CN109427976B - 薄膜晶体管及其制备方法、阵列基板和显示装置 - Google Patents

薄膜晶体管及其制备方法、阵列基板和显示装置 Download PDF

Info

Publication number
CN109427976B
CN109427976B CN201710774682.5A CN201710774682A CN109427976B CN 109427976 B CN109427976 B CN 109427976B CN 201710774682 A CN201710774682 A CN 201710774682A CN 109427976 B CN109427976 B CN 109427976B
Authority
CN
China
Prior art keywords
thin film
film transistor
active layer
length
threshold voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710774682.5A
Other languages
English (en)
Other versions
CN109427976A (zh
Inventor
孟虎
梁学磊
夏继业
田博元
董国栋
黄奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
BOE Technology Group Co Ltd
Original Assignee
Peking University
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, BOE Technology Group Co Ltd filed Critical Peking University
Priority to CN201710774682.5A priority Critical patent/CN109427976B/zh
Priority to US16/341,012 priority patent/US10777588B2/en
Priority to PCT/CN2018/100236 priority patent/WO2019042118A1/en
Publication of CN109427976A publication Critical patent/CN109427976A/zh
Application granted granted Critical
Publication of CN109427976B publication Critical patent/CN109427976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/42Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
    • C01F7/422Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation with a gaseous oxidator at a high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于显示技术领域,具体涉及薄膜晶体管及其制备方法、阵列基板和显示装置。该薄膜晶体管的制备方法,包括形成源极、漏极和有源层的步骤,其中,形成所述有源层的步骤包括:根据所述薄膜晶体管预设的阈值电压,设定有源层位于所述源极与所述漏极之间的沟槽长度;根据所述沟槽长度形成所述有源层。该薄膜晶体管的制备方法,通过改变有源层位于源极和漏极之间的沟槽长度实现了对薄膜晶体管的阈值电压的调控。该制备方法避免了在薄膜晶体管制备工艺中引入多余的步骤,不增加制备过程的工艺难度;而且对阈值电压的调控范围较大,具有有利于在实际电路应用中把薄膜晶体管的阈值电压调控在所需范围等优点。

Description

薄膜晶体管及其制备方法、阵列基板和显示装置
技术领域
本发明属于显示技术领域,具体涉及薄膜晶体管及其制备方法、阵列基板和显示装置。
背景技术
近年来,薄膜晶体管(Thin Film Transistor,简称TFT)以其优异的电学和机械性能受到越来越多的关注。碳纳米管(Carbon NanoTube,简称CNT)薄膜具有柔性和透明等优点,作为薄膜晶体管的沟槽材料,形成的薄膜晶体管具有高迁移率、高开关比等优点,在显示驱动方面有很大的应用前景。
通常情况下,由于碳纳米管材料及制备工艺过程中的不可控因素,通常制备得到的薄膜晶体管的阈值电压(Threshold Voltage)可控性较差。而在实际的应用过程中,则需要将薄膜晶体管的阈值电压调控在一定范围内,使薄膜晶体管处于合适的工作状态。
目前调控碳纳米管薄膜晶体管阈值电压的方法,主要包括:改变栅电极的功函数、对沟槽进行掺杂、对栅氧化层厚度及界面电荷的调控等方法。然而,仅靠改变栅电极的功函数对阈值电压调控能力有限,通常小于1V;对沟槽掺杂或者调控界面电荷的方法,通常工艺过程非常复杂,可控性较差,难以得到重复可靠的结果。
可见,发展新的调控CNT-TFT阈值电压的方法来获得需求的薄膜晶体管,成为目前亟待解决的技术问题。
发明内容
本发明所要解决的技术问题是针对现有技术中上述不足,提供一种薄膜晶体管及其制备方法、阵列基板和显示装置,通过改变薄膜晶体管的有源层位于源极和漏极之间的沟槽长度来实现对薄膜晶体管阈值电压的调控。
解决本发明技术问题所采用的技术方案是该薄膜晶体管的制备方法,包括形成源极、漏极和有源层的步骤,其中,形成所述有源层的步骤包括:
根据所述薄膜晶体管预设的阈值电压,设定有源层位于所述源极与所述漏极之间的沟槽长度;
根据所述沟槽长度形成所述有源层。
优选的是,根据所述薄膜晶体管预设的阈值电压,设定有源层位于所述源极与所述漏极之间的沟槽长度,包括步骤:
获取多个具有不同沟槽长度的薄膜晶体管的阈值电压;
将具有与预设条件匹配的阈值电压的所述薄膜晶体管的沟槽长度,设定为所述薄膜晶体管的沟槽长度。
优选的是,获取不同沟槽长度的薄膜晶体管的阈值电压包括:测量具有不同沟槽长度的薄膜晶体管的电学性能,根据所述电学性能获取所述阈值电压。
优选的是,所述方法还包括:固定所述薄膜晶体管的所述源极和所述漏极之间的电压,调整沟槽宽度,使得通过所述薄膜晶体管的电流满足预设条件,从而确定所述薄膜晶体管的所述源极和所述漏极之间的沟槽宽度。
优选的是,具有相同沟槽宽长比的所述薄膜晶体管,随着阈值电压的增加,使得所述沟槽长度减小。
优选的是,根据所述沟槽长度形成所述有源层的步骤包括:
形成碳纳米管薄膜或半导体纳米线薄膜;
通过构图工艺,根据所述薄膜晶体管预设的阈值电压,将所述碳纳米管薄膜或半导体纳米线薄膜形成包括设定沟槽长度的有源层的图形。
优选的是,形成所述碳纳米管薄膜的碳纳米管包括单壁碳纳米管、双壁碳纳米管或者碳纳米管管束中的至少一种或多种。
优选的是,通过沉积、提拉、喷涂、刮涂或印刷方式,形成所述碳纳米管薄膜或所述半导体纳米线薄膜。
优选的是,通过光学曝光工艺和反应离子刻蚀工艺,形成所述有源层的图形。
优选的是,所述方法还包括步骤:在形成碳纳米管薄膜或半导体纳米线薄膜之前,采用湿式化学清洗法对衬底进行处理。
优选的是,所述方法还包括步骤:在形成碳纳米管薄膜或半导体纳米线薄膜之后,采用有机溶剂或去离子水对衬底进行冲洗,并进行烘干。
优选的是,还包括步骤:
采用金属氧化物,对位于所述源极和所述漏极之间的所述有源层的沟槽进行掺杂钝化,以提高所述薄膜晶体管性能的载流子迁移率和输出电流。
优选的是,掺杂钝化的步骤为:利用电子束镀膜方式在所述薄膜晶体管的上方,沉积第一厚度的金属钇材料,在含氧空气中或采用紫外线氧化技术,将衬底加热到第一温度,并持续第一时间;其中,第一厚度范围为1-4nm,第一温度范围为200-300度,第一时间范围为20-40min。
优选的是,还包括步骤:
采用金属氧化物,对包括碳纳米管形成的所述有源层的薄膜晶体管进行隔离钝化,以隔离所述薄膜晶体管与外界水氧。
优选的是,隔离钝化的步骤为:利用原子层沉积方式在所述薄膜晶体管的上方,沉积第二厚度的金属铝材料,将衬底在第二温度下持续第二时间生长氧化铝,其中,第二厚度范围为50-100nm,第二温度范围为150-350度,第一时间范围为2-3h。
优选的是,所述沟槽的宽长比范围为1:1-1:20。
一种薄膜晶体管,所述薄膜晶体管采用上述的制备方法制备形成。
一种阵列基板,包括多个薄膜晶体管,所述薄膜晶体管为上述的薄膜晶体管。
优选的是,所述阵列基板包括显示区和非显示区,所述显示区和所述非显示区的所述薄膜晶体管具有不同的尺寸、相同的沟槽宽长比。
一种显示装置,包括上述的阵列基板。
本发明的有益效果是:该薄膜晶体管的制备方法及其相应的薄膜晶体管,采用碳纳米管薄膜作为薄膜晶体管的有源层,通过改变有源层位于源极和漏极之间的沟槽长度实现了对薄膜晶体管的阈值电压的调控。该制备方法避免了在薄膜晶体管制备工艺中引入多余的步骤,不增加制备过程的工艺难度;而且对阈值电压的调控范围较大,具有有利于在实际电路应用中把薄膜晶体管的阈值电压调控在所需范围等优点。
附图说明
图1为本发明实施例1中的制备方法形成有源层的流程图;
图2为本发明实施例1中的制备方法制备得到的薄膜晶体管的SEM图片;
图3为本发明实施例1中的制备方法制备得到的不同沟槽几何尺寸的薄膜晶体管的SEM图片;
图4为本发明实施例1中不同沟槽几何尺寸的薄膜晶体管的转移特性曲线和阈值电压图;
附图标识中:
1-源极;2-漏极;3-有源层;30-沟槽。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明薄膜晶体管及其制备方法、阵列基板和显示装置作进一步详细描述。
本发明中,光刻工艺,是指包括曝光、显影、刻蚀等工艺过程的利用光刻胶、掩模板、曝光机等进行刻蚀形成图形的工艺;构图工艺,包括光刻工艺,还包括打印、喷墨等其他用于形成预定图形的工艺。
实施例1:
本实施例提供一种薄膜晶体管的制备方法以及由该制备方法制备得到的薄膜晶体管,通过改变薄膜晶体管的沟槽长度实现对薄膜晶体管阈值电压的调控。
本实施例的薄膜晶体管主要针对碳纳米管薄膜晶体管或半导体纳米线薄膜晶体管。该薄膜晶体管的制备方法,包括形成栅极、源极、漏极和有源层的步骤,如图1所示,形成有源层的步骤包括:
步骤S1):根据薄膜晶体管预设的阈值电压,设定有源层位于源极与漏极之间的沟槽长度。
预设的阈值电压即为能满足应用条件而设定的阈值电压,该薄膜晶体管的制备方法通过改变薄膜晶体管的沟槽长度来调控薄膜晶体管的阈值电压,以满足预设的阈值电压。可以通过先验数据获得不同系列的薄膜晶体管的阈值电压,因此首先设计具有不同几何尺寸沟槽的碳纳米管薄膜晶体管,几何尺寸包括长度和宽度。
在该步骤中,根据薄膜晶体管预设的阈值电压,设定有源层位于源极与漏极之间的沟槽长度,包括步骤:
步骤S11):获取多个具有不同沟槽长度的薄膜晶体管的阈值电压。其中,获取不同沟槽长度的薄膜晶体管的阈值电压包括:测量具有不同沟槽长度的薄膜晶体管的电学性能,电学性能可以为转移特性曲线或输出特性曲线中的电性参数,根据电学性能获取阈值电压。
步骤S12):将具有与预设条件匹配的阈值电压的薄膜晶体管的沟槽长度,设定为薄膜晶体管的沟槽长度。根据预设条件,将与其匹配的电学性能的薄膜晶体管对应的沟槽长度,设定为薄膜晶体管的沟槽长度。
进一步的,步骤S13):确定沟槽长度的基础上,根据在固定的源漏电压下沟槽越宽电流越大,调整沟槽的宽度,使得通过薄膜晶体管的电流满足预设条件,从而确定薄膜晶体管的源极和漏极之间的几何尺寸。其中,具有相同沟槽宽长比的薄膜晶体管,随着阈值电压的增加,使得沟槽长度减小。其中,具有相同沟槽宽长比的薄膜晶体管,随着阈值电压的增加,使得沟槽长度减小。
步骤S2):根据沟槽长度形成有源层。
与通常的薄膜晶体管相同,有源层至少与源极和漏极分别在正投影方向上重叠。有源层位于源极与漏极之间的沟槽,在外加电场的作用下形成导电的沟道,在满足阈值电压的条件下薄膜晶体管导通。
该步骤实现碳纳米管薄膜晶体管的有源层的制备,在步骤S1)获得的位于源极与漏极之间的沟槽长度和沟槽宽度的基础上,使得有源层至少与源极和漏极分别在正投影方向上重叠,以保证薄膜晶体管有效导通。
其中,根据沟槽长度形成有源层的步骤包括:
步骤S21):形成碳纳米管薄膜。
在该步骤中,利用碳纳米管溶液,通过沉积、提拉、喷涂、刮涂或印刷等方式形成碳纳米管薄膜,形成碳纳米管薄膜的碳纳米管包括单壁碳纳米管、双壁碳纳米管或者碳纳米管管束中的至少一种或多种。优选的是,在沉积方式中,可以采用有机溶剂或氯磺酸分散碳纳米管,用于分散碳纳米管的有机溶剂为甲苯、二甲苯、氯仿或邻二甲苯。
步骤S22):通过构图工艺,根据薄膜晶体管预设的阈值电压,将碳纳米管薄膜形成包括设定沟槽长度的有源层的图形。
在该步骤中,通过光学曝光工艺和反应离子刻蚀工艺,形成有源层的图形。
该薄膜晶体管的制备方法中,采用碳纳米管薄膜形成有源层,通过改变薄膜晶体管的沟槽长度实现了对薄膜晶体管的阈值电压的调控。
上述为本实施例的薄膜晶体管的制备方法中对于如何形成有源层的步骤或工艺说明,作为薄膜晶体管的整体,以下将以形成底栅型薄膜晶体管的制备作为示例进行完整说明。
