hohlradsegment 43.1, 43.2 weist eine radial nach innen zu dem Ritzelsegment 42 weisende Innenfläche 73.1, 73.2 auf, welche der zugeordneten Innenfläche 72 des Ritzelsegments 42 gegenüber liegt. Zwischen der Innenfläche 72 des Ritzelsegments 42 und der Innenfläche 73.1, 73.2 des jeweiligen Hohlradsegments 43.1, 43.2 ist jeweils ein Radialspalt 75.1, 75.2 ausgebildet. Im Betrieb der Innenzahnradmaschine 21 gelangt Druckmittel, vorzugsweise Drucköl, aus dem der aktuellen Drehrichtung des Ritzels 26 und des Hohlrads 30 zugeordneten aktiven Hochdruckbereich 44.1, 44.2 in den besagten Radialspalt 75.1, 75.2 bzw. in den entsprechenden Spaltraum, der auch mit Kompensationsraum bezeichnet ist. Dadurch werden – je nach Drehrichtung von Ritzel 26 und Hohlrad 30 – eines der beiden Hohlradsegmente 43.1, 43.2, nämlich das dem aktuellen bzw. aktiven Hochdruckraum 44.1, 44.2 zugeordnete Hohlradsegment 43.1, 43.2, das dann als aktives Hohlradsegment bezeichenbar ist, und das Ritzelsegment 42 voneinander weg bzw. auseinander gedrückt, so dass das Ritzelsegment 42 mit einer Außenfläche 46 an Zahnköpfen von Ritzelzähnen der Ritzelzähne 28 des Ritzels 26 abdichtend angedrückt wird und außerdem das aktive Hohlradsegment 43.1, 43.2 mit einer Außenfläche 47.1, 47.2 an Zahnköpfen von Hohlradzähnen der Hohlradzähne 31 des Hohlrads 30 abdichtend angedrückt wird, so dass der besagte Radialspalt 75.1, 75.2 auf diese Art und Weise radial kompensiert wird. In diesem Zusammenhang spricht man von Radialkompensation bzw. von einer radial kompensierten Innenzahnradmaschine 21.
  • In dem gezeigten Ausführungsbeispiel weist das Ritzelsegment 43.1, 43.2 zwei sich in der Axialrichtung 39 erstreckende Dichtrollennuten 48.1, 48.2 auf. Jede Dichtrollennut 48.1, 48.2 ist zu ihren voneinander weg weisenden axialen Enden hin offen. In jeder Dichtrollennut 48.1, 48.2 ist eine in radialer Richtung relativ zu dem Ritzelsegment 42 und dem jeweils zugeordneten Hohlradsegment 43.1, 43.2 bewegliche Dichtrolle 49.1, 49.2 zur Abdichtung des Radialspalts 75.1, 75.2 zwischen dem Ritzelsgement 42 und dem jeweiligen Hohlradsegment 43.1, 43.2 angeordnet. In jeder Dichtrollennut 48.1, 48.2 ist auch eine vorgespannte Dichtrollenfeder 50.1, 50.2, vorzugsweise eine Blattfeder, angeordnet. Jede Dichtrollenfeder 50.1, 50.2 stützt sich einerseits an einem Nutgrund der zugeordneten Dichtrollennut 48.1, 48.2 ab und stützt sich andererseits an der zugeordneten Dichtrolle 49.1, 49.2 ab. Dadurch wird jede Dichtrolle 49.1, 49.2 auch im drucklosten Zustand bzw. im Nichtbetrieb der Innenzahnradmaschine 21 gegen eine Dichtfläche der Dichtrollennut 48.1, 48.2 des Ritzelsegments 42 und auch gegen eine Dichtfläche des jeweils zugeordneten Hohlradsegments 43.1, 43.2 gedrückt.
  • Ferner weist das Ritzelsegment 42 zwei sich in der Axialrichtung 39 erstreckende Segmentfedernuten 51.1, 51.2 auf. Jede Segmentfedernut 51.1, 51.2 ist zu ihren voneinander weg weisenden axialen Enden hin offen. In jeder Segmentfedernut 51.1, 51.2 ist eine vorgespannte Feder 52.2, 52.2, vorzugsweise eine Blattfeder, aufgenommen. Jede Segmentfedernut 51.1, 51.2 ist in einem Umfangsabstand bzw. Umfangswinkel zu der jeweils zugeordneten Dichtrollennut 48.1, 48.2 in Umfangsrichtung versetzt angeordnet, und zwar in Richtung eines dem, von der Drehrichtung abhängigen, Hochdruckbereich 44.1, 442. zugeordneten Ritzelsegmentendes 53.1, 53.2 des Ritzelsegments 42 versetzt. Mittels dieser Feder 52.1, 52.2 werden das zugeordnete Hohlradsegment 43.1, 43.2 und das Ritzelsegment 42 derart in radialer Richtung voneinander weg bzw. auseinander gedrückt, dass das Ritzelsegment 42 mit einer radial nach innen weisenden Außenfläche 46 an Hohlradzähnen der Hohlradzähne 31 des Hohlrads 30 abdichtend anliegt und dass das Hohlradsegment 43.1, 43.2 mit einer radial nach außen weisenden Außenfläche 47.1, 47.2, die von der Außenfläche 46 des Ritzelsegments 42 weg weist, an Hohlradzähnen der Hohlradzähe 31 des Hohlrads 30 abdichtend anliegt.
  • Das Ritzelsegment 42 ist als Segmentträger für das jeweilige Hohlradsegment 43.1, 43.2 ausgebildet und weist für jedes Hohlradsegment 43.1, 43.2 einen auch als Anschlagtasche bezeichenbaren Anschlag 54.1, 54.2 auf. Jeder 54.1, 54.2 Anschlag weist eine sich in der Axialrichtung 39 sowie radial nach außen zu dem Hohlrad 30 hin erstreckende Anschlagfläche 55.1, 55.2 zur Abstützung des jeweiligen Hohlradsegments 43.1, 43.2 gegen ein Einziehen des jeweiligen Hohlradsegments 43.1, 43.2 im Betrieb der Innenzahnradmaschine 21 in den Zahneingriffsbereich 33 auf. Jeder Anschlag 54.1, 54.2 ist mit seiner Anschlagfläche 55.1, 55.2 in einem Umfangsabstand bzw. in einem Umfangswinkel zu der jeweiligen Segmentfedernut 51.1, 51.2 in Umfangsrichtung in Richtung des dem von der Drehrichtung abhängigen aktiven Hochdruckbereich 44.1, 44.2 zugeordneten Ritzelsegmentendes 53.1, 53.2 des Ritzelsegments 42 versetzt angeordnet.
  • Zur Axialspaltkompensation des jeweiligen axialen Spalts zwischen den jeweils in die gleiche Richtung weisenden bzw. gleichen Seiten der Zahnräder 26, 30 zugeordneten Stirnflächen 56.1, 56.2; 57.1, 57.2 der Zahnräder 26, 30 und dem jeweiligen Gehäuseteil 25.1, 25.2 sind in dem gezeigten Ausführungsbeispiel zwei in der Axialrichtung 39 bewegliche Axialdichtplatten 58.1, 58.2 vorgesehen. Diese dienen dazu, eine Abdichtung des von der Drehrichtung der Zahnräder 26, 30 abhängigen Hochdruckbereichs 44.1, 44.2 der Arbeitskammer 24 zu bewirken. Die Axialdichtplatten 58.1, 58.2 können auch mit Axialscheiben bezeichnet werden. Es versteht sich, dass auch nur eine einzige Axialdichtscheibe vorgesehen sein kann. Die bzw. jede Axialdichtscheibe 58.1, 58.2 ist zwischen den jeweils zugeordneten Stirnflächen 56.1, 56.2; 57.1, 57.2 der Zahnräder 26, 30 und einem Gehäuseteil 25.1, 25.2 des Gehäuses 25 angeordnet.
  • Die oder jede Axialdichtscheibe 58.1, 58.2 wird im Betrieb der Innenzahnradmaschine 21 mittels Druckmittel unter Hochdruck mit ihrer jeweiligen Innenfläche 59.1, 60.1 gegen die jeweils zugeordneten Stirnflächen 56.1, 56.2; 57.1, 57.2 von Ritzel 26 und Hohlrad 30 gedrückt. Zu diesem Zwecke sind so genannte Druckfelder 61.1, 61.2 vorgesehen, die auch mit Axialfelder bezeichenbar sind (siehe 7). Die Druckfelder 61.1, 61.2 bilden Steuerfelder aus. Die Druckfelder 61.1, 61.2 sind in diesem Ausführungsbeispiel in Form von Ausnehmungen in dem jeweils zugeordneten Gehäuseteil 25.1, 25.2 des Gehäuses 25 vorgesehen. Es versteht sich jedoch das die Druckfelder bzw. ein einer Axialdichtplatte zugeordnetes Druckfeld, auch in Form einer Ausnehmung in der Axialdichtplatte bzw. in der jeweiligen Axialdichtplatte vorgesehen sein kann bzw. können. Das bzw. jedes Druckfeld 61.1, 61.2 ist nierenförmig gestaltet.
  • Die Axialscheiben 58.1, 58.2 weisen an ihren Innenseiten 59.1, 60.1, also denjenigen Seiten, welche dem Ritzel 26 und dem Hohlrad 30 zugewandt sind, nierenförmige Steuerfelder 62.1, 62.2 auf, die auch als Dichtplatten-Ausnehmungen bzw. Drucknieren bezeichnet sind (siehe 4 und 5). Dabei handelt es sich um Ausnehmungen bzw. Vertiefungen in der jeweiligen Axialscheibe 58.1, 58.2. Diese Steuerfelder 62.1, 62.2 sind, ebenso wie die die Druckfelder 61.1, 61.2, mit Druckmittel unter Hochdruck beaufschlagbar bzw. werden beim Betrieb der Innenzahnradmaschine 21 mit Druckmittel des jeweiligen Hochdruckbereichs 44.1, 44.2 beaufschlagt. Dadurch wird eine Gegenkraft erzeugt, welche der Kraft der Druckfelder 61.1, 61.2 entgegen wirkt. Jeder Druckniere 62.1, 62.2 sind wenigstens zwei Steuernuten 63.1.1, 63.1.2; 63.2.1, 63.2.2 zugeordnet, die jeweils zu den zugeordneten Stirnflächen 56.1, 56.2; 57.1, 57.2 der Zahnräder 26, 30 hin offen sind, von denen eine erste Steuernut 63.1.1, 63.1.2 im Bereich von zwischen den Ritzelzähnen 28 des Ritzels 26 ausgebildeten Ritzel-Zahnlücken 29 diesen unmittelbar gegenüberliegend angeordnet ist und von denen eine zweite Steuernut 63.2.1, 63.2.2 im Bereich von zwischen den Hohlradzähnen 31 des Hohlrads 30 ausgebildeten Hohlrad-Zahnlücken 32 diesen unmittelbar gegenüberliegend angeordnet ist (siehe 5). Sowohl die erste Steuernut 63.1.1, 63.1.2 als auch die zweite Steuernut 63.2.1, 63.2.2 münden jeweils mit einem ersten Ende in die zugeordnete Druckniere 62.1, 62.2. An einem jeweils zweiten Ende der ersten und zweiten Steuernut 63.1.1, 63.1.2; 63.2.1, 63.2.2, das jeweils von dem ersten Ende in Umfangsrichtung weg weist, ist jeweils ein Steuerschlitz 64.1.1, 64.1.2; 62.2.1, 64.2.2 in Form einer Ausnehmung bzw. Vertiefung des jeweiligen Axialscheibe 58.1, 58.2 vorgesehen. Jeder Steuerschlitz 64.1.1, 64.1.2; 62.2.1, 64.2.2 mündet in die jeweils zugeordnete erste bzw. zweite Steuernut 63.1.1, 63.1.2; 63.2.1, 63.2.2. Jeder Steuerschlitz 64.1.1, 64.1.2; 62.2.1, 64.2.2 erstreckt sich annähernd bzw. im Wesentlichen in Umfangsrichtung.
  • Zusätzlich zu den vorstehenden Merkmalen weist die erfindungsgemäße Motor-Pumpen-Einheit 20 bzw. die erfindungsgemäße Innenzahnradmaschine 21 unter anderem die folgenden erfindungswesentlichen Merkmale auf:
    Die wenigstens eine Axialdichtplatte 58.1, 58.2 weist auf ihrer zu den Stirnflächen 56.1, 56.2; 57.1, 57.2 der Zahnräder 26, 30 hinweisenden Seite bzw. Innenseite 59.1, 60.1 wenigstens eine zu den Stirnflächen 56.1, 56.2; 57.1, 57.2 der Zahnräder 26, 30 hin offene Dichtplatten-Vertiefung bzw. -Ausnehmung 63.3.1, 63.3.2 in Form eines mit Druckmittel beaufschlagbaren zusätzlichen bzw. dritten Dichtplatten-Steuerkanals auf, der als Dichtplatten-Steuernut gestaltet ist. Dabei handelt es sich in dem gezeigten bevorzugten Ausführungsbeispiel um einen dritten Steuerkanal von drei Steuerkanälen, welche jeweils in die mit Druckmittel beaufschlagbare nierenförmige Dichtplatten-Ausnehmung bzw. Druckniere 62.1, 62.2 der beiden Dichtplatten-Ausnehmungen bzw. Drucknieren 62.1, 62.2 einer jeden Axialscheibe 58.1, 58.2 mündet. Der besagte zusätzliche bzw. dritte Dichtplatten-Steuerkanal 63.3.1, 63.3.2 ist zu dem zugeordneten Radialspalt 75.1, 75.2 hin offen und liegt dem zugeordneten Radialspalt 75.1, 75.2 unmittelbar gegenüber (siehe 5). Der jeweilige zusätzliche bzw. dritte Dichtplatten-Steuerkanal 63.3.1, 63.3.2 erstreckt sich ausgehend von der jeweiligen Dichtplatten-Ausnehmung bzw. Druckniere 62.1, 62.2 in der Umfangsrichtung entlang des zugeordneten Radialspalts 75.1, 75.2 zwischen dem Ritzelsegment 42 und dem zugeordneten Hohlradsegment 43.1, 43.2 bis in einen Bereich, welcher der Segmentfedernut 51.1, 51.2 unmittelbar gegenüber liegt. Der besagte zusätzliche Dichtplatten-Steuerkanal 63.3.1, 63.3.2 weist im Unterschied zu der jeweiligen ersten und zweiten Steuernut 63.1.1, 63.1.2; 63.2.1, 63.2.2 keinen Steuerschlitz auf. Durch den jeweiligen zusätzlichen Dichtplatten-Steuerkanal bzw. durch die jeweilige dritte Steuernut 63.3.1, 63.3.2 wird erreicht, dass der notwendige radiale Kompensationsdruck in dem zugeordneten Radialspalt 75.1, 75.2 zwischen dem Ritzelsegment 42 und dem jeweils aktiven Hohlradsegment 43.1, 43.2 nahezu zeitgleich mit der jeweiligen Drehrichtungsumkehr erreicht wird und damit jeweils eine besonders vorteilhafte Abdichtung.
  • Bei der Innenzahnradmaschine 21 ist erfindungsgemäß zusätzlich vorgesehen, dass das Ritzelsegment 42 und/oder das Hohlradsegment 43.1, 43.2 wenigstens eine Radialdichtsegment-Vertiefung in Form eines sich in einer Umfangsrichtung um die Ritzeldrehachse 34.2 bzw. um die Hohlraddrehachse 36 erstreckenden, mit dem Druckmittel beaufschlagbaren Radialdichtsegment-Steuerkanals 65; 65.1, 65.2, 65.3, 65.4, 65.5, 65.6 aufweist, der zu dem zugeordneten Radialspalt 75.1, 75.2 hin offen ist und der unmittelbar in den zugeordneten Radialspalt 75.1, ,75.2 mündet. Vorzugsweise erstreckt sich der Radialdichtsegment-Steuerkanal 65 in einer Richtung bzw. in der Drehrichtung, in der das Ritzel 26 um seine Ritzeldrehachse 34.2 bzw. in der das Hohlrad 30 um seine Hohlraddrehachse (36) drehbar ist bzw. sind und/oder erstreckt sich der Radialdichtsegment-Steuerkanal 65 in einer senkrecht zu der Axialrichtung 39 verlaufenden gedachten Ebene liegenden Richtung. Durch die vorstehenden Maßnahmen kann sich im aktiven Druckraum 44.1, 44.2 aufbauendes Druckmittel, vorzugsweise Drucköl, schneller in den Spaltraum des aktiven Radialspalts 75.1, 75.2 gelangen. Dadurch wird der notwendige radiale Kompensationsdruck in dem aktiven Radialspalt 75.1, 75.2 zwischen dem Ritzelsegment 42 und dem jeweils aktiven Hohlradsegment 43.1, 43.2 in noch kürzerer Zeit bei der der jeweiligen Drehrichtungsumkehr erreicht und damit jeweils eine noch bessere bzw. optimale Abdichtung.
  • Abgesehen von den vorstehenden Merkmalen sind bei der erfindungsgemäßen Innenzahnradmaschine 21 weitere Maßnahmen bzw. Merkmale vorgesehen, welche sich für den eingangs erwähnten Einsatzzweck als besonders vorteilhaft herausgestellt haben. Dadurch können die an diese Motor-Pumpen-Einheit 20 gestellten Forderungen in besonderem Maße erfüllt werden:
  • Verzahnung:
  • Die Forderung nach Geräusch- und Pulsationsarmut wird durch eine speziell ausgelegte Evolventenverzahnung mit 15 Zähnen 28 am Ritzel 26 und 20 Zähnen 31 am Hohlrad 30 erreicht. Eine höhere Zähnezahl würde zwar eine weitere Reduzierung der Förderstrompulsation ergeben, aber gleichzeitig auch den Hohlraddurchmesser vergrößern. Dies würde mehr Bauraum und eine Reduktion des hydraulisch-mechanischen Wirkungsgrads der Zahnradmaschine bedeuten. Außerdem würden die Herstellungskosten erhöht. Abgesehen davon würden aufgrund des größeren Hohlraddurchmessers auch die Massenträgheitsmomente der Zahnradpumpe erhöht. Bei hohen dynamischen Anforderungen von bis zu 10 Drehrichtungswechseln pro Sekunde ist aber ein geringes Massenträgheitsmoment entscheidend für die Energieeffizienz der Motor-Pumpen-Einheit 20.
  • Sowohl das außenverzahnte Ritzel als 26 auch das innenverzahnte Hohlrad 30 sind profilverschoben. Der Eingriffswinkel beträgt 25°. Der Zahnkopfhöhenfaktor der Ritzelverzahnung beträgt 1,25 und der Zahnkopfhöhenfaktor der Hohlradverzahnung beträgt 1,24, Diese Kombination hat sich als äußerst geräuscharm erwiesen. Die Zahnkopfkanten sind speziell geformt.
  • Durch ein geringes Flankenspiel (0,02 bis 0,05 mm oder 0,01 bis 0,025 × Modul) wird erreicht, dass auch bei hochdynamischem Reversierbetrieb nur sehr wenig Druckmittel, insbesondere Drucköl, über den Zahneingriff zur „Saugseite“ fließen kann.
  • Radialkompensation:
  • Die Radialkompensation ist durch drei, auch als Radialdichtsegmente bezeichneten, Segmentteile 42; 43.1, 43.2 symmetrisch dargestellt. Das einteilige Ritzelsegment 42 ist für beide Drehrichtungen sowohl im Pumpen- und Motorbetrieb aktiv dichtend. Die beiden Hohlradsegmente 43.1, 43.2 sind nur bei entsprechender Drehrichtung aktiv dichtend. Das nicht aktive Dichtsegment 43.1, 43.2 wird durch ein Federelement 52.1, 52.2 in Position gehalten. Die Abdichtung zwischen den Radialdichtsegmenten 42; 43.1, 43.2, also zwischen dem Ritzelsegment 42 und dem jeweiligen Hohlradsegment 43.1, 43.2, wird durch beidseitig angeordnete Dichtrollen 49.1, 49.2 gewährleistet. Die Dichtrollen 49.1, 49.2 bestehen aus einem hochfesten temperaturbeständigen Kunststoff. Die Dichtrollen 49.1, 49.2 sind in geeigneten Ausnehmungen 48.1, 48.2 des Ritzelsegments 42 aufgenommen. Die Dichtrollen 49.1, 49.2 werden im Betrieb der Innenzahnradmaschine 21 unter Druckmitteldruck gegen eine Dichtfläche des Ritzelsegments 42 und gegen eine Dichtfläche des jeweils aktiven Hohlradsegments 43.1, 43.2 gedrückt. Im drucklosen Zustand werden die Dichtrollen 49.1, 49.2 durch die jeweilige Dichtrollenfeder 50.1, 50.2 gegen die Dichtflächen gedrückt. Die Dichtflächen sind in einem speziellen Winkel 66 angeordnet, der kleiner ist als 110°. Dadurch wird durch die Anpresskraft der Dichtrollen 49.1, 49.2 auch eine radiale „Spreizung“ der Radialdichtsegmente 42; 43.1, 43.2 und somit eine Anlage der Radialdichtsegmente 42; 43.1, 43.2 an die Zahnköpfe der Zähne 28, 31 von Ritzel 26 und Hohlrad 30 erreicht.
  • Die hydraulische Ansteuerung erfolgt über den Radialspalt 75.1, 75.2 zwischen der auch als Innenfläche bezeichneten äußeren Umfangsfläche 43 des Ritzelsegments 42 und der jeweiligen, auch als Innenfläche bezeichneten inneren Umfangsfläche 44.1, 44.2 des jeweiligen Hohlradsegments 43.1, 43.2. Zur sicheren Ansteuerung ist in in wenigstens einer Axialdichtplatte, vorzugsweise in den Axialdichtplatten 58.1, 58.2, wenigstens eine zusätzliche Steuernut 63.3.1, 63.3.2 angebracht. Durch diese wenigstens eine zusätzliche Steuernut 63.3.1, 63.3.2 kann das Druckmittel bzw. Steueröl nicht nur über den Radialspalt 75.1, 75.2 zwischen den Radialdichtsegmenten 42; 43.1, 43.2 in den zugehörigen Spaltraum gelangen, sondern auch über die Stirnflächen bzw. stirnflächenseitig in die Spalte zwischen den Segmenten 42; 43.1, 43.2. Diese „doppelte“ Ansteuerung hat sich als äußerst wirksam gezeigt, um insbesondere bei den dynamischen Anforderungen beim Reversierbetrieb der Innenzahnradmaschine 21 keinen Einbruch bei der Förderung zu bekommen. Mit anderen Worten: Hierdurch wird der notwendige radiale Kompensationsdruck im Spalt 75.1, 75.2 zwischen den Segmenten 42; 43.1, 43.2 nahezu „zeitgleich“ mit der Drehrichtungsumkehr erreicht und damit eine optimale radiale Abdichtung.
  • Weitere Optimierungen sind durch Fasen 65.1, 65.2, 65.5, 65.6 und/oder Nuten 65.3, 65.4 am Ritzelsegment 42 und/oder an den Hohlradsegmenten 43.1, 43.2 möglich. Die Fasen 65.1, 65.2, 65.5, 65.6 können vorteilhafterweise beidseitig, aber auch einseitig an den Segmenten 42; 43.1, 43.2 angebracht werden. Durch diese Fasen 65.1, 65.2, 65.5, 65.6 kann das sich im Druckraum aufbauende Druckmittel bzw. Drucköl schneller in den Spaltraum, also in den durch den Radialspalt 75.1, 75.2 gebildeten Spalt- bzw. Kompensationsraum zwischen Ritzel 26 und aktivem Hohlradsegment 43.1, 43.2 bis zur jeweiligen Dichtrolle 49.1, 49.2 gelangen. Diese Fasen 65.1, 65.2 können, wie dargestellt, zwischen der Segmentfedernut 51.1 und der Dichtrollennut 48.1 und/oder von der Segmentfedernut 51.1 bis zur Anschlagtasche bzw. bis zum Anschlag 54.1 am Segmentträger 42 und/oder über die gesamte Anschlagflache 55.1 hinaus bis zur Freifläche 67.1 angeordnet sein.
  • Über diese Fasen 65.1, 65.2 kann dann Druckmittel bzw. Drucköl direkt bzw. unmittelbar in den Spalt- bzw. Kompensationsraum 75.1, 75.2 einströmen. Alternativ oder zusätzlich, wie dargestellt, können diese Fasen 65.5, 65.6 an den Hohlradsegmenten 43.1, 43.2 angebracht werden. Die gleichen Aufgaben können auch Steuernuten 65.3, 65.4 am Außenumfang des Ritzelsegments 42 und/oder am Innenumfang der Hohlradsegmente übernehmen.
  • In dem gezeigten Ausführungsbeispiel, ist das Füllstück 41 über zwei Haltestifte bzw. -bolzen 45.1, 45.2 abgestützt, die über entsprechende Bohrungen 68.1, 68.2 in den Gehäuseteilen 25.1, 25.2 drehbar gelagert sind. Die Haltestifte bzw. -bolzen 45.1, 45.2 weisen über eine Führungsläge einen kreiszylindrischen Führungsbereich 69.1, 69.2 auf, der einen Außendurchmesser aufspannt. Vorzugsweise beträgt die Führungslänge 1,5 × Außendurchmesser des Führungsbereichs 69.1, 69.2. Aus Kostengründen können die Haltestifte bzw. -bolzen 45.1, 45.2 aus Sintermaterial, vorzugsweise aus Sintereisen, mit entsprechender Festigkeit hergestellt werden. Der Innendurchmesser der Bohrungen 68.1, 68.2 der Gehäuseteile 25.1, 25.2 ist um wenige Mikrometer größer als der Außendurchmesser des Führungsbereichs 69.1, 69.2 der Haltestifte bzw. -bolzen 45.1, 45.2. Dadurch ergibt sich eine Spielpassung. Somit können sich die Haltestifte bzw. -bolzen 45.1, 45.2 im Betrieb der Innenzahnradmaschine 21 drehen und die, vorzugsweise einen Winkel 70 von 24° einschließenden, Anlageflächen 71.1, 71.2, können in eine für die Dichtfunktion der Segmente 42; 43.1, 43.2 optimale Position drehen. Dadurch, dass die Führungslänge 1,5 × Außendurchmesser beträgt, wird zum einen die Flächenpressung reduziert und zum anderen wird ein unzulässiges Verkanten des jeweiligen Haltestifts bzw. -bolzens 45.1, 45.2 in der Aufnahmebohrung 68.1, 68.2 des jeweiligen Gehäuseteils 25.1, 25.2 vermieden. Eine Verschleißschutzschicht am Außendurchmesser des jeweiligen Haltestifts bzw. -bolzens 45.1, 45.2 erhöht die Lebensdauer der Zahnradmaschine 21 insbesondere bei hochdynamischer Beanspruchung und Drehrichtungswechsel sowie dynamischem Wechseln zwischen Motor- und Pumpenbetrieb. Aus Kostengründen wird dieser Verschleißschutz durch eine Oberflächenhärtung, wie Nitrieren oder Karbonitrieren bei entsprechender Werkstoffauswahl erreicht.
  • Der jeweilige Haltestift- bzw. -bolzen 45.1, 45.2 hat auf seiner von den V-förmig angeordneten Anlageflächen 71.1, 71.2 weg weisenden Seite einen kreiszylindrischen Absatz 76.1, 76.2. Der Absatz 76.1, 76.2 weist gegenüber dem Führungsbereich 69.1, 69.2 einen deutlich kleineren Außendurchmesser auf. Die Stirnfläche 77.1, 77.2 des Absatzes 76.1, 76.2 steht am Bohrungsgrund der Bohrung in dem Gehäuseteil 25.1, 25.2 an und bildet dadurch einen axialen Anschlag der Haltestifte bzw. -bolzen 45.1, 45.2 in Richtung des betroffenen Gehäuseteils 25.1, 25.2. In Richtung der Radialdichtsegmente 42; 43.1, 43.2 wird die axiale Verschiebbarkeit des Haltestifts- bzw. -bolzens 45.1, 45.2 durch eine Stirnfläche 78.1, 78.2 zwischen den Anlageflächen 71.1, 71.2 und dem Nutgrund 79.1, 79.1 der Segmentnuten 80.1, 80.2 des Ritzelsegments 42 begrenzt. Der Haltestift bzw. -bolzen 45.1, 45.2 muss grundsätzlich ein axiales Spiel aufweisen, darf aber auch bzw. trotzdem nicht mit den Zähnen 28, 31 des Ritzels 26 oder des Hohlrads 30 kollidieren. Hierzu sind auch Freiflächen angebracht. Der besagte Absatz 76.1, 76.2 erlaubt eine kostengünstige Herstellung der Bohrungen 68.1, 68.2 in den Gehäuseteilen 25.1, 25.2, beispielsweise durch Verwendung einer Reibahle mit einer relativ großen Anschnittfase. Dies bedeutet, dass die Bohrung 68.1, 68.2 nicht bis zum Bohrungsgrund den Passungsdurchmesser aufweisen muss. Zur Erhöhung der Dauerfestigkeit des Haltestifts- bzw. -bolzens 45.1, 45.2 und damit der Sicherheit und Lebensdauer der hydraulischen Maschine 21, sind am Übergang der Anlageflächen 71.1, 71.2 zu dem Passungsdurchmesser möglichst große Radien 81 angebracht. Fasen 82 an der segmentseitigen Stirnfläche 77.1, 77.2 des jeweiligen Haltestifts bzw. -bolzens 45.1, 45.2 erlauben auch an dem Nutgrund 79.1, 79.2 der zur Abstützung an dem Haltestift bzw. -bolzen 45.1, 45.2 bestimmten Nuten 80.1, 80.2 des Ritzelsegments 42 Radien 83. Diese Radien 81, 83 reduzieren an den, vorzugsweise aus Sondermessing oder Sintermaterial hergestellten, Segmenten 42; 43.1, 43.2 die Kerbspannung, ohne dass die Beweglichkeit der Segmente 42; 43.1, 43.2 durch Klemmen eingeschränkt wird.
  • Der Druckaufbau in den Zahnlücken 29, 32 von Ritzel 26 und Hohlrad 30 wird durch in der jeweiligen Axialscheibe 58.1, 58.2 eingebrachte Steuernuten 63.1.1, 63.1.2; 63.2.1, 62.2.2 und Steuerschlitze 64.1.1, 64.1.2; 64.2.1, 64.2.2 gesteuert. Diese sind in ihrer Position sowie den Querschnittsflächen insbesondere der Steuerschlitze 64.1.1, 64.1.2; 64.2.1, 64.2.2 mit einem dreieckigen V-förmigen Querschnitt, vorzugsweise mit einem V-Winkel von 60°, und einem Neigungswinkel, vorzugsweise im Bereich von 4°, so optimiert, dass sich im Zusammenspiel mit der Lage und Position der Segmente 42; 43.1, 43.2, insbesondere der Dichtrollenposition und dem Winkel 70 der Anlage- bzw. Stützflächen 71.1, 71.2; 73.1, 73.2 der Haltebolzen 45.1, 45.2 bzw. der Ritzelsegmentnuten 80.1, 80.2 sowie der Lage und Position, insbesondere der beiden Seitenflächen 84.1, 84.2 der V-förmigen Freifläche 85 in den Axialscheiben 58.1, 58.2, eine in nahezu allen Betriebspunkten optimale radiale Kompensationswirkung des Ritzelsegments 42 und des jeweiligen aktiven Hohlradsegments 43.1, 43.2 ergibt. Die Steuernuten 63.1.1, 63.1.2; 63.2.1, 62.2.2 haben eine direkte Verbindung zu der jeweiligen Druckniere 62.1, 62.2 der jeweiligen Axialdichtscheibe 58.1, 58.2 und werden somit im Betrieb der Innenzahnradmaschine 21 unmittelbar mit Druckmittel bzw. mit Drucköl beaufschlagt. Vorzugsweise sind Steuerschlitze 64.1.1, 64.1.2; 64.2.1, 64.2.2, Steuernuten 63.1.1, 63.1.2; 63.2.1, 62.2.2; 63.3.1, 63.3.2 und Drucknieren 62.1, 62.2 beidseitig des Getriebes angeordnet. Es sind aber auch einseitige Lösungen denkbar, in dem die Querschnitte entsprechend angepasst werden.
  • Die Rückhaltung der Segmente 42; 43.1, 43.2 wird durch das Eingreifen des jeweiligen Haltestifts 45.1, 45.2 in die entsprechenden Nuten 80.1, 80.2 in dem Ritzelsegment 42 und durch ein radiales Überragen des Haltestifts 45.1, 45.2 über das Ritzelsegment 42 hinaus radial nach außen erreicht. Somit ist auch in drucklosem Betrieb die Position der Segmente 42; 43.1, 43.2 formschlüssig gegeben. Damit die Beweglichkeit bzw. die Verschiebbarkeit mit den Segmenten 42; 43.1, 43.2 bei der zuvor beschriebenen vorteilhaften V-förmigen Ausgestaltung der Anlageflächen 71.1, 71.2 des Haltestifts bzw. -bolzens 45.1, 45.2 gewährleistet ist, müssen die Nuten 80.1, 80.2 des Ritzelsegments 42 geringfügig größer bzw. breiter sein als der in die Nuten 80.1, 80.2 ragende, auch als Haltekörper bezeichnete Teil 86.1, 86.2 des jeweiligen Haltestifts 45.1, 45.2. Das Spiel muss entsprechend der Getriebetoleranzen der Gehäuseteile 25.1, 25.2, Segmente 42; 43.1, 43.2, Lagerbuchsen sowie der Verformung unter Last und unter Berücksichtigung der Wärmedehnung der Bauteile im Temperaturbereich der Anwendung gewählt werden: Als vorteilhaft hat sich ein Spiel zwischen 0,05 bis 0,1 × Modul der Verdrängerverzahnung ergeben. Hierdurch wird ein Verklemmen der Verzahnung durch die keilförmigen Segmente 42; 43.1, 43.2 auch bei drucklosem Betrieb verhindert.
  • Axialkompensation:
  • Ebenso wie die Radialkompensation ist auch die vorzugsweise beidseitige Axialkompensation durch Eigendruck aufgebaut. Die Axialkompensation ist über Axialdruckfelder 61.1, 61.2 gesteuerte Axialplatten 58.1, 58.2 symmetrisch zu einer die Drehachsen von Ritzel 26 und Hohlrad 30 enthaltenden Symmetrieebene 87 aufgebaut. Diese Symmetrieebene 87 verläuft, in einem senkrecht zu der Axialrichtung 39 bzw. senkrecht zu den Drehachsen 34.2, 36 von Ritzel 26 und Hohlrad 30 verlaufenden Querschnitt betrachtet, durch den Mittelpunkt 88 der Drehachse 34.2 des Ritzels 26 und durch den Mittelpunkt 89 der Drehachse 36 des Hohlrads 30. Diese Symmetrie gilt sowohl für die jeweilige Axialscheibe 58.1, 58.2 als auch für die im dem vorzugsweise topfförmigen Gehäuseteil 25.2 und/oder in dem vorzugsweise als Deckel ausgebildeten Gehäuseteil 25.1 angebrachten Axialdruckfelder 61.1, 61.2.
  • Die Abdichtung der Axialdruckfelder 61.1, 61.2 erfolgt vorzugsweise durch Axialdichtungen 90 mit Stützringen 91 (siehe 8 bis 10). Bei Axialdichtungen ohne Stützringe müsste bei dieser hochdynamischen reversibel eingesetzten Hydraulikmaschine die Axialdichtung komplett bzw. teilweise „gekammert“ werden. Dies bedeutet, dass die Nut zur Aufnahme der Dichtung auch noch „innen“ zum Druckfeld hin einen „Rand“ stehen haben müsste. Dieser notwendige „Rand“ würde die Herstellung der Gehäuse- bzw. Deckelteile erschweren. Mit Stützring 91 kann das Druckfeld 61.1, 61.2 komplett nierenförmig hergestellt werden. Der Boden der Druckfelder 61.1, 61.2 muss nicht komplett mechanisch bearbeitet werden, sondern kann z.B. bei Druckgussteilen oder sonstigen Gussteilen durch den Gießvorgang hergestellt werden.
  • Der Stützring 91 hat zudem dem Vorteil, dass er eine Spaltextrusion der Axialdichtung 90 in den Spalt zwischen Axialplatte 58.1, 58.2 und Gehäuse- bzw. Deckelwand verhindert. Hierdurch kann die Hydraulikmaschine 21 auch für höhere Drücke eingesetzt werden. Eine ohne Stützring auftretende Spaltextrusion der Axialdichtung würde zudem eine geringfügige Vergrößerung des aktiven Axialdruckfeldes bewirken und dadurch die Kompensationskraft erhöhen. Dies wiederum würde zu einer Reduzierung des hydraulisch-mechanischen Wirkungsgrades führen und würde damit die Energieeffizienz der Motor-Pumpen-Einheit verschlechtern. Im schlimmsten Fall könnte es zu einem Ausfall der Hydraulikmaschine durch Dichtungsversagen oder durch einen erhöhten Verschleiß der Laufflächen der Axialscheibe zur Getriebeseite kommen.
  • Die Abstützwirkung der Stützringe 91 nach „innen“ wird durch einen oder mehrere Stege 92 wesentlich verbessert. Die Anordnung dieser Stege 92 muss so gewählt werden, dass der Ölfluß insbesondere zum axialen Druckausgang bzw. auch der Ölfluß vom Einlass nicht beeinträchtigt wird. Im dargestellten Beispiel befindet sich der Steg 92 exakt an der gleichen Position wie ein Steg 93.1, 93.2, der in der Druckniere 62.1, 62.2 der jeweiligen Axialscheibe 58.1, 58.2 angeordnet ist. Die axiale Kompensation ist im ausgeführten Beispiel durch die nachfolgend beschriebenen Maßnahmen optimal abgestimmt. Die symmetrisch zu der Symmetrieebene 87 angeordneten Drucknieren 62.1, 62.2, deren Begrenzungsradien einerseits über den Zahnfußradius der Ritzelverzahnung, andererseits über den Zahnfußradius der Hohlradverzahnung ragen, sorgen für eine konstante Gegenkraft. Hierdurch wird vermieden, dass es durch veränderliche Drücke zwischen den Stirnflächen 56.1, 56.2; 57.1, 57.2 der Zähne 28, 31 und der Axialscheibe 58.1, 58.2, die sich bei einer Axialplatte ohne diese Drucknieren ergeben würden, es in diesem Bereich zu wechselnden Kompensationskräften kommt. Eine exakte Anpassung der Axialkompensation wird durch eine rechnerische und empirische Ermittlung und Festlegung der Entlastungsdurchmesser von Ritzel 26 und Hohlrad 30 erreicht. Die oder jede Axialscheibe 58.1, 58.2 weist vorzugsweise zwei Durchbrüche 94.1, 95.1; 94.2, 95.2 auf. Durch diese Durchbrüche 94.1, 95.1; 94.2, 95.2 fließt das Druckmittel von der Eingangsseite zur Druckniere 62.1, 62.2 und umgekehrt von der Druckniere 62.1, 62.2 über die Druckfelder 61.1, 61.2 zum Druckausgang. Im Ausführungsbeispiel befindet sich der jeweilige Steg 93.1, 93.2 etwa auf Höhe der Ritzelmitte und hat einen Querschnitt, der so bemessen ist, dass etwa 50% der hydraulischen Kraft, hervorgerufen durch den Betriebsdruck in der Druckniere 62.1, 62.2 und den Durchbrüchen 94.1, 95.1; 94.2, 95.2, aufgenommen wird. Übergangsradien an den Durchbrüchen reduzieren die Kerbspannung und erhöhen somit die zulässigen Betriebsdrücke bzw. erhöhen die Lebensdauer der Hydraulikmaschine 21. Die oder jede Axialscheibe 58.1, 58.2 ist üblicherweise aus Messing oder Aluminium hergestellt, kann aber auch durch ein Sinterverfahren oder durch Metallpulverspritzguß (MIM-Technik) hergestellt sein. Zur Reduzierung der Reibung ist vorteilhafterweise eine entsprechende reibminimierte Beschichtung angebracht.
  • Die radiale Ausdehnung der Drücke wird, wie schon zuvor beschrieben, durch die Steuernuten 63.1.1, 63.1.2; 63.2.1, 63.2.2; 63.3.1, 63.3.2 und Steuerschlitze 64.1.1, 64.1.2; 64.2,1, 64.2.2 sowie durch die V-förmige Freifläche 85 und am Zahneingriff 33 durch die Abdichtung entlang der Eingriffslinie erreicht. Die Fixierung der jeweiligen Axialplatte 58.1, 58.2 erfolgt einerseits durch Überstand der die Welle 23 lagernden Lagerbuchsen am Innendurchmesser sowie an der Durchgangsbohrung Haltestifte bzw. -bolzen 45.1, 45.2 am Außenumfang des jeweiligen Haltestifts bzw. -bolzens 45.1, 45.2. In axialer Richtung 39 ist die jeweilige Axialplatte 58.1, 58.2 innerhalb des vorgesehenen Axialspiels frei beweglich. Das über die Axialscheibe bzw. -platte 58.1, 58.2 entstehende Leckageöl sowie das Leckageöl über der Dichtrolle 49.1, 49.2 sammelt sich im Bereich der V-förmigen Freifläche 85 sowie in dem Ringraum, der durch die Fase 96 der jeweiligen Axialdichtscheibe 58.1, 58.2 am Hohlrad 30 gebildet ist und in dem auch als Leckagekanal bezeichneten Ringraum 101.1, 101.2, der mit der Fase 97 der jeweiligen Axialdichtscheibe 58.1, 58.2 am Ritzel 26 gebildet ist. Über eine Bohrung 98 sowie über eine Nut 99 in den Verbindungsraum 106 wird dieses Leckageöl teilweise geleitet. Ein großer bzw. wesentlicher Teil des Gesamtleckageöls fließt über radiale Bohrungen 100.1, 100.2 in der Welle (Pumpenmotorwelle) 23, im Bereich des jeweiligen Ringraums 101.1, 101.2 angeordnet, in eine auch als Leckage-Wellenkanal bezeichnete, zentrisch, axial angebrachte Entlastungsbohrung 102 der Welle 23 (siehe 2, 11 und 12). Es versteht sich, dass die Bohrung 98 und/oder die Nut 99 auch weggelassen sein könnten. In diesem zuletzt genannten Fall, würde das gesamte Leckageöl über die Radialbohrungen 100.1, 100.2 der Welle 23 in den Leckage-Wellenkanal 102 fließen. Dadurch könnte die Strömungsgeschwindigkeit bzw. der Durchfluss des Leckegeöls in dem Spaltrohrraum 107 bzw. in der Leckagekanalschleife 108 maximiert werden. Mit „Spaltrohrraum“ 107 ist derjenige Raum bezeichnet, der sich in radialer Richtung 109 betrachtet im Inneren bzw. innerhalb des Dicht- bzw. Spaltrohrs 110 befindet und der durch das Dicht- bzw. Spaltrohr 110 radial nach außen begrenzt ist.
  • Durch die vorstehenden Maßnehmen könnte ein noch besserer Wärmeabtransport erreicht werden. Zugleich könnte eine noch bessere Schmierung des Motor-Lagers 111 erreicht werden. Dadurch könnte insgesamt ein noch längere Lebensdauer bzw. ein noch längerer störungsfreier Betrieb der Motor-Pumpen-Einheit 20 erreicht werden. In dem Pumpendeckel 25.1 ist für das Befüllen und Entlüften des kompletten Hydrauliksysteme eine Entlüftungsschraube 103 angebracht. Die Entlastungsbohrung 102 wird im Bereich des in dem Motorflansch 25.4 angeordneten Radialkugellagers 111 durch eine aus einem nicht-magnetischen Werkstoff hergestellte, auch als Verschlussmittel bezeichnete Lagerbefestigungs- bzw. Sensorschraube 112 verschlossen und mündet in eine radial angebrachte Bohrung 113. Diese Radialbohrung 113 mündet in einen auch als Verbindungsraum bezeichneten Ringraum 114.
  • Gesamtaufbau der Motor-Pumpen-Einheit:
  • Die Forderung nach absoluter Dichtheit kann nur durch ein hermetisch geschlossenes System erreicht werden. Hierzu gibt es drei Möglichkeiten:
    • 1. Magnetkupplung zwischen Pumpe und Motor
    • 2. Spalttopfmotor – Motor unter Öl
    • 3. Kompletter Motor unter Öl mit druckfesten Stromdurchführungen
  • Die Magnetkupplung scheidet aus Platz- und Kostengründen aus. Für die bevorzugte Anwendung der Motor-Pumpen-Einheit 20 wurde ein spezieller Motor 22 mit einem auch als Dichtrohr bezeichneten „Spaltrohr“ 110 entwickelt. Die Bezeichnung „Spaltrohr“ rührt daher, dass dieses Rohr 110 zwischen dem Rotor 22.1 und dem Stator 22.2 angeordnet ist. Das Dicht- bzw. Spaltrohr 110 besteht aus einem nicht-magnetischen Werkstoff, vorzugsweise aus einem hochtemperaturbeständigen, druckfesten, faserverstärkten Kunststoff. Das Dichtrohr 110 erstreckt sich nahezu über die gesamte Länge des Statorpakets und ist mit dem Stator 22.2 inklusive Wicklung und Motorgehäuse 25.3 mit Kunststoff zu einer Einheit vergossen. Auf der dem Ritzel zugewandten Seite des Dicht- bzw. Spaltrohrs 110 ragt das Deckel- bzw. Gehäuseteil 25.2 mit einem entsprechenden Zentrierbund 115 mit O-Ring-Nut 116 in das Dicht- bzw. Spaltrohr 110. Auf der von dem Ritzel weg weisenden Seite des Dicht- bzw. Spaltrohrs 110 ragt eine mit dem Motorflansch bzw. Gehäuseteil 25.4 verschraubte Lagerbefestigungsschraube 117 mit einem entsprechenden Zentrierbund 118 mit O-Ring-Nut 119 in das Dicht- bzw. Spaltrohr 110. In den O-Ring-Nuten 116, 119 aufgenommene O-Ringe, die in den Figuren nicht gezeigt sind, übernehmen die Dichtfunktion, dichten also den Spaltrohrraum 107 beiderseits des Rotors 22.1 zumindest leckagefluiddicht ab.
  • Die gemeinsame Motor-Pumpen-Welle 23 trägt den aufgepressten Rotor 22.1, beinhaltet Druckausgleichsbohrungen und die Lagerbefestigungs- bzw. Sensorschraube 107 zur Aufnahme eines Drehzahlsensors 120. Die Motor-Pumpen-Welle 23 ist motorseitig nur an bzw. in dem Radialkugellager 111 und pumpenseitig an bzw. in wenigstens einem Gleitlager, vorzugsweise an bzw. in zwei Gleitlagern 121.1, 121.2, gelagert. Das Ritzel 26 der Pumpe oder Hydraulikmaschine 21 wird durch eine Spielpassung auf der Pumpen-Motorwelle 23 gelagert und durch die geringfügig längsballige Passfeder 37 drehend mitgenommen. Der Innenring 122.1 des Kugellagers 111 ist durch die Lagerbefestigungs- und Sensorschraube 112 fest mit der Motor-Pumpenwelle 23 verbunden. Der Außenring 122.2 des Kugellagers 111 ist mit der Lagerbefestigungsschraube 117 mit dem elektronikseitigen Lagerdeckel bzw. Gehäuseteil 25.4 verschraubt. Hierdurch ist die Motor-Pumpenwelle 23 axial fixiert und somit auch der aufgepresste Rotor 22.1. Der Lagerdeckel 25.4 weist eine speziell gestufte Sackbohrung 123 auf, in der die Lagerbefestigungs- und Sensorschraube 112 ragt. Die Signalübertragung erfolgt durch den geschlossenen Lagerdeckel bzw. Gehäuseteil 25.4, der im Bereich des Sensors 120 eine Wanddicke von wenigen Millimetern aufweist. Vorzugsweise beträgt die Wanddicke etwa 2 mm. Auf der von dem Motor 22 abgewandten Seite des Lagerdeckels bzw. Gehäuseteils 25.4 ist in einem Gehäuseteil in Form einer Anflanschung 25.5 die Elektronikplatine 124 des Drehzahlsensors 120 angeordnet sowie in einem gewissen axialen Abstand dazu eine beidseitige bestückte Platine 125 des Motorreglers, hier die Endstufe 126. Auf dieser Endstufe 126 ist eine Reglerplatine angeordnet. Die Phasenleitungen 127 (siehe 1) des Motors 22 führen vorzugsweise durch Bohrungen in dem Gehäuseteil bzw. Lagerdeckel 25.4 und sind an der Endstufe 126 angeschraubt, gesteckt oder gelötet. Ähnlich angeordnet sind Sensorleitungen von Temperatursensoren, welche die Wicklungstemperaturen des Motors 22 messen. Die Anbindung der Motor-Pumpen-Einheit 20 erfolgt über einen Leistungsstecker 128 sowie einen kleinen dimensionierten Signalstecker 129. Die beiden Stecker 128, 129 sind dichtend an der Elektronikbox 130 angebracht. Die Elektronikbox 130 ist mit einen rohrförmigen Gehäuseteil 25.6 und mit einem als Deckel gestalteten Gehäuseteil 25.7 sowie mit dem rohrförmigen, auch als Lagerdeckel bzw. Motorflansch bezeichneten Gehäuseteil 25.4 gebildet. Die Elektronikbox 130 mit Kühlrippen 131 ist ebenfalls angeschraubt. Zwischen die einzelnen Elemente der Elektronikbox 130 sind ebenfalls Dichtelemente angeordnet. Die Endstufe 126 ist auf einem, vorzugsweise aus Kupfer gefertigten, Aufnahmewinkel 132 mit Wärmeleitpaste montiert. Hierdurch wird die Wärmeentwicklung der Bauteile durch den Kupferwinkel 132 in die Kühlrippen 131 des rohrförmigen Gehäuseteils 25.6 der Elektronikbox 130 geleitet. Ebenfalls mit Kühlrippen 131 versehen sind der Deckel 25.6 der Elektronikbox 130 und das rohrförmige Motorgehäuse 25.3. Das Zwischengehäuse der Hydraulikmaschine stellt zugleich auch den Lagerdeckel 25.4 bzw. Motorflansch des Elektromotors 22 dar. Die Hydraulikmaschine ist als kompensierte 4-Quadranten-Innenzahnradmaschine 21 ausgeführt und ist im Wesentlichen mit dem Innenraum des Dicht- bzw. Spaltrohrs 110 flüssigkeitsverbunden.
  • Insbesondere für die Anwendung bzw. für den Einsatz der Motor-Pumpen-Einheit 20 zum Ansteuern bzw. Betreiben einer hochdynamischen hydraulischen Achse hat sich ein Elektromotor 22 in Form eines bürstenlosen Gleichstrommotors (EC-Motor) als besonders vorteilhaft herausgestellt. Wie aus den 12 und 14 ersichtlich, umfasst der Rotor 22.1 des Elektromotors 22 eine Mehrzahl von auch als Leckage-Rotorkanäle bezeichnete Aussparungen 133.1, 133.2, 133.3, 133.4, 133.5. Vorzugsweise sind diese in gleichen Umfangswinkeln um die Rotordrehachse 33.1 bzw. um die Wellendrehachse 35 zueinander versetzt angeordnet. In dem gezeigten Ausführungsbeispiel sind fünf Leckage-Rotorkanäle 133.1, 133.2, 133.3, 133.4, 133.5. vorgesehen. Ferner umfasst der Rotor 22.1 eine Mehrzahl von Hochleistungsmagneten 134, vorzugsweise Permanentmagneten. Die Magnete 134 sind in gleichen Umfangswinkeln um die Rotordrehachse 34.1 bzw. um die Wellendrehachse 35 versetzt angeordnet. In dem geigten Ausführungsbeispiel sind zehn Magnete 134 vorgesehen. Wie insbesondere aus 15 ersichtlich, sind die Magnete 134 auf ihrer radial nach außen von der Rotordrehachse 34.1 bzw. von der Wellendrehachse 35 weg weisenden Außenfläche mit einer rohrförmigen Bandage 135 versehen. Diese Bandage 135 begrenzt den Rotor 22.1 radial nach außen an seinem Außenumfang. Der Rotor 22.1 ist in einem zylindrischen Aufnahmeraum 136 des Stators 22.2 relativ zu diesem drehbar gelagert. Ebenfalls in dem zylindrischen Aufnahmeraum 136 des Stators 22.2, aber in radialer Richtung 109 betrachtet zwischen dem Rotor 22.1 und dem Stator 22.2 ist das auch als Dichtrohr bezeichnete Spaltrohr 110 angeordnet, das fest mit dem Stator 22.2 verbunden ist. In radialer Richtung 109 betrachtet zwischen dem Dicht- bzw. Spaltrohr 110 und dem Rotor 22.1 ist ein schmaler Ringspalt 137 ausgebildet, der auch mit Leckage-Spaltkanal 137 bezeichnet ist. Dieser Ringkanal 137 erstreckt sich in der Axialrichtung 39, vorzugsweise im Wesentlichen über die gesamte Axiallänge oder über die gesamte Axiallänge, des Rotors 22.1.
  • Der Stator 22.2 umfasst ein Innenrohr 138 und ein Außenrohr 139 sowie mehrere sich in radialer Richtung 109 zwischen dem Innenrohr 138 und dem Außenrohr 139 und auch in axialer Richtung 39 erstreckende Stege 140, die einerends mit dem Innenrohr 138 und andernends mit dem Außenrohr 139 verbunden sind. In dem gezeigten Ausführungsbeispiel sind vorzugsweise zwölf Stege 140 vorgesehen (siehe 14). Wie aus 12 ersichtlich, weisen die Stege 140 an ihren radial äußeren Enden eine Ausnehmung 141 auf, in der das Außenrohr 139 des Stators 22.2 angeordnet ist. In der Axialrichtung 39 betrachtet weist die jeweilige Ausnehmung 141 eine Axialbreite bzw. weist das Außenrohr 139 eine Axiallänge auf, die geringfügig kleiner ist bzw. sind als die Axiallänge des Rotors 22.1. Der Stator 22.2 ist aus mehreren Statorblechen hergestellt. Zwischen benachbarten Stegen 140 der Stege 140, dem Innenrohr 138 und dem Außenrohr 139 des Stators 22.2 ist jeweils ein Aufnahmeraum 142 ausgebildet. In dem gezeigten Ausführungsbeispiel sind also entsprechend der Anzahl an Stegen 140 vorzugsweise zwölf Aufnahmeräume 142 vorgesehen. Jeder Aufnahmeraum 140 dient zur Aufnahme von Stator-Wicklungen aus Metalldrähten, welche die Phasenleitungen 127 ausbilden. Ferner dient jeder Aufnahmeraum 142 zur Aufnahme von Vergussmaterial. Der Stator 22.2 ist in einem zylindrischen Stator-Aufnahmeraum des Motorgehäuses 25.3 des Gehäuses 25 der Motor-Pumpen-Einheit 20 aufgenommen und ist fest mit dem Motorgehäuse 25.3 verbunden.
  • In dem Gehäuseteil 25.2 der die Arbeitskammer 24 der Pumpe 21 begrenzenden Gehäuseteile 25.1, 25.2 des Gehäuses 25 ist wenigstens ein mit der Arbeitskammer 24 fluidverbunder, vorzugsweise als Ringraum gestalteter, Leckagekanal 101.1, 101.2 angeordnet, über welchen das im Betrieb der Innenzahnradpumpe 21 unter Druck entlang den axialen und radialen Dichtflächen entstehende Leckageöl abgeleitet wird. Mit anderen Worten dient der wenigstens eine Leckagekanal 101.1, 101.2 zur Ableitung eines sich im Betrieb der Innenzahnradmaschine 21, insbesondere bei einer Radial- und/oder Axialspaltabdichtung mittels der Radialdichtsegmente 43.1, 43.2 und/oder der wenigstens einen Axialdichtplatte 58.1, 58.2, bildenden, aus dem fluiden Druckmittel bestehenden, Leckagefluids. Als Leckagekanal fungiert insbesondere der in jeder Axialdichtplatte 58.1, 58.2 ausgebildete Ringraum 101.1, 101.2, der in der Axialrichtung 39 zu der Arbeitskammer 24 hin offen ist und der in der Radialrichtung 109 zu der Welle 23 hin offen ist (siehe 2, 4 und 11).
  • Die Welle 23 erstreckt sich mit einem Wellenende 23.1 ihrer beiden Wellenenden 23.1, 23.2 von dem Ritzel 26 weg in der Axialrichtung 39 durch den von der Welle 23 getragenen Rotor 22.1. Die in dem Gehäuseteil 25.1 des Gehäuses 25 angeordneten Anschlusskanäle 105.1, 105.2 sind über in dem Gehäuse 25 oder in einem die Arbeitskammer 24 der Innenzahnradmaschine 21 begrenzenden Gehäuseteil 25.2 des Gehäuses 25 angeordnete Rückschlagventile 143.1, 143.2 mit der mit dem wenigstens einen Leckagekanal 101.1, 101.2 fluidverbunden Leckagekanalschleife 108 verbunden. Die Leckagekanalschleife 108 erstreckt sich über das von dem Ritzel 26 weg erstreckende Rotorende 144.1 des Rotors 22.1 hinaus. Die Leckagekanalschleife 108 weist den sich in der Axialrichtung 39 in der Welle 23 bzw. durch die Welle 23 erstreckenden, auch als Entlastungsbohrung bezeichneten Leckage-Wellenkanal 102 und wenigstens einen mit dem Leckage-Wellenkanal 102 fluidverbundenen, sich in einem radialen Abstand zu dem Leckage-Wellenkanal 102, in der Axialrichtung 39 durch den Rotor 22.1 hindurch erstreckenden Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 des Rotors 22.1 und den ebenfalls mit dem Leckage-Wellenkanal 102 fluidverbundenen, in der Radialrichtung 109 betrachtet, zwischen dem Rotor 22.1 und dem Stator 22.2 ausgebildeten, sich in der Axialrichtung 39 erstreckenden Leckage-Spaltkanal 137 auf. Die Rückschlageventile 143.1, 143.2 öffnen in einer Fluidströmungsrichtung von der Leckagekanalschleife 108 zu dem jeweils aktiven Niederdruckbereich der Arbeitskammer 24 und sperren in einer Gegenrichtung bzw. in einer entgegen gesetzten Fluidströmungsrichtung von dem jeweils aktiven Hochdruckbereich der Arbeitskammer 24 zu der Leckagekanalschleife 108. Dadurch wird im Betrieb der Innenzahnradpumpe 21 erreicht, dass das Leckagefluid von dem wenigstens einen Leckagekanal 101.1, 101.2 durch die Leckagekanalschleife 108 in die Arbeitskammer 24 strömt. Von dort aus strömt das Leckagefluid im Wesentlichen, also bis auf einen im Vergleich zu dem Gesamtleckagestrom geringen Leckagestromanteil, in den dem jeweils aktiven Niederdruckbereich zugeordneten Anschlusskanal 105.1, 105.2.
  • Erfindungsgemäß kann, mit anderen Worten gesagt, vorgesehen sein, dass in der Welle 23 ein sich in der Axialrichtung 39 erstreckender Leckage-Wellenkanal 102 angeordnet ist, der mit dem wenigstens Leckagekanal 101.1, 101.2 fluidverbunden ist, und dass in dem Rotor 22.1 wenigstens ein sich, vorzugsweise in einem radialen Abstand, insbesondere parallel, zu dem Leckage-Wellenkanal 102, in der Axialrichtung 39 durch den Rotor 22.1 erstreckender Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 angeordnet ist, der mit dem Leckage-Wellenkanal 102 fluidverbunden ist und/oder dass einen ein, in der Radialrichtung 109 betrachtet, zwischen dem Rotor 22.1 und dem Stator 22.2 ausgebildeter, sich in der Axialrichtung 39 erstreckender Leckage-Spaltkanal 137 mit dem Leckage-Wellenkanal 102 fluidverbunden ist, und dass der Leckage-Wellenkanal 102 oder der Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 und/oder der Leckage-Spaltkanal 137 über ein in dem Gehäuse 25 oder in einem die Arbeitskammer 25 begrenzenden Gehäuseteil 25.2 des Gehäuses 25 angeordnetes erstes Rückschlagventil 143.1 mit dem ersten Anschlusskanal 105.1 und über ein in dem Gehäuse 25 oder in einem oder dem die Arbeitskammer 24 begrenzenden Gehäuseteil 25.2 angeordnetes zweites Rückschlagventil 143.2 mit dem zweiten Anschlusskanal 105.2 verbunden ist, und dass bei einer Drehung in der ersten Betriebsrichtung 104.1 das erste Rückschlagventil 143.1 eine Fluidströmung des fluiden Druckmittels von dem dann aktiven ersten Hochdruckbereich 44.1 der Arbeitskammer 24 über das erste Rückschlagventil 143.1 in den Leckage-Wellenkanal 102 oder in den Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 und/oder in den Leckage-Spaltkanal 137 unterbindet und das zweite Rückschlagventil 143.2 eine Fluidströmung des Leckagefluids entweder von dem Leckage-Wellenkanal 102 oder von dem Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 und/oder von dem Leckage-Spaltkanal 137 über das zweite Rückschlagventil 143.2 in den dann aktiven ersten Niederdruckbereich 44.1 der Arbeitskammer 24 zulässt, und dass bei einer Drehung in der zweiten Betriebsrichtung 104.2 das zweite Rückschlagventil 143.2 eine Fluidströmung des fluiden Druckmittels von dem dann aktiven zweiten Hochdruckbereich 44.2 der Arbeitskammer 24 über das zweite Rückschlagventil 143.2 in den Leckage-Wellenkanal 102 oder in den Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 und/oder in den Leckage-Spaltkanal 137 unterbindet und das erste Rückschlagventil 143.1 eine Fluidströmung des Leckagefluids entweder von dem Leckage-Wellenkanal 102 oder von dem Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 und/oder von dem Leckage-Spaltkanal 137 über das erste Rückschlagventil 143.1 in den dann aktiven zweiten Niederdruckbereich 44.2 der Arbeitskammer 24 zulässt, so dass bei der Drehung in der ersten Betriebsrichtung 104.1 das Leckagefluid, vorzugsweise in einem Leckagefluid-Kreislauf, von dem wenigstens einen Leckagekanal 101.1, 101.2 entweder durch den Leckage-Wellenkanal 102 und von dort durch den Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 und/oder durch den Leckage-Spaltkanal 137, oder umgekehrt, über das zweite Rückschlagventil 143.2 in den dann aktiven ersten Niederdruckbereich 44.1 der Arbeitskammer 24 strömt und bei der Drehung in der zweiten Betriebsrichtung 104.2 das Leckagefluid, vorzugsweise in einem Leckagefluid-Kreislauf, von dem wenigstens einen Leckagekanal 101.1, 101.2 entweder durch den Leckage-Wellenkanal 102 und von dort durch den Leckage-Rotorkanal 133.1, 133.2, 133.3, 133.4, 133.5 und/oder durch den Leckage-Spaltkanal 137, oder umgekehrt, über das erste Rückschlagventil 143.1 in den dann aktiven zweiten Niederdruckbereich 44.2 der Arbeitskammer 24 strömt.
  • Wechselventile/Rückschlagventile:
  • Die 12 zeigt einen Längsschnitt durch die Zahnradmaschine 21 im Bereich zweier angeordneter Rückschlagventile 143.1, 143.2. Die Rückschlagventile 143.1, 143.2, die auch mit Wechselventile bezeichnet sind, haben die Aufgabe, den Spaltrohrraum 107 immer mit den Arbeitsanschlüssen bzw. Anschlusskanälen 105.1 und 105.2 derart zu verbinden, dass ein möglichst geringer Druck in dem Spaltrohrraum 107 herrscht. Die beschriebene Motor-Pumpen-Einheit 20 wird vorzugsweise in einem in den Figuren nicht gezeigten, geschlossenen Hydrauliksystem eingesetzt. Dieses Hydrauliksystem kann neben einem, beispielsweise doppelt oder einfach wirkenden, Hydraulikzylinder auch einen, vorzugsweise als Membrandruckspeicher gestalteten, Druckspeicher enthalten, der Volumenänderungen durch unterschiedliche Kolbenflächen sowie durch Temperaturschwankungen ausgleichen kann bzw. ausgleicht. Der Druckspeicher stellt einen bestimmten System- bzw. Vorspanndruck sicher. Vorzugsweise liegt der System- bzw. Vorspanndruck im Bereich von 5 bis 40 bar. Der Arbeitsdruck der Innenzahnradmaschine 21 wird diesem Vorspann- bzw. Systemdruck überlagert. Der Arbeitsdruck kann bis zu 120 bar oder auch bis zu 250 bar oder mehr betragen. Die Wechselventile 143.1, 143.2 haben nun die Aufgabe, dafür zu sorgen, dass immer nur der niedrigere Druck im Bereich des Spaltrohrraums 107 herrscht. Die Wechselventile 143.1, 143.2 befinden sich jeweils in einer in dem jeweiligen Druckfeld 61.1, 61.2, beispielsweise hier des Gehäuseteils 25.2 (siehe 7 und 13), befindlichen, vorzugsweise als Sackbohrung gebildeten, auch als Kanalteil eines Rückströmkanals 154.1, 154.2 bezeichneten Axialbohrung 145.1, 145.2 (siehe 12 und 13). Jeweils eine Schrägbohrung 146.1, 146.2 des jeweiligen Rückströmkanals 154.1, 154.2 verbindet den Bohrungsgrund der jeweiligen Axialbohrung 145.1, 145.2 mit dem Spaltrohrraum 107 über den Verbindungsraum 106 (siehe 12 und 13). Bei den Wechselventilen 143.1, 143.2 handelt es sich um handelsübliche federbelastete Rückschlagventile mit einer Kugel 147 als Dicht- bzw. Sperrelement und mit einer Feder 148, mittels welcher die Kugel 147 in ihre Dicht- bzw. Sperrstellung vorgespannt ist. Die Kugel 147 und die Feder 148 sind in einem Führungselement 149 gelagert. Das Führungselement 149 ist in die jeweilige Axialbohrung 145.1, 145.2 eingepresst und mit einer Sicherungshülse gesichert. Je nach Drehrichtung 104.1, 104.2 entsteht nun in einem der Druckfelder 61.1, 61.2 ein höherer Druck. Dieser schließt das diesem Druckfeld 61.1, 61.2 zugeordnete Dicht- bzw. Sperrelement (Kugel) 147 eines der Wechselventile 143.1, 143.2. Bei einer Betriebsrichtung in der ersten Drehrichtung 104.1 schließt also das dem dann mit Fluidhochdruck beaufschlagten Druckfeld 61.1 zugeordnete Wechselventil 143.1 und bei einer Betriebsrichtung in der zweiten Drehrichtung 104.2 schließt dann das dem dann mit Fluidhochdruck beaufschlagten Druckfeld 61.2 zugeordnete Wechselventil 143.2.
  • Unter Druck entsteht in der, vorzugsweise axial und radial kompensierten, Innenzahnradpumpe 21 Leckageöl entlang den axialen und radialen Dichtflächen. Dieses Leckageöl sammelt sich in Freiflächen 85 und Ringräumen 96, 101.1, 101.2, insbesondere in den Axialscheiben 58.1, 58.2 (siehe 4). Durch die mit dem wenigstens einen Ringraum 101.1, 101.2 fluidverbundenen Radialbohrungen 38.1, 38.2 in der Motorpumpenwelle 23 (siehe 2 und 11) fließt das Leckageöl in die auch als Leckage-Wellenkanal bezeichnete axiale Entlastungsbohrung 102 in der Pumpenwelle 23 und von dieser wiederum über die Radialbohrung 113 und über die auch als Leckage-Rotorkanäle bezeichneten Aussparungen 133.1, 133.2, 133.3, 133.4, 133.5 in dem Rotor 22.1 bzw. über den auch als Leckage-Spaltkanal 137 bezeichneten Ringspalt zwischen dem Rotor 22.1 und dem Stator 22.1, konkret zwischen der Bandage 135 des Rotors 22.1 und dem auch als Dichtrohr bezeichneten, fest mit dem Stator 22.2 verbundenen Spaltrohr 110, zurück in den Verbindungsraum 106. In Anbetracht der vorzugsweise sehr geringen Spaltbreite dieses Ringspalts bzw. Leckage-Spaltkanals 137 und der Vielzahl sowie der jeweils einen vergleichsweise großen Durchgangsquerschnitt aufweisenden, auch als Leckage-Rotorkanäle bezeichneten Aussparungen 133.1, 133.2, 133.3, 133.4, 133.5 des Rotors 22.1 strömt jedoch der größte Anteil bzw. ein wesentlicher Anteil des Gesamtleckageöls durch die Leckage-Rotorkanäle 133.1, 133.2, 133.3, 133.4, 133.5 zurück in den Verbindungsraum 106. Hierbei entsteht in dem Verbindungsraum 106 ein geringer Überdruck, der schließlich abhängig von der Drehrichtung 104.1, 104.2 das Wechselventil 143.1, 143.2 in dem niedriger druckbelasteten Druckfeld 61.1, 61.2 öffnet. Durch das geöffnete Wechselventil 143.1, 143.2 wird somit eine Verbindung zwischen der Eingangsseite, also dem System- oder Vorspanndruck, und dem Spaltrohrraum 107 hergestellt. Der Vorspanndruck oder Systemdruck kann um ein Vielfaches niedriger sein als der Arbeitsdruck. Durch diese erfindungsgemäße vorteilhafte Anordnung der Wechselventile 143.1, 143.2 kann der Stator 22.2 der Motor-Pumpen-Einheit 20 und können auch die beiden Deckel- bzw. Gehäuseteile 25.2, 25.4 vorteilhafterweise kostengünstiger ausgeführt werden, da diese Bauteile nicht den hohen Arbeitsdruck aushalten müssen.
  • Durch die oben beschriebene Leckageölführung wird auch sichergestellt, dass das motorseitig angeordnete Kugellager 111 mit Öl versorgt wird. Hierdurch wird dieses Lager 111 geschmiert, die Reibwärme abtransportiert und somit die Lebensdauer wesentlich erhöht. Im dargestellten Beispiel mündet die Radialbohrung 113 auf der Kugellagerseite zwar, von dem Ritzel 26 aus betrachtet, vor dem Kugellager 111, ist aber mit dem zwischen dem Innenring 122.1 und dem Außenring 122.2 des Kugellagers 111 gebildeten Lagerspalt 155 fluidverbunden (siehe 11 und 12), so dass trotzdem sowohl eine ausreichende Schmierung als auch eine Kühlwirkung erreicht sowie Reibwärme abtransportiert. Eine Verbesserung der Lagerschmierung könnte durch eine in den Figuren nicht gezeigte Axialbohrung sowie eine zusätzliche, ebenfalls in den Figuren nicht gezeigte Radialbohrung in der Lagerbefestigungs- bzw. Sensorschraube erreicht werden. Diese Zusatzbohrungen können zusätzlich zu der von dem Ritzel 26 aus betrachtet vor dem Lager 111 bzw. vor der Lagerbefestigungs- bzw. Sensorschraube 112 angeordnete Radialbohrung 113 in der Motorpumpenwelle 23 oder alternativ, also stattdessen, angebracht werden. Hierdurch kann eine vorteilhafte Zwangsschmierung des Lagers 111 erreicht werden.
  • Gemeinsame Welle:
  • In dem in den Figuren gezeigten bevorzugten Ausführungsbeispiel ist eine einteilige bzw. aus einem Stück hergestellte Motor-Pumpen-Welle 23 dargestellt. Gemäß einer alternativen Lösung, die in den Figuren nicht gezeigt ist, könnten auch separate Wellen in Form einer Pumpenwelle und einer Motorwelle vorgesehen sein. Eine Mitnahme könnte durch eine Steckverzahnung erfolgen, beispielsweise mit einer Kopf- oder Fußzentrierung, um die beiden Wellen zu fixieren. Eine Fixierung der beiden Wellen könnte auch über eine zusätzliche Passung zwischen Motor- und Pumpenwelle erfolgen. Um den Leckageölkreislauf, wie zuvor beschrieben, aufrecht zu erhalten, müssten dann sowohl die Motorwelle als auch die Pumpenwelle einen axialen Leckage-Wellenkanal bzw. eine axiale Entlastungsbohrung aufweisen, wobei diese miteinander fluidverbunden sein müssten.
  • Lagerbefestigungs- und Sensorschraube:
  • Vorzugsweise besteht die Lagerbefestigungs- und Sensorschraube 112 aus einem nicht-magnetischem Werkstoff, um die magnetischen Signale des Sensors 120 nicht zu beeinflussen. Der Sensor 120 ist in einer axialen Bohrung 150 der Lagerbefestigungs- und Sensorschraube 112 befestigt, vorzugsweise eingeklebt. Der Außendurchmesser der Lagerbefestigungs- und Sensorschraube 112 ist größer als der Innendurchmesser des Kugellagers 111 bzw. dessen Innenrings 122.1. Hiermit erfolgt eine axiale Fixierung des Kugellagers 111 bzw. der Motor-Pumpenwelle 23 an dem Kugellager 111. Die Sensorschraube 112 ist an ihrem Außendurchmesser abgesetzt und umschließt den Sensor 120 mit einem dünnwandigen rohrförmigen Teil 151. Dieser rohrförmige Teil 151 mit Sensor 120 ragt in eine Sackbohrung 152 in dem Gehäuse- bzw. Deckelteil 25.4. Der Boden der Sackbohrung 152 hat eine Restwanddicke von wenigen Millimetern, vorzugsweise von etwa 2 mm. Durch diese vorteilhafte Ausführung des Gehäuse- bzw. Deckelteils 25.4 kann die Motor-Pumpen-Einheit 20 mit einem hohen Systemdruck, vorzugsweise bis 200 bar, belastet werden. Die geringe Restwanddicke des Bodens bzw. Wandteils 153 des den Sensor 120 enthaltenden rohrförmigen Teils 151 der Lagerbefestigungs- und Sensorschraube 112 beeinflusst den Magnetfluss des Sensors 120 in nur geringem Umfang. Vorzugsweise ist die Bohrung 150 in dem Gehäuse- bzw. Deckelteil 25.4 nur geringfügig größer als der Außendurchmesser des rohrförmigen Teils 151 der Lagerbefestigungs- und Sensorschraube 112. Dadurch wird die mit Druck beaufschlagte Fläche des die geringe Restwanddicke aufweisenden Bodens bzw. Wandteils 153 des rohrförmigen Teils 151 idealerweise kleinstmöglich gehalten.
  • Bezugszeichenliste
  • 20
    Motor-Pumpen-Einheit
    21
    Innenzahnradmaschine/Innenzahnradpumpe/Hydraulikpumpe/Zahnradmaschine/hydraulische Maschine
    22
    Elektromotor
    22.1
    Rotor von 22
    22.2
    Stator von 22
    23
    Welle/Motorpumpenwelle
    23.1
    Wellenende
    23.2
    Wellenende
    24
    Arbeitskammer
    25
    Gehäuse
    25.1
    Deckel- bzw. Gehäuseteil
    25.2
    Gehäuseteil/Deckelteil
    25.3
    Gehäuseteil/Motorhehäuse
    25.4
    Gehäuseteil/Deckelteil/Motorflansch/Lagerdeckel
    25.5
    Gehäuseteil/Deckelteil/Anflanschung
    25.6
    Gehäuseteil
    25.7
    Gehäuseteil/Gehäusedeckel/Deckel
    26
    Zahnrad/Ritzel
    27
    Lagerring
    28
    Zahn/Ritzelzahn
    29
    Zahnlücke/Ritzelzahnlücke
    30
    Hohlrad
    31
    Zahn/Hohlradzahn
    32
    Zahnradlücke/Hohlradzahnlücke
    33
    Zahneingriffsbereich/Zahneingriff
    34.1
    Drehachse/Rotordrehachse
    34.2
    Drehachse/Ritzeldrehachse
    35
    Wellendrehachse
    36
    Drehachse/Hohlraddrehachse
    37
    Passfeder
    38.1
    Nut
    38.2
    Nut
    39
    Axialrichtung
    40
    Freiraum
    41
    Füllstück
    42
    Segment/Radialdichtsegment/Ritzelsegment/Segmentträger
    43.1
    Dichtsegment/Radialdichtsegment/Hohlradsegment
    43.2
    Dichtsegment/Radialdichtsegment/Hohlradsegment
    44.1
    (erster) Bereich/(aktiver) Hochdruckbereich bzw. Niederdruckbereich/Hochdruckraum/Niederdruckraum
    44.2
    (zweiter) Bereich/(aktiver) Hochdruckbereich bzw. Niederdruckbereich/Hochdruckraum/Niederdruckraum
    45.1
    Haltestift/Haltebolzen
    45.2
    Haltestift/Haltebolzen
    46
    Außenfläche von 42
    47.1
    Außenfläche von 43.1
    47.2
    Außenfläche von 43.2
    48.1
    Ausnehmung/Dichtrollennut
    48.2
    Ausnehmung/Dichtrollennut
    49.1
    Dichtrolle
    49.2
    Dichtrolle
    50.1
    Dichtrollenfeder
    50.2
    Dichtrollenfeder
    51.1
    Segmentfedernut
    51.2
    Segmentfedernut
    52.1
    Feder/Federelement
    52.2
    Feder/Federelement
    53.1
    Ritzelsegmentende
    53.2
    Ritzelsegmentende
    54.1
    Anschlag/Anschlagtasche
    54.2
    Anschlag/Anschlagtasche
    55.1
    Anschlagfläche
    55.2
    Anschlagfläche
    56.1
    Stirnfläche von 26
    56.2
    Stirnfläche von 26
    57.1
    Stirnfläche von 30
    57.2
    Stirnfläche von 30
    58.1
    Axialdichtplatte/Axialdichtscheibe/Axialscheibe
    58.2
    Axialdichtplatte/Axialdichtscheibe/Axialscheibe
    59.1
    Innenfläche von 58.1
    59.2
    Außenfläche von 58.1
    60.1
    Innenfläche von 58.2
    60.2
    Außenfläche von 58.2
    61.1
    Steuerfeld/Ausnehmung/Axialfeld/Druckfeld/Axialdruckfeld in 25.1
    61.2
    Steuerfeld/Ausnehmung/Axialfeld/Druckfeld/Axialdruckfeld in 25.1
    62.1
    Steuerfeld/Dichtplatten-Ausnehmung/Druckniere in 58.1
    62.2
    Steuerfeld/Dichtplatten-Ausnehmung/Druckniere in 58.1
    63.1.1
    (erste) Steuernut
    63.1.2
    (erste) Steuernut
    63.2.1
    (zweite) Steuernut
    63.2.2
    (zweite) Steuernut
    63.3.1
    (dritte) (Dichtplatten-)Steuernut/Dichtplatten-)Steuerkanal/Ausnehmung/Vertiefung/Steuerkanal
    63.3.2
    (dritte) (Dicht platten-)Steuernut/(Dichtplatten-)Steuerkanal/Ausnehmung/Vertiefung/Steuerkanal
    64.1.1
    Steuerschlitz
    64.1.2
    Steuerschlitz
    64.2.1
    Steuerschlitz
    64.2.2
    Steuerschlitz
    65
    Radialdichtsegment-Steuerkanal
    65.1
    Fase
    65.2
    Fase
    65.3
    (Steuer-)Nut
    65.4
    (Steuer-)Nut
    65.5
    Fase
    65.6
    Fase
    66
    Winkel
    67.1
    Freifläche
    67.2
    Freifläche
    68.1
    (Aufnahme-)Bohrung von 25.1
    68.2
    (Aufnahme-)Bohrung von 25.2
    69.1
    Führungsbereich
    69.2
    Führungsbereich
    70
    Winkel
    70.1
    Winkel
    71.1
    Anlagefläche/Haltekörper-Stützfläche
    71.2
    Anlagefläche/Haltekörper-Stützfläche
    71.3
    Anlagefläche/Dichtsegment-Stützfläche
    71.4
    Anlagefläche/Dichtsegment-Stützfläche
    72
    Innenfläche/äußere Umfangsfläche von 42
    73.1
    Innenfläche/innere Umfangsfläche/Dichtfläche von 43.1
    73.2
    Innenfläche/innere Umfangsfläche/Dichtfläche von 43.2
    74
    Elektronik
    75.1
    Spalt/Radialspalt/Spaltraum
    75.2
    Spalt/Radialspalt/Spaltraum
    76.1
    Absatz
    76.2
    Absatz
    77.1
    Stirnfläche von 76.1
    77.2
    Stirnfläche von 76.2
    78.1
    Stirnfläche von 45.1
    78.2
    Stirnfläche von 45.2
    79.1
    Nutgrund von 80.1
    79.2
    Nutgrund von 80.2
    80.1
    (Ritzel-)(Segment-)Nut
    80.2
    (Ritzel-)(Segment-)Nut
    81
    Radius
    82
    Fase
    83
    Radius
    84.1
    Seitenfläche von 85
    84.2
    Seitenfläche von 85
    85
    V-förmige Freifläche
    86.1
    Haltekörper/Teil von 45.1
    86.2
    Haltekörper/Teil von 45.2
    87
    Symmetrieebene
    88
    Mittelpunkt
    89
    Mittelpunkt
    90
    (Axial-)(Ring-)Dichtung
    91
    Stützring
    92
    (Quer-)Steg von 91
    93.1
    (Quer-)Steg
    93.2
    (Quer-)Steg
    94.1
    Durchbruch
    94.2
    Durchbruch
    95.1
    Durchbruch
    95.2
    Durchbruch
    96
    Fase/Ringraum
    97
    Fase/Ringraum
    98
    Bohrung
    99
    Nut
    100.1
    Radialausnehmung/(radiale) Bohrung
    100.2
    Radialausnehmung (radiale) Bohrung
    101.1
    Ringraum/Leckagekanal
    101.2
    Ringraum/Leckagekanal
    102
    Leckage-Wellenkanal/Entlastungsbohrung
    103
    Entlüftungsschraube
    104.1
    erste Betriebs- bzw. Drehrichtung
    104.2
    zweite Betriebs- bzw. Drehrichtung
    105.1
    (erster) Anschlusskanal
    105.2
    (zweiter) Anschlusskanal)
    106
    Verbindungsraum
    107
    Spaltrohrraum
    108
    Leckagekanalschleife
    109
    radiale Richtung/Radialrichtung
    110
    Dicht- bzw. Spaltrohr
    111
    (Motor-/Rotor-)Lager/(Radial-)Kugellager
    112
    Lagerbefestigungs- bzw. Sensorkörper/Lagerbefestigungs- bzw. Sensorschraube
    113
    Bohrung/Radialausnehmung/Radialbohrung
    114
    Verbindungsraum/Ringraum
    115
    Zentrierbund von 25.2
    116
    O-Ring-Nut
    117
    Lagerbefestigungsschraube
    118
    Zentrierbund von 117
    119
    O-Ring-Nut
    120
    (Drehzahl-)Sensor
    121.1
    Gleitlager
    121.2
    Gleitlager
    122.1
    Innenring von 111
    122.2
    Außenring von 111
    123
    (gestufte) Sack-Bohrung
    124
    Elektronikplatine
    125
    Platine
    126
    Endstufe
    127
    Phasenleitungen
    128
    Leistungsstecker
    129
    Signalstecker
    130
    Elektronikbox
    131
    Kühlrippe
    132
    Aufnahmewinkel/Kupferwinkel
    133.1
    Leckage-Rotorkanal/Aussparung
    133.2
    Leckage-Rotorkanal/Aussparung
    133.3
    Leckage-Rotorkanal/Aussparung
    133.4
    Leckage-Rotorkanal/Aussparung
    133.5
    Leckage-Rotorkanal/Aussparung
    134
    (Hochleistungs-)Magnet/Permanent-Magnet
    135
    Bandage
    136
    Aufnahmeraum
    137
    Leckage-Spaltkanal/Leckage-Ringspaltkanal Ringspalt/Ringkanal
    138
    Innenrohr
    139
    Außenrohr
    140
    Steg
    141
    Ausnehmung
    142
    Aufnahmeraum
    143.1
    Rückschlagventil/Wechselventil
    143.2
    Rückschlagventil/Wechselventil
    144.1
    Rotorende
    144.2
    Rotorende
    145.1
    (erste) Sack-Axialbohrung/(erster) Kanalteil
    145.2
    (zweite) Sack-/Axialbohrung/(zweiter) Kanalteil
    146.1
    Schrägbohrung
    146.2
    Schrägbohrung
    147
    Kugel
    148
    Feder
    149
    Führungselement
    150
    (axiale) Bohrung
    151
    (rohrförmiger) Teil von 112
    152
    Sackbohrung
    153
    Boden von 152/Wandteil von 151
    154.1
    (erster) Rückströmkanal
    154.2
    (zweiter) Rückströmkanal
    155
    Lagerspalt von 111

Claims (21)

  1. Motor-Pumpen-Einheit mit einem mehrteiligen Gehäuse (25), die eine Innenzahnradmaschine (21) für Reversierbetrieb und einen Elektromotor (22) mit einem Rotor (22.1) und einem Stator (22.2) umfasst, der über wenigstens eine in dem Gehäuse (25) um eine Wellendrehachse (35) drehbar gelagerte Welle (23) mit der Innenzahnradmaschine (21) gekoppelt ist, wobei der Elektromotor (22) einen in einem Gehäuseteil (25.3) des Gehäuses (25) angeordneten, um eine Rotordrehachse (34.1) drehbaren Rotor (22.1) und einen Stator (22.2) umfasst, und wobei die Innenzahnradmaschine (21) eine Arbeitskammer (24) umfasst, die von wenigstens zwei Gehäuseteilen (25.1, 25.2) des Gehäuses (25) begrenzt ist und in der zwei Zahnräder (26, 30) angeordnet sind, bei denen es sich um ein Ritzelzähne (28) aufweisendes außenverzahntes Ritzel (26) und um ein Hohlradzähne (31) aufweisendes innenverzahntes Hohlrad (30) handelt, das mit Bezug auf das Ritzel (26) exzentrisch gelagert ist, wobei Hohlradzähne der Hohlradzähne (31) des Hohlrads (30) in einem Zahneingriffsbereich (33) mit Ritzelzähnen der Ritzelzähne (28) des Ritzels (26) kämmen, und wobei das Ritzel (26) um eine Ritzeldrehachse (34.2) und das Hohlrad (30) um eine parallel zu der Ritzeldrehachse (34.2) angeordnete Hohlraddrehachse (36) drehbar gelagert sind, und wobei sich die Hohlraddrehachse (36) und die Ritzeldrehachse (34.2) in einer Axialrichtung (39) erstrecken, und wobei die Innenzahnradmaschine (21) als Innenzahnradpumpe arbeitet und in einer ersten Betriebsrichtung, in welcher sich das Ritzel (26) und das Hohlrad (30) in einer ersten Drehrichtung (104.1) drehen, die Arbeitskammer (24) mit Fluidhochdruck eines fluiden Druckmittels beaufschlagt, die mit einem ersten Anschlusskanal (105.1) fluidverbunden ist und in einer zweiten Betriebsrichtung, in welcher sich das Ritzel (26) und das Hohlrad (30) in einer zweiten Drehrichtung (104.2) entgegengesetzt zu der ersten Drehrichtung (104.1) drehen, die Arbeitskammer (24) mit Fluidhochdruck des fluiden Druckmittels beaufschlagt, die mit einem zweiten Anschlusskanal (105.2) fluidverbunden ist und wobei in einem Gehäuseteil (25.2) der die Arbeitskammer (24) begrenzenden Gehäuseteile (25.1, 25.2) wenigstens ein mit der Arbeitskammer (24) fluidverbunder Leckagekanal (101.1, 101.2) zur Ableitung eines sich im Betrieb der Innenzahnradmaschine (21) bildenden, aus dem fluiden Druckmittel bestehenden Leckagefluids angeordnet ist, dadurch gekennzeichnet, dass die Welle (23) sich mit einem Wellenende (23.1) von dem Ritzel (26) weg in der Axialrichtung (39) durch den von der Welle (23) getragenen Rotor (22.1) erstreckt, und dass der erste Anschlusskanal (105.1) und der zweite Anschlusskanal (105.2) über in dem Gehäuse (25) oder in einem die Arbeitskammer (24) begrenzenden Gehäuseteil (25.2) des Gehäuses (25) angeordnete Rückschlagventile (143.1, 143.2) mit einer mit dem wenigstens einen Leckagekanal (101.1, 101.2) fluidverbunden Leckagekanalschleife (108) verbunden sind, die sich wenigstens bis in einen Bereich eines von dem Ritzel (26) weg erstreckenden Rotorendes (144.1) des Rotors (22.1) erstreckt und die einen sich in der Axialrichtung (39) in der Welle (23) bzw. durch die Welle (23) erstreckenden Leckage-Wellenkanal (102) und wenigstens einen mit dem Leckage-Wellenkanal (102) fluidverbundenen, sich in der Axialrichtung (39) in dem Rotor (22.1) bzw. durch den Rotor (22.1) erstreckenden Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) und/oder einen mit dem Leckage-Wellenkanal (102) fluidverbundenen, in Radialrichtung (109) betrachtet zwischen dem Rotor (22.1) und dem Stator (22.2) ausgebildeten, sich in der Axialrichtung (39) erstreckenden Leckage-Spaltkanal (137) aufweist, und dass die Rückschlageventile (143.1, 143.2) in einer Fluidströmungsrichtung von der Leckagekanalschleife (108) zu der Arbeitskammer (24) öffnen und in einer Gegenrichtung sperren, so dass im Betrieb der Innenzahnradmaschine (21) das Leckagefluid von dem wenigstens einen Leckagekanal (101.1, 101.2) durch die Leckagekanalschleife (108) in die Arbeitskammer (24) strömt.
  2. Motor-Pumpen-Einheit nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Leckagekanal (101.1, 101.2) unmittelbar mit dem Leckage-Wellenkanal (102) der Leckagekanalschleife (108) fluidverbunden ist und dass der wenigstens eine Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) der Leckage-Kanalschleife (108) unmittelbar mit einem in einem Gehäuseteil (25.2) des Gehäuses (25) oder in dem den wenigstens einen Leckagekanal (101.1, 101.2) enthaltenden Gehäuseteil (25.2) des Gehäuses (25) angeordneten Verbindungskanal oder Verbindungsraum (106) fluidverbunden ist, so dass im Betrieb der Innenzahnradmaschine (21) das Leckagefluid entweder von dem wenigstens einen Leckagekanal (101.1, 101.2) durch den Leckage-Wellenkanal (102) sowie in und durch den wenigstens einen Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) der Leckage-Kanalschleife (108) und von dort in den Verbindungskanal oder in den Verbindungsraum (106) fließt, oder umgekehrt oder dass der wenigstens eine Leckagekanal (101.1, 101.2) unmittelbar mit dem wenigstens einen Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) der Leckagekanalschleife (108) fluidverbunden ist und dass der wenigstens eine Leckage-Wellenkanal (102) der Leckage-Kanalschleife (108) unmittelbar mit einem in einem Gehäuseteil (25.2) des Gehäuses (25) oder in dem den wenigstens einen Leckagekanal (101.1, 101.2) enthaltenden Gehäuseteil (25.2) des Gehäuses (25) angeordneten Verbindungskanal oder Verbindungsraum (106) fluidverbunden ist, so dass im Betrieb der Innenzahnradmaschine (21) das Leckagefluid entweder von dem wenigstens einen Leckagekanal (101.1, 101.2) durch den wenigstens einen Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) sowie in und durch den Leckage-Wellenkanal (102) der Leckage-Kanalschleife (108) und von dort in den Verbindungskanal oder in den Verbindungsraum (106) fließt, oder umgekehrt.
  3. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in einem Gehäuseteil (25.2) des Gehäuses (25) zwischen der Arbeitskammer (24) und dem Verbindungskanal oder dem Verbindungsraum (106) ein erster Rückströmkanal (154.1) und ein zweiter Rückströmkanal (154.2) angeordnet sind, die jeweils einerends in den Verbindungskanal oder Verbindungsraum (106) und andernends in die Arbeitskammer (24) münden, wobei der erste Rückströmkanal (154.1) ein erstes Rückschlagventil (143.1) der Rückschlagventile (143.1, 143.2) enthält und wobei der zweite Rückströmkanal (154.2) ein zweites Rückschlagventil (143.2) der Rückschlagventile (143.1, 143.2) enthält, so dass im Betrieb der Innenzahnradmaschine (21) das Leckagefluid durch die Leckagekanalschleife (108) in und durch den Verbindungskanal oder den Verbindungsraum (106) und von dort entweder in und durch den ersten Rückströmkanal (154.1) über das erste Rückschlagventil (143.1) in die Arbeitskammer (24) oder in und durch den zweiten Rückströmkanal (154.2) über das zweite Rückschlagventil (143.2) in die Arbeitskammer (24) strömt.
  4. Motor-Pumpen-Einheit nach Anspruch 3, dadurch gekennzeichnet, dass ein in die Arbeitskammer (24) mündender erster Kanalteil (145.1) des ersten Rückströmkanals (154.1) und der erste Anschlusskanal (105.1) sich in der Axialrichtung (39) erstrecken und dass ein in die Arbeitskammer (24) mündender zweiter Kanalteil (145.2) des zweiten Rückströmkanals (154.2) und der zweite Anschlusskanal (105.2) sich in der Axialrichtung (39) erstrecken.
  5. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Leckage-Wellenkanal (102) um eine Axialbohrung handelt, deren Bohrungslängsachse koaxial zu der Rotordrehachse (34.1) und/oder koaxial zu der Wellendrehachse (35) angeordnet ist.
  6. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem wenigstens einen Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) um eine Axialausnehmung handelt, deren Ausnehmungslängsachse parallel zu der Ritzeldrehachse (34.1) und/oder parallel zu der Wellendrehachse (35) angeordnet ist.
  7. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor (22.1) eine Mehrzahl von sich durch diesen in der Axialrichtung (39) erstreckende Leckage-Rotorkanäle (133.1, 133.2, 133.3, 133.4, 133.5) enthält, die jeweils einerends mit dem Leckage-Wellenkanal (102) fluidverbunden sind und die jeweils andernends mit der Arbeitskammer (24) und/oder mit dem Verbindungskanal oder mit dem Verbindungsraum (106) fluidverbunden sind.
  8. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich der wenigstens eine Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) durch den Rotor (22.1) hindurch erstreckt und zu in der Axialrichtung (39) voneinander weg weisenden Rotorenden (144.1, 144.2) des Rotors (22.1) hin offen ist oder dass sich die Leckage-Rotorkanäle (133.1, 133.2, 133.3, 133.4, 133.5) durch den Rotor (22.1) hindurch erstrecken und zu in der Axialrichtung (39) voneinander weg weisenden Rotorenden (144.1, 144.2) des Rotors (22.1) hin offen sind.
  9. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Welle (23) wenigstens eine Radialausnehmung (100.1, 100.2) aufweist, die einerends in den Leckage-Wellenkanal (102) mündet und die andernends radial nach außen offen ist und im Bereich des zu der Welle (23) hin offenen wenigstens einen Leckagekanals (101.1, 101.2) zur Aufnahme des Leckagefluids angeordnet ist, so dass im Betrieb der Innenzahnradmaschine (21) das Leckagefluid von dem wenigstens einen Leckagekanal (101.1, 101.2) in den Leckage-Wellenkanal (102) strömt.
  10. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Welle (23) im Bereich ihres dem Rotor (22.1) zugeordneten Wellenendes (23.1) oder an ihrem dem Rotor (22.1) zugeordneten Wellenende (23.1) über ein Rotorlager (111) des Rotors (22.1) an einem dem Elektromotor (22) zugeordneten Gehäuseteil (25.4) des Gehäuses (25) um ihre Rotordrehachse (34.1) und/oder um ihre Wellen-Drehachse (35) drehbar gelagert ist, und dass der Leckage-Wellenkanal (102) der Welle (23) und der wenigstens eine Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) des Rotors (22.1) mit einem Lagerspalt (155) des Rotorlagers (111) fluidverbunden sind, so dass im Betrieb der Innenzahnradmaschine (21) das Leckagefluid zu dem Lagerspalt (155) des Rotorlagers (111) oder durch den Lagerspalt des Rotorlagers strömt.
  11. Motor-Pumpen-Einheit nach Anspruch 10, dadurch gekennzeichnet, dass es sich bei dem Rotorlager (111) um ein Wälzlager oder um ein Kugellager handelt.
  12. Motor-Pumpen-Einheit nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die Welle (23) wenigstens eine Radialausnehmung (113) aufweist, die im Bereich des Rotor-Lagers (111) angeordnet ist und die einerends in den Leckage-Wellenkanal (102) mündet und die andernends radial nach außen zu einem mit dem Lagerspalt (155) des Rotor-Lagers (111) fluidverbunden ersten Verbindungskanal oder Verbindungsraum (114) offen ist, der mit dem wenigstens einen Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) fluidverbunden ist oder in den der wenigstens eine Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) mündet, so dass im Betrieb der Innenzahnradmaschine (21) das Leckagefluid von dem Leckage-Wellenkanal (102) in den mit dem Lagerspalt (155) des Rotor-Lagers (111) fluidverbundenen Verbindungskanal oder in den Verbindungsraum (114) und von dort in den wenigstens einen Leckage-Rotorkanal (133.1, 133.2, 133.3, 133.4, 133.5) strömt, oder umgekehrt.
  13. Motor-Pumpen-Einheit nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass an der Welle (23) im Bereich ihres dem Rotor (22.1) zugeordneten Wellenendes (23.1) ein Lagerbefestigungs- und/oder Sensorkörper (112) befestigt ist, mittels dessen das Rotorlager (111) an der Welle (23) befestigt ist und/oder der einen Sensor (120) enthält.
  14. Motor-Pumpen-Einheit nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der Leckage-Wellenkanal (102) im Bereich des dem Rotor (22.1) zugeordneten Wellenendes (23.1) der Welle (23) mittels des Lagerbefestigungs- und/oder Sensorkörpers (112) lösbar verschlossen ist.
  15. Motor-Pumpen-Einheit nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass es sich bei dem Lagerbefestigungs- und/oder Sensorkörper (112) um eine Lagerbefestigungs- und/oder Sensorschraube handelt, die mit der Welle (23) verschraubt ist.
  16. Motor-Pumpen-Einheit nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass der Lagerbefestigungs- und/oder Sensorkörper (112) aus einem nicht-magnetischen Werkstoff besteht und dass der Sensor (120) magnetische Signale erzeugt.
  17. Motor-Pumpen-Einheit nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass in dem Lagerbefestigungs- und/oder Sensorkörper eine mit dem Leckage-Wellenkanal fluidverbundene Axialausnehmung angeordnet ist, die in eine Radialausnehmung des Lagerbefestigungs- und/oder Sensorkörpers mündet, die radial nach außen zu einem oder dem mit dem Lagerspalt des Rotor-Lagers fluidverbunden Verbindungskanal oder Verbindungsraum offen ist, der auf einer von dem Ritzel weg weisenden Seite des Rotor-Lagers angeordnet ist, so dass im Betrieb der Innenzahnradmaschine das Leckagefluid von dem Leckage-Wellenkanal über die Axialausnehmung und die Radialausnehmung des Lagerbefestigungs- und/oder Sensorkörpers und über den Verbindungskanal oder Verbindungsraum durch den Lagerspalt des Rotor-Lagers hindurch in den wenigstens einen Leckage-Rotorkanal strömt, oder umgekehrt.
  18. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Rotor (22.1) und dem in der Axialrichtung (39) betrachtet eine Länge aufweisenden Stator (22.2) ein sich in der Axialrichtung (39) im Wesentlichen über die gesamte Länge des Stators (22.2) erstreckendes Dichtrohr (110) aus einem nicht-magnetischen Werkstoff angeordnet ist, das an dem Stator (22.2) befestigt ist und das mit dem Stator (22.2) gegen ein Eindringen des fluiden Druckmittels bzw. Leckagefluids dicht verbunden ist.
  19. Motor-Pumpen-Einheit nach Anspruch 18, dadurch gekennzeichnet, dass das Dichtrohr (110) mit dem Stator (22.2) einschließlich dessen Wicklungen und einem den Stator (22.2) aufnehmenden Gehäuseteil (25.3) des Gehäuses (25) mittels einer nicht-magnetischen Vergussmasse zu einer gegen ein Eindringen des fluiden Druckmittels bzw. Leckagefluids dichten Einheit vergossen ist.
  20. Motor-Pumpen-Einheit nach einem der Ansprüche 18 oder 19, dadurch gekennzeichnet, dass der Leckage-Spaltkanal (137) in Radialrichtung (109) betrachtet zwischen dem Dichtrohr (110) und dem Rotor (22.1) ausgebildet ist.
  21. Motor-Pumpen-Einheit nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Welle (23) um eine einteilige und/oder aus einem Stück hergestellte Motorpumpenwelle handelt, an welcher der Rotor (22.1) und das Ritzel (26) drehfest befestigt sind.
DE102014103959.9A 2014-03-21 2014-03-21 Motor-Pumpen-Einheit Ceased DE102014103959A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102014103959.9A DE102014103959A1 (de) 2014-03-21 2014-03-21 Motor-Pumpen-Einheit
EP15158367.1A EP2921702B1 (de) 2014-03-21 2015-03-10 Motor-pumpen-einheit
US14/664,349 US10060432B2 (en) 2014-03-21 2015-03-20 Motor-pump unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014103959.9A DE102014103959A1 (de) 2014-03-21 2014-03-21 Motor-Pumpen-Einheit

Publications (1)

Publication Number Publication Date
DE102014103959A1 true DE102014103959A1 (de) 2015-09-24

Family

ID=52630279

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014103959.9A Ceased DE102014103959A1 (de) 2014-03-21 2014-03-21 Motor-Pumpen-Einheit

Country Status (3)

Country Link
US (1) US10060432B2 (de)
EP (1) EP2921702B1 (de)
DE (1) DE102014103959A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279476A1 (de) 2016-08-05 2018-02-07 Rausch und Pausch GmbH Elektrohydraulische maschine mit integriertem sensor
DE102016118163A1 (de) 2016-09-26 2018-03-29 Rausch & Pausch Gmbh Lösbare verbindungseinrichtung für hohe ströme
DE102018126442A1 (de) * 2018-10-24 2020-04-30 Thomas Magnete Gmbh Elektrohydraulisches Motorpumpenaggregat
EP3736146A1 (de) 2019-05-08 2020-11-11 RAPA Automotive GmbH & Co. KG Energieversorgungseinheit für aktives fahrwerksystem
DE102019112050A1 (de) * 2019-05-08 2020-11-12 Schwäbische Hüttenwerke Automotive GmbH Förderpumpe mit einem Leckagekanal
EP3764522A1 (de) 2019-07-08 2021-01-13 RAPA Automotive GmbH & Co. KG Mpe-achssatz mit gemeinsamer ecu
WO2021144117A1 (de) * 2020-01-13 2021-07-22 Schwäbische Hüttenwerke Automotive GmbH Pumpe-motor-einheit
DE102020106796A1 (de) 2020-03-12 2021-09-16 Schwäbische Hüttenwerke Automotive GmbH Pumpeneinsatz und Pumpenanordnung mit einem solchen Pumpeneinsatz
EP4052936A1 (de) 2021-03-02 2022-09-07 RAPA Automotive GmbH & Co. KG Gehäuseausführung für mpe-achssatz
WO2022207561A1 (de) * 2021-03-29 2022-10-06 Eckerle Technologies GmbH Innenzahnradfluidmaschine sowie verfahren zum herstellen einer innenzahnradfluidmaschine
WO2024194170A1 (de) 2023-03-22 2024-09-26 Eckerle Technologies GmbH Fluidmaschine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11041900B2 (en) 2014-03-26 2021-06-22 Teradyne, Inc. Equi-resistant probe distribution for high-accuracy voltage measurements at the wafer level
DE102015117562A1 (de) 2014-10-16 2016-04-21 Johnson Electric S.A. Zahnradpumpe
DE102015213387A1 (de) * 2015-07-16 2017-01-19 Robert Bosch Gmbh Rotationskolbenpumpe
JP6507998B2 (ja) * 2015-11-03 2019-05-08 株式会社デンソー 燃料ポンプ
US20230296094A1 (en) * 2016-05-27 2023-09-21 Ghsp, Inc. Thermistor flow path
US10914305B2 (en) * 2016-05-27 2021-02-09 Ghsp, Inc. Thermistor flow path
US11959481B2 (en) * 2016-05-27 2024-04-16 Ghsp, Inc. Thermistor flow path
JPWO2018030325A1 (ja) * 2016-08-09 2019-06-13 日本電産株式会社 駆動装置
DE102017127675B4 (de) * 2017-11-23 2023-03-23 HAWE Altenstadt Holding GmbH Hydraulische Druckversorgungseinheit
JP2019112978A (ja) * 2017-12-21 2019-07-11 日本電産トーソク株式会社 電動オイルポンプ
JP2019112977A (ja) * 2017-12-21 2019-07-11 日本電産トーソク株式会社 電動オイルポンプ
CN110185609B (zh) * 2019-06-18 2024-04-16 江苏德华泵业有限公司 一种高压齿轮污水泵
US11506200B1 (en) 2020-02-27 2022-11-22 Parker-Hannifin Corporation Hydraulic gear pump with radial pressure compensator
TWI721846B (zh) * 2020-03-31 2021-03-11 日益電機股份有限公司 具測漏功能的罐裝磁力泵
DE102020116822A1 (de) 2020-06-25 2021-12-30 Schwäbische Hüttenwerke Automotive GmbH Axiale Druckentlastung in Gleitlagern von Pumpen
CN112985999B (zh) * 2021-02-09 2022-06-07 中铁隧道局集团有限公司 一种用于多场环境耦合作用下的注浆模型试验装置及方法
WO2024199338A1 (zh) * 2023-03-31 2024-10-03 浙江三花汽车零部件有限公司 一种电动泵

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1819228A (en) * 1929-03-26 1931-08-18 Chicago Pneumatic Tool Co Rotor
US2190246A (en) * 1938-12-01 1940-02-13 Waldo P Schirmer Combination motor and pump unit
US2469820A (en) * 1945-06-01 1949-05-10 Singer Mfg Co Dynamoelectric machine
DE1553026A1 (de) 1965-07-30 1969-10-09 Eckerle Otto Elektrisch angetriebene Motorpumpe
US6837688B2 (en) * 2002-02-28 2005-01-04 Standex International Corp. Overheat protection for fluid pump
US6884043B2 (en) * 2002-02-28 2005-04-26 Standex International Corp. Fluid circulation path for motor pump
DE102008025054B4 (de) * 2008-05-26 2011-04-28 Böhner-EH GmbH Hydraulikeinheit
US9441628B2 (en) * 2009-08-04 2016-09-13 Jtekt Corporation Electric pump unit
JP5860695B2 (ja) * 2011-12-28 2016-02-16 Kyb株式会社 電動オイルポンプ

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016114540A1 (de) 2016-08-05 2018-02-08 Eckerle Industrie-Elektronik Gmbh Elektrohydraulische Maschine mit integriertem Sensor
EP3279476A1 (de) 2016-08-05 2018-02-07 Rausch und Pausch GmbH Elektrohydraulische maschine mit integriertem sensor
DE102016118163A1 (de) 2016-09-26 2018-03-29 Rausch & Pausch Gmbh Lösbare verbindungseinrichtung für hohe ströme
US10290961B2 (en) 2016-09-26 2019-05-14 Rausch & Pausch Gmbh High currency connection
DE102018126442A1 (de) * 2018-10-24 2020-04-30 Thomas Magnete Gmbh Elektrohydraulisches Motorpumpenaggregat
US11506227B2 (en) 2019-05-08 2022-11-22 Rapa Automotive Gmbh & Co. Kg Energy supply unit for active chassis system
EP3736146A1 (de) 2019-05-08 2020-11-11 RAPA Automotive GmbH & Co. KG Energieversorgungseinheit für aktives fahrwerksystem
DE102019112050A1 (de) * 2019-05-08 2020-11-12 Schwäbische Hüttenwerke Automotive GmbH Förderpumpe mit einem Leckagekanal
EP3764522A1 (de) 2019-07-08 2021-01-13 RAPA Automotive GmbH & Co. KG Mpe-achssatz mit gemeinsamer ecu
US11554625B2 (en) 2019-07-08 2023-01-17 Rapa Automotive Gmbh & Co. Kg MPU axle set with common ECU
WO2021144117A1 (de) * 2020-01-13 2021-07-22 Schwäbische Hüttenwerke Automotive GmbH Pumpe-motor-einheit
DE102020106796A1 (de) 2020-03-12 2021-09-16 Schwäbische Hüttenwerke Automotive GmbH Pumpeneinsatz und Pumpenanordnung mit einem solchen Pumpeneinsatz
DE102021105032A1 (de) 2021-03-02 2022-09-08 Rapa Automotive Gmbh & Co. Kg Gehäuseausführung für mpe-achssatz
EP4052936A1 (de) 2021-03-02 2022-09-07 RAPA Automotive GmbH & Co. KG Gehäuseausführung für mpe-achssatz
US12115828B2 (en) 2021-03-02 2024-10-15 Rapa Automotive Gmbh & Co. Kg Casing configuration for MPE axle set
WO2022207561A1 (de) * 2021-03-29 2022-10-06 Eckerle Technologies GmbH Innenzahnradfluidmaschine sowie verfahren zum herstellen einer innenzahnradfluidmaschine
WO2024194170A1 (de) 2023-03-22 2024-09-26 Eckerle Technologies GmbH Fluidmaschine
DE102023202578A1 (de) 2023-03-22 2024-09-26 Eckerle Technologies GmbH Fluidmaschine

Also Published As

Publication number Publication date
US20150267699A1 (en) 2015-09-24
EP2921702A3 (de) 2015-11-11
US10060432B2 (en) 2018-08-28
EP2921702A2 (de) 2015-09-23
EP2921702B1 (de) 2021-06-16

Similar Documents

Publication Publication Date Title
EP2921702B1 (de) Motor-pumpen-einheit
EP2921703B1 (de) Motor-pumpen-einheit
EP1573176B1 (de) Brennkraftmaschine mit einer vorrichtung zur hydraulischen drehwinkelverstellung ihrer nockenwelle gegen ber ihrer kurbelwelle sowie mit einer vakuumpumpe für einen servoverbraucher, insbesondere für einen bremskraftverstärker
DE102011107157B4 (de) Zahnringpumpe
DE202013102506U1 (de) Innenzahnradmaschine mit Schrägbohrungen zur Verbindung hydrostatischer Lager für ein Hohlrad mit einem Druck-Hauptkanal
WO2012034619A1 (de) Axialkolbenmaschine
EP2357362A2 (de) Zahnringpumpe
DE202013103826U1 (de) Innenzahnradmaschine mit Füllstück-Rückhalteeinrichtung
EP1495227B1 (de) Hydraulisches pumpenaggregat
DE60031459T2 (de) Gerotormotor mit Schmiernuten
EP2596242A1 (de) Kolbeneinheit
DE1403909A1 (de) Zahnradpumpe
DE2630222A1 (de) Innenzahnradpumpe oder -motor
DE3926354C2 (de)
DE102015115841A1 (de) Pumpen-Motor-Einheit mit einer Kühlung eines die Pumpe antreibenden Elektromotors mittels Leckagefluid
DE202013102079U1 (de) Zahnradmaschine mit formschlüssiger Axialsicherung einer Lagerbuchse einer Wellenlagerung
DE102013100890A1 (de) Schwenkmotorversteller
EP0475109B1 (de) Innenzahnradpumpe für Hydraulikflüssigkeit
DE2935294A1 (de) Umlauf-laufradpumpe oder -motor
WO2008125106A1 (de) Gerotormotor
DE69924470T2 (de) Hydraulikmotor mit schmierleitung
DE4326098A1 (de) Hydrostatische Maschine
EP0428574B1 (de) Hydraulischer axialkolbenmotor
EP1081382A2 (de) Zahnradmaschine
DE3742303C2 (de) Hydrostatische Kolbenmaschine mit Ölspülung

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: GLEISS GROSSE SCHRELL UND PARTNER MBB PATENTAN, DE

R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final