WO2016103663A1 - 燃料ポンプ - Google Patents

燃料ポンプ Download PDF

Info

Publication number
WO2016103663A1
WO2016103663A1 PCT/JP2015/006302 JP2015006302W WO2016103663A1 WO 2016103663 A1 WO2016103663 A1 WO 2016103663A1 JP 2015006302 W JP2015006302 W JP 2015006302W WO 2016103663 A1 WO2016103663 A1 WO 2016103663A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
fuel
discharge port
inner gear
gear
Prior art date
Application number
PCT/JP2015/006302
Other languages
English (en)
French (fr)
Inventor
酒井 博美
代司 古橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016103663A1 publication Critical patent/WO2016103663A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present disclosure relates to a fuel pump that sequentially sucks and discharges fuel into a pump chamber.
  • a fuel pump that sequentially sucks and discharges fuel into a pump chamber.
  • a fuel pump disclosed in Patent Document 1 includes an outer gear having a plurality of inner teeth, an inner gear having a plurality of outer teeth, the outer gear being eccentrically engaged in an eccentric direction, a discharge port for discharging fuel, and an outer gear, And a pump housing that rotatably accommodates the inner gear.
  • the outer gear and the inner gear rotate while expanding and contracting the volume of a plurality of pump chambers formed between the two gears, thereby sequentially sucking fuel into each pump chamber and discharging it from each pump chamber to the discharge port.
  • a discharge port for discharging fluid from the pump chamber is formed in the pump housing.
  • the rib which straddles a discharge outlet is provided in the crossing direction which cross
  • the present disclosure has been made in view of the problems described above, and an object thereof is to provide a fuel pump with high pump efficiency.
  • an outer gear having a plurality of internal teeth
  • An inner gear that has a plurality of external teeth and is eccentrically engaged with the outer gear in an eccentric direction
  • a pump housing that forms a discharge port for discharging fuel and rotatably accommodates an outer gear and an inner gear
  • the outer gear and the inner gear are fuel pumps that rotate while expanding and reducing the volume of a plurality of pump chambers formed between the two gears, thereby sequentially sucking fuel into each pump chamber and discharging it from each pump chamber to the discharge port.
  • the pump housing has a reinforcing rib that reinforces the pump housing by straddling the discharge port in the intersecting direction intersecting the rotation direction of the inner gear,
  • the reinforcing rib provides a fuel pump having an inclined surface inclined in the rotational direction of the inner gear on the side facing the pump chamber.
  • the reinforcing rib that reinforces the pump housing by straddling the discharge port in a direction crossing the rotation direction of the inner gear has an inclined surface that is inclined in the rotation direction on the side facing the pump chamber. This inclined surface suppresses the fluid resistance that the reinforcing rib gives to the fuel, so that the fuel can flow smoothly in the discharge port. According to this, since the discharge flow rate of the fuel discharged through the discharge port can be increased, a fuel pump with high pump efficiency can be provided.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 1.
  • FIG. 5 is a cross-sectional view showing a pump casing in a cross section taken along line VV in FIG. 3.
  • FIG. 6 is a cross-sectional view showing the shape of a reinforcing rib in the section taken along line VI-VI in FIG. 5. It is a figure corresponding to FIG. 6 in the modification 2. It is a figure corresponding to FIG. 6 in the modification 3. It is a figure corresponding to FIG. 6 in the modification 4.
  • a fuel pump 100 is a positive displacement trochoid pump mounted on a vehicle.
  • the fuel pump 100 includes a pump body 3 and an electric motor 4 housed in a cylindrical pump body 2.
  • the fuel pump 100 includes a side cover 5 that projects from the end opposite to the pump body 3 to the outside with the electric motor 4 in the axial direction of the pump body 2.
  • the side cover 5 includes an electrical connector 5a for energizing the electric motor and a discharge port 5b for discharging fuel.
  • the electric motor 4 is rotationally driven by energization from an external circuit via the electrical connector 5a.
  • the fuel sucked and pressurized by the pump body 3 using the rotational force of the rotating shaft 4a of the electric motor 4 is discharged from the discharge port 5b.
  • the light oil whose viscosity is higher than gasoline is discharged as a fuel.
  • the pump body 3 includes a pump housing 10, an inner gear 20, and an outer gear 30.
  • the pump housing 10 is formed by overlapping a pump cover 12 and a pump casing 16.
  • the pump cover 12 is formed in a disk shape from metal.
  • the pump cover 12 projects outward from an end of the pump body 2 opposite to the side cover 5 with the electric motor 4 sandwiched in the axial direction.
  • the pump cover 12 shown in FIGS. 1 and 2 has a cylindrical hole-like inlet 12a and an arc-shaped groove-like inlet passage 13 for sucking fuel from the outside.
  • the suction port 12 a passes through a specific portion Ss of the pump cover 12 that is eccentric from the inner center line Cig of the inner gear 20 along the axial direction of the cover 12.
  • the suction passage 13 is open to the pump casing 16 side of the pump cover 12.
  • the inner peripheral portion 13 a of the suction passage 13 extends along the rotational direction Rig (see also FIG. 4) of the inner gear 20 to a length of less than half a circumference.
  • the outer peripheral portion 13b of the suction passage 13 extends to a length less than a half circumference along the rotational direction Rog (see also FIG. 4) of the outer gear 30.
  • the suction passage 13 is widened from the start end portion 13c toward the end portion 13d in the rotational directions Rig and Rog.
  • the suction passage 13 communicates with the suction port 12a by opening the suction port 12a at a specific location Ss of the groove bottom 13e.
  • the width of the suction passage 13 is set to be smaller than the diameter of the suction port 12a in the entire area of the specific portion Ss where the suction port 12a opens.
  • the pump casing 16 shown in FIGS. 1 and 3 to 5 is made of a metal and has a bottomed cylindrical shape.
  • the opening 16 a in the pump casing 16 is covered with the pump cover 12, so that the entire circumference is sealed.
  • the inner peripheral portion 16b of the pump casing 16 is formed in a cylindrical hole shape that is eccentric from the inner center line Cig of the inner gear 20, as shown in FIGS.
  • the pump casing 16 has an arc-hole-like discharge port 17 for discharging fuel from the discharge port 5b through the fuel passage 6 between the pump body 2 and the electric motor 4.
  • the discharge port 17 penetrates the concave bottom portion 16c of the pump casing 16 along the axial direction.
  • the concave bottom portion 16 c is provided at a location adjacent to the discharge port 17.
  • the inner peripheral portion 17 a of the discharge port 17 extends along the rotation direction Rig of the inner gear 20 to a length of less than half a circumference.
  • the outer peripheral part 17b of the discharge port 17 extends along the rotation direction Rog of the outer gear 30 to a length of less than a half circumference.
  • the discharge port 17 is reduced in width toward the end portion 17d in the rotational directions Rig and Rog from the start end portion 17c.
  • the pump casing 16 has a reinforcing rib 60 at the discharge port 17.
  • One reinforcing rib 60 of the present embodiment is provided substantially at the center of the discharge port 17.
  • the reinforcing rib 60 is formed integrally with the pump casing 16 by metal, and is a rib that reinforces the pump casing 16 by straddling the discharge port 17 in the intersecting direction intersecting the rotational direction Rig of the inner gear 20.
  • the reinforcing rib 60 suppresses deformation in the intersecting direction of the pump casing 16 with respect to the discharge port 17 extending along the rotation direction Rig.
  • the discharge port 17 is divided into a start side passage 17e and a termination side passage 17f. Further, the discharge port 17 communicates with the fuel passage 6 shown in FIG. 1 in both the start side passage 17e and the end side passage 17f.
  • a radial bearing 50 is fitted and fixed on the inner center line Cig of the concave bottom portion 16 c of the pump casing 16 in order to radially support the rotating shaft 4 a of the electric motor 4.
  • a thrust bearing 52 is fitted and fixed on the inner center line Cig of the pump cover 12 in order to support the rotary shaft 4a in the axial direction.
  • the concave bottom portion 16 c and the inner peripheral portion 16 b of the pump casing 16 define a housing space 56 for housing the inner gear 20 and the outer gear 30 in cooperation with the pump cover 12.
  • the concave bottom part 16c becomes a sliding surface on which the inner gear 20 and the outer gear 30 slide by rotation of the inner gear 20 and the outer gear 30 which will be described later.
  • the inner gear 20 and the outer gear 30 are so-called trochoid gears in which the tooth profile curve of each tooth is a trochoid curve.
  • the inner gear 20 is arranged eccentrically in the accommodation space 56 by sharing the inner center line Cig with the rotation shaft 4a.
  • the inner peripheral portion 22 of the inner gear 20 is radially supported by a radial bearing 50 and is axially supported by the concave bottom portion 16 c of the pump casing 16 and the pump cover 12. Further, the inner gear 20 is connected to the rotating shaft 4 a via the joint member 54. As a result, the inner gear 20 can rotate in a certain rotational direction Rig around the inner center line Cig in accordance with the rotation of the rotating shaft 4 a by the electric motor 4.
  • the inner gear 20 has a plurality of external teeth 24 a arranged at equal intervals in the rotation direction Rig on the outer peripheral portion 24.
  • Each external tooth 24a can be opposed to the discharge port 17, the suction passage 13, and the grooves 14 and 18 in the axial direction according to the rotation of the inner gear 20, so that it sticks to the concave bottom portion 16c and the pump cover 12. It is suppressed.
  • the outer gear 30 is arranged coaxially in the accommodation space 56 by being eccentric with respect to the inner center line Cig of the inner gear 20.
  • the inner gear 20 is eccentric with respect to the outer gear 30 in the eccentric direction De as one radial direction.
  • the outer peripheral portion 34 of the outer gear 30 is supported in the radial direction by the inner peripheral portion 16 b of the pump casing 16, and is supported in the axial direction by the concave bottom portion 16 c of the pump casing 16 and the pump cover 12. With these bearings, the outer gear 30 is rotatable in a certain rotational direction Rog around the outer center line Cog that is eccentric from the inner center line Cig.
  • the outer gear 30 has a plurality of inner teeth 32a arranged at equal intervals in the rotation direction Rog in the inner peripheral portion 32.
  • the number of the inner teeth 32a in the outer gear 30 is set to be one more than the number of the outer teeth 24a in the inner gear 20.
  • Each internal tooth 32a can be opposed to the discharge port 17, the suction passage 13, and the grooves 14, 18 in the axial direction according to the rotation of the outer gear 30, so that it sticks to the concave bottom portion 16c and the pump cover 12. It is suppressed.
  • the inner gear 20 is engaged with the outer gear 30 by relative eccentricity in the eccentric direction De. Accordingly, a plurality of pump chambers 40 are formed between the gears 20 and 30 in the accommodating space 56. The volume of the pump chamber 40 expands and contracts as the outer gear 30 and the inner gear 20 rotate.
  • the volume of the pump chamber 40 increases in the pump chamber 40 that communicates with the suction passage 13 and the suction groove 18.
  • fuel is sucked into the pump chamber 40 through the suction passage 13 from the suction port 12a.
  • the suction passage 13 is widened from the start end portion 13c toward the end portion 13d (see also FIG. 2), the amount of fuel sucked through the suction passage 13 is the volume expansion amount of the pump chamber 40.
  • the volume of the pump chamber 40 is reduced in the pump chamber 40 that communicates with the discharge port 17 and the discharge groove 14.
  • fuel is discharged from the pump chamber 40 to the fuel passage 6 through the discharge port 17.
  • the discharge port 17 is reduced in width from the start end 17c toward the end 17d (see also FIG. 3)
  • the amount of fuel discharged through the discharge port 17 is reduced in volume of the pump chamber 40. It depends on the amount.
  • the fuel is sequentially sucked into the pump chambers 40 by the fuel pump 100 and discharged from the pump chambers 40 to the discharge ports 17.
  • the reinforcing rib 60 is connected to the inner peripheral portion 17a and the outer peripheral portion 17b of the discharge port 17, and has an inclined surface 62, a side surface 66, and a back surface 68, and is formed surrounded by these.
  • the inclined surface 62 is provided on the side of the reinforcing rib 60 facing the pump chamber 40 so as to be inclined in the rotational direction Rig of the inner gear 20.
  • the inclined surfaces 62 of the present embodiment are provided on both sides with the tip 64 of the reinforcing rib 60 interposed therebetween, and have a substantially symmetrical inclined shape with the tip 64 interposed therebetween.
  • the inclined surface 62 has a planar shape that inclines toward the back in the rotation direction Rig with respect to the rotation direction Rig from the tip 64, and the reverse rotation side in the rotation direction Rig from the tip 64. The flat shape which inclines to the back side is exhibited as it goes to.
  • the tip 64 sandwiched between the inclined surfaces 62 and extending along the intersecting direction is curved in a convex shape along the rotation direction Rig, and is smoothly connected to the inclined surfaces 62 on both sides.
  • the tip 64 has an arc shape in the cross section of FIG.
  • the front end 64 of the reinforcing rib 60 is located on the far side of the concave bottom portion 16 c as a sliding surface at the discharge port 17.
  • the back side indicates the side away from the pump chamber 40 at the discharge port 17.
  • a dimension LH from the concave bottom 16c to the tip 64, which indicates the positional relationship between the concave bottom 16c and the tip 64, is, for example, 1.5 mm.
  • the side surface 66 is formed on the back side of the inclined surface 62 along the fuel discharge direction.
  • the discharge direction of the present embodiment is defined as a direction perpendicular to the concave bottom portion 16c, and is along the axial direction. Similar to the inclined surface 62, the side surface 66 is formed on both sides across the tip 64. The side surface 66 and the inclined surface 62 are also smoothly connected by a convex curve.
  • the width WR of the reinforcing rib formed between the side surfaces 66 on both sides is, for example, 3.0 mm.
  • the back surface 68 is a surface that is located on the deepest side of the reinforcing rib 60 and connects the side surfaces 66 on both sides.
  • the cross-sectional area of the reinforcing rib 60 in the direction parallel to the concave bottom portion 16 c is larger at the position where the back surface 68 is located than the tip 64.
  • the fuel When fuel flows from the pump chamber 40 into the discharge port 17 in which such a reinforcing rib 60 is formed, the fuel is inclined on both sides of the inclined surface 62 with the tip 64 interposed therebetween, as schematically shown by arrows in FIG. As shown in FIG. 2, the flow is divided into a start side passage 17e and a termination side passage 17f and flows to the back side. Further, when the fuel reaches the position where the side surface 66 is located in each of the passages 17e and 17f, the fuel flows along the side surface 66, that is, along the discharge direction, and is discharged to the fuel passage 6.
  • the reinforcing rib 60 that reinforces the pump casing 16 of the pump housing 10 by straddling the discharge port 17 in a direction crossing the rotational direction Rig of the inner gear 20 is arranged in the rotational direction Rig on the side facing the pump chamber 40. It has the inclined surface 62 which inclines to. The inclined surface 62 suppresses the fluid resistance that the reinforcing rib 60 gives to the fuel, so that the fuel can flow smoothly in the discharge port 17. According to this, since the discharge flow rate of the fuel discharged through the discharge port 17 can be increased, the fuel pump 100 with high pump efficiency can be provided.
  • the pump casing 16 has the concave bottom portion 16 c as a sliding surface on which the inner gear 20 slides at a location adjacent to the discharge port 17, and the tip 64 of the reinforcing rib 60 has the concave portion. It is located on the back side from the bottom 16c. As described above, the tip position is located on the back side with respect to the concave bottom portion 16c, so that the fuel discharged from the pump chamber 40 can surely flow into the discharge port 17. According to this, the fuel discharge flow rate of the fuel discharged through the discharge port 17 can be increased, and the fuel pump 100 with high pump efficiency can be provided.
  • the tip 64 of the reinforcing rib 60 is curved in a convex shape.
  • the fuel flows smoothly in the discharge port 17, so that not only pump efficiency can be improved, but also the generation of pulsation and sound can be suppressed.
  • the reinforcing rib 60 has the side surface 66 along the fuel discharge direction on the back side of the inclined surface 62.
  • the side surface 66 By providing the side surface 66 in this manner, the rectifying action along the fuel discharge direction can be given to the fuel guided to the back side along the inclined surface 62. According to this, the fuel flow in the discharge port 17 can be made smooth, and pump efficiency can be improved.
  • the inclined surfaces 62 are provided on both sides of the rotational direction Rig across the tip 64 of the reinforcing rib 60.
  • the fuel can flow smoothly and in a balanced manner in the discharge port 17, so that the pump efficiency is increased.
  • the tip 64 of the reinforcing rib 60 may be sharp. Further, the tip 64 of the reinforcing rib 60 may be planar.
  • the inclined surface 62 may be convexly curved as shown in FIG.
  • it may be formed on one side with respect to the tip 64 of the reinforcing rib 60.
  • the rotation opposite side of the rotation direction Rig from the tip 64 is connected to the side surface 66 along the fuel discharge direction.
  • the reinforcing rib 60 may not have the side surface 66 along the fuel discharge direction on the back side of the inclined surface 62, as shown in FIG.
  • the tip 64 of the reinforcing rib 60 may be located on the same plane as the concave bottom portion 16c as a sliding surface at the discharge port 17.
  • two or more reinforcing ribs 60 may be formed at the discharge port 17.
  • the fuel pump 100 may suck and discharge gasoline other than light oil or liquid fuel based thereon as fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

 燃料ポンプは、内歯を複数有するアウタギアと、外歯を複数有し、アウタギアとは偏心方向に偏心して噛合するインナギアと、燃料を吐出する吐出口(17)を形成し、アウタギア及びインナギアを回転可能に収容するポンプハウジング(10)とを、備える。アウタギア及びインナギアは、それら両ギア間に複数形成されるポンプ室の容積を拡縮させつつ回転することにより、燃料を各ポンプ室に順次吸入して各ポンプ室から吐出口(17)に吐出する。ポンプハウジング(10)のポンプケーシング(16)は、インナギアの回転方向(Rig)に対して交差する交差方向に吐出口(17)を跨ぐことにより当該ポンプケーシング(16)を補強する補強リブ(60)を有する。補強リブ(60)は、ポンプ室と対向する側において、インナギアの回転方向(Rig)に傾斜する傾斜面(62)を有する。

Description

燃料ポンプ 関連出願の相互参照
 本願は、2014年12月26日に出願された日本国特許出願第2014-264421号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。
 本開示は、燃料を順次ポンプ室に吸入して吐出する燃料ポンプに関する。
 従来、燃料を順次ポンプ室に吸入して吐出する燃料ポンプが知られている。特許文献1に開示の燃料ポンプは、内歯を複数有するアウタギアと、外歯を複数有し、アウタギアとは偏心方向に偏心して噛合するインナギアと、燃料を吐出する吐出口を形成し、アウタギア及びインナギアを回転可能に収容するポンプハウジングとを、備えている。アウタギア及びインナギアは、それら両ギア間に複数形成されるポンプ室の容積を拡縮させつつ回転することにより、燃料を各ポンプ室に順次吸入して当該各ポンプ室から吐出口に吐出するのである。
 また、ベーンポンプの分野では、例えば特許文献2に開示されているように、ポンプ室から流体を吐出する吐出口が、ポンプハウジングに形成されている。そして、ロータの回転方向に対して交差する交差方向に吐出口を跨ぐリブが設けられている。
 しかしながら、特許文献1の構成における吐出口に、特許文献2のようなリブを闇雲に設けただけでは、当該リブにより、燃料の吐出が阻害され、その結果、ポンプ効率が低下することが懸念されている。
特開2012-197709号公報 特開2014-173588号公報
 本開示は、以上説明した問題に鑑みてなされたものであって、その目的は、ポンプ効率の高い燃料ポンプを提供することにある。
 本開示では、内歯を複数有するアウタギアと、
 外歯を複数有し、アウタギアとは偏心方向に偏心して噛合するインナギアと、
 燃料を吐出する吐出口を形成し、アウタギア及びインナギアを回転可能に収容するポンプハウジングとを、備え、
 アウタギア及びインナギアは、それら両ギア間に複数形成されるポンプ室の容積を拡縮させつつ回転することにより、燃料を各ポンプ室に順次吸入して当該各ポンプ室から吐出口に吐出する燃料ポンプであって、
 ポンプハウジングは、インナギアの回転方向に対して交差する交差方向に吐出口を跨ぐことによりポンプハウジングを補強する補強リブを有し、
 補強リブは、ポンプ室と対向する側において、インナギアの回転方向に傾斜する傾斜面を有する燃料ポンプを提供する。
 この燃料ポンプでは、インナギアの回転方向に対する交差方向に吐出口を跨ぐことによりポンプハウジングを補強する補強リブは、ポンプ室と対向する側において、回転方向に傾斜する傾斜面を有している。この傾斜面により、補強リブが燃料に与える流体抵抗は抑制されるので、吐出口内にて燃料を円滑に流すことができる。これによれば、吐出口を通して吐出させる燃料の吐出流量を高めることができるので、ポンプ効率の高い燃料ポンプを提供することができる。
一実施形態における燃料ポンプを示す部分断面正面図である。 図1のII-II線断面図である。 図1のIII-III線断面図である。 図1のIV-IV線断面図である。 図3のV-V線断面において、ポンプケーシングを示す断面図である。 図5のVI-VI線断面において、補強リブの形状を示す断面図である。 変形例2における図6に対応する図である。 変形例3における図6に対応する図である。 変形例4における図6に対応する図である。
 以下、本開示の一実施形態を図面に基づいて説明する。
 図1に示すように、本発明の一実施形態による燃料ポンプ100は、車両に搭載される容積式のトロコイドポンプである。燃料ポンプ100は、円筒状のポンプボディ2内部に収容されたポンプ本体3及び電動モータ4を、備えている。それと共に燃料ポンプ100は、ポンプボディ2のうち電動モータ4を軸方向に挟んでポンプ本体3とは反対側端から外部へ張り出したサイドカバー5を、備えている。ここでサイドカバー5は、電動モータに通電するための電気コネクタ5aと、燃料を吐出するための吐出ポート5bとを、備えている。こうした燃料ポンプ100では、電気コネクタ5aを介した外部回路からの通電により、電動モータ4が回転駆動される。その結果、電動モータ4が有する回転軸4aの回転力を利用してポンプ本体3により吸入及び加圧された燃料は、吐出ポート5bから吐出されることになる。なお、燃料ポンプ100については、ガソリンよりも粘性が高い軽油を、燃料として吐出するものである。
 以下、ポンプ本体3について詳細に説明する。ポンプ本体3は、ポンプハウジング10、インナギア20及びアウタギア30を備えている。ここでポンプハウジング10は、ポンプカバー12とポンプケーシング16を重ね合わせてなる。
 ポンプカバー12は、金属により円盤状に形成されている。ポンプカバー12は、ポンプボディ2のうち電動モータ4を軸方向に挟んでサイドカバー5とは反対側端から、外部へ張り出している。
 図1,2に示すポンプカバー12は、外部から燃料を吸入するために、円筒孔状の吸入口12a及び円弧溝状の吸入通路13を形成している。吸入口12aは、ポンプカバー12のうちインナギア20のインナ中心線Cigから偏心した特定箇所Ssを、同カバー12の軸方向に沿って貫通している。吸入通路13は、ポンプカバー12のうちポンプケーシング16側に開口している。図2に示すように吸入通路13の内周部13aは、インナギア20の回転方向Rig(図4も参照)に沿って半周未満の長さに延伸している。吸入通路13の外周部13bは、アウタギア30の回転方向Rog(図4も参照)に沿って半周未満の長さに延伸している。
 ここで吸入通路13は、始端部13cから回転方向Rig,Rogの終端部13dに向かう程、拡幅している。また、吸入通路13は、溝底部13eの特定箇所Ssに吸入口12aを開口させることで、当該吸入口12aと連通している。特に図2に示すように、吸入口12aが開口する特定箇所Ssの全域では、吸入通路13の幅が吸入口12aの直径よりも小さく設定されている。
 図1,3~5に示すポンプケーシング16は、金属により有底円筒状に形成されている。ポンプケーシング16のうち開口部16aは、ポンプカバー12により覆われることで、全周に亘って密閉されている。ポンプケーシング16の内周部16bは、特に図1,4に示すように、インナギア20のインナ中心線Cigから偏心した円筒孔状に形成されている。
 ポンプケーシング16は、ポンプボディ2及び電動モータ4間の燃料通路6を通じて燃料を吐出ポート5bから吐出するために、円弧孔状の吐出口17を形成している。吐出口17は、ポンプケーシング16の凹底部16cを軸方向に沿って貫通している。換言すると、凹底部16cは、吐出口17に隣接する箇所に設けられている。特に図3に示すように吐出口17の内周部17aは、インナギア20の回転方向Rigに沿って半周未満の長さに延伸している。吐出口17の外周部17bは、アウタギア30の回転方向Rogに沿って半周未満の長さに延伸している。ここで吐出口17は、始端部17cから回転方向Rig,Rogの終端部17dに向かう程、縮幅している。
 また、ポンプケーシング16は、吐出口17において、補強リブ60を有している。本実施形態の補強リブ60は、吐出口17の略中央において、1つ設けられている。補強リブ60は、金属によりポンプケーシング16と一体に形成されており、インナギア20の回転方向Rigに対して交差する交差方向に吐出口17を跨ぐことにより、ポンプケーシング16を補強するリブである。具体的に補強リブ60は、回転方向Rigに沿って延伸する吐出口17に対して、ポンプケーシング16の交差方向の変形を抑制する。このような補強リブ60により、吐出口17は、始端側通路17eと終端側通路17fとに分断されている。さらに吐出口17は、始端側通路17eと終端側通路17fとの双方において、図1に示す燃料通路6と連通している。
 ポンプケーシング16の凹底部16cのうち両ギア20,30間のポンプ室40(後に詳述)を挟んで吸入通路13と対向する箇所には、特に図3に示すように、同通路13を軸方向に投影した形状と対応させて、円弧溝状の吸入溝18が形成されている。これによりポンプケーシング16では、吐出口17が吸入溝18とその輪郭を線対称に設けられている。一方で特に図2に示すように、ポンプカバー12のうちポンプ室40を挟んで吐出口17と対向する箇所には、当該吐出口17を軸方向に投影した形状と対応させて、円弧溝状の吐出溝14が形成されている。これによりポンプカバー12では、吸入通路13が吐出溝14とは線対称に設けられている。
 図1に示すように、ポンプケーシング16の凹底部16cのうちインナ中心線Cig上には、電動モータ4の回転軸4aを径方向に軸受するために、ラジアル軸受50が嵌合固定されている。一方で、ポンプカバー12のうちインナ中心線Cig上には、回転軸4aを軸方向に軸受するために、スラスト軸受52が嵌合固定されている。
 図1,4に示すように、ポンプケーシング16の凹底部16c及び内周部16bは、インナギア20及びアウタギア30を収容する収容空間56を、ポンプカバー12と共同して画成している。そして、凹底部16cは、後述するインナギア20及びアウタギア30の回転により、インナギア20及びアウタギア30が摺動する摺動面となっている。インナギア20及びアウタギア30は、それぞれの歯の歯形曲線をトロコイド曲線した、所謂トロコイドギアである。
 インナギア20は、インナ中心線Cigを回転軸4aと共通にすることで、収容空間56内では偏心して配置されている。インナギア20の内周部22では、ラジアル軸受50により径方向に軸受されていると共に、ポンプケーシング16の凹底部16cとポンプカバー12とにより軸方向に軸受されている。また、インナギア20は、ジョイント部材54を介して回転軸4aと連結されている。これらによりインナギア20は、電動モータ4による回転軸4aの回転に応じて、インナ中心線Cig周りとなる一定の回転方向Rigへ回転可能になっている。
 インナギア20は、そうした回転方向Rigに等間隔に並ぶ複数の外歯24aを、外周部24に有している。各外歯24aは、インナギア20の回転に応じて吐出口17、吸入通路13及び各溝14,18と軸方向に対向可能となっていることで、凹底部16c及びポンプカバー12への張り付きを抑制されている。
 アウタギア30は、インナギア20のインナ中心線Cigに対して偏心することで、収容空間56内では同軸上に配置されている。これによりアウタギア30に対しては、一径方向としての偏心方向Deにインナギア20が偏心している。アウタギア30の外周部34は、ポンプケーシング16の内周部16bにより径方向に軸受されていると共に、ポンプケーシング16の凹底部16cとポンプカバー12とにより軸方向に軸受されている。これらの軸受によりアウタギア30は、インナ中心線Cigから偏心したアウタ中心線Cog周りとなる一定の回転方向Rogへ回転可能になっている。
 アウタギア30は、そうした回転方向Rogに等間隔に並ぶ複数の内歯32aを、内周部32に有している。ここでアウタギア30における内歯32aの数は、インナギア20における外歯24aの数よりも一つ多くなるように、設定されている。各内歯32aは、アウタギア30の回転に応じて吐出口17、吸入通路13及び各溝14,18と軸方向に対向可能となっていることで、凹底部16c及びポンプカバー12への張り付きを抑制されている。
 図4に示すように、アウタギア30に対してインナギア20は、偏心方向Deへの相対的な偏心により噛合している。これにより、収容空間56のうち両ギア20,30の間には、ポンプ室40が複数連なって形成されている。このようなポンプ室40は、アウタギア30及びインナギア20が回転することにより、その容積が拡縮するようになっている。
 両ギア20,30の回転に伴って、吸入通路13及び吸入溝18と対向して連通するポンプ室40にて、その容積が拡大する。その結果として、吸入口12aから燃料が吸入通路13を通してポンプ室40に吸入される。このとき、始端部13cから終端部13dに向かう程(図2も参照)、吸入通路13が拡幅していることで、当該吸入通路13を通して吸入される燃料量は、ポンプ室40の容積拡大量に応じたものとなる。
 両ギア20,30の回転に伴って、吐出口17及び吐出溝14と対向して連通するポンプ室40にて、その容積が縮小する。その結果として、上記吸入機能と同時に、ポンプ室40から燃料が吐出口17を通して燃料通路6に吐出される。このとき、始端部17cから終端部17dに向かう程(図3も参照)、吐出口17が縮幅していることで、当該吐出口17を通して吐出される燃料量は、ポンプ室40の容積縮小量に応じたものとなる。
 このようにして、燃料は、燃料ポンプ100により、各ポンプ室40に順次吸入されて、当該各ポンプ室40から吐出口17に吐出されるのである。
 (補強リブの詳細構成)
 ここで、図3,5,6に示す補強リブ60について詳細に説明する。補強リブ60は、吐出口17の内周部17a及び外周部17bに接続されると共に、傾斜面62、側面66、及び奥面68を有し、これらに囲まれて形成されている。
 傾斜面62は、補強リブ60のうちポンプ室40と対向する側において、インナギア20の回転方向Rigに傾斜して設けられている。特に本実施形態の傾斜面62は、補強リブ60の先端64を挟んで両側に設けられており、当該先端64を挟んで略対称の傾斜形状を呈している。具体的に傾斜面62は、先端64よりも回転方向Rigのうち回転進行側に向かう程、奥側に傾斜する平面状を呈しており、また、先端64よりも回転方向Rigのうち回転逆側に向かう程、奥側に傾斜する平面状を呈している。
 ここで、傾斜面62に両側を挟まれ、交差方向に沿って延びる先端64は、回転方向Rigに沿っては凸状に湾曲しており、両側の傾斜面62と滑らかに接続されている。先端64は、図6の断面において円弧状となっている。この補強リブ60の先端64は、特に図5,6に示すように、吐出口17において摺動面としての凹底部16cよりも奥側に位置している。ここで奥側とは、吐出口17においてポンプ室40と離れる側を示している。凹底部16cと先端64との位置関係を示す、凹底部16cから先端64までの寸法LHは、例えば1.5mmとなっている。
 側面66は、傾斜面62よりも奥側において、燃料の吐出方向に沿って形成されている。本実施形態の吐出方向は、凹底部16cに垂直な方向として定義され、また、軸方向に沿っている。側面66は、傾斜面62と同様に、先端64を挟んで両側に形成されている。また、この側面66と傾斜面62との間も、凸状の湾曲により滑らかに接続されている。両側の側面66間がなす補強リブの幅WRは、例えば3.0mmとなっている。
 奥面68は、補強リブ60の最も奥側に位置し、両側の側面66を接続する面である。このような補強リブ60の凹底部16cに平行な方向の断面積は、先端64よりも奥面68が位置する箇所において大きくなっている。
 このような補強リブ60が形成された吐出口17に、ポンプ室40から燃料が流れ込むと、図6に矢印で模式的に示すように、当該燃料は、先端64を挟んで両側の傾斜面62に沿うように、始端側通路17eと、終端側通路17fに分かれて奥側へと流れる。さらに燃料は、各通路17e,17fにおいて側面66が位置する箇所まで達すると、側面66が沿う方向、すなわち吐出方向に沿うように流れ、燃料通路6へと吐出されるのである。
 (作用効果)
 以上説明した本実施形態の作用効果を以下に説明する。
 本実施形態によると、インナギア20の回転方向Rigに対する交差方向に吐出口17を跨ぐことによりポンプハウジング10のポンプケーシング16を補強する補強リブ60は、ポンプ室40と対向する側において、回転方向Rigに傾斜する傾斜面62を有している。この傾斜面62により、補強リブ60が燃料に与える流体抵抗は抑制されるので、吐出口17内にて燃料を円滑に流すことができる。これによれば、吐出口17を通して吐出させる燃料の吐出流量を高めることができるので、ポンプ効率の高い燃料ポンプ100を提供することができる。
 また、本実施形態によると、ポンプケーシング16は、吐出口17に隣接する箇所において、インナギア20が摺動する摺動面としての凹底部16cを有し、補強リブ60の先端64は、当該凹底部16cよりも奥側に位置する。このように先端位置が凹底部16cよりも奥側にあることにより、ポンプ室40から吐出される燃料を吐出口17内へと確実に流入させることができる。これによれば、吐出口17を通して吐出させる燃料の吐出流量を高めて、ポンプ効率の高い燃料ポンプ100を提供することができる。
 また、本実施形態によると、補強リブ60の先端64は、凸状に湾曲している。このような湾曲によって、吐出口17内では燃料が円滑に流れることになるので、ポンプ効率を高めることができるだけでなく、脈動や音の発生を抑制することができる。
 また、本実施形態によると、補強リブ60は、傾斜面62よりも奥側において、燃料の吐出方向に沿う側面66を有する。このように側面66を設けることで、傾斜面62に沿って奥側へと案内された燃料に対して、燃料の吐出方向に沿う整流作用を与えることができる。これによれば、吐出口17内での燃料流れを円滑にして、ポンプ効率を高めることができる。
 また、本実施形態によると、傾斜面62は、補強リブ60の先端64を挟んで回転方向Rigの両側に設けられる。このように両側に設けられた傾斜面62によれば、吐出口17内において燃料を円滑に且つバランスよく流すことができるので、ポンプ効率が高まる。
 (他の実施形態)
 以上、本開示の一実施形態について説明したが、本開示は、当該実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
 具体的に変形例1としては、補強リブ60の先端64は、尖っていてもよい。また、補強リブ60の先端64は、平面状であってもよい。
 変形例2としては、図7に示すように、傾斜面62が凸状に湾曲するものであってもよい。
 変形例3としては、補強リブ60の先端64に対して片側に形成されるものであってもよい。図8に示す一例では、先端64よりも回転方向Rigのうち回転逆側が、燃料の吐出方向に沿う側面66と接続されている。
 変形例4としては、補強リブ60は、図9に示すように、傾斜面62よりも奥側において、燃料の吐出方向に沿う側面66を有していなくてもよい。
 変形例5としては、補強リブ60の先端64は、吐出口17において摺動面としての凹底部16cと同一平面上に位置していてもよい。
 変形例6としては、吐出口17において、補強リブ60が2つ以上形成されていてもよい。
 変形例7としては、燃料ポンプ100は、燃料として、軽油以外のガソリン、又はこれに準じた液体燃料を吸入して吐出するものであってもよい。
 

 

Claims (5)

  1.  内歯(32a)を複数有するアウタギア(30)と、
     外歯(24a)を複数有し、前記アウタギア(30)とは偏心方向(De)に偏心して噛合するインナギア(20)と、
     燃料を吐出する吐出口(17)を形成し、前記アウタギア(30)及び前記インナギア(20)を回転可能に収容するポンプハウジング(10,12,16)とを、備え、
     前記アウタギア(30)及び前記インナギア(20)は、それら両ギア間に複数形成されるポンプ室(40)の容積を拡縮させつつ回転することにより、燃料を各前記ポンプ室(40)に順次吸入して当該各ポンプ室(40)から前記吐出口(17)に吐出する燃料ポンプであって、
     前記ポンプハウジング(10,12,16)は、前記インナギア(20)の回転方向(Rig)に対して交差する交差方向に前記吐出口(17)を跨ぐことにより前記ポンプハウジング(10,12,16)を補強する補強リブ(60)を有し、
     前記補強リブ(60)は、前記ポンプ室(40)と対向する側において、前記インナギア(20)の回転方向(Rig)に傾斜する傾斜面(62)を有する燃料ポンプ。
  2.  前記ポンプハウジング(10,12,16)は、前記吐出口(17)に隣接する箇所において、前記インナギア(20)が摺動する摺動面(16c)を有し、
     前記補強リブ(60)の先端(64)は、前記吐出口(17)において前記摺動面(16c)よりも奥側に位置する請求項1に記載の燃料ポンプ。
  3.  前記補強リブ(60)の先端(64)は、凸状に湾曲している請求項1又は2に記載の燃料ポンプ。
  4.  前記補強リブ(60)は、前記傾斜面(62)よりも前記吐出口(17)の奥側において、燃料の吐出方向に沿う側面(66)を有する請求項1から3のいずれか1項に記載の燃料ポンプ。
  5.  前記傾斜面(62)は、前記補強リブ(60)の先端(64)を挟んで前記インナギア(20)の回転方向(Rig)の両側に設けられる請求項1から4のいずれか1項に記載の燃料ポンプ。

     
PCT/JP2015/006302 2014-12-26 2015-12-17 燃料ポンプ WO2016103663A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014264421A JP2016125361A (ja) 2014-12-26 2014-12-26 燃料ポンプ
JP2014-264421 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103663A1 true WO2016103663A1 (ja) 2016-06-30

Family

ID=56149726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006302 WO2016103663A1 (ja) 2014-12-26 2015-12-17 燃料ポンプ

Country Status (2)

Country Link
JP (1) JP2016125361A (ja)
WO (1) WO2016103663A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339966A (en) * 1939-08-16 1944-01-25 Equi Flow Inc Internal gear pump
JPH0688576A (ja) * 1991-12-26 1994-03-29 J M Voith Gmbh 内側かみあい歯車ポンプ
US20060153706A1 (en) * 2003-09-09 2006-07-13 Holger Barth Internal gear-wheel pump comprising reinforced channels
JP2006250072A (ja) * 2005-03-11 2006-09-21 Hitachi Ltd ベーンポンプ
JP2012225259A (ja) * 2011-04-20 2012-11-15 Panasonic Corp 密閉型圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339966A (en) * 1939-08-16 1944-01-25 Equi Flow Inc Internal gear pump
JPH0688576A (ja) * 1991-12-26 1994-03-29 J M Voith Gmbh 内側かみあい歯車ポンプ
US20060153706A1 (en) * 2003-09-09 2006-07-13 Holger Barth Internal gear-wheel pump comprising reinforced channels
JP2006250072A (ja) * 2005-03-11 2006-09-21 Hitachi Ltd ベーンポンプ
JP2012225259A (ja) * 2011-04-20 2012-11-15 Panasonic Corp 密閉型圧縮機

Also Published As

Publication number Publication date
JP2016125361A (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
US9638190B2 (en) Oil pump
JP6350294B2 (ja) 燃料ポンプ
JP6418094B2 (ja) 燃料ポンプ
JP6444166B2 (ja) 可変容量ポンプ
WO2003048580A1 (fr) Pompe a engrenages
JP6380299B2 (ja) 燃料ポンプ
JP6361561B2 (ja) 流体ポンプ
JP2010190161A (ja) 内接ギヤポンプ
EP3828415A1 (en) Internal gear pump
WO2016103663A1 (ja) 燃料ポンプ
JP6236958B2 (ja) ギヤポンプ
WO2017077948A1 (ja) 燃料ポンプ
KR20170083056A (ko) 드라이브-인-드라이브 밸브 배열체를 가지는 회전식 유압 장치
JP6745132B2 (ja) 複合ポンプ
JP6361573B2 (ja) 燃料ポンプ
JP6380129B2 (ja) 燃料ポンプ及びその製造方法
JP6115156B2 (ja) 内接ギアポンプ
WO2017104420A1 (ja) 燃料ポンプ
JP6152745B2 (ja) ギヤポンプ
JP6319056B2 (ja) 燃料ポンプ
JP6661529B2 (ja) トロコイドポンプ
JP6418059B2 (ja) 燃料ポンプ
JP6321338B2 (ja) ポンプ装置
JP2020041465A (ja) ベーンポンプ
US20160123148A1 (en) Piston machine apparatus, and method of varying a volume of a chamber of the apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872236

Country of ref document: EP

Kind code of ref document: A1