首先,形成栅极和栅绝缘层。
在形成碳纳米管薄膜之前,采用湿式化学清洗法对衬底进行处理。针对底栅型结构,预先在衬底上形成Si层或Al层获得栅极,形成SiO2层或Al2O3层获得栅绝缘层,并对衬底进行预处理,保证较好的有源层的构图效果。
接着,如前面步骤S2)示例,在栅绝缘层上形成有源层。一种具体方式为:
在具有Si/SiO2或Al/Al2O3的衬底上,沉积有机溶剂分散的碳纳米管薄膜;
利用通常的光学曝光和反应离子刻蚀(Reactive Ion Etching,简称RIE)技术,制备不同沟槽宽长的碳纳米管薄膜的有源层。
优选的是,在形成碳纳米管薄膜之后,采用邻二甲苯或去离子水对衬底进行冲洗,并进行烘干,保证较好的有源层的构图效果。用于冲洗的有机溶剂为甲苯、二甲苯、氯仿或邻二甲苯。
即,将利用湿式化学清洗法(RCA clean)处理后的Si/SiO2或Al/Al2O3衬底浸泡到分散有碳纳米管的有机溶液中,经过一段时间(例如12-24h)后取出衬底,用邻二甲苯冲洗,烘干。利用通常的光学曝光和反应离子刻蚀技术,制备预先设计好沟槽宽长的有源层。
然后,形成源极和漏极。
在有源层的上方形成源极和漏极,有源层至少与源极和漏极分别在正投影方向上重叠。
最后,进行钝化处理,包括掺杂钝化和隔离钝化。
先进行掺杂钝化:采用氧化钇,对位于源极和漏极之间的有源层的沟槽进行掺杂钝化,以提高薄膜晶体管性能的载流子迁移率和输出电流,提高薄膜晶体管性能的稳定性。具体的掺杂钝化的步骤为:利用电子束镀膜方式在薄膜晶体管的上方,沉积第一厚度的金属钇材料,在含氧空气中或采用紫外线氧化技术,将衬底加热到第一温度,并持续第一时间;其中,第一厚度范围为1-4nm,第一温度范围为200-300度,第一时间范围为20-40min。
再进行隔离钝化:采用氧化铝,对包括碳纳米管形成的有源层的薄膜晶体管进行隔离钝化,以隔离薄膜晶体管与外界水氧。具体的隔离钝化的步骤为:利用原子层沉积方式在薄膜晶体管的上方,沉积第二厚度的氧化铝材料,在原子层沉积设备中将衬底加热到第二温度,并在第二温度下持续第二时间生长氧化铝,其中,第二厚度范围为50-100nm,第二温度范围为150-350度,第二时间范围为2-3h。通过隔离钝化对水氧进行隔离,能保证薄膜晶体管良好的性能。
以上仅以底栅型薄膜晶体管结构的制备方法作为示例进行了详细的说明,根据其中制备有源层的关键步骤,同样可以制备得到顶栅型薄膜晶体管结构,这里不再详述。
本实施例的薄膜晶体管中,优选沟槽长度范围为几微米-几百微米;以及,沟槽的宽长比范围为1:1-1:20。
利用本实施例薄膜晶体管的制备方法制备得到薄膜晶体管的SEM图片(扫描电子显微镜图)如图2所示,在源极1和漏极2之间的有源层3形成沟槽30,在薄膜晶体管导通时形成沟槽。其中竖直方向的尺寸为宽度W、水平方向的尺寸为长度L。
利用本实施例薄膜晶体管的制备方法制备得到不同沟槽长度的薄膜晶体管,典型的不同尺寸沟槽几何尺寸的薄膜晶体管的SEM图如图3所示。
如图4(a)所示为宽长比为2的薄膜晶体管的典型转移特性曲线,测试条件为源漏电压VD=-1V,横坐标为栅源电压VG,纵坐标为输出电流I。根据碳纳米管薄膜晶体管的转移特性曲线可知,随着沟槽长度的增加,薄膜晶体管的转移特性曲线明显向左移动,即薄膜晶体管的阈值电压受沟槽长度影响。图4(b)给出了沟槽宽长比分别为2、5、10的更多薄膜晶体管的阈值电压VTH与沟槽长度LC的统计结果。可以看到,对于相同宽长比W/L的薄膜晶体管,阈值电压VTH随沟槽长度LC有明显的变化,随着沟槽长度LC增加,薄膜晶体管的阈值电压VTH减小。而对于沟槽长度LC相同的薄膜晶体管,其阈值电压VTH与薄膜晶体管的沟槽宽度没有明显的依赖关系,基本保持不变。由于所有的薄膜晶体管都是一次性制备在同一衬底上,考虑到碳纳米管薄膜的密度在整个衬底上都是非常均匀性的,因此图3中薄膜晶体管的阈值电压VTH的差异必然来自源极与漏极之间碳纳米管薄膜几何尺寸变化的影响。薄膜晶体管的阈值电压VTH与沟槽长度LC之间存在明显的标度关系,随着薄膜晶体管的沟槽长度LC增加,阈值电压VTH逐渐减小。
理论上来说,可以根据碳纳米管的长度(即碳纳米管的一维长度)以及碳纳米管薄膜的密度来计算出不同沟槽长度的阈值电压,但是实际的碳纳米管薄膜制备过程中会受到具体工艺过程的影响,从而使得实际的阈值偏离理论值。采用本实施例的薄膜晶体管的制备方法,只要工艺固定,这个偏离应该是整体固定的偏离,因此可以先实验得到生产工艺条件下不同沟槽长度的实际阈值,从而确定薄膜晶体管的沟槽的几何结构,再根据需求制备得到符合应用需求的薄膜晶体管。
另外,相比现有技术中采用非晶硅或氧化物形成有源层的薄膜晶体管,其中的阈值调节通常需要靠掺杂。而碳纳米管薄膜晶体管的阈值调节除了利用通常的掺杂方法之外,可以通过本实施例示例的沟槽长度来调节(原因在于电子在碳纳米管薄膜中的输运遵守渗流输运的机制,而非通常薄膜晶体管中的扩散输运机制)。
本实施例中的薄膜晶体管,其中的有源层是基于一维材料的薄膜,即有源层不是完整连续的体材料,因此本实施例中的薄膜晶体管的有源层与通常半导体材料形成的有源层不同,其中的沟槽长度(几微米到几百微米)远大于通常的半导体材料形成有源层的沟槽长度,通过调节碳纳米管的薄膜晶体管的沟槽长度来调节阈值电压。
除了碳纳米管材料外,本实施例的薄膜晶体管的制备方法也适用于调控半导体纳米线薄膜为有源层的薄膜晶体管的阈值电压,制备方法与上述碳纳米管薄膜为有源层的薄膜晶体管的制备方法相同,这里不再详述。
本实施例提供了一种薄膜晶体管的制备方法及其相应的薄膜晶体管,其采用碳纳米管薄膜作为薄膜晶体管的有源层,通过改变有源层位于源极和漏极之间的沟槽长度实现了对薄膜晶体管的阈值电压的调控。该制备方法避免了在薄膜晶体管制备工艺中引入多余的步骤,不增加制备过程的工艺难度;而且对阈值电压的调控范围较大,具有有利于在实际电路应用中把薄膜晶体管的阈值电压调控在所需范围等优点。
实施例2:
本实施例提供一种阵列基板,该阵列基板包括多个薄膜晶体管,其中的薄膜晶体管为采用实施例1中的薄膜晶体管制备方法得到的薄膜晶体管。
阵列基板包括显示区和非显示区,根据应用需要,显示区和非显示区的薄膜晶体管可以具有不同的尺寸。根据不同区域的大小,可以灵活设置不同区域内薄膜晶体管的尺寸,保证整个阵列基板满足不同区域内晶体管阈值电压的应用需求。
实施例3:
本实施例提供一种显示装置,该显示装置包括实施例1-实施例4中任一的阵列基板。
该显示装置可以为:台式电脑、平板电脑、笔记本电脑、手机、PDA、GPS、车载显示、投影显示、摄像机、数码相机、电子手表、计算器、电子仪器、仪表、液晶面板、电子纸、电视机、显示器、数码相框、导航仪等任何具有显示功能的产品或部件,可应用于公共显示和虚幻显示等多个领域。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (19)

1.一种薄膜晶体管的制备方法,包括形成源极、漏极和有源层的步骤,其特征在于,形成所述有源层的步骤包括:
根据所述薄膜晶体管预设的阈值电压,设定有源层位于所述源极与所述漏极之间的沟槽长度;
根据所述沟槽长度形成所述有源层;
根据所述沟槽长度形成所述有源层的步骤包括:
形成碳纳米管薄膜或半导体纳米线薄膜;
通过构图工艺,根据所述薄膜晶体管预设的阈值电压,将所述碳纳米管薄膜或半导体纳米线薄膜形成包括设定沟槽长度的有源层的图形。
2.根据权利要求1所述的制备方法,其特征在于,根据所述薄膜晶体管预设的阈值电压,设定有源层位于所述源极与所述漏极之间的沟槽长度,包括步骤:
获取多个具有不同沟槽长度的薄膜晶体管的阈值电压;
将具有与预设条件匹配的阈值电压的所述薄膜晶体管的沟槽长度,设定为所述薄膜晶体管的沟槽长度。
3.根据权利要求2所述的制备方法,其特征在于,获取不同沟槽长度的薄膜晶体管的阈值电压包括:
测量具有不同沟槽长度的薄膜晶体管的电学性能,根据所述电学性能获取所述阈值电压。
4.根据权利要求3所述的制备方法,其特征在于,所述方法还包括:固定所述薄膜晶体管的所述源极和所述漏极之间的电压,调整沟槽宽度,使得通过所述薄膜晶体管的电流满足预设条件,从而确定所述薄膜晶体管的所述源极和所述漏极之间的沟槽宽度。
5.根据权利要求1所述的制备方法,其特征在于,具有相同沟槽宽长比的所述薄膜晶体管,随着阈值电压的增加,使得所述沟槽长度减小。
6.根据权利要求1所述的制备方法,其特征在于,形成所述碳纳米管薄膜的碳纳米管包括单壁碳纳米管、双壁碳纳米管或者碳纳米管管束中的至少一种或多种。
7.根据权利要求1所述的制备方法,其特征在于,通过沉积、提拉、喷涂、刮涂或印刷方式,形成所述碳纳米管薄膜或所述半导体纳米线薄膜。
8.根据权利要求1所述的制备方法,其特征在于,通过光学曝光工艺和反应离子刻蚀工艺,形成所述有源层的图形。
9.根据权利要求1所述的制备方法,其特征在于,所述方法还包括步骤:在形成碳纳米管薄膜或半导体纳米线薄膜之前,采用湿式化学清洗法对衬底进行处理。
10.根据权利要求1所述的制备方法,其特征在于,所述方法还包括步骤:在形成碳纳米管薄膜或半导体纳米线薄膜之后,采用有机溶剂或去离子水对衬底进行冲洗,并进行烘干。
11.根据权利要求6-10任一项所述的制备方法,其特征在于,还包括步骤:
采用金属氧化物,对位于所述源极和所述漏极之间的所述有源层的沟槽进行掺杂钝化。
12.根据权利要求11所述的制备方法,其特征在于,掺杂钝化的步骤为:利用电子束镀膜方式在所述薄膜晶体管的上方,沉积第一厚度的金属钇材料,在含氧空气中或采用紫外线氧化技术,将衬底加热到第一温度,并持续第一时间;其中,第一厚度范围为1-4nm,第一温度范围为200-300度,第一时间范围为20-40min。
13.根据权利要求6-10任一项所述的制备方法,其特征在于,还包括步骤:
采用金属氧化物,对包括碳纳米管形成的所述有源层的薄膜晶体管进行隔离钝化。
14.根据权利要求13所述的制备方法,其特征在于,隔离钝化的步骤为:利用原子层沉积方式在所述薄膜晶体管的上方,沉积第二厚度的金属铝材料,将衬底在第二温度下持续第二时间生长氧化铝,其中,第二厚度范围为50-100nm,第二温度范围为150-350度,第一时间范围为2-3h。
15.根据权利要求1-10任一项所述的制备方法,其特征在于,所述沟槽的宽长比范围为1:1-1:20。
16.一种薄膜晶体管,其特征在于,所述薄膜晶体管采用如权利要求1-15任意一项所述的制备方法制备形成。
17.一种阵列基板,包括多个薄膜晶体管,其特征在于,所述薄膜晶体管为权利要求16所述的薄膜晶体管。
18.根据权利要求17所述的阵列基板,其特征在于,所述阵列基板包括显示区和非显示区,所述显示区和所述非显示区的所述薄膜晶体管具有不同的尺寸。
19.一种显示装置,其特征在于,包括权利要求17-18任一项所述的阵列基板。
CN201710774682.5A 2017-08-31 2017-08-31 薄膜晶体管及其制备方法、阵列基板和显示装置 Active CN109427976B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710774682.5A CN109427976B (zh) 2017-08-31 2017-08-31 薄膜晶体管及其制备方法、阵列基板和显示装置
US16/341,012 US10777588B2 (en) 2017-08-31 2018-08-13 Method of fabricating thin film transistor, thin film transistor, array substrate, and display apparatus
PCT/CN2018/100236 WO2019042118A1 (en) 2017-08-31 2018-08-13 METHOD FOR MANUFACTURING THIN FILM TRANSISTOR, THIN FILM TRANSISTOR, NETWORK SUBSTRATE, AND DISPLAY APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710774682.5A CN109427976B (zh) 2017-08-31 2017-08-31 薄膜晶体管及其制备方法、阵列基板和显示装置

Publications (2)

Publication Number Publication Date
CN109427976A CN109427976A (zh) 2019-03-05
CN109427976B true CN109427976B (zh) 2021-04-23

Family

ID=65504809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710774682.5A Active CN109427976B (zh) 2017-08-31 2017-08-31 薄膜晶体管及其制备方法、阵列基板和显示装置

Country Status (3)

Country Link
US (1) US10777588B2 (zh)
CN (1) CN109427976B (zh)
WO (1) WO2019042118A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473399B (zh) * 2018-11-07 2020-12-01 京东方科技集团股份有限公司 显示基板制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135336A1 (en) * 2005-06-16 2006-12-21 Qunano Ab Semiconductor nanowire transistor
JP2007158119A (ja) * 2005-12-06 2007-06-21 Canon Inc ナノワイヤを有する電気素子およびその製造方法並びに電気素子集合体
US8422273B2 (en) 2009-05-21 2013-04-16 International Business Machines Corporation Nanowire mesh FET with multiple threshold voltages
US20110248243A1 (en) * 2009-11-30 2011-10-13 Omega Optics, Inc. Carbon nanotube field effect transistor for printed flexible/rigid electronics
US9412442B2 (en) * 2012-04-27 2016-08-09 The Board Of Trustees Of The University Of Illinois Methods for forming a nanowire and apparatus thereof
US9859513B2 (en) * 2014-11-25 2018-01-02 University Of Kentucky Research Foundation Integrated multi-terminal devices consisting of carbon nanotube, few-layer graphene nanogaps and few-layer graphene nanoribbons having crystallographically controlled interfaces
TW202316486A (zh) * 2015-03-30 2023-04-16 日商半導體能源研究所股份有限公司 半導體裝置的製造方法
CN106601604A (zh) 2015-10-15 2017-04-26 中国科学院微电子研究所 半导体器件制造方法
CN105336792B (zh) 2015-11-02 2019-03-01 京东方科技集团股份有限公司 碳纳米管半导体器件及其制备方法
US10541374B2 (en) 2016-01-04 2020-01-21 Carbon Nanotube Technologies, Llc Electronically pure single chirality semiconducting single-walled carbon nanotube for large scale electronic devices
KR102416133B1 (ko) * 2016-01-11 2022-07-01 삼성전자주식회사 반도체 장치 및 그 제조 방법
CN105679676A (zh) * 2016-03-01 2016-06-15 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板
CN105655406A (zh) 2016-03-01 2016-06-08 京东方科技集团股份有限公司 碳纳米管薄膜晶体管及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《基于多沟道长度的多阈值电压低功耗技术的研究》;牛丽;《中国优秀硕士学位论文全文数据库 信息科技辑 2014年第9期》;20140915;论文第34-39页 *

Also Published As

Publication number Publication date
WO2019042118A1 (en) 2019-03-07
US10777588B2 (en) 2020-09-15
CN109427976A (zh) 2019-03-05
US20200185422A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US7468304B2 (en) Method of fabricating oxide semiconductor device
CN102007585B (zh) 薄膜晶体管及其制造方法
KR101078358B1 (ko) 비정질 실리콘 박막 트랜지스터 및 이를 제조하는 방법
US6103600A (en) Method for forming ultrafine particles and/or ultrafine wire, and semiconductor device using ultrafine particles and/or ultrafine wire formed by the forming method
US20070257289A1 (en) Liquid crystal display device and fabricating method thereof
WO2006038504A1 (ja) 縦型電界効果トランジスタおよびその製造方法
CN105793996A (zh) 自对准金属氧化物tft
CN103762174A (zh) 一种薄膜晶体管的制备方法
US10347660B2 (en) Array substrate and manufacturing method thereof
KR20100029038A (ko) 박막 트랜지스터의 제작 방법 및 표시 장치의 제작 방법
Yeom et al. 60‐3: Distinguished Paper: Oxide Vertical TFTs for the Application to the Ultra High Resolution Display
US20230352496A1 (en) Array substrate and display panel
US8110829B2 (en) Array substrate of liquid crystal display and method for fabricating the same
CN109696781A (zh) 阵列基板、阵列基板的制作方法和显示装置
Choi et al. Implementation of In–Ga–Zn–O thin-film transistors with vertical channel structures designed with atomic-layer deposition and silicon spacer steps
KR102174384B1 (ko) 플라즈마 처리를 이용한 용액 공정 기반의 다층 채널 구조 izo 산화물 트랜지스터 및 그 제조 방법
KR101859621B1 (ko) 펨토 세컨드 레이저 프리어닐링을 이용한 산화물 트랜지스터 및 그 제조 방법
US10134765B2 (en) Oxide semiconductor TFT array substrate and method for manufacturing the same
CN109427976B (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
WO2017136984A1 (zh) N型薄膜晶体管的制作方法
US9093470B1 (en) VTFT formation using capillary action
US9082794B1 (en) Metal oxide thin film transistor fabrication method
CN107946367B (zh) 一种薄膜晶体管的制作方法及薄膜晶体管
US20210005757A1 (en) Method of manufacturing a thin film transistor substrate and thin film transistor substrate
WO2020252876A1 (zh) 一种薄膜晶体管基板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant