WO2017076121A1 - 碳纳米管半导体器件及其制备方法 - Google Patents

碳纳米管半导体器件及其制备方法 Download PDF

Info

Publication number
WO2017076121A1
WO2017076121A1 PCT/CN2016/098035 CN2016098035W WO2017076121A1 WO 2017076121 A1 WO2017076121 A1 WO 2017076121A1 CN 2016098035 W CN2016098035 W CN 2016098035W WO 2017076121 A1 WO2017076121 A1 WO 2017076121A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
layer
semiconductor device
cnt
source electrode
Prior art date
Application number
PCT/CN2016/098035
Other languages
English (en)
French (fr)
Inventor
梁学磊
惠官宝
夏继业
张方振
赵海燕
田博元
严秋平
彭练矛
Original Assignee
京东方科技集团股份有限公司
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京大学 filed Critical 京东方科技集团股份有限公司
Priority to US15/512,299 priority Critical patent/US20170294583A1/en
Priority to EP16843280.5A priority patent/EP3373337B1/en
Publication of WO2017076121A1 publication Critical patent/WO2017076121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02096Cleaning only mechanical cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials

Definitions

  • the present disclosure belongs to the field of carbon nanotube (CNT) technology and relates to the preparation of carbon nanotube semiconductor devices. Specifically, the present disclosure relates to a method of preparing a carbon nanotube semiconductor device in which a carbon nanotube layer is treated with an acidic solution.
  • CNT carbon nanotube
  • Carbon nanotube film is a hot spot in the field of nanotechnology in recent years, and carbon nanotubes (CNTs) having semiconductor properties can be applied to various semiconductor devices, such as diodes, field effect transistors (FETs), and the like.
  • CNT-FET carbon nanotube field effect transistor
  • a carbon nanotube forms a conductive channel of a semiconductor property therein.
  • MOSFET the simplest and most basic electronic device, MOSFET, can be fabricated using the carbon nanotube layer.
  • the carbon nanotube film can be further used to prepare a thin film transistor (TFT) formed based on CNT.
  • TFT thin film transistor
  • the channel layer of the CNT-TFT ie, the carbon nanotube thin film transistor
  • the CNT-TFT may be used as a driving transistor in a display.
  • the carbon nanotube film has excellent characteristics such as flexibility, transparency, high mobility, low cost, and large scale
  • the CNT-FET or CNT-TFT formed based thereon has a large problem in performance uniformity.
  • a plurality of CNT-TFTs formed under the same process conditions are likely to have greatly different transfer characteristics. That is to say, the performance between the CNT-FET or the CNT-TFT prepared in batch by the existing method is not uniform. This problem of non-uniformity also greatly limits the large-scale application of CNT-FET or CNT-TFT in the industrial field.
  • the present disclosure provides the following technical solutions.
  • a method of fabricating a carbon nanotube semiconductor device includes: forming a carbon nanotube layer by a carbon nanotube solution; and treating the carbon nanotube layer with an acidic solution.
  • the semiconductor device is a carbon nanotube field effect transistor (CNT-FET) or a carbon nanotube thin film transistor (CNT-TFT), and the carbon nanotube layer is used for formation a semiconductor layer between the source and drain electrodes of the CNT-FET or CNT-TFT.
  • CNT-FET carbon nanotube field effect transistor
  • CNT-TFT carbon nanotube thin film transistor
  • the preparation method according to an embodiment of the present disclosure further includes: performing a dispersion treatment on the carbon nanotube solution with an organic solvent before forming the carbon nanotube layer by the carbon nanotube solution.
  • the organic solvent may be toluene, xylene, chloroform or o-xylene.
  • the preparation method according to an embodiment of the present disclosure further comprising, after the step of treating the carbon nanotube layer with an acidic solution, forming the source electrode and the drain electrode by a patterning process.
  • the preparation method according to an embodiment of the present disclosure further comprising, after the step of treating the carbon nanotube layer with an acidic solution, forming the source electrode and the drain electrode by a patterning process.
  • the forming the source electrode and the drain electrode by a patterning process includes: forming a photoresist layer by a patterning process to cover a region other than a region where the source electrode and the drain electrode are to be formed a region; depositing a metal thin film layer; and removing the photoresist layer, the metal thin film layer on the photoresist layer being simultaneously removed.
  • a preparation method further comprising, after forming the source electrode and the drain electrode by a patterning process, forming a protective layer on at least the source electrode and the drain electrode by a patterning process, exposing the source electrode and a semiconductor layer between the drain electrodes; and after the carbon nanotube layer is treated with an acidic solution, the protective layer is removed.
  • the step of forming the source electrode and the drain electrode by a patterning process comprises: depositing a metal thin film layer; forming a photoresist layer on the metal thin film layer by a patterning process to cover the Forming a region of the source electrode and the drain electrode; and etching the photoresist layer as a mask until the carbon nanotube layer is exposed, and the photoresist layer remains; wherein the photoresist layer The carbon nanotube layer is removed after treatment with an acidic solution.
  • the source and drain electrodes are made of a metal material that is corroded by an acid solution.
  • the carbon nanotube layer is treated with an acidic solution for a period of from 1 minute to 2 minutes.
  • the carbon nanotubes of the carbon nanotube layer are single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or a combination thereof; or the carbon nano The carbon nanotubes of the tube layer are bundles of carbon nanotube tubes.
  • the acidic solution is a mixed solution of phosphoric acid, nitric acid and acetic acid.
  • the mass percentages of phosphoric acid, nitric acid and acetic acid in the mixed solution are respectively 75% to 85%, 3% to 7%, and 3% to 7%.
  • a carbon nanotube semiconductor device prepared by the preparation method of any of the above methods is provided.
  • the chemical substance impurity in the carbon nanotube layer can be effectively removed by the acidic solution treatment, thereby making the performance uniformity of the semiconductor device of the CNT-TFT Greatly improved.
  • FIG. 1 is a schematic flow chart of a method of preparing a CNT-TFT according to an embodiment of the present disclosure.
  • FIG. 2 is a flow chart showing a method of preparing a CNT-TFT according to still another embodiment of the present disclosure.
  • FIG. 3 is a schematic view showing the basic structure of a CNT-TFT formed by a method of preparing a CNT-TFT according to the present disclosure.
  • Fig. 4 is a comparative schematic diagram showing the transfer characteristics of CNT-TFTs obtained by treatment with an acidic solution and treatment with an acidic solution, respectively.
  • FIG. 3 is a schematic view showing the basic structure of a CNT-TFT formed by a method of preparing a CNT-TFT according to the present disclosure.
  • the thickness of the layers and regions are exaggerated for clarity.
  • the dimensional relationship between the components in FIG. 3 is merely illustrative and does not reflect the actual dimensional relationship between the components.
  • the CNT-TFT shown in Fig. 3 can be formed by the production method examples disclosed below.
  • the semiconductor device in the embodiment of the present disclosure is a carbon nanotube field effect transistor (CNT-FET) or a carbon nanotube thin film transistor (CNT-TFT), and the carbon nanotube layer is at least partially used for forming. a semiconductor layer between the source and drain electrodes of the CNT-FET or CNT-TFT.
  • CNT-FET carbon nanotube field effect transistor
  • CNT-TFT carbon nanotube thin film transistor
  • FIG. 3 is described by taking a semiconductor device as a CNT-TFT as an example, but is not limited thereto.
  • FIG. 1 is a schematic flow chart of a method of preparing a CNT-TFT according to an embodiment of the present disclosure.
  • a method of preparing a CNT-TFT according to an embodiment of the present disclosure will be described in detail with reference to FIGS. 1 and 3.
  • step S110 a substrate subjected to the cleaning process is provided.
  • the substrate provided may be, but not limited to, a silicon wafer corresponding to the silicon substrate 310 as shown in FIG. 3 and the gate dielectric layer 320 formed thereon.
  • the gate dielectric layer 320 may specifically be silicon dioxide, which may be formed by thermal oxidation of a silicon substrate, or by other methods such as thin film deposition.
  • step S120 a CNT thin film layer is formed on the substrate by the CNT solution.
  • a CNT thin film layer can be obtained by a immersion method.
  • the substrate may be immersed in a CNT solution, and after a period of time, the substrate is taken out, and then rinsed and dried.
  • the CNT thin film layer may be formed by a solution spraying method, a chemical assembly method (for example, LB thin film method), or the like based on the CNT solution.
  • the method of forming a CNT thin film layer based on a CNT solution may be referred to as a "solution method", and the specific implementation thereof is not limited to the embodiment of the present disclosure.
  • the thickness of the formed CNT thin film layer can also be determined according to the structural parameters of the CNT-TFT to be formed.
  • the CNT solution is subjected to a dispersion treatment using an organic solvent before the formation of the CNT thin film layer to obtain a relatively uniform and stable CNT solution.
  • the organic solvent to be specifically used may be, but not limited to, toluene, xylene, chloroform or o-xylene. It should be understood that dispersing carbon nanotubes to form a solution itself is a relatively complicated process. Surfactants and other chemicals are often required to make the powdered carbon nanotubes relatively soluble in the solvent to form a stable CNT solution.
  • the CNT powder for forming the CNT solution may contain both the metal type CNT and the semiconductor type CNT, it may be necessary to remove the metal type CNT by using a chemical agent (for example, a surfactant), thereby obtaining a relatively high purity stable.
  • a chemical agent for example, a surfactant
  • Semiconductor type CNT solution As an example, the CNT solution used in the above examples is a semiconductor type CNT solution in which metal type CNTs have been removed.
  • the CNT thin film layer formed by the above steps contains a semiconductor type CNT, and can be used to form a semiconductor layer between the source electrode and the drain electrode of the CNT-TFT, that is, a channel layer between the source electrode and the drain electrode.
  • the CNTs in the CNT thin film layer may be single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or a combination thereof.
  • the CNTs in the CNT thin film layer are carbon nanotube bundles.
  • the CNT film layer formed by the above steps may be patterned according to actual needs.
  • the CNT thin film layer is patterned by etching to form a semiconductor layer between the source electrode and the drain electrode, and the pattern of the specific pattern is not limited.
  • step S130 a patterning process is provided to form a source electrode and a drain electrode on the substrate.
  • a photolithography technique can be employed.
  • the source electrode 330 and the drain electrode 340 as shown in FIG. 3 are formed by photolithography patterning.
  • the source electrode 330 and the drain electrode 340 may be formed of a metal thin film layer and connected therebetween by a CNT thin film layer.
  • the step of forming the source electrode and the drain electrode by a patterning process may occur before the step of treating the carbon nanotube layer with an acidic solution, or may occur when the carbon nanotube is treated with an acidic solution. After the step of processing the layer. This application mainly describes the latter case as an example.
  • the formation of the source electrode and the drain electrode by the patterning process includes the following two solutions.
  • a photoresist layer may be used to cover a region outside the region where the source electrode and the drain electrode are to be formed, wherein the region where the source electrode and the drain electrode are to be formed is not covered with the photoresist layer (ie, the source electrode and the drain electrode are exposed)
  • the semiconductor layer between the poles A metal thin film layer is then deposited and the photoresist layer is further removed, at which point the metal thin film layer on the photoresist layer is simultaneously removed.
  • the metal thin film layer of the region where the source electrode and the drain electrode are to be formed is left, thereby forming the source electrode and the drain electrode.
  • a metal thin film layer may be deposited first, and then a photoresist layer is formed on the metal thin film layer to cover a region where the source electrode and the drain electrode are to be formed. Further, etching is performed using the photoresist layer as a mask until the CNT thin film layer is exposed. Finally, remove the source A layer of photoresist over the drain and drain electrodes.
  • etching is not required, and the CNT thin film layer outside the regions of the source and drain electrodes, particularly the region for forming the channel, is covered by the photoresist layer. Therefore, the CNT film layer can be better protected.
  • step S140 a protective layer is formed on the source electrode and the drain electrode by photolithographic patterning.
  • a region other than the channel region may be covered with a photoresist to cover at least the source electrode and the drain electrode.
  • the photoresist mask serves as a protective layer for the source and drain electrodes.
  • the protective layer does not cover the CNT thin film layer for forming a channel, thereby exposing the CNT thin film layer to prepare an acidic solution treatment for the following steps.
  • the protective layer may specifically be, but not limited to, a photoresist S1813 or an electron beam adhesive PMMA or the like.
  • the protective layer may cause the source electrode and the drain electrode to be substantially unaffected by the treatment of the acidic solution in the following step S150.
  • the photoresist layer over the source and drain electrodes may not be removed and retained.
  • the photoresist layer is used as a protective layer, so that step S140 can be omitted.
  • step S150 at least the CNT film layer for forming the channel is immersed in an acidic solution, then taken out and washed with water.
  • the disclosure of the present application has found that when a CNT thin film layer is formed based on a CNT solution, the surface of the CNT in the solution or in the solution may contain some undesired impurities such as polymer impurities. These impurities are deposited on the substrate when the CNT thin film layer is prepared in the above step S120, and even adhere to the outer wall surface of a part of the carbon nanotubes.
  • impurities are deposited on the substrate when the CNT thin film layer is prepared in the above step S120, and even adhere to the outer wall surface of a part of the carbon nanotubes.
  • a semiconductor device or a CNT-TFT is constructed based on such a CNT thin film layer containing impurities, the presence of impurities contributes to formation of more at the interface of the dielectric layer in contact with the upper surface and/or the lower surface of the CNT thin film layer.
  • a charge trap (Trap) affects the uniformity of performance of the prepared CNT-TFT.
  • the CNT film layer is immersed in an acidic solution for treatment.
  • the above-mentioned impurities can be removed by the acidic solution, so that a relatively clean and uniform CNT film layer can be obtained. That is, the CNT thin film layer 350 for forming a channel as shown in FIG.
  • Such a CNT film layer 350 has fewer corresponding charge traps and thus has a more uniform performance.
  • the source electrode 330 and the drain electrode 340 are protected by the protective layer and are not affected by the acidic solution.
  • the acidic solution may be selected as a mixed solution of phosphoric acid, nitric acid, and acetic acid.
  • the mass percentages of phosphoric acid, nitric acid and acetic acid are respectively 75% to 85%, 3% to 7%, and 3% to 7%, for example, 80%, 5%, 5%, respectively, or for example, 79%, 4, respectively. %, 4%.
  • the CNT film layer can be immersed in the acidic solution at normal temperature for 1 minute to 2 minutes, then taken out, and washed with water to remove the acidic solution residue.
  • step S160 the protective layer on the source electrode and the drain electrode is removed.
  • the substrate may be immersed in a PG removal solution to remove the protective layer of the photoresist material, and then washed with water.
  • step S140 is omitted, and of course, step S160 can be omitted.
  • FIGS. 2 and 3 are flow charts showing a method of preparing a CNT-TFT according to still another embodiment of the present disclosure.
  • the CNT-TFT preparation method of the embodiment of the present disclosure will be described in detail in conjunction with FIGS. 2 and 3.
  • step S210 a substrate subjected to the cleaning process is provided.
  • a substrate subjected to the cleaning process is provided.
  • step S220 a CNT thin film layer is formed on the substrate by the CNT solution.
  • this step reference may be made to the process described in the above step S120.
  • step S230 at least the CNT film layer for forming the channel is immersed in an acidic solution, and then taken out and washed with water.
  • an acidic solution For the implementation of this step, reference may be made to the process described in the above step S150. Further, in this embodiment, since the source electrode 330 and the drain electrode 340 have not been formed at the time of the acidic solution treatment, it is not necessary to form the protective layer described in the step S140 of the above embodiment of Fig. 1. Based on this, the process is simplified.
  • step S240 a source electrode and a drain electrode are formed on the substrate by a patterning process.
  • the implementation of this step can refer to the similar process in the above step S130.
  • FIG. 4 is a schematic view showing the comparison of the transfer characteristics of the CNT-TFT obtained separately without being subjected to an acidic solution treatment and an acidic solution treatment.
  • FIG. 4(a) shows that the CNT thin film layer is not subjected to an acidic solution treatment.
  • the transfer characteristic curves of 28 CNT-TFTs obtained in the case, and FIG. 4(b) are transfer characteristic curves of 28 CNT-TFTs obtained in the case where the CNT thin film layer was subjected to an acidic solution treatment.
  • the transfer characteristic curves are relatively dispersed, which indicates that the transfer characteristics between the respective CNT-TFT devices are not uniform.
  • the transfer characteristic curves of the 28 CNT-TFTs are more similar, which indicates that the uniformity of the transfer characteristics between the respective CNT-TFT devices is remarkably improved.
  • the method of performing an acidic solution treatment on the CNT thin film layer of the CNT-TFT in the embodiment shown in FIGS. 1 and 2 above can be analogously applied to the preparation of other types of CNT semiconductor devices, particularly by solution method.
  • the fabricated device Chemical impurities in the CNT layer for forming a channel which have been treated with an acidic solution are removed, and in particular, chemicals for forming the outer wall of one or more carbon nanotubes of the conductive path are removed, thereby being effectively improved Uniformity of performance of semiconductor devices.
  • the above examples mainly illustrate a method of preparing a CNT semiconductor device of various embodiments of the present disclosure and a CNT semiconductor device formed by the preparation.
  • the CNT semiconductor device may specifically be a semiconductor device such as a transistor, an integrated circuit, a display substrate, or a display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供一种碳纳米管半导体器件及其制备方法,属于碳纳米管技术领域,提供的碳纳米管半导体器件的制备方法包括:通过碳纳米管溶液形成碳纳米管层;以及采用酸性溶液对碳纳米管层进行处理,由此制备得到的碳纳米管半导体器件的性能均匀性好。

Description

碳纳米管半导体器件及其制备方法 技术领域
本公开属于碳纳米管(CNT)技术领域,涉及碳纳米管半导体器件的制备。具体地,本公开涉及其中采用酸性溶液对碳纳米管层进行处理的碳纳米管半导体器件的制备方法。
背景技术
碳纳米管薄膜是近年来纳米科技领域中的热点,其中具有半导体属性的碳纳米管(CNT)可以应用在各种半导体器件中,例如,二极管、场效应晶体管(FET)等。以碳纳米管场效应晶体管(CNT-FET)为示例,碳纳米管在其中形成半导体属性的导电沟道。由此,可以利用碳纳米管层制备最简单也是最基础的电子器件,即MOSFET。而且,碳纳米管薄膜也可以进一步用来制备基于CNT而形成的薄膜晶体管(TFT)。CNT-TFT(即碳纳米管薄膜晶体管)的沟道层采用碳纳米管薄膜层,并且CNT-TFT有可能作为驱动晶体管而应用在显示器中。
尽管碳纳米管薄膜具有柔性、透明、高迁移率、低成本和大规模等优异特性,但是基于其形成的CNT-FET或CNT-TFT在性能均匀性方面存在较大的问题。例如,在同一工艺条件下制备形成的多个CNT-TFT之间很可能具有差异较大的转移特性。也就是说,现有方法批量制备的CNT-FET或者CNT-TFT之间的性能不均匀。这种不均匀性的问题也大大限制了CNT-FET或者CNT-TFT在工业领域的大规模应用。
在基于碳纳米管层形成的其他碳纳米管半导体器件中,也存在类似的问题。
发明内容
本公开的目的在于,改善碳纳米管半导体器件的性能均匀性。
为实现以上目的或者其他目的,本公开提供以下技术方案。
按照本公开的一方面,提供一种碳纳米管半导体器件的制备方法,包括:通过碳纳米管溶液形成碳纳米管层;以及采用酸性溶液对所述碳纳米管层进行处理。
在根据本公开的实施例的制备方法中,所述半导体器件为碳纳米管场效应晶体管(CNT-FET)或碳纳米管薄膜晶体管(CNT-TFT),并且所述碳纳米管层用于形成所述CNT-FET或CNT-TFT的源电极和漏电极之间的半导体层。
可选地,根据本公开的实施例的制备方法还包括:在通过碳纳米管溶液形成碳纳米管层之前,采用有机溶剂对所述碳纳米管溶液进行分散处理。
可选地,所述有机溶剂可以为甲苯、二甲苯、氯仿或邻二甲苯。
根据本公开的实施例的制备方法,还包括,在采用酸性溶液对所述碳纳米管层进行处理的步骤之后,通过构图工艺形成所述源电极和漏电极。
根据本公开的实施例的制备方法,还包括,在采用酸性溶液对所述碳纳米管层进行处理的步骤之后,通过构图工艺形成所述源电极和漏电极。
在又一实施例中,可选地,通过构图工艺形成所述源电极和漏电极的步骤包括:通过构图工艺形成光刻胶层以覆盖欲形成所述源电极和漏电极的区域之外的区域;沉积金属薄膜层;以及去除所述光刻胶层,所述光刻胶层上的金属薄膜层被同时去除。
根据本公开的实施例的制备方法,还包括,在通过构图工艺形成所述源电极和漏电极之后,通过构图工艺至少在所述源电极和漏电极上形成保护层,露出所述源电极和漏电极之间的半导体层;以及在采用酸性溶液对所述碳纳米管层进行处理之后,去除所述保护层。
在另外的实施例中,可选地,通过构图工艺形成所述源电极和漏电极的步骤包括:沉积金属薄膜层;通过构图工艺在所述金属薄膜层之上形成光刻胶层来覆盖欲形成源电极和漏电极的区域;以及以所述光刻胶层为掩膜进行刻蚀,直至暴露所述碳纳米管层,并且所述光刻胶层保留;其中,所述光刻胶层在采用酸性溶液对所述碳纳米管层进行处理之后去除。
在另外的实施例中,可选地,所述源电极和漏电极采用防酸性溶液腐蚀的金属材料。
在另外的实施例的制备方法中,采用酸性溶液对所述碳纳米管层进行处理的时间为1分钟至2分钟。
在另外的实施例的制备方法中,所述碳纳米管层的碳纳米管为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、或者为它们的组合;或者所述碳纳米管层的碳纳米管为碳纳米管管束。
在另外的实施例的制备方法中,所述酸性溶液为磷酸、硝酸和醋酸的混合溶液。
在另外的实施例的制备方法中,所述混合溶液中磷酸、硝酸和醋酸的质量百分比分别为75%~85%、3%~7%、3%~7%。
按照本公开的又一方面,提供一种由任一所述的制备方法制备得到的碳纳米管半导体器件。
根据本公开的实施例提供的碳纳米管半导体器件及其制备方法,通过酸性溶液处理,可以有效去除碳纳米管层中的化学物质杂质,由此使得CNT-TFT的半导体器件的性能的均匀性得到大大改善。
附图说明
通过结合附图的以下详细说明,本公开的上述和其他目的及优点将更加完整清楚。在附图中,相同或相似的要素采用相同的标号表示。
图1是按照本公开的实施例的制备CNT-TFT的方法流程示意图。
图2是按照本公开的又一实施例的制备CNT-TFT的方法流程示意图。
图3是按照本公开提供的制备CNT-TFT的方法所制备形成的CNT-TFT的基本结构示意图。
图4是未经过酸性溶液处理和经过酸性溶液处理分别得到的CNT-TFT的转移特性的对比示意图。
具体实施方式
下面介绍的是本公开的多个可能实施例中的一些,其目的是提供对本公开的基本了解,而不是确认本公开的关键或决定性的要素或限定所要保护的范围。容易理解,根据本公开的技术方案,在不变更本公开的实质精神下,本领域的一般技术人员可以提出可相互替换的其他实现方式。因此,以下具体实施方式以及附图仅是对本公开的技术方案的示例性说明,而不应当视为本公开的全部或者视为对本公开技术方案的限定或限制。
图3为按照本公开提供的制备CNT-TFT的方法所制备形成的CNT-TFT的基本结构示意图。在图3中,为了清楚起见,放大了层和区域的厚度。而且,在图3中各部件之间的尺寸比例关系仅是示意性的,其并不反映各部件之间的实际尺寸比例关系。在图3中示出的CNT-TFT可以通过以下揭示的制备方法实施例来制备形成。
需要说明的是,本公开实施例中的半导体器件为碳纳米管场效应晶体管(CNT-FET)或碳纳米管薄膜晶体管(CNT-TFT),并且所述碳纳米管层至少部分地用于形成所述CNT-FET或CNT-TFT的源电极和漏电极之间的半导体层。图3的实施例以半导体器件为CNT-TFT为例进行说明,但并不限于此。
图1为按照本公开的一实施例的制备CNT-TFT的方法流程示意图。以下结合图1和图3对本公开实施例的CNT-TFT制备方法进行详细说明。
首先,步骤S110,提供经过清洗处理的基片。
在该步骤中,提供的基片可以但不限于为硅片,其对应为如图3中所示的硅衬底310以及形成在其上的栅介质层320。栅介质层320具体可以为二氧化硅,其可以通过对硅衬底热氧化生成,或者通过其他的诸如薄膜沉积方法形成。
进一步,步骤S120,通过CNT溶液在基片上形成CNT薄膜层。
在该步骤中,基于CNT溶液,可以采用浸泡法得到CNT薄膜层。具体地,可以将基片浸泡到CNT溶液中,经过一段时间后取出基片,然后进行冲洗和烘干处理。当然,也可以基于CNT溶液而采用溶液喷涂法、化学组装法(例如LB薄膜法)等来形成CNT薄膜层。基于CNT溶液而形成CNT薄膜层的方法可以称为“溶液法”,其具体实现不限于本公开实施例。另外,形成的CNT薄膜层的厚度也可以根据需要形成的CNT-TFT的结构参数来确定。
具体地,在其他优选实例中,在形成CNT薄膜层之前,采用有机溶剂对CNT溶液进行分散处理,以得到相对均匀稳定的CNT溶液。具体使用的有机溶剂可以但不限于为甲苯、二甲苯、氯仿或邻二甲苯。需要理解的是,将碳纳米管分散形成溶液本身是个比较复杂的过程。通常需要使用表面活性剂以及其他化学物质,使得粉末状的碳纳米管相对容易溶解到溶剂中,从而形成稳定的CNT溶液。并且还需要理解 到,由于用于形成CNT溶液的CNT粉末可能既含有金属型CNT也含有半导体型CNT,因此,可能需要采用化学试剂(例如表面活性剂)去除金属型CNT,从而得到纯度相对较高的稳定的半导体型CNT溶液。作为示例,以上实施例所使用的CNT溶液为已经去除金属型CNT的半导体型CNT溶液。
以上步骤形成的CNT薄膜层包含有半导体型CNT,并且可以用来形成CNT-TFT的源电极和漏电极之间的半导体层,即源电极和漏电极之间的沟道层。CNT薄膜层中的CNT可以为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、或者为它们的组合。可替换地,CNT薄膜层中的CNT为碳纳米管管束。
需要说明的是,可选地,可以根据实际需要对以上步骤所形成的CNT薄膜层进行构图工艺。例如,对CNT薄膜层刻蚀构图以形成源电极和漏电极之间的半导体层,具体构图的图案不是限制性的。
进一步,步骤S130,提供构图工艺在基片上形成源电极和漏电极。
在该步骤中,可以采用光刻技术。通过光刻构图形成如图3中所示的源电极330和漏电极340。源电极330和漏电极340可以由金属薄膜层形成,并且它们之间通过CNT薄膜层连接。
需要说明的是,通过构图工艺形成所述源电极和漏电极的步骤可以发生在采用酸性溶液对所述碳纳米管层进行处理的步骤之前,也可以发生在采用酸性溶液对所述碳纳米管层进行处理的步骤之后。本申请主要以后一种情况为例进行说明。
进一步地,通过构图工艺形成源电极和漏电极的实现包括以下两种方案。
第一种方案:可以采用光刻胶层覆盖欲形成源电极和漏电极的区域之外的区域,其中欲形成源电极和漏电极的区域没有覆盖有光刻胶层(即露出源电极和漏电极之间的半导体层)。然后沉积金属薄膜层,并且进一步去除光刻胶层,此时光刻胶层上的金属薄膜层被同时去除。这样,欲形成源电极和漏电极的区域的金属薄膜层得以保留,从而形成了源电极和漏电极。
第二种方案:可以先沉积金属薄膜层,然后在金属薄膜层之上形成光刻胶层来覆盖欲形成源电极和漏电极的区域。进一步地,以该光刻胶层为掩膜进行刻蚀,直至暴露出CNT薄膜层。最后,再去除源电 极和漏电极之上的光刻胶层。
基于以上第一种方案,不需要刻蚀,并且源电极和漏电极的区域之外的CNT薄膜层,特别是用来形成沟道的区域,被光刻胶层所覆盖。因此,CNT薄膜层能够得到较好的保护。
进一步,步骤S140,通过光刻构图在源电极和漏电极上形成保护层。
在该步骤中,可以采用光刻胶覆盖沟道区域以外的区域,从而至少覆盖源电极和漏电极。该光刻胶掩膜用作源电极和漏电极的保护层。该保护层不覆盖用于形成沟道的CNT薄膜层,从而使CNT薄膜层外露,以准备进行以下步骤的酸性溶液处理。该保护层具体可以但不限于为光刻胶S1813或电子束胶PMMA等。保护层可以在以下步骤S150中使源电极和漏电极基本不受酸性溶液处理的影响。
在又一替换实施例中,如果采用以上步骤S130的第二种方案来形成源电极和漏电极时,则可以不去除源电极和漏电极之上的光刻胶层,将其保留。在该步骤中,光刻胶层用作保护层,从而可以省去步骤S140。
进一步,步骤S150,至少将用于形成沟道的CNT薄膜层浸于酸性溶液中,然后取出并且用水清洗。
本申请的公开人发现,当基于CNT溶液形成CNT薄膜层时,该溶液中或溶液中的CNT的表面上可能含有一些不需要的杂质,例如聚合物杂质。这些杂质在以上步骤S120中制备CNT薄膜层时将会沉积到基底上,甚至附着在部分碳纳米管的外壁表面上。在基于这种包含杂质的CNT薄膜层而构造半导体器件或CNT-TFT时,杂质的存在有助于在CNT薄膜层与其上表面和/或下表面所接触的介质层的界面处形成更多的电荷陷阱(Trap),从而影响制备形成的CNT-TFT的性能均匀性。
在该步骤中,将CNT薄膜层浸泡在酸性溶液中以进行处理。此时,以上所述杂质可以通过酸性溶液而去除,从而可以得到相对干净均匀的CNT薄膜层。即,如图3中所示的用于形成沟道的CNT薄膜层350。这样的CNT薄膜层350的对应电荷陷阱较少,因而性能更均匀。在该步骤中,源电极330和漏电极340被保护层所保护,不受酸性溶液影响。
具体地,酸性溶液可以选择为磷酸、硝酸和醋酸的混合溶液。在 溶液中,磷酸、硝酸和醋酸的质量百分比分别75%~85%、3%~7%、3%~7%,例如分别为80%、5%、5%,或者例如分别为79%、4%、4%。可以在常温下将CNT薄膜层浸于该酸性溶液中1分钟至2分钟,然后取出,并且用水清洗以去除酸性溶液残留。
进一步,步骤S160,去除源电极和漏电极上的保护层。具体地,可以将基片浸于PG去除溶液中以去除光刻胶材料的保护层,然后再用水清洗。
至此,如图3所示实施例的CNT-TFT制备方法完成。需要理解的是,通过以上制备方法过程,可以在同一基片上批量制备多个图3示例的CNT-TFT。
需要说明的是,在又一替代实施例中,如果源电极330和漏电极340采用某些金属材料(比如Pt,Au)来制作,而且这些金属材料不受后面步骤S150所使用的酸性溶液的腐蚀,那么,也可以不在这些电极上形成保护层而将其直接放到酸性溶液中进行处理。由此,省去步骤S140,当然也可以省去步骤S160。
图2为按照本公开的又一实施例的制备CNT-TFT的方法流程示意图。同样结合图2和图3对本公开实施例的CNT-TFT制备方法进行详细说明。
进一步,步骤S210,提供经过清洗处理的基片。该步骤的实施具体可以参照以上步骤S110中描述的过程。
进一步,步骤S220,通过CNT溶液在基片上形成CNT薄膜层。该步骤的实施具体可以参照以上步骤S120中描述的过程。
进一步,步骤S230,至少将用于形成沟道的CNT薄膜层浸于酸性溶液中,然后取出并用水清洗。该步骤的实施具体可以参照以上步骤S150中描述的过程。另外,在该实施例中,由于在酸性溶液处理时尚未形成源电极330和漏电极340,因此也不需要形成以上图1实施例的步骤S140中所述的保护层。基于此,工艺过程得到简化。
进一步,步骤S240,通过构图工艺在基片上形成源电极和漏电极。该步骤的实施可以参照以上步骤S130中类似的过程。
至此,同样可以制备得到如图3所示实施例的CNT-TFT。
需要说明的是,相比于传统CNT-TFT的CNT薄膜层,在本公开实施例的用于形成沟道的CNT薄膜层350中,化学物质杂质大大减少, CNT-TFT器件性能的均匀性得到良好改善。这是由于影响CNT-TFT器件性能的均匀性的化学物质杂质通过酸性溶液而处理去除。
图4示出了在未经过酸性溶液处理和经过酸性溶液处理的情况下分别得到的CNT-TFT的转移特性的对比示意图,具体地,图4(a)为在CNT薄膜层未经过酸性溶液处理的情况下得到的28个CNT-TFT的转移特性曲线,并且图4(b)为在CNT薄膜层经过酸性溶液处理的情况下得到的28个CNT-TFT的转移特性曲线。从图4(a)可以看到,转移特性曲线比较分散,这表明各个CNT-TFT器件之间的转移特性并不均匀。相反地,从图4(b)可以看到,28个CNT-TFT的转移特性曲线更趋于相似,这表明各个CNT-TFT器件之间的转移特性的均匀性得到明显改善。
将理解到,在以上图1和图2所示实施例中对CNT-TFT的CNT薄膜层进行酸性溶液处理的方法可以类推地应用到其他类型的CNT半导体器件的制备中,特别地通过溶液法制备的器件中。经过酸性溶液处理过的用于形成沟道的CNT层中的化学物质杂质被去除,尤其是用来形成导电通道的一个或多个碳纳米管的外壁的化学物质被去除,从而可以有效地改善半导体器件的性能均匀性。
以上例子主要说明了本公开各种实施例的CNT半导体器件的制备方法以及制备形成的CNT半导体器件。所述CNT半导体器件具体可以是晶体管、集成电路、显示基板、显示面板等半导体器件。尽管只对其中一些本公开的实施方式进行了描述,但是本领域普通技术人员应当了解,本公开可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本公开精神及范围的情况下,本公开可能涵盖各种的修改与替换。

Claims (15)

  1. 一种碳纳米管半导体器件的制备方法,包括:
    通过碳纳米管溶液形成碳纳米管层;以及
    采用酸性溶液对所述碳纳米管层进行处理。
  2. 如权利要求1所述的半导体器件的制备方法,其中,所述半导体器件为碳纳米管场效应晶体管或碳纳米管薄膜晶体管,并且所述碳纳米管层至少部分地用于形成所述碳纳米管场效应晶体管或碳纳米管薄膜晶体管的源电极和漏电极之间的半导体层。
  3. 如权利要求1所述的半导体器件的制备方法,还包括:在通过碳纳米管溶液形成碳纳米管层之前,采用有机溶剂对所述碳纳米管溶液进行分散处理。
  4. 如权利要求3所述的碳纳米管场效应晶体管的制备方法,其中,所述有机溶剂为甲苯、二甲苯、氯仿或邻二甲苯。
  5. 如权利要求2所述的半导体器件的制备方法,还包括:在采用酸性溶液对所述碳纳米管层进行处理之后,通过构图工艺形成所述源电极和漏电极。
  6. 如权利要求2所述的半导体器件的制备方法,还包括:在采用酸性溶液对所述碳纳米管层进行处理之前,通过构图工艺形成所述源电极和漏电极。
  7. 如权利要求6所述的半导体器件的制备方法,其中,通过构图工艺形成所述源电极和漏电极的步骤包括:
    通过构图工艺形成光刻胶层以覆盖欲形成所述源电极和漏电极的区域之外的区域;
    沉积金属薄膜层;以及
    去除所述光刻胶层,所述光刻胶层上的金属薄膜层被同时去除。
  8. 如权利要求6所述的半导体器件的制备方法,还包括:
    在通过构图工艺形成源电极和漏电极之后,通过构图工艺至少在所述源电极和漏电极上形成保护层,露出所述源电极和漏电极之间的半导体层;以及
    在采用酸性溶液对所述碳纳米管层进行处理的步骤之后,去 除所述保护层。
  9. 如权利要求6所述的半导体器件的制备方法,其中,通过构图工艺形成所述源电极和漏电极的步骤包括:
    沉积金属薄膜层;
    通过构图工艺在所述金属薄膜层之上形成光刻胶层来覆盖欲形成源电极和漏电极的区域;以及
    以所述光刻胶层为掩膜进行刻蚀,直至暴露所述碳纳米管层,并且所述光刻胶层保留;
    其中,所述光刻胶层在采用酸性溶液对所述碳纳米管层进行处理的步骤之后去除。
  10. 如权利要求6所述的半导体器件的制备方法,其中,所述源电极和漏电极采用防酸性溶液腐蚀的金属材料制成。
  11. 如权利要求1所述的半导体器件的制备方法,其中,采用酸性溶液对所述碳纳米管层进行处理的时间为1分钟至2分钟。
  12. 如权利要求1所述的半导体器件的制备方法,其中,所述碳纳米管层中的碳纳米管为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、或者为它们的组合;或者所述碳纳米管层中的碳纳米管为碳纳米管管束。
  13. 如权利要求1所述的半导体器件的制备方法,其中,所述酸性溶液为磷酸、硝酸和醋酸的混合溶液。
  14. 如权利要求13所述的半导体器件的制备方法,其中,在所述混合溶液中磷酸、硝酸和醋酸的质量百分比分别为75%~85%、3%~7%和3%~7%。
  15. 一种由如权利要求1至14中任一项所述的制备方法制备得到的碳纳米管半导体器件。
PCT/CN2016/098035 2015-11-02 2016-09-05 碳纳米管半导体器件及其制备方法 WO2017076121A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/512,299 US20170294583A1 (en) 2015-11-02 2016-09-05 Carbon nanotube semiconductor device and manufacturing method thereof
EP16843280.5A EP3373337B1 (en) 2015-11-02 2016-09-05 Method for producing a carbon nanotube semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510729479.7 2015-11-02
CN201510729479.7A CN105336792B (zh) 2015-11-02 2015-11-02 碳纳米管半导体器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2017076121A1 true WO2017076121A1 (zh) 2017-05-11

Family

ID=55287207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098035 WO2017076121A1 (zh) 2015-11-02 2016-09-05 碳纳米管半导体器件及其制备方法

Country Status (4)

Country Link
US (1) US20170294583A1 (zh)
EP (1) EP3373337B1 (zh)
CN (1) CN105336792B (zh)
WO (1) WO2017076121A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336792B (zh) * 2015-11-02 2019-03-01 京东方科技集团股份有限公司 碳纳米管半导体器件及其制备方法
CN105609638B (zh) 2016-03-07 2018-09-11 京东方科技集团股份有限公司 一种半导体层和tft的制备方法、tft、阵列基板
CN109427976B (zh) * 2017-08-31 2021-04-23 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板和显示装置
WO2019148170A2 (en) * 2018-01-29 2019-08-01 Massachusetts Institute Of Technology Back-gate field-effect transistors and methods for making the same
CN112585457A (zh) 2018-06-08 2021-03-30 麻省理工学院 用于气体感测的系统、装置和方法
CN113544688B (zh) * 2018-09-10 2022-08-26 麻省理工学院 用于设计集成电路的系统和方法
CN112840448A (zh) 2018-09-24 2021-05-25 麻省理工学院 通过工程化原子层沉积对碳纳米管的可调掺杂
WO2020113205A1 (en) 2018-11-30 2020-06-04 Massachusetts Institute Of Technology Rinse - removal of incubated nanotubes through selective exfoliation
CN116529200A (zh) * 2020-10-06 2023-08-01 纳米碳股份有限公司 碳纳米管酸纯化

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091096B2 (en) * 2004-07-29 2006-08-15 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method of fabricating carbon nanotube field-effect transistors through controlled electrochemical modification
CN101520430A (zh) * 2009-02-24 2009-09-02 上海大学 基于碳纳米管场效应晶体管的生物检测器件的制造方法
CN101540285A (zh) * 2009-04-16 2009-09-23 上海交通大学 碳纳米管薄膜场效应晶体管的制备方法
CN102664269A (zh) * 2012-05-21 2012-09-12 洛阳月星新能源科技有限公司 一种锂离子电池负极材料的制备方法
CN105336792A (zh) * 2015-11-02 2016-02-17 京东方科技集团股份有限公司 碳纳米管半导体器件及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168683B2 (ja) * 2004-09-17 2013-03-21 独立行政法人産業技術総合研究所 ナノカプセル型構造体
US20070246784A1 (en) * 2004-10-13 2007-10-25 Samsung Electronics Co., Ltd. Unipolar nanotube transistor using a carrier-trapping material
CN101165937A (zh) * 2006-10-18 2008-04-23 清华大学 有机复合物p-n结及其制备方法以及应用该p-n结的有机复合物二极管
KR101386194B1 (ko) * 2007-06-22 2014-04-18 삼성디스플레이 주식회사 표시패널 및 이의 제조방법
US7858454B2 (en) * 2007-07-31 2010-12-28 Rf Nano Corporation Self-aligned T-gate carbon nanotube field effect transistor devices and method for forming the same
US7875878B2 (en) * 2007-11-29 2011-01-25 Xerox Corporation Thin film transistors
US20150202662A1 (en) * 2011-10-11 2015-07-23 ANEEVE LLC dba ANEEVE NANOTECHNOLOGIES, LLC Process for cleaning carbon nanotubes and other nanostructured films
US9177688B2 (en) * 2011-11-22 2015-11-03 International Business Machines Corporation Carbon nanotube-graphene hybrid transparent conductor and field effect transistor
WO2013126840A1 (en) * 2012-02-22 2013-08-29 Seldon Technologies, Inc. Electrodes and applications
US8828762B2 (en) * 2012-10-18 2014-09-09 International Business Machines Corporation Carbon nanostructure device fabrication utilizing protect layers
US8609481B1 (en) * 2012-12-05 2013-12-17 International Business Machines Corporation Gate-all-around carbon nanotube transistor with selectively doped spacers
WO2014117104A1 (en) * 2013-01-28 2014-07-31 Aneeve Llc All printed and transparent cnt tft
US9379166B2 (en) * 2014-11-04 2016-06-28 Atom Nanoelectronics, Inc. Active matrix light emitting diodes display module with carbon nanotubes control circuits and methods of fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091096B2 (en) * 2004-07-29 2006-08-15 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method of fabricating carbon nanotube field-effect transistors through controlled electrochemical modification
CN101520430A (zh) * 2009-02-24 2009-09-02 上海大学 基于碳纳米管场效应晶体管的生物检测器件的制造方法
CN101540285A (zh) * 2009-04-16 2009-09-23 上海交通大学 碳纳米管薄膜场效应晶体管的制备方法
CN102664269A (zh) * 2012-05-21 2012-09-12 洛阳月星新能源科技有限公司 一种锂离子电池负极材料的制备方法
CN105336792A (zh) * 2015-11-02 2016-02-17 京东方科技集团股份有限公司 碳纳米管半导体器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373337A4 *

Also Published As

Publication number Publication date
EP3373337B1 (en) 2021-03-03
CN105336792B (zh) 2019-03-01
EP3373337A4 (en) 2019-07-31
EP3373337A1 (en) 2018-09-12
US20170294583A1 (en) 2017-10-12
CN105336792A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2017076121A1 (zh) 碳纳米管半导体器件及其制备方法
US8772141B2 (en) Doping carbon nanotubes and graphene for improving electronic mobility
CN108933179B (zh) 一种薄膜晶体管及其制作方法
CN104465400B (zh) 无残留光学光刻胶石墨烯fet的制备及原位表征方法
CN107275218B (zh) 一种避免光刻胶沾污的二维材料器件制造方法
US20150202662A1 (en) Process for cleaning carbon nanotubes and other nanostructured films
CN112259609B (zh) 通过腐蚀自对准工艺实现的碳纳米管晶体管器件制造方法
US20190334091A1 (en) Carbon nanotube array, material, electronic device, process for producing carbon nanotube array, and process for producing field effect transistor
Kim et al. Multidipping Technique for Fabrication Time Reduction and Performance Improvement of Solution‐Processed Single‐Walled Carbon Nanotube Thin‐Film Transistors
WO2017152500A1 (zh) 一种半导体层和tft的制备方法、tft、阵列基板
WO2018209751A1 (zh) Tft基板的制作方法
CN107275219A (zh) 一种石墨烯器件的制造方法
CN109637933B (zh) 薄膜晶体管及其制作方法
CN102969234B (zh) 一种金属栅电极的制造方法
Park et al. Simple photolithography process for a graphene-based device with edge contact
US8227179B2 (en) Manufacturing cross-structures of nanostructures
CN105789039B (zh) 减小顶栅石墨烯场效应晶体管欧姆接触的方法
US8569171B2 (en) Mask-based silicidation for FEOL defectivity reduction and yield boost
JP4178227B2 (ja) 基板処理方法及び半導体装置の製造方法
US20210376271A1 (en) Thin film transistor, manufacturing method thereof, electronic device
Byun et al. 200-mm wafer scale integration of high performance polycrystalline MoS2 thin film transistors
KR20220049728A (ko) Mibk를 이용한 그래핀 전사용 대면적 pmma 제거 방법 및 전계 효과 트랜지스터 제조 방법
JP2008053272A (ja) 薄膜素子の製造方法
KR101666080B1 (ko) 탄소나노튜브 센서의 제조방법 및 탄소나노튜브 센서
CN111696856A (zh) 一种全共价键石墨烯场效应晶体管及其构筑方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016843280

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016843280

Country of ref document: EP

Ref document number: 15512299

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE