WO2017073851A1 - 돼지유행성설사병바이러스 약독화주 및 불활화백신 조성물과 이를 이용한 경구 투여용 백신 조성물 - Google Patents

돼지유행성설사병바이러스 약독화주 및 불활화백신 조성물과 이를 이용한 경구 투여용 백신 조성물 Download PDF

Info

Publication number
WO2017073851A1
WO2017073851A1 PCT/KR2016/002315 KR2016002315W WO2017073851A1 WO 2017073851 A1 WO2017073851 A1 WO 2017073851A1 KR 2016002315 W KR2016002315 W KR 2016002315W WO 2017073851 A1 WO2017073851 A1 WO 2017073851A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaccine
virus
epidemic diarrhea
pedv
composition
Prior art date
Application number
PCT/KR2016/002315
Other languages
English (en)
French (fr)
Inventor
장경수
김성진
장현
Original Assignee
우진 비앤지 주식회사
부산가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우진 비앤지 주식회사, 부산가톨릭대학교 산학협력단 filed Critical 우진 비앤지 주식회사
Publication of WO2017073851A1 publication Critical patent/WO2017073851A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/04Inactivation or attenuation; Producing viral sub-units

Definitions

  • the present invention relates to porcine epidemic diarrhea virus attenuated strains and a swine pandemic diarrhea vaccine composition comprising the same. Accession No .: KCTC 12886BP), oral vaccine composition comprising the same and a composition for preventing swine epidemic diarrhea virus infection of live and inactivated vaccines relates to a method for inducing an effective protective immune response against swine pandemic diarrhea.
  • Porcine Epidemic Diarrhea is one of the major viral diseases that are now causing significant damage to the pig industry in Asian countries, including Korea. Since 2013, Peru, North America and South America, including the United States and Canada, In Chile and elsewhere, serious damage reports continue.
  • the disease occurs in winter and early spring, especially in piglets before weaning. 50% -100% of piglets die due to dehydration with diarrhea, which is mainly seasonal in winter and early spring. Recently, however, the disease also occurs in seasons other than winter, and the onset is becoming more diverse. Since the first reported outbreaks of the UK and Belgium PED viruses in Europe in the late 1970s, they have not occurred in Europe since the 1990s, but in the 1980s, China and Japan caused massive damage to their piglets. It occurred mainly in the southeast of the dorsal area. In Korea, it occurred first in 1992 and is continuously occurring.
  • Porcine epidemic diarrhea virus is an RNA virus belonging to Coronaviridae, and mutation is very rapid due to the characteristics of RNA virus, and there is a genetic variation between wild type and vaccine strain that cause disease in domestic farms.
  • the causative agent of the disease is coronaviridae coronavirus.
  • PEDV has a variety of forms with envelopes of size (60-) 120-160 (-200) nm. It is known that the gene is composed of about 20,000-30,000 genes, which are composed of spike protein genes and genes that transcrib surface proteins, but the systematic and molecular biological approach to the virus is still insufficient. .
  • PEDV consists of about five structural proteins.
  • Integral membrane protein is a 50-60kDa protein that crosses the virus surface three times.
  • HE Hemagglutinine-Esterase protein
  • nucleocapsid protein there is a nucleocapsid protein and another small protein whose function is unknown.
  • none of these structural proteins have been studied, and so far, they have been based on conjectures based on similarities with other coronaviruses.
  • the spike protein is a protein that plays an important role in viral infection.
  • the antigenicity of PEDV is known to be determined in the spike. Antigen specificity is examined through neutralization test with S or complement fixation test with M. Therefore, identifying the role of spike protein in PEDV infection and its relationship with trypsin is an important research area for the prevention of PED.
  • the most obvious way to prevent the damage caused by swine pandemic diarrheal infections is through thorough disinfection, which is the first prevention method to disinfect and block livestock related people and livestock related vehicles.
  • the disease is designated and managed as a statutory type 3 infectious disease, and live vaccines, inactivated vaccines, and oral vaccines are commercially available and used in farms.
  • these vaccines are mainly 14-15 years old vaccines made in the early 2000s, and the PED virus newly developed from the US in 2013 is a very genetically mutated virus recently compared to the domestic vaccines.
  • the inventors of the present invention while studying a new strain of swine pandemic diarrheal virus infection vaccine using the latest epidemic strains that are excellent in immunogenicity and safety and can reflect genetic variation, isolates a new swine pandemic diarrheal virus strain , To confirm the defense of the completed the present invention.
  • PEDV pandemic diarrheal virus
  • Another object of the present invention is to provide a live vaccine composition of swine epidemic diarrhea disease comprising the virus strain.
  • Another object of the present invention is to provide a vaccine comprising the live vaccine composition.
  • Another object of the present invention is a method of inducing a protective immune response against swine epidemic diarrhea in a pig, comprising the step of administering to the pig an immuno-effective amount of a vaccine comprising the live vaccine composition It is to provide a method of inducing an immune response.
  • Another object of the present invention to provide an inactivated vaccine composition of swine epidemic diarrhea disease comprising the virus strain.
  • Another object of the present invention is a method of inducing a protective immune response against swine pancreatic diarrheal disease in pigs, comprising administering to a pig an immuno-effective amount of a vaccine comprising the inactivated vaccine composition. It is to provide a method of inducing a protective immune response.
  • Another object of the present invention is to provide a third object of the present invention.
  • a dispenser capable of administering the vaccine to pigs
  • kit comprising a composition for preventing swine epidemic diarrhea virus infection comprising the vaccine of claim 3 or 6.
  • the present invention provides swine epidemic diarrheal virus (Accession Number: KCTC 12886BP).
  • the present invention provides a live vaccine composition of swine epidemic diarrhea disease comprising the virus strain.
  • the present invention provides a vaccine comprising the live vaccine composition.
  • the present invention provides a method of inducing a protective immune response against swine epidemic diarrheal disease in pigs, the method comprising administering to a pig an immuno-effective amount of a vaccine comprising the live vaccine composition. It provides a method of inducing a protective immune response.
  • the present invention provides an inactivated vaccine composition of swine epidemic diarrhea disease comprising the virus strain.
  • the present invention provides a vaccine comprising the above inactivated vaccine composition and an immunopotentiator.
  • the inactivation of the viral strain may be made by adding formalin.
  • the present invention provides a method for inducing a protective immune response against swine epidemic diarrhea in pigs, the method comprising administering to the pig an immuno-effective amount of a vaccine comprising the inactivated vaccine composition It provides a method of inducing a protective immune response comprising the step.
  • a dispenser capable of administering the vaccine to pigs
  • kits comprising a composition for preventing swine epidemic diarrhea virus infection comprising the vaccine.
  • the dispenser can dispense its contents; When the composition is inoculated intramuscularly it can prevent swine epidemic diarrheal infection.
  • the live or inactivated and oral vaccines using the swine pandemic diarrhea virus attenuated strain of the present invention have superior safety and immunogenicity compared to the existing vaccines, and prevent infection of new strains caused by genetic variation of the swine pandemic diarrheal virus. Is more effective.
  • 1 shows a PEDV positive sample confirmed via RT-PCR.
  • FIG. 2 shows the cytopathic effect (CPE) by the PEDV-CUP-B1406 strain.
  • Figure 3 shows the phylogenetic tree results based on the gene homology analysis of the entire spike protein of the PEDV-CUP-B1406 strain with other PEDV strains.
  • FIG. 4 is a diagram showing the results of virus titer identification through continuous passage culture of PEDV-CUP-B1406 virus.
  • 5 is a graph showing the results of confirming the neutralizing antibody titer of PEDV-CUP-B1406 strain inoculated pigs.
  • FIG. 6 is a diagram measuring mouse antibody titers of PEDV-CUP-B1406 strain inactivated vaccine by ELISA method.
  • FIG. 7 is a diagram illustrating the neutralizing antibody titers of mouse blood antibody titers against PEDV-CUP-B1406 strain inactivated vaccine using Vero cells.
  • FIG. 8 is a diagram showing the level of IFN- ⁇ in mouse blood for PEDV-CUP-B1406 strain inactivated vaccine by ELISA.
  • FIG. 8 is a diagram showing the level of IFN- ⁇ in mouse blood for PEDV-CUP-B1406 strain inactivated vaccine by ELISA.
  • Figure 9 shows the results of comparative experiments of weight changes after challenge inoculation of piglets born after inoculation into live, inactivated and oral vaccine sows.
  • FIG 10 is a graph of the intestinal histology of piglets after challenge inoculation of piglets.
  • A K company (SM98) inactivating vaccine inoculation
  • Figure 11 is a graph of the intestinal histology of piglets after inoculation challenge. (B: PEDV-CUP-B1406 inoculated vaccine of domestic isolate)
  • the present invention provides swine pandemic diarrheal virus (PEDV) attenuated strain (Accession Number: KCTC 12886BP).
  • PEDV pandemic diarrheal virus
  • Porcine epidemic diarrhea virus is a member of the Coronaviridae family, a single-stranded RNA virus with an envelope, which causes severe intestinal diarrhea in pigs. It is known.
  • Attenuated strain or attenuated virus means a virus that shows no or reduced clinical symptoms of the disease when administered to an animal, wherein the attenuated strain of the present invention is a method known in the art, eg, passage of virus Can be separated through.
  • the present invention provides a live vaccine composition of swine epidemic diarrhea disease comprising the virus strain.
  • the present invention provides a vaccine comprising the live vaccine composition.
  • Live vaccine composition means a composition comprising a live virus or an active ingredient thereof.
  • vaccine a pharmaceutical composition containing at least one immunologically active ingredient which induces an immunological response in an animal.
  • the immunologically active component of the vaccine may contain suitable elements of live or dead viruses (subunit vaccines) whereby these elements destroy the entire virus or its growth culture, and then the desired structure (s).
  • a purification step to obtain, or by means of, but not limited to, a synthetic process induced by appropriate manipulation of a suitable system such as bacteria, insects, mammals or other species, followed by isolation and purification, or by suitable pharmaceutical compositions.
  • a suitable system such as bacteria, insects, mammals or other species
  • suitable pharmaceutical compositions or by suitable pharmaceutical compositions.
  • Polynucleotide vaccination by induction of the synthetic process in animals in need of a vaccine by direct incorporation of genetic material.
  • the vaccine may comprise one or more of the above described elements or simultaneously.
  • the vaccine may be in any form known in the art, such as, but not limited to, solid forms suitable for liquid or injectable forms or suspensions. Such formulations may also be emulsified or encapsulated in liposomes or soluble glass, or prepared in the form of aerosols or sprays. They can also be included in transdermal patches. In the case of solutions or injections, propylene glycol and, if necessary, may contain an amount of sodium chloride sufficient to prevent hemolysis (eg about 1%).
  • the vaccine of the present invention may further comprise a pharmaceutically acceptable carrier or diluent.
  • pharmaceutically acceptable is a non-toxic composition that, when administered to pigs, is physiologically acceptable and does not inhibit the action of the active ingredient and typically does not cause gastrointestinal disorders, allergic reactions such as dizziness or the like.
  • Suitable carriers for the vaccine are known to those skilled in the art and include, but are not limited to, proteins, sugars, and the like.
  • the carrier may be an aqueous solution or a non-aqueous solution, suspension or emulsion.
  • an adjuvant for increasing immunogenicity a fixed or atypical organic or inorganic polymer may be used.
  • Adjuvants are generally known to play a role in promoting the immune response through chemical and physical binding to the antigen.
  • amorphous aluminum gel, oil emulsion, or double oil emulsion and immunosol were used as the adjuvant used in this study.
  • an immune composition may be used as a composition for inducing an optimal immune response by a combination of various adjuvant and immune response promoting additives.
  • stabilizers, inactivating agents, antibiotics, preservatives, and the like may be used as a composition to be added to the vaccine.
  • the vaccine antigen may be mixed with distilled water, a buffer solution, or the like.
  • the vaccine may be administered via the administration route of oral, muscle, subcutaneous, and the like, but is not limited thereto.
  • the vaccine may be administered through the administration route of muscle.
  • the present invention provides a method of inducing a protective immune response against swine epidemic diarrheal disease in pigs, the method comprising the step of administering an immune effective amount of a vaccine comprising the live vaccine composition to pigs. Provide guidance.
  • the immune response is characterized by the antibody, B cells, helper T cells, suppressor T cells, cytotoxic T cells, and gamma-delta T cells specifically directed to the antigen or antigens contained in the vaccine composition or vaccine comprising the same.
  • a protective immune response is preferred.
  • an effective amount in the above means an amount of a vaccine that can induce an immune response and reduce the frequency or severity of pandemic diarrheal virus infection in pigs, and may be appropriately selected by those skilled in the art.
  • the effective amount of the vaccine comprising the live vaccine composition may range from 1 ⁇ 10 4 to 1 ⁇ 10 7 TCID 50 / ml, preferably 1 ⁇ 10 5 to 1 ⁇ 10 6 TCID 50 / ml per day.
  • the method of inducing an immune response is not limited thereto, but may be inoculated by the oral, transdermal, intramuscular, intraperitoneal, intravenous or subcutaneous route.
  • the vaccine may be intramuscularly injected at the first and second inoculations.
  • the present invention provides an inactivated vaccine composition of swine epidemic diarrhea comprising the virus strain.
  • the present invention further provides a vaccine comprising the inactivated vaccine composition and an immunopotentiator.
  • Inactivated vaccine composition means a composition comprising a dead virus or an active ingredient thereof, and vaccines comprising the composition can be prepared by methods known in the art. For example, if viruses multiply to high titers, they can be obtained and treated with formalin, betapropriolactone (BPL), bicomponent ethyleneimine (BEI) or gamma rays, or by other methods known to those skilled in the art. Deactivate The inactivated virus is then mixed with a pharmaceutically acceptable carrier (such as saline solution) and any adjuvant. Preferably, the final concentration may be inactivated at 0.1% formalin.
  • a pharmaceutically acceptable carrier such as saline solution
  • the final concentration may be inactivated at 0.1% formalin.
  • An adjuvant or adjuvant refers to a compound or mixture that enhances the immune response and promotes the rate of absorption after inoculation and includes any absorption-promoting agent. But are not limited to, for example, aluminum hydroxide, mineral oil or other oils or auxiliary molecules added to the vaccine or generated by the body after each induction by such additional components, for example but not limited to interferon, interleukin Or growth factor.
  • the present invention provides a method of inducing a protective immune response against swine pandemic diarrheal disease in pigs, the method comprising administering to a pig an immuno-effective amount of a vaccine comprising the inactivated vaccine composition.
  • an effective amount in the above means an amount of a vaccine that can induce an immune response and reduce the frequency or severity of pandemic diarrheal virus infection in pigs, and may be appropriately selected by those skilled in the art.
  • the effective amount may range from 1 ⁇ 10 4 to 1 ⁇ 10 7 TCID 50 / ml per day, preferably 1 ⁇ 10 5 to 1 ⁇ 10 6 TCID 50 / ml per day when the vaccine contains the inactivated vaccine composition. .
  • the present invention is a.
  • a dispenser capable of administering the vaccine to pigs
  • kits comprising a composition for preventing swine epidemic diarrhea virus infection comprising the vaccine.
  • the dispenser may be, but is not limited to, a syringe or needleless device such as a Piget or Biojector, preferably a syringe.
  • the vaccine composition of the present invention and a vaccine comprising the same can be used in a kit for preventing swine pancreatic diarrheal virus infection, ie, a combination packaged in a predetermined amount together with instructions for use.
  • the composition for preventing swine epidemic diarrheal virus infection may be any form known in the art, for example, a solid form suitable for the form or suspension of liquids and injections, but is not limited thereto. It may also include excipients which, if necessary, will provide a solution having a suitable concentration upon dissolution.
  • RNA samples are collected from the sample using a viral RNA extraction kit (Qiagen).
  • PED M_S SEQ ID NO: 1, GGT ACC ATG TCT AAC GGT TCT ATT
  • PED M_AS SEQ ID NO: 2, GGA TCC TTA GAC TAA ATG AAG CAC
  • Example 1-1 RTED-PCR of Example 1-1 was used to isolate the PED outdoor column using a sample showing a positive response. Outdoor cell separation was performed using Vero cells (American Type Culture Collection: ATCC, ATCC number: Vero-CCL81), which are PEDV-sensitive monkey kidney cells. The sample filtrate showing RT-PCR positive was inoculated into Vero cells in which a monolayer was formed in a cell culture flask (Nunc., 25 cm 2). Before inoculation, the cells were washed 2-3 times with serum-containing cell culture medium (alpha-MEM, Sigma-aldrich), and then 1 to 2 ml of the positive filtrate was inoculated into the cells. The cells were adsorbed with gentle shaking at 37 ° C. for 1 hour for virus infection.
  • Vero cells American Type Culture Collection: ATCC, ATCC number: Vero-CCL81
  • the sample filtrate showing RT-PCR positive was inoculated into Vero cells in which a monolayer was formed in a cell culture flask (N
  • the results were various for each sample.
  • the PEDV-CUP-B1406 sample showed a weak positive response at passage 4, and it was confirmed that the virus continued to grow from passage 6.
  • Genetic analysis was performed to distinguish whether the PEDV isolated in Example 1-2 was actually an outdoor strain or a vaccine strain. Genetic analysis analyzed the spike protein gene, known as the only surface protein of PEDV. RT-PCT using primers for the PEDV spike protein gene, ie PED S1_S (SEQ ID NO: 3, GGT ACC ATG AGG TCT TAA ATT TAC) and PED S1_AS (SEQ ID NO: 4, ACC ACC AAA AGC CGC AGA GAC AGT) After performing gene amplification, the gene sequences of these genes were compared and analyzed.
  • PED S1_S SEQ ID NO: 3, GGT ACC ATG AGG TCT TAA ATT TAC
  • PED S1_AS SEQ ID NO: 4, ACC ACC AAA AGC CGC AGA GAC AGT
  • Example 1-2 In order to analyze how homologous the PEDV isolated in Example 1-2 after the gene sequencing is actually different from other PEDVs, it is compared with SM98 and DR13 strains, which are currently reported and separated from Korea. As a result, the PEDV-CUP-B1406 strain showed only 93.1% and 93.7% homology with them, respectively, and it was 95.8% different from KNU-0905 isolated in 2009. In particular, the PEDV-CUP-B1406 strain was identified as a new mutant that did not occur before the end of 2013 in Korea, with 97.6-99.6% homology with the recent trends in the US, Canada, Japan, Taiwan, and China. .
  • the phylogenetic tree analysis which is easy for genetic analysis, showed that the other strains belonged to group 1a, whereas the PEDV-CUP-B1406 strain belonged to group 2b. ).
  • Example 1 The PEDV-CUP-B1406 strain isolated in Example 1 was subjected to PEDV passage in the same manner as in Example 1. After 3 days of virus inoculation, when the cytopathic effect of the typical PEDV as shown in Fig. 2 was observed, the cells and the culture solution were recovered and opened three times. After dissolving, the virus was exposed to the culture supernatant and frozen at -80 ° C. Passage was subcultured and inoculated by diluting 1/10 of the stock solution.
  • Titer measurements were performed on five generations of harvested virus cultures. The titer was measured using the Reed and Muench methods. Samples taken for potency measurements were cryopreserved at -80 ° C and titered every 10 samples at one time. Vero cells precultured in 96 well plates (Nunc.) Were washed with sterile PBS (pH7.4) and then cultured for virus propagation (alpha-MEM containing 0.02% yeast extract, 0.3% TPB and 5 ⁇ g / ml of Trypsin). 10) dilute the PEDV sample to be titrated with) and inoculate 0.1 ml into each well and adsorb at 37 ° C for 1 hour.
  • TCID 50 50% Tissue Culture Infective Dose
  • Viral concentrations were adjusted to 10 TCID50 / ml for 15, 40, 65, and 95 virus lines that were passaged to perform pathogenicity tests according to passage number.
  • Initial culture virus lacking virus titer was ultracentrifuged (30,000 rpm, 5 hr, 4 ° C.) to adjust the concentration by diluting the concentrated virus with PBS.
  • Piglets born from sows that were not vaccinated with swine pandemic diarrheal infections were prepared, and clinical signs and virus release experiments were performed by orally inoculating various passaged viruses with PEDV-CUP-B1406 strain virus prepared in these pigs.
  • the PEDV infection status of the sows was confirmed to be negative for PEDV by measuring the blood PEDV antibody in the sows and performing RT-PCR on fecal samples.
  • Three-day-old mammal pigs born from these sows were isolated from each group by 5 subgroups and 5 non-inoculated controls according to the number of subcultures.
  • 1.0 ml (10 TCID50 / ml) of PEDV virus prepared according to subcultured water was mixed with 5.0 ml of saline solution and orally administered to each group.
  • the non-vaccinated control group was orally administered 5.0 ml of saline solution in the same manner.
  • the pathogenicity of the virus was observed by RT-PCR examination of piglets and clinical symptoms daily.
  • Diarrhea also measured the intensity of diarrhea by determining the scoring, it was easy to determine by scoring. The scores were 0, 1, 2, 3, where 0 was normal fecal state, 1 was very mild diarrhea, 2 was moderate diarrhea, and 3 was very severe diarrhea.
  • Fecal virus release was confirmed in the 65-passage PEDV inoculation group from day 2 after inoculation, but diarrhea was much weaker than the group 1 and 2 piglets.
  • Example 3 In order to confirm immunogenicity against the 95-passed PEDV-CUP-B1406 strain in Example 3, the antibody-forming ability was tested using a pig that is PEDV antibody negative. Swine pandemic diarrheal disease antibody negative healthy pigs weighing 8 to 10 kg were tested using 15 healthy pigs, divided into three groups of 5 heads per group, consisting of Group 1 live vaccine, Group 2 inactivated vaccine and Group 3 control group. At 2 weeks intervals, 1 ml at 10 TCID 50 / ml concentration for live virus and 10 TCID 50 / ml concentration for inactivated virus were mixed with IMS1313 adjuvant and 2.0 ml was injected into the root region. The antibody value and neutralizing antibody value using ELISA were confirmed.
  • ELISA antibody titer was measured using whole virus as a coating antigen, and neutralizing antibody titer was evaluated by the general SN test method.
  • the culture cell suspension was adjusted to the number of cells so that 3 ⁇ 10 Vero cells per ml in the growth medium. Serum of the collected blood was separated and inactivated at 57 ° C. for 30 minutes, and then diluted in binary MEM medium containing 10 ⁇ g / ml of trypsin. An equal amount of 200 TCID50 / 0.1 ml of PED virus was mixed in each diluted serum and neutralized at 37 ° C. for 90 minutes.
  • 0.1 ml of the neutralizing solution and 0.1 ml of the culture cell suspension were added to the wells of the miroplate and observed for 5 days in a 37 ° C. CO 2 incubator.
  • the highest dilution factor of serum that inhibits the effect of cell transformation on cultured cells was used as neutralizing antibodies (see FIG. 5).
  • Vero cell line was infected with PEDV-CUP-B1406 strain, the supernatant of infected cells was centrifuged at 3,000 rpm to remove cell residues, and then the virus titer was fixed equally. Virus pellets were harvested by centrifugation for 2 hours at. Virus pellets were redispersed in PBS and formalin was added at a final concentration of 0.1% to inactivate at 24 ° C. for at least 24 hours. In order to confirm virus inactivation, it was confirmed that no plaque was formed by infection with the MDCK monolayer.
  • the virus solution was mixed with the adjuvant at a ratio of 7: 3 and Qual A (Sigma Aldrich) was added to 10 ⁇ g / ml to prepare a test vaccine.
  • Qual A Sigma Aldrich
  • the final concentration of the PEDV antigen of the test vaccine is at least 10 TCID 50 / ml.
  • the positive control group for the comparative test was a PED inactivating vaccine of K company using SM98 strain, live PED vaccine and oral vaccine of N company.
  • PED antigens 200 ng / well (genotype group 2b), which were recently in vogue, were coated on 96 wells and incubated overnight at 4 ° C. The next day, after suctioning the coating solution, each well was washed three times with PBS-T 200ul, and then incubated at room temperature for 1 hour by treating PBS containing 2% BSA with 100ul per well. After washing each well three times with 200ul of PBST, the control group was treated with 100ul of PBS, the serum of the test vaccine inoculation group was diluted 200-fold with PBS, and 100ul of the non-vaccinated group was treated with 100ul of serum stock solution at 37 °C. Incubated for 1 hour at.
  • Goat anti mouse IgG HRP was diluted 1: 1000 in blocking buffer and treated with 100ul per well, and incubated at 37 ° C for 1 hour. Each well was washed three times with PBS-T 200ul, and then treated with 100ul of TMB solution and incubated at room temperature for 10 minutes. After treating 100ul of stop solution, the OD value was measured at 450nm.
  • the total IgG level for PED was higher than that of the inactivated vaccine group using the PEDV-CUP-B1406 strain.
  • the total IgG antibody level began to show a big difference from 4 weeks after vaccination, and compared to the K company inactivated vaccine, the antibody titer of the PEDV-CUP-B1406 strain was more than two times greater than that of the antibody (see FIG. 6). .
  • Neutralizing antibodies were measured and compared using serum obtained through mouse inoculation experiments.
  • the culture cell suspension was adjusted to the number of cells so that 3 ⁇ 10 Vero cells per ml in the growth medium. Serum of the collected blood was separated and inactivated at 57 ° C. for 30 minutes, and then diluted in binary MEM medium containing 10 ⁇ g / ml of trypsin.
  • the same virus and the same virus as the test vaccine preparation virus of 200 TCID50 / 0.1ml were mixed in each diluted serum and neutralized at 37 ° C for 90 minutes.
  • 0.1 ml of the neutralizing solution and 0.1 ml of the culture cell suspension were added to the well of the miroplate and observed at 37 ° C. for 5 days.
  • the highest dilution factor of the serum that inhibits CPE in the cultured cells was the neutralizing antibody titer.
  • the neutralizing antibody titer by PEDV-CUP-B1406 virus was 7 (Log2) at 6th week and the neutralizing antibody titer by K company inactivated vaccine was 4 (Log2), and the neutralizing antibody was formed by PEDV-CUP-B1406 virus. This was found to be higher (see FIG. 7).
  • Both groups were stimulated with formalin-inactivated PED and then injected with conjugated Ab of IFN- ⁇ the next day. After 4 hours, blood was collected and serum was measured by ELISA according to the Mouse IFN- ⁇ In vivo Capture Assay Set manual.
  • Field pathogenic PEDV virus is shown in piglets born from sows after inoculation into pregnant sows with a vaccine using the PEDV-CUP-B1406 strain and the live K vaccine (SM98) vaccine, and the commercial oral vaccine of N company. After oral challenge with the configuration as described above, the survival rate of the piglets was confirmed to compare the defense capacity of the vaccine.
  • the group was divided into seven groups and two live sows were inoculated with live K vaccine (Group 2) and inactivated vaccine (Group 4) and N company oral vaccine (Group 5) 4 weeks and 2 weeks before delivery, and were made with PEDV-CUP-B1406.
  • Group 1, inactivated vaccine (Group 3) and oral vaccine (Group 5) were inoculated twice into two pregnant sows in the same manner and the blood neutralizing and colostral antibody titers of sows due to vaccination were measured. It was.
  • Five healthy piglets born from each sow were randomly selected and 15 generations of the highly popular pathogenic PEDV-CUP-B1406 strain of oral administration were administered orally with an attack virus (10 TCID50 / ml). Survival and diarrhea were observed. Intestinal tissues of piglets with clinical symptoms were also examined by immunochemical staining.
  • Results of challenge vaccination test for pulmonary and diarrhea protection were performed by selecting 5 pigs from 3 days old after delivery for group 1, group 2 and control group 7 inoculated with live vaccine to sows (Table 5).
  • 70% mortality rate was observed as 3 heads died due to dehydration due to diarrhea at 6-7 days.
  • Diarrhea also showed moderate diarrhea in all individuals.
  • the positive control group in Group 7 maintained only 20% mortality rate and caused severe vomiting and watery diarrhea, eventually leading to dehydration.
  • live vaccines made with group 1 of PEDV-CUP-B1406 showed 100% survival because mortality did not occur until 7 days. Diarrhea also showed very weak diarrhea between 2 and 4 days and then recovered from 6 days. (See Table 5).
  • the oral vaccine produced mainly showed mortality rate (survival rate) of 90% due to 1 mortality, and the remaining 9 heads showed very weak diarrhea between 2 and 5 days, and body weight rapidly recovered from 6 days. (See Table 7).
  • Maternal pigs inoculated with live, inactivated and oral vaccines made with PEDV-CUP-B1406 strains when the PED virus challenged the field, weight recovery after the rapid weight loss in the vaccines was slower than the economic value of commercial products. Normal weight recovery, like the negative control group, was restored to normal weight rapidly from day 6 in vaccines made with PEDV-CUP-B1406 strain (see FIG. 9).
  • the immunohistochemical staining resulted in rapid dropout of epithelial cells due to PED antigen positive in the positive control group.
  • PED antigen was confirmed in small intestinal epithelial cells, but it was confirmed that the loss of epithelial cell disappeared rarely. Therefore, weight recovery was quick after 2 days of weak diarrhea. PED antigens could be observed in epithelial cells of the K company vaccinated group, but the dropout of small intestinal epithelial cells was more severe than that of the PEDV-CUP-B1406 strain group piglets.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 돼지유행성설사병바이러스(porcine epidemic diarrhea virus) 약독화주 및 이를 포함하는 돼지유행성 설사병 백신 조성물에 관한 것으로, 구체적으로는 돼지유행성설사병바이러스 약독화주(수탁번호 : KCTC 12886BP), 이를 포함하는 백신 조성물과 백신, 백신을 돼지에게 투여할 수 있는 디스펜서와 이를 포함하는 돼지 유행성설사병 바이러스 감염 예방용 조성물을 함께 포함하는 키트, 돼지유행성설사병에 대한 보호성 면역 반응 유도방법에 관한 것이다. 본 발명의 약독화 생백신 및 불활화 백신은 기존의 백신에 비해 안전성과 면역원성이 우수하며, 돼지 유행성설사병 바이러스의 유전적 변이에 따른 새로운 변종에 대한 감염 예방에 보다 효과적이므로, 돼지 유행성설사병의 감염 예방 및 보호성 면역반응 유도의 목적으로 사용될 수 있고, 또한 최근 유행하는 돼지유행성설사병바이러스를 효과적으로 폐사율을 줄일 수 있을 뿐 만아니라 설사증상을 현저히 경감하여 양돈농가에서 우려하는 PED감염 후 회복시 체중감소에 의한 경제적가치 손실의 피해를 최소화 할 수 있어 돈가 안정화를 유도되어 생산자 및 소비자가 모두 만족 할 수 있으므로 산업상 이용가능성이 매우 높다.

Description

돼지유행성설사병바이러스 약독화주 및 불활화백신 조성물과 이를 이용한 경구 투여용 백신 조성물
발명은 최근 2013년 말부터 국내에서 유행하는 병원성이 매우 높은 돼지유행성설사병바이러스(porcine epidemic diarrhea virus) 약독화주 및 이를 포함하는 돼지유행성 설사병 백신 조성물에 관한 것으로, 구체적으로는 돼지유행성설사병바이러스 약독화주(수탁번호 : KCTC 12886BP), 이를 포함하는 백신 경구 투여 조성물과 생백신 및 불활화 백신의 돼지 유행성설사병 바이러스 감염 예방용 조성물을 돼지유행성설사병에 대한 효과적인 방어적 면역 반응 유도방법에 관한 것이다.
돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED)은 현재 우리나라를 비롯한 아시아 국가의 양돈 산업에 막대한 피해를 끼치는 중요한 바이러스성 질병중 하나로서 2013년부터 아시아 뿐 만아니라 미국과 캐나다를 포함한 북아메리카와 남아메리카의 페루, 칠레 등지에서도 심각한 피해 보고가 잇따르고 있다.
이 질병은 특히나 겨울철에 이유기 이전의 자돈 등에 특이적으로 발생하여 설사를 동반한 탈수로 인하여 50%-100% 자돈이 폐사하는 질병으로 주로 겨울철과 이른 봄에 발생하는 계절적 특성을 가지고 있었다. 그러나 최근 이 질병은 겨울철 이외의 다른 계절에도 발병하고 있으며, 발병 양상도 훨씬 다양해져가고 있는 중이다. 1970년대 말 유럽의 영국과 벨기에 PED 바이러스의 발생이 최초로 보고된 이후 유럽에서는 1990년대부터 발생이 없으나 중국과 일본이 1980년대에 이 질병이 발생하여 자돈에 막대한 피해를 일으켰으며 이후 대만, 베트남, 필리핀 등지의 동남에서 주로 발생을 하였고 우리나라에서는 1992년에 최초로 발생하여 지속적으로 발생이 이루어지고 있다. 병원성이 강한 변이된 돼지유행성설사병바이러스는 2010년 말에 중국에서부터 시작되어 백신으로 예방이 안된다는 논문이 많이 보고 되었고 약 70만 마리의 자돈을 폐사시켰으며, 이러한 변이주가 2013년 중국에서 미국으로 5월에 넘어가서 현재까지 미국에 약 800만 마리의 자돈폐사를 기록하였으며 미국내 경제에 영향을 키쳤다. 우리나라에서도 2005년부터 2013년 상반기까지 낮은 감염건수 (발생건수:160건, 감염건수:55,109두)가 보고 되었으나 미국으로부터 돼지유행성설사병 변이주가 유입된 2013년 말부터 현재까지 높은 감염 건수와 피해를 기록하고 있다 (발생건수:231건, 감염건수:46,540두).
하지만 일선 양돈농가들은 이 질병이 우리나라에서 가축전염병 3종에 속하고 신고의무와 해당농장의 가축 이동제한 등으로 인해 신고시 농장의 2차적인 경제적 손실이 발생하므로 신고를 기피하고 있다. 양돈전문가들은 전체 양돈장의 40%까지 이 질병에 감염되었다고 주장하는데 전문가들의 의견과 신고된 정확한 통계수치와의 비교 추정시 약 20-25% 감염을 예측할 수 있고 이 수치는 우리나라 1000-1500개 양돈장이 피해를 보았다고 판단 할 수 있다. 이 변이주는 일본에서도 우리와 비슷한 시기인 2013년 말에 유입되어 2015년 초까지 일본에서 자돈에 150만두 피해와 대만또한 비슷한 시기에 유입되어 수십만두의 피해를 일으켜 포유자돈 폐사로 인한 돈가 상승의 원인이 되어 돈육소비에 소비자들이 부담이 되는 경제적인 파장을 일으키고 있다.
돼지 유행성 설사병 바이러스 (porcine epidemic diarrhea virus, PEDV) 는 Coronaviridae에 속하는 RNA virus로서 RNA virus의 특성상 mutation이 매우 빠르게 이루어지고 있으며, 현재 국내 농장에서 질병을 일으키는 wild type과 vaccine strain간의 유전자적 변이가 있는 것으로 알려져 있다. 이 질병의 원인체는 coronaviridae coronavirus로서 PEDV는 (60-)120-160(-200) nm 정도 크기의 envelope이 있는 다양한 형태를 가지고 있다. 유전자의 구성은 스파이크 단백질 유전자, 표면 단백질을 전사하는 유전자 등으로 구성되어 약 20,000-30,000개 정도의 유전자로 구성되어 있다고 알려져 있지만 아직까지 이 바이러스에 대한 체계적이고 분자생물학적 접근은 아직까지 매우 미흡한 상태이다. PEDV는 약 5개의 구조 단백질로 구성되어 있다. 즉, 바이러스의 숙주 세포와의 접촉 및 hemagglutination and membrane fusion에 관여하는 surface glycoprotein (or spike, S). Integral membrane protein (M)은 바이러스 표면을 세 번 정도 교차하는 50-60kDa 정도의 단백질이다. 또한 65kDa 정도의 4번째로 큰 Hemagglutinine-Esterase protein(HE)은 표면에 돌출되어 있으며 receptor binding, hemagglutination과 같은 역할을 하는 것으로 알려져 있다. 그 외에도 핵단백질 (nucleocapsid protein)과 기능이 알려져 있지 않은 작은 또 하나의 단백질이 있다. 그러나 이들 구조 단백질에 대한 연구도 전혀 이루어지고 있지 않으며 현재까지는 다른 coronavirus와의 유사성에 의한 추측에 의존하고 있는 현실이다. 이들 구조 단백질 중 특히 spike protein 은 바이러스의 감염에 중요한 역할을 하는 단백질로 PEDV의 항원성은 spike에서 결정되는 것으로 알려져 있다. 항원 특이성은 S를 이용한 중화 항체 실험(neutralization test), 또는 M을 이용한 보체 중합 반응 (Complement Fixation Test)를 통하여 검사한다. 따라서 spike protein 이 PEDV 감염 시 하는 역할 및 trypsin 과의 관계를 밝히는 것은 PED의 예방을 위해 매우 중요한 연구 분야라고 할 수 있다.
돼지유행성설사병 감염으로 인한 피해를 막을 수 있는 가장 확실한 방법은 철저한 소독 등으로 축산관계자 및 축산관련차량 소독과 차단을 해야 하는 차단방역이 우선이고 두 번째로는 적절한 백신 접종을 통한 예방법으로 우리나라에서는 PED 질병을 법정 제3종 전염병으로 지정하여 관리하고 있으며 생백신과 불활화 백신 및 경구백신이 상용화되어 농가에 보급되어 이용되고 있다. 그러나 이들 백신들은 주로 2000년대 초반에 만들어진 14-15년 전의 백신이고 또한 최근 2013년 미국으로부터 새롭게 발생한 PED 바이러스는 최근 국내에서 사용되고 있는 백신과 유전적으로 매우 변이가 심한 바이러스로서 기존의 백신이 백신으로서 효력이 낮은 것으로 밝혀져 최근 유행하는 바이러스를 이용한 백신개발이 요구되어 진다고 밝혔다(2014년 7월 농림축산검역본부 발표: 국내 5개사 및 수입 PED 백신에 대한 효능 평가 시험). 또한 기존의 백신주는 유전적인 차이가 있을 뿐만 아니라 면역원성도 떨어져 여러 번의 백신 접종을 해야만 항체가 형성되는 것으로 알려져 있다(Korean J. Vet. Serv 32:3 201~207). 또한 현재 유통되고 있는 생백신의 경우 면역원성이 떨어질 뿐만 아니라 경구 투여를 통해 백신 접종이 이루어지고 있으나 경구 투여의 방법이 백신 희석액을 식빵에 적셔 돼지에게 먹이는 아주 비과학적인 방법으로 위액과 소화효소의 소화작용으로 인해 백신 바이러스가 소장에 전달되어 면역반응을 일으키는지에 대한 과학적인 증거가 없는 백신이다.
이에 본 발명자들은 면역원성과 안전성이 뛰어나고 유전적 변이를 반영할 수 있는 최근 유행하는 변이주를 이용한 새로운 돼지유행성설사병바이러스 감염 예방 백신 제조용 PED 바이러스주를 연구하던 중, 새로운 돼지유행성설사병 바이러스주를 분리해내고, 이의 방어력을 확인하여 본 발명을 완성하였다.
따라서 본 발명의 목적은 돼지 유행성설사병 바이러스(PEDV) 약독화주(수탁번호 : KCTC 12886BP)를 제공하는 것이다.
본 발명의 다른 목적은 상기 바이러스주를 포함하는 돼지 유행성설사병의 생백신 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 생백신 조성물을 포함함을 특징으로 하는 백신을 제공하는 것이다.
본 발명의 다른 목적은 돼지에서 돼지 유행성설사병에 대한 보호성 면역 반응을 유도하는 방법으로서, 상기 생백신 조성물을 포함함을 특징으로 하는 백신의 면역 유효량을 돼지에게 투여하는 단계를 포함하는 것인 보호성 면역 반응의 유도법을 제공하는 것이다.
본 발명의 다른 목적은 상기 바이러스주를 포함하는 돼지 유행성설사병의 불활화 백신 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 불활화 백신 조성물 및 면역강화제를 추가로 포함함을 특징으로 하는 백신을 제공하는 것이다.
본 발명의 다른 목적은 돼지에서 돼지 유행성설사병에 대한 보호성 면역 반응을 유도하는 방법으로서, 상기 불활화 백신 조성물을 포함함을 특징으로 하는 백신의 면역 유효량을 돼지에게 투여하는 단계를 포함하는 것인 보호성 면역 반응의 유도법을 제공하는 것이다.
본 발명의 다른 목적은
(1) 백신을 돼지에게 투여할 수 있는 디스펜서;
(2) 제3항 또는 제6항의 백신을 포함하는 돼지 유행성설사병 바이러스 감염 예방용 조성물을 함께 포함하는 키트를 제공하는 것이다.
상기의 목적을 달성하기 위해 본 발명은 돼지 유행성설사병 바이러스(수탁번호 : KCTC 12886BP)를 제공한다.
본 발명의 다른 목적을 달성하기 위해 본 발명은 상기 바이러스주를 포함하는 돼지 유행성설사병의 생백신 조성물을 제공한다.
본 발명의 다른 목적을 달성하기 위해 본 발명은 상기 생백신 조성물을 포함함을 특징으로 하는 백신을 제공한다.
본 발명의 다른 목적을 달성하기 위해 본 발명은 돼지에서 돼지 유행성설사병에 대한 보호성 면역 반응을 유도하는 방법으로서, 상기 생백신 조성물을 포함함을 특징으로 하는 백신의 면역 유효량을 돼지에게 투여하는 단계를 포함하는 것인 보호성 면역 반응의 유도법을 제공한다.
본 발명의 다른 목적을 달성하기 위해 본 발명은 상기 바이러스주를 포함하는 돼지 유행성설사병의 불활화 백신 조성물을 제공한다.
본 발명의 다른 목적을 달성하기 위해 본 발명은 상기 불활화 백신 조성물 및 면역강화제를 추가로 포함함을 특징으로 하는 백신을 제공한다.
본 발명의 일실시예에 있어서, 상기 바이러스주의 불활화는 포르말린을 첨가함으로써 이루어지는 것일 수 있다.
본 발명의 다른 목적을 달성하기 위해 본 발명은 돼지에서 돼지 유행성설사병에 대한 보호성 면역 반응을 유도하는 방법으로서, 상기 불활화 백신 조성물을 포함함을 특징으로 하는 백신의 면역 유효량을 돼지에게 투여하는 단계를 포함하는 것인 보호성 면역 반응의 유도법을 제공한다.
본 발명의 다른 목적을 달성하기 위해 본 발명은
(1) 백신을 돼지에게 투여할 수 있는 디스펜서;
(2) 상기 백신을 포함하는 돼지 유행성설사병 바이러스 감염 예방용 조성물을 함께 포함하는 키트를 제공한다.
본 발명의 일실시예에 있어서, 디스펜서가 이의 내용물을 분배할 수 있고; 조성물이 근육 내 접종되는 경우 돼지 유행성설사병 감염을 예방할 수 있다.
본 발명의 돼지 유행성설사병 바이러스 약독화주를 이용한 생백신 또는 불활화백신 및 경구용백신은 기존의 백신에 비해 안전성과 면역원성이 우수하며, 돼지 유행성설사병 바이러스의 유전적 변이에 따른 새로운 변종에 대한 감염 예방에 보다 효과적이다.
도1은 RT-PCR을 통해 확인된 PEDV 양성 샘플을 나타내는 도면이다.
도2는 PEDV-CUP-B1406 strain에 의한 세포변성 효과(CPE)를 보여주는 도면이다.
도3은 PEDV-CUP-B1406 strain의 spike protein 전체를 다른 PEDV strain들과의 유전자 상동성 분석을 바탕으로 phylogenetic tree 결과를 나타내는 도면이다.
도4는 PEDV-CUP-B1406 바이러스의 연속 계대 배양을 통한 바이러스 역가 확인 결과를 나타내는 도면이다.
도5는 PEDV-CUP-B1406 strain 접종 돼지의 중화항체가를 확인한 결과를 나타내는 그래프이다.
도6는 PEDV-CUP-B1406 strain 불활화백신에 대한 마우스혈중항체가를 ELISA법으로 측정한 도면이다.
도7는 PEDV-CUP-B1406 strain 불활화백신에 대한 마우스혈중항체가를 Vero세포를 이용하여 중화항체가를 측정한 도면이다.
도8는 PEDV-CUP-B1406 strain 불활화백신에 대한 마우스혈중에 IFN-γ에 대한 수치를 ELISA법을 이용하여 측정한 도면이다.
도9은 생백신, 불활화백신, 경구백신 모돈에 접종후 태어난 자돈에 공격접종한 후 체중변화를 비교 실험한 결과이다.
도10은 포유자돈 공격 접종 후 자돈의 장 조직 검사 결과 그래프이다. (A: K사(SM98)불활화백신 접종)
도11은 포유자돈 공격 접종 후 자돈의 장 조직 검사 결과 그래프이다. (B: PEDV-CUP-B1406 국내분리주 불활화백신 접종)
[규칙 제91조에 의한 정정 15.06.2016] 
도12는 포유자돈 공격 접종 후 자돈의 장 조직 검사 결과 그래프이다. (음성: 음성 대조군, 양성: 양성 대조군)
본 발명은 돼지 유행성설사병 바이러스(PEDV) 약독화주(수탁번호 : KCTC 12886BP)를 제공한다.
돼지 유행성설사병 바이러스(PEDV)(porcine epidemic diarrhea virus)는 코로나비리대 과(Coronaviridae family)의 일원으로서, 막(envelop)이 있는 단일가닥 RNA 바이러스이며, 돼지에 있어서 심한 장관 설사병(diarrhea)을 야기하는 것으로 알려져 있다.
약독화주 또는 약독화된 바이러스는 동물에 투여되었을 때 질병의 임상적 증상이 없거나 감소되었음을 보여주는 바이러스를 의미하는 것으로, 본 발명의 약독화주는 당업계에 알려져 있는 방법, 예를 들어, 바이러스의 계대배양을 통해 분리될 수 있다.
본 발명은 상기 바이러스주를 포함하는 돼지 유행성설사병의 생백신 조성물을 제공한다.
본 발명은 상기 생백신 조성물을 포함함을 특징으로 하는 백신을 제공한다.
생백신 조성물은 살아있는 바이러스 또는 이의 활성 성분을 포함하는 조성물을 의미한다.
백신은 동물에서 면역학적 반응을 유도하는 적어도 하나의 면역학적으로 활성인 성분을 함유하는 약학적 조성물을 의미한다. 백신의 면역학적으로 활성인 성분은 살아있는 바이러스 또는 죽은 바이러스의 적절한 요소를 함유할 수 있고(서브유니트 백신), 이에 의해 이들 요소는 전체 바이러스 또는 이의 성장 배양물을 파괴하고, 이어서 원하는 구조물(들)을 수득하는 정제 단계에 의해, 또는 제한되는 것은 아니지만 박테리아, 곤충, 포유동물 또는 다른 종과 같은 적절한 시스템의 적절한 조작에 의해 유도된 합성과정 및 이어서 단리 및 정제과정에 의해, 또는 적절한 약학적 조성물을 사용하여 유전자 물질의 직접적인 혼입에 의한 백신을 필요로하는 동물에서 상기 합성 과정의 유도에 의해 (폴리뉴클레오타이드 백신화)제조된다. 백신은 상기 기술된 요소의 하나 또는 동시에 하나 이상을 포함할 수 있다.
상기 백신은 당업계에 알려진 임의의 형태, 예를 들면, 액제 및 주사제의 형태 또는 현탁액에 적합한 고체 형태일 수 있으나, 이에 한정되는 것은 아니다. 이러한 제제는 또한 리포좀이나 가용 유리 내로 유화 또는 캡슐화되거나 에어로졸이나 스프레이 형태로도 제조될 수 있다. 이들은 경피 (transdermal) 팻치에 함유시킬 수도 있다. 액제 또는 주사제의 경우, 필요시 프로필렌 글리콜 및 용혈 현상을 방지하는데 충분한 양 (예: 약 1%)의 염화나트륨을 함유할 수 있다.
본 발명의 백신은 추가로 약학적으로 허용 가능한 담체 또는 희석제를 포함할 수 있다. 상기에서 "약학적으로 허용 가능한" 이란 생리학적으로 허용되고 돼지에게 투여될 때, 활성성분의 작용을 저해하지 않으며 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 비독성의 조성물을 말한다.
백신에 적합한 담체는 기술분야의 당업자에게 공지되어 있으며, 단백질, 당 등을 포함하지만, 이에 한정되는 것은 아니다. 상기의 담체는 수용액, 또는 비-수용액, 현탁액 또는 에멀젼일 수 있다. 면역원성을 증가시키기 위한 면역보조제로서 정형 또는 비정형 유기 또는 무기 고분자등이 사용될 수 있다. 면역보조제는 일반적으로 항원에 대한 화학적 물리적 결합을 통해 면역반응을 촉진시키는 역할을 하는 것으로 알려져 있다. 이 연구에서 사용된 면역보조제로서는 비정형 알루미늄 겔, 오일 에멀젼, 또는 이중 오일 에멀젼 그리고 이뮤노졸 등이 사용되었다. 또한 면역반응의 촉진을 위해 다양한 식물 유래 사포닌, 레바미솔, CpG 다이뉴클레오티드, RNA, DNA, LPS, 다양한 종류의 싸이토카인 등이 사용되었다. 위와 같은 면역 조성물은 다양한 보조제와 면역반응 촉진 첨가물의 조합에 의해 최적의 면역반응 유도를 위한 조성으로 사용될 수 있다. 또한 백신에 추가될 있는 조성물로는 안정제, 불활화제, 항생제, 보존제, 등이 사용될 수 있다. 백신의 투여 경로에 따라 백신 항원은 증류수, 완충용액 등과도 혼합하여 사용될 수 있다.
상기 백신은 경구, 근육, 피하, 등의 투여경로를 통해 투여될 수 있으나 이에 한정되지 않으며, 바람직하게는 근육 투여경로를 통해 투여될 수 있다.
본 발명은 돼지에서 돼지 유행성설사병에 대한 보호성 면역 반응을 유도하는 방법으로서, 상기 생백신 조성물을 포함함을 특징으로 하는 백신의 면역 유효량을 돼지에게 투여하는 단계를 포함하는 것인 보호성 면역 반응의 유도법을 제공한다.
상기 면역 반응은 백신 조성물 또는 이를 포함하는 백신 중에 포함된 항원 또는 항원들에 대해 특이적으로 지시된 항체, B 세포, 헬퍼 T 세포, 서프레서 T 세포, 세포독성 T 세포 및 감마-델타 T 세포의 생산 또는 활성화, 숙주에서 치료학적 또는 보호 면역학적 반응을 나타내어 새로운 감염에 대한 내성이 증진되거나 질환의 임상적 중증도가 감소되는 효과중 하나 이상을 포함하지만 이에 제한되지는 않는다. 바람직하게는 보호 면역 반응일 수 있다.
상기 보호는 감염된 숙주가 통상적으로 나타내는 임상적 징후의 감소 또는 부재, 보다 신속한 회복 시간 또는 보다 낮아진 지속시간 또는 감염된 숙주의 조직 또는 체액 또는 배설물에서 보다 낮은 바이러스 역가에 의해 입증된다.
상기에서 유효량은 면역 반응을 유도하여 돼지에서 유행성설사병 바이러스 감염의 빈도수 또는 이의 중증도를 감소시킬 수 있는 백신의 양을 의미하며, 당업자라면 적절하게 선택할 수 있다. 예를 들면, 유효량은 상기 생백신 조성물을 포함하는 백신일 경우 바이러스 균주를 1일당 1X104 내지 1X107 TCID50/ml, 바람직하게는 1일당 1X105 내지 1X106 TCID50/ml 범위일 수 있다.
상기 면역 반응 유도법은 이것에 한정되는 것은 아니지만, 경구, 경피, 근육내, 복막내, 정맥내, 피하내 경로로 백신을 접종하는 것일 수 있다. 바람직하게는, 1차 및 2차 접종시 백신을 근육내 접종하는 것일 수 있다.
본 발명은 상기 바이러스주를 포함하는 돼지 유행성설사병의 불활화 백신 조성물을 제공한다.
본 발명은 상기 불활화 백신 조성물 및 면역강화제를 추가로 포함함을 특징으로 하는 백신을 제공한다.
불활화백신 조성물은 죽은 바이러스 또는 이의 활성 성분을 포함하는 조성물을 의미하는 것으로, 상기 조성물을 포함하는 백신은 당업계에 알려져 있는 방법에 의해 제조될 수 있다. 예를 들어, 바이러스가 높은 역가로 증식되면, 바이러스를 수득한 후 이들을 포르말린, 베타프로프리오락톤 (BPL), 이성분 에틸렌이민 (BEI) 또는 감마선으로 처리하거나, 당업자에게 공지된 기타 방법에 의해 비활성화시킨다. 이어서 비활성화된 바이러스를 제약상 허용 가능한 캐리어 (예컨대 염수 용액) 및 임의의 보조제와 함께 혼합한다. 바람직하게는 최종농도 0.1% 포르말린에서 불활화한 것일 수 있다.
면역강화제 또는 어쥬번트(Adjuvant)는 면역반응의 향상 및 접종 후 흡수 속도를 촉진하는 화합물 또는 혼합물을 칭하는 것으로 임의의 흡수-촉진제를 포함한다. 이에 한정되는 것은 아니나, 예를 들어 수산화 알루미늄, 광유 또는 다른 오일 또는 백신에 첨가되거나 이러한 추가의 성분에 의해 각각의 유도 후 신체에 의해 발생되는 보조 분자, 예를 들어 이에 제한되는 것은 아니지만 인터페론, 인터류킨 또는 성장인자이다.
본 발명은 돼지에서 돼지 유행성설사병에 대한 보호성 면역 반응을 유도하는 방법으로서, 상기 불활화 백신 조성물을 포함함을 특징으로 하는 백신의 면역 유효량을 돼지에게 투여하는 단계를 포함하는 것인 보호성 면역 반응의 유도법을 제공한다.
상기에서 유효량은 면역 반응을 유도하여 돼지에서 유행성설사병 바이러스 감염의 빈도수 또는 이의 중증도를 감소시킬 수 있는 백신의 양을 의미하며, 당업자라면 적절하게 선택할 수 있다. 예를 들면, 유효량은 상기 불활화백신 조성물을 포함하는 백신일 경우 바이러스 균주를 1일당 1X104 내지 1X107 TCID50/ml, 바람직하게는 1일당 1X105 내지 1X106 TCID50/ml 범위일 수 있다.
본 발명은
(1) 백신을 돼지에게 투여할 수 있는 디스펜서;
(2) 상기 백신을 포함하는 돼지 유행성설사병 바이러스 감염 예방용 조성물을 함께 포함하는 키트를 제공한다.
디스펜서는 이에 한정되진 않으나, 주사기 또는 바늘 없는 장치 예컨대 Piget 또는 Biojector 일 수 있으며, 바람직하게는 주사기일 수 있다.
본 발명의 백신 조성물 및 이를 포함하는 백신은 돼지 유행성설사병 바이러스 감염을 예방하기 위한 키트, 즉 사용설명서와 함께 미리 지정된 양으로 포장된 조합에 사용될 수 있다. 상기 돼지 유행성설사병 바이러스 감염 예방용 조성물은 당업계에 임의로 알려진 형태, 예를 들면 액제 및 주사제의 형태 또는 현탁액에 적합한 고체 형태일 수 있으나, 이에 한정되는 것은 아니다. 또한, 그 형태에 따라 필요한 경우 용해 시 적절한 농도를 갖는 용액을 제공하게 될 부형제를 포함할 수 있다.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
<실시예 1>
야외주 분리 및 바이러스의 확인
<1-1> 바이러스의 확인
2014년 4월 충남 보령지역에 발생한 양돈장에서 포유자돈에 심각한 수양성 설사를 동반하다가 폐사한 포유자돈의 분변 및 소장 샘플을 채취하여 이들 샘플을 PBS(Phosphate buffer saline, pH 7.4)용액에서 균질화(homogenization)하여 10분 동안 3,000rpm에서 원심분리하여 상층액을 회수하였다. 회수된 상층액은 시린지 필터(syringe filter, pore size 0.2 ㎛, Sartorius)를 이용하여 무균적으로 여과한 후 샘플을 준비하고 이 샘플로부터 viral RNA extraction kit(Qiagen)를 이용하여 RNA 샘플을 채취한 다음 PEDV에 특정하게 반응하는 두 종류의 프라이머 즉 PED M_S (서열번호 1, GGT ACC ATG TCT AAC GGT TCT ATT)와 PED M_AS (서열번호 2, GGA TCC TTA GAC TAA ATG AAG CAC) 프라이머를 이용하여 RT-PCR을 실시하였다. 그 결과, 도 1에 나타난바와 같이 PEDV 특이 밴드인 약 850bp의 DNA를 검출하였다.
<1-2> 야외주 분리
상기 실시예 1-1의 RT-PCR 결과 양성 반응을 보이는 샘플을 이용하여 PED 야외주 분리를 실시하였다. 야외주 분리는 PEDV 감수성이 있는 원숭이신장세포인 Vero 세포(American Type Culture Collection: ATCC, ATCC number: Vero-CCL81)를 이용하여 실시하였다. RT-PCR 양성을 보인 샘플 여과액을 세포 배양용 플라스크(Nunc., 25㎠)에 단분자층(monolayer)이 형성된 Vero 세포에 접종하였다. 접종 전 혈청이 들어가지 않은 세포배양용 배지(alpha-MEM, Sigma-aldrich)를 이용하여 세포를 2~3회 세척한 다음 1~2 ml의 양성 여과액을 세포에 접종하였다. 바이러스 감염을 위해 1시간 동안 37 ℃에서 부드럽게 흔들어주면서 세포에 흡착시켰다. 바이러스 흡착 후 바이러스 배양용 배지(alpha-MEM containing 0.02 % yeast extract, 0.3 % TPB and 5 ㎍/ml of Trypsine)를 보충하여 37 ℃ CO₂ 배양기에서 매일 세포변성효과(CPE, cytopathic effects)를 관찰하며 배양하였다. 관찰 기간 중 세포변성효과가 80 % 이상 일어난 배양액은 채취하여 -80 ℃에서 동결 보존하면서 다음 계대배양에 이용하였다. 계대 배양 중 일부 배양 샘플을 채취하여 RNA를 채취하여 RT-PCR 방법을 사용하여 PEDV의 존재를 확인하면서 실시하였다.
그 결과, 표 1의 결과와 같이 샘플별로 결과는 다양하게 나왔으며 특히나 PEDV-CUP-B1406 샘플은 계대 4에서 약하게 양성반응을 보였고 계대 6에서 부터는 계속해서 바이러스가 자라는 것을 확인 할 수 있었으며, 이 바이러스는 Vero cell에서 세포변성효과를 형성하며 최종적으로 분리에 성공하였고 이를 PEDV-CUP-B1406 strain 이라 명명하였다(도 2 참조).
Figure PCTKR2016002315-appb-I000001
<1-3> 분리한 바이러스의 유전자 분석
상기 실시예 1-2에서 분리한 PEDV가 실제로 야외주인지 또는 백신주인지를 구별하기 위하여 유전자 분석을 실시하였다. 유전자 분석은 PEDV의 유일한 표면 단백질이라 알려져 있는 spike protein 유전자를 분석하였다. 이를 위하여 PEDV spike protein유전자에 대한 프라이머, 즉 PED S1_S (서열번호 3, GGT ACC ATG AGG TCT TAA ATT TAC) 와 PED S1_AS (서열번호 4, ACC ACC AAA AGC CGC AGA GAC AGT)를 이용하여 RT-PCT을 실시하여 유전자 증폭을 한 이후에 이들 유전자의 유전자 염기서열 분석을 통하여 비교분석 하였다.
유전자 염기서열 분석을 한 이후에 상기 실시예 1-2에서 분리한 PEDV가 실제로 다른 PEDV들과 얼마나 상동성이 있는지 분석하기 위하여, 현재 우리나라에서 분리되어 보고된 PEDV인 SM98, DR13 strain 들과 비교분석한 결과, PEDV-CUP-B1406 strain은 이들과 각각 93.1%, 93.7%의 상동성만을 보여 상당히 다름을 알 수 있었고, 2009년에 분리된 KNU-0905와는 95.8%로 상동성이 다름을 보였다. 특히 PEDV-CUP-B1406 strain은 최근 미국, 캐나다, 일본, 대만, 중국 등지에서 최근 유행하고 있는 주들과 97.6-99.6%의 상동성을 보여 국내에서 2013년 말 이전에 발생하지 않았던 새로운 변이주로 확인하였다.
이러한 유전자 상동성 결과물을 바탕으로 유전계통학적 분석에 용이한 phylogenetic tree 분석 결과에서도 다른 백신주들이 group 1a에 속하는 반면 PEDV-CUP-B1406 strain은 group 2b에 속해 확연히 다름을 증명 할 수 있었다(도 3 참조).
<실시예 2>
PEDV-CUP-B1406 바이러스의 연속 계대 배양을 통한 바이러스 역가 확인
<2-1> 연속계대 배양
실시예 1에서 분리된 PEDV-CUP-B1406 strain 을 실시예 1과 동일한 방법으로 PEDV 계대배양을 실시하였다. 바이러스 접종 후 3일 후, 도 2에서와 같은 전형적인 PEDV의 세포변성효과가 보이면 세포와 배양액을 회수하여 3회 열렸다 녹여 배양 상층액으로 바이러스가 노출되도록 한 후 -80 ℃에 동결하면서 연속적으로 95대 계대배양 하였으며 계대 접종시에는 원액을 1/10 희석하여 접종하였다.
*
<2-2> PEDV 역가 측정
계대마다 채취된(harvest) 바이러스 배양액들에 대해 5대를 기준으로 역가 측정을 실시하였다. 역가 측정 방법은 Reed와 Muench 법을 이용하였다. 역가 측정을 위해 채취된 샘플은 -80 ℃에서 동결 보존 하다가 매 10개 샘플을 한번에 역가 측정을 실시하였다. 96 well plate(Nunc.)에 미리 배양된 Vero 세포를 멸균된 PBS(pH7.4)로 세척한 다음 바이러스 증식용 배지(alpha-MEM containing 0.02 % yeast extract, 0.3 % TPB and 5 ㎍/ml of Trypsin)를 이용하여 역가측정 하고자 하는 PEDV 샘플을 10진 희석하여 0.1 ml을 각 well에 접종하여 37℃에서 1시간 동안 흡착시킨다. 흡착이 끝난 후 접종 샘플액을 제거한 후 새로운 바이러스 배양용 배지 0.1 ml을 각 well에 첨가하여 37℃ CO₂배양기에서 세포변형효과가 보이는 것을 매일 관찰하였다. 접종 후 최종 4-5일까지 관찰하여 최대 바이러스 희석 배수의 역수를 TCID50(50 % Tissue Culture Infective Dose)으로 표시하였다(도 4 참조).
<실시예 3>
배양된 PEDV-CUP-B1406 strain의 병원성 시험
<3-1> 병원성 시험을 위한 바이러스주의 준비
계대수에 따른 병원성 시험을 실시하기 위해 계대 배양된 15대, 40대, 65대 그리고 95대 바이러스주를 10 TCID50/ml으로 바이러스 농도를 조정하였다. 바이러스 역가가 부족한 초기 배양 바이러스는 초원심분리(30,000 rpm, 5 hr, 4 ℃)하여 농축된 바이러스를 PBS로 희석하여 농도를 조정하였다.
<3-2> 병원성 시험
돼지유행성설사병 감염이 없고 백신 접종을 받지 아니한 모돈에서 태어난 자돈을 준비하였고, 이러한 자돈에 준비된 PEDV-CUP-B1406 strain 바이러스를 다양한 계대 배양 바이러스를 경구 접종하여 임상증상과 바이러스 배출 확인 실험을 실시하였다. 상기 모돈의 PEDV 감염 상태는 모돈의 혈중 PEDV 항체가 측정과 분변 샘플에 대한 RT-PCR을 실시하여 PEDV에 대한 음성임을 확인하였다. 이들 모돈에서 태어난 3일령 포유자돈에 대해 각 계대 배양수에 따라 각각 그룹당 5마리씩 그리고 비접종 대조군 5마리를 격리 구분하여 실험에 사용하였다. 계대배양수에 따라 준비된 PEDV 바이러스 1.0 ml(10 TCID50/ml)을 식염수 5.0 ml에 혼합하여 각 그룹별로 즉시 경구투여 하였으며 비접종대조군은 식염수 5.0 ml을 같은 방법으로 경구투여 하였다. 경구 투여 후 매일 자돈의 임상증상과 분변에 대한 RT-PCR 검사를 통해 바이러스의 병원성을 관찰하였다. 또한 설사분변은 스코어링을 정하여 설사의 강도를 측정하였는데 점수화를 하여 판정하기 쉽게하였다. 스코어링은 0, 1, 2, 3으로 0은 정상인 분변 상태, 1은 아주 미약한 설사, 2는 중정도의 설사, 3은 매우 심한 설사로 나누어 측정하였다.
시험 결과, 15대 계대배양된 PEDV-CUP-B1406 strain을 경구 투여 받은 포유자돈 3두 (1-2, 1-6, 1-8)에서 접종 후 1일부터 설사 증상을 보였으며 분변에서도 바이러스 배출이 RT-PCR로 확인되었다(표 3 참조). 설사로 인한 폐사는 5두 중 4두(80%)가 폐사하였으며 부검을 통한 내부 장기검사에서도 PEDV 감염에 의한 전형적인 증상 즉 수양성 설사, 장내 가스 및 소장내 충출혈과 같은 증상을 나타냈고, 신장에 석회화가 보여 심한 탈수 증상으로 인한 폐사를 추정할 수 있었다.
40대 계대 배양된 PEDV에 의해 접종된 경우에서도 접종 후 1일부터 설사증상은 보이지는 않았지만 2-2와 2-8번의 포유자돈에서 채취한 분변의 RT-PCR에서 바이러스가 존재함이 확인되었다. 공격접종 2일째 부터는 심한 설사증상을 보이며 결국 6-7일째 5두 중 3두가 폐사하였고 폐사체에 대한 부검에서도 설사에 의한 심한탈수 증상으로의 전형적인 PEDV 감염 증상을 보였다.
65대 계대 배양된 PEDV 접종 그룹에서는 접종 후 2일째부터 분변을 통한 바이러스 배출이 확인되었으나 설사의 정도가 그룹1과 2의 포유자돈들보다 훨씬 약하게 설사증상이 나타나는 것을 확인할 수 있었다.
95대 계대 배양된 PEDV의 경우 접종 후 설사임상 증상이 관찰되지 않았으며 또한 접종 후 2일부터 4일까지 분변에서의 소량의 바이러스 배출이 확인되었다.
따라서, 95대 계대배양한 PEDV-CUP-B1406 strain을 다음의 실험에 사용하였다.
Figure PCTKR2016002315-appb-I000002
<실시예 4>
PEDV-CUP-B1406 strain의 면역원성
상기 실시예 3에서 95대 계대된 PEDV-CUP-B1406 strain에 대한 면역원성을 확인하기 위하여 PEDV 항체 음성인 돼지를 이용하여 항체 형성 능력을 시험하였다. 체중 8~10 kg의 돼지유행성설사병 항체음성 건강한 돼지 총 15두를 사용하여 그룹당 5두씩 3개의 그룹으로 나누어 그룹1 생백신, 그룹2 불활화백신, 그룹3 대조군으로 구성하여 실험하였다. 2주 간격으로 생 바이러스의 경우 10 TCID 50/ml 농도로 1ml을, 불활화 바이러스의 경우는 10 TCID 50/ml 농도로 IMS1313 어쥬번트와 섞어서 2.0ml을 이근부에 접종하고 2차 접종 2주 후에 혈액을 채취하여 ELISA를 이용한 항체값과 중화항체가를 확인하였다. ELISA 항체가 측정은 whole virus를 coating antigen으로 이용하여 실시하였고, 중화항체가 평가는 일반적인 SN test 방법을 이용하여 실시하여 PEDV에 대한 중화능을 평가하였다. 배양세포 부유액은 증식용 배지에 Vero 세포가 ml 당 3 X 10개가 되도록 세포수를 조정하였다. 채혈된 혈액의 혈청을 분리하여 57℃에서 30분간 비동화한 후 10ug/ml의 trypsin이 함유된 MEM 배지로 2진 희석하였다. 각 희석혈청에 200 TCID50/0.1ml 의 PED 바이러스를 동량 혼합하여 37℃에서 90분간 중화시켰다. Miroplate의 well에 이 중화액 0.1ml와 배양세포 부유액 0.1ml씩 넣어 37℃ CO2 인큐베이터에서 5일간 배양 관찰하였다. 배양세포에 세포변형효과를 저지하는 혈청의 최고 희석배수를 중화항체로 하였다(도 5 참조)
<실시예 5>
PEDV-CUP-B1406 strain을 이용한 시험백신의 제조 및 면역학적 특성 분석
<5-1> 시험백신제조
불활화 백신을 제조하기 위해 Vero 세포주에 PEDV-CUP-B1406 strain을 감염시키고, 감염된 세포의 상층액을 3,000rpm에서 원심분리하여 세포 잔사를 제거한 후 바이러스 역가를 동일하게 고정한 뒤, 상층액을 30,000rpm에서 2시간 동안 원심하여 바이러스 펠렛을 수확하였다. 바이러스 펠렛을 PBS에 재분주하고 포르말린을 최종 농도 0.1 %되게 첨가하여 4 ℃에서 24시간 이상 불활화 하였다. 바이러스 불활화를 확인하기 위해서 MDCK monolayer에 감염시켜서 플라그(plague)가 형성되지 않는 것을 확인하였다. 불활화 확인이 끝난 후 바이러스 용액을 어쥬번트와 7:3의 비율로 혼합하고 Qual A(Sigma Aldrich)를 10 ㎍/ml 되게 첨가하여 시험백신을 제조하였다. 시험백신의 PEDV 항원 최종 농도는 10 TCID50 /ml 이상이다.
한편, 생백신을 만들기 위해 95대 계대한 PEDV-CUP-B1406 strain을 위와 같이 상층액을 3,000rpm에서 원심분리하여 세포 debris를 제거한 후 바이러스 역가를 동일하게 한 후 시험용 주사용 생백신주(105 TCID50/ml/dose)로 사용하였다. 또한 이 시험용 생백신주를 경구용으로 접종하게 106 TCID50 /ml/dose 로 최종농도를 맞추었다.
비교시험을 위한 양성대조군은 SM98 strain을 사용한 K사의 PED 불활화 백신과 PED생백신 및 N사의 경구백신을 사용하였다.
K사는 (주)고려비앤피의 힘백돈사방 PED사백신을 사용하였으며 N사의 경구백신은 (주)녹십자수의약품회사의 경구용PED백신으로 모두 유전자타입 그룹 1a에 속하며 백신품목허가는 2003-2004년도 경에 취득하여 10년 이상 판매하고 있으나 2014년초에 그룹 2b가 국내 대유행으로 양돈농가의 백신불신으로 범국가차원에서 백신의 효능 효과 평가를 실시한 결과 농림축산식품부는 현재 유행하고 있는 주들에 대해 설사방어에 대한 효능이 떨어지는 것으로 확인되었다.
<5-2> 마우스 접종
각 그룹당 8마리씩 암컷 BALB/c 마우스((주)오리엔트바이오)에 PEDV-CUP-B1406 시험 불활화백신과 K사 불활화백신을 왼쪽 footpad에 0.1 ml을 접종하였다. 그룹을 구분하여 첫 번째 면역 후 3주에 동일한 용량으로 booster를 한 후 혈액 샘플은 매 주마다 채혈을 실시하였다.
<5-3> 마우스 혈중 항체 역가 확인
최근 유행하는 PED항원(200ng/well)(유전자 타입 그룹 2b)을 96well에 coating하고, 4℃에서 overnight incubation 하였다. 다음날, coating 액을 suction 한 후, 각 well을 PBS-T 200ul로 3회 washing 한 후, 2% BSA가 함유된 PBS를 well 당 100ul씩 처리하여 상온에서 1시간 incubation 시켰다. 각 well을 PBST 200ul로 3회 washing 한 후, control 그룹에는 PBS 100ul를 처리하고, 시험백신 접종군의 혈청은 PBS로 200배 희석하여 100ul를, 비접종군은 혈청원액 그대로 100ul를 처리하고, 37℃에서 1시간 동안 incubation 하였다. 각 well을 PBS-T 200ul로 3회 washing 한 후, Goat anti mouse IgG: HRP를 blocking buffer에 1:1000으로 희석하여 well 당 100ul씩 처리하고, 37℃에서 1시간 incubation 하였다. 각 well을 PBS-T 200ul로 3회 washing 한 후, TMB solution을 100ul씩 처리하고, 상온에서 10분간 incubation 하였다. Stop solution 100ul를 처리한 후, 450nm에서 OD 값을 측정하였다.
PED에 대한 총IgG의 수준이 PEDV-CUP-B1406 strain을 이용한 불활화백신을 접종한 그룹이 K사 불활화백신을 접종한 것 보다 높은 수준을 보였다. 총 IgG 항체가 수준은 백신접종 후 4주부터 큰 차이를 보이기 시작하였으며 K사 불활화백신에 비교해 PEDV-CUP-B1406 strain을 이용한 백신에 항체가는 2배 이상 큰 차이를 보여주었다(도 6 참조).
<5-4> 혈중 중화항체가 확인
마우스 접종 실험을 통해 얻어진 혈청을 이용하여 중화항체가 측정하여 비교하였다. 배양세포 부유액은 증식용 배지에 Vero 세포가 ml 당 3 X 10개가 되도록 세포수를 조정하였다. 채혈된 혈액의 혈청을 분리하여 57℃에서 30분간 비동화한 후 10ug/ml의 trypsin이 함유된 MEM 배지로 2진 희석하였다. 각 희석혈청에 200 TCID50/0.1ml 의 시험백신 제조용 바이러스와 동일한 바이러스를 동량 혼합하여 37℃에서 90분간 중화시켰다. Miroplate의 well에 이 중화액 0.1ml와 배양세포 부유액 0.1ml씩 넣어 37℃에서 5일간 배양관찰 하였다. 배양 세포에 CPE를 저지하는 혈청의 최고 희석 배수를 중화항체가로 하였다.
그 결과, PEDV-CUP-B1406 바이러스에 의한 중화항체가가 6주째에 7(Log2), K사 불활화백신에 의한 중화항체가는 4(Log2)으로 PEDV-CUP-B1406 바이러스에 의한 중화항체가 형성이 더 높음을 알 수 있었다(도 7 참조).
<5-5> IFN-γ수치측정
두 그룹에 포르말린 inactivated PED로 자극을 해준 후, 다음날 conjugated Ab of IFN-γ를 주사해 주었다. 4시간 후에 채혈하였고, 혈청은 Mouse IFN-γIn vivo Capture Assay Set 매뉴얼에 준하여 ELISA를 실시하여 IFN-γ수치를 측정하였다.
그 결과, PEDV-CUP-B1406 백신을 접종한 그룹에서 K사 불활화백신을 접종한 그룹보다 IFN-γ양이 높음을 확인할 수 있었다(도 8 참조).
<실시예 6>
PEDV -CUP-B1406 strain을 이용한 시험백신의 모돈 접종 및 자돈 공격 접종을 통한 방어력 확인시험
PEDV-CUP-B1406 strain을 이용한 백신과 현재 시판중인 K사(SM98) 생백신과 불활화백신 및 N사 경구백신을 임신한 모돈에 접종한 후 모돈에서 태어난 자돈에 야외 병원성 PEDV 바이러스를 표 3에 개시한 바와 같은 구성으로 경구 공격접종 한 후 자돈의 생존율을 확인하여 백신의 방어력을 비교 측정하였다.
Figure PCTKR2016002315-appb-I000003
그룹을 7개로 나누어서 모돈 2두씩 분만 4주 그리고 2주전에 K사 생백신 (그룹 2)과 불활화백신(그룹 4)그리고 N사 경구백신 (그룹 5)들을 접종하였고 PEDV-CUP-B1406주로 만든 생백신(그룹 1), 불활화백신(그룹 3), 경구백신(그룹 5)을 각각 임신한 모돈 2마리에 같은 방법으로 2회 접종하고 백신 접종으로 인한 모돈의 혈중 중화항체가와 초유 항체가를 측정하였다. 그리고 각각의 모돈에서 태어난 건강한 자돈 5마리를 무작위로 선정하여 최근 유행하는 병원성이 강한 PED 야외바이러스 PEDV-CUP-B1406 strain의 15대 계대한 것을 공격용바이러스(10 TCID50/ml)로 경구 투여하여 자돈의 생존율과 설사증상을 관찰하였다. 또한 임상 증상을 보이는 자돈의 장 조직을 면역화학염색법으로 검사하였다.
그 결과, ELISA법을 이용하여 모돈의 혈중 항체가 측정시 PEDV-CUP-B1406 백신을 접종한 모돈의 혈중 항체가가 기존의 K사 생백신 및 불활화백신 그리고 N사 경구백신을 접종한 모돈 보다 높게 측정되었다. 또한 세포를 이용한 중화시험시에서도 PEDV-CUP-B1406 백신의 중화 항체가가 높게 형성되는 것을 관찰 할 수 있었다(표 4 참조). 이러한 결과는 기존 상업용 백신들이 최근 유행하는 PED바이러스들과 면역적 매칭이 떨어지는 것으로 해석이 된다(표 4 참조).
Figure PCTKR2016002315-appb-I000004
모돈에 생백신을 접종한 그룹 1과 그룹2 및 대조군 그룹7에 대해 분만후 3일령 자돈을 5두씩을 선발하여 폐사방어능과 설사방어능에 대해 공격접종시험 결과(표 5) K사 생백신접종 그룹인 2그룹 포유자돈 10두에서 6일-7일에 설사에 의한 탈수로 인해 폐사가 3두 발생함에 따라 70% 폐사방어율을 나타났었고 설사 또한 모든 개체에서 중정도의 설사를 보였다. 그룹 7의 양성대조군에서는 폐사방어율 20% 밖에 유지를 못하였고 심한 구토와 수양성설사를 일으키면서 결국에는 탈수 증세로 폐사가 6-7일째 발생하였다. 하지만 그룹 1의 PEDV-CUP-B1406주로 만든 생백신은 폐사가 7일까지 발생하지 않아 생존율 100%를 나타내었고 설사 또한 매우 약한 정도의 설사를 2일에서 4일 사이에 보이다가 6일부터 체중이 회복되는 것으로 조사되었다 (표 5 참조). 또한 그룹 3와 그룹 4의 불활화백신에 의한 자돈 공격접종에서도 그룹 4의 자돈들은 2두가 폐사하여 폐사방어율 80%을 보였고 나머지 8두들도 중정도의 설사를 보이고 체중이 감소된 것을 확인 할 수 있었으나 그룹 3의 PEDV-CUP-B1406주로 만든 불활화백신은 폐사가 7일까지 발생하지 않았으며 설사 또한 매우 약한 정도의 설사를 2일에서 5일 사이에 보이다가 6일부터 체중이 회복되는 것으로 조사되었다 (표 6 참조). 한편 그룹 5와 그룹 6의 경구백신에 대한 자돈 공격접종에서는 그룹 6의 자돈들은 3두가 폐사하여 폐사방어율 70%를 보였고 나머지 7두들도 중정도의 설사를 보인 반면 그룹 5의 PEDV-CUP-B1406주로 만든 경구백신은 폐사가 1두 발생하여 폐사방어율 (생존율) 90%를 보였으며 나머지 9두들은 매우 약한 정도의 설사를 2일에서 5일 사이에 보이다가 6일부터 체중이 급격히 회복되는 것으로 조사되었다 (표 7 참조). PEDV-CUP-B1406주로 만든 생백신, 불활화백신 및 경구백신을 접종하여 태어난 포유자돈에 야외 PED바이러스 공격접종시 기존에 백신들에서 나타나는 급격한 체중감소후 체중회복이 더디어 상품성으로서의 경제적가치가 떨어지는 것에 비해 음성대조군과 같이 정상 체중회복이 PEDV-CUP-B1406주로 만든 백신들에서 6일째부터 급격히 정상체중으로 회복됨이 조사되었다 (도 9 참조).
각 그룹당 포유자돈들에 대한 H & E 염색결과(도 10 내지 도 13 참조), PEDV-CUP-B1406주로 만든 생백신 (그룹 1), 불활화백신 (그룹 3), 경구백신 (그룹 5)에서의 포유자돈들의 소장융모 및 장 상피세포에서 거의 모두 정상 소견을 양성 및 음성대조군 대비하여 보였다. 반면에 양성대조군으로 실험한 그룹 7에서의 포유자돈 장상피 융모의 길이가 거의 모두 탈락되어 짧아졌고 장 상피세포는 정상에 비해 납작해져 있으며, 세포질에 공포를 함유하는 소견이 조사되었다. 또한 면역조직화학염색 결과에서도 양성 대조군에서 PED 항원 양성으로 인해 상피세포의 급격한 탈락현상을 볼 수 있었다. 또한, PEDV-CUP-B1406주로 만든 백신그룹에서도 소장상피세포에서 PED항원이 확인되었으나 상피세포 탈락 등의 소실이 거의 일어나지 않는 것이 확인이 되어 이러한 현상 때문에 2일 정도의 미약한 설사 후 체중회복이 빨리 정상으로 돌아올수 있다는 것을 확인 할 수 있었고 K사 백신접종 그룹에서도 PED항원이 상피세포에서 관찰 할 수 있었는데 소장상피세포의 탈락현상이 PEDV-CUP-B1406주로 만든 백신그룹 포유자돈들 보다도 심한 것이 확인되었다.
Figure PCTKR2016002315-appb-I000005
Figure PCTKR2016002315-appb-I000006
Figure PCTKR2016002315-appb-I000007
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
Figure PCTKR2016002315-appb-I000008

Claims (10)

  1. 돼지 유행성설사병 바이러스(PEDV) 약독화주(수탁번호 : KCTC 12886BP).
  2. 제1항의 돼지 유행성설사병 바이러스 약독화주를 포함하는 돼지 유행성설사병의 생백신 조성물.
  3. 제2항의 돼지 유행성설사병의 생백신 조성물을 포함함을 특징으로 하는 백신.
  4. 돼지에서 돼지 유행성설사병에 대한 보호성 면역 반응을 유도하는 방법으로서, 제3항의 백신의 면역 유효량을 돼지에게 투여하는 단계를 포함하는 것인 보호성 면역 반응의 유도법.
  5. 제1항의 돼지 유행성설사병 바이러스 약독화주를 포함하는 돼지 유행성설사병의 불활화 백신 조성물.
  6. 제5항의 돼지 유행성설사병의 불활화 백신 조성물 및 면역강화제를 추가로 포함함을 특징으로 하는 백신.
  7. 제6항에 있어서, 상기 바이러스주의 불활화는 포르말린을 첨가함으로써 이루어지는 것을 특징으로 하는 조성물.
  8. 돼지에서 돼지 유행성설사병에 대한 보호성 면역 반응을 유도하는 방법으로서, 제6항의 백신의 면역 유효량을 돼지에게 투여하는 단계를 포함하는 것인 보호성 면역 반응의 유도법.
  9. (1) 백신을 돼지에게 투여할 수 있는 디스펜서;
    (2) 제3항 또는 제6항의 백신을 포함하는 돼지 유행성설사병 바이러스 감염 예방용 조성물을 함께 포함하는 키트.
  10. 제9항에 있어서, 디스펜서가 이의 내용물을 분배할 수 있고; 조성물이 근육내 접종되는 경우 돼지 유행성설사병 감염을 예방할 수 있는 키트.
PCT/KR2016/002315 2015-10-28 2016-03-09 돼지유행성설사병바이러스 약독화주 및 불활화백신 조성물과 이를 이용한 경구 투여용 백신 조성물 WO2017073851A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150149815A KR101654023B1 (ko) 2015-10-28 2015-10-28 돼지유행성설사병바이러스 약독화주 및 불활화백신 조성물과 이를 이용한 경구 투여용 백신 조성물
KR10-2015-0149815 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073851A1 true WO2017073851A1 (ko) 2017-05-04

Family

ID=56946192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002315 WO2017073851A1 (ko) 2015-10-28 2016-03-09 돼지유행성설사병바이러스 약독화주 및 불활화백신 조성물과 이를 이용한 경구 투여용 백신 조성물

Country Status (2)

Country Link
KR (1) KR101654023B1 (ko)
WO (1) WO2017073851A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517318A (zh) * 2018-03-30 2018-09-11 河南省动物疫病预防控制中心 一种猪流行性腹泻病毒的变异毒株及其应用
CN111041002A (zh) * 2019-12-23 2020-04-21 武汉科前生物股份有限公司 猪流行性腹泻病毒变异株2a、2b二价灭活疫苗及其制备方法
CN114350618A (zh) * 2021-12-31 2022-04-15 广州格雷特生物科技有限公司 一种猪流行性腹泻病毒及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253210B1 (ja) * 2016-08-17 2017-12-27 一般財団法人日本生物科学研究所 豚流行性下痢の予防又は治療方法、ワクチン、及びワクチンキット
CN107412763B (zh) * 2017-04-26 2020-10-16 广州渔跃生物技术有限公司 一种猪流行性腹泻病毒灭活疫苗及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100267747B1 (ko) * 1998-04-03 2000-10-16 이재진 돼지 대장균 및 유행성 설사바이러스에 의한 설사증 예방 및치료용 난황항체를 이용한 복합 면역제제
KR20040092760A (ko) * 2003-04-29 2004-11-04 박봉균 약독화된 돼지 유행성설사병 바이러스, 그를 포함하는면역원성 조성물 및 상기 바이러스를 검출하는 방법
KR100737434B1 (ko) * 2006-03-10 2007-07-09 대한민국 돼지전염성위장염바이러스, 유행성설사바이러스 및로타바이러스의 혼합생백신 및 이를 이용한 백신접종방법
KR101442493B1 (ko) * 2014-02-21 2014-09-26 우진 비앤지 주식회사 돼지유행성설사병바이러스 약독화주 및 이를 포함하는 돼지유행성 설사병 백신 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0143239B1 (ko) * 1994-12-22 1998-07-01 김광희 돼지 유행성 설사병 예방약 생산을 위한 약독화 바이러스주
KR20080082883A (ko) 2007-03-09 2008-09-12 전남대학교산학협력단 약독화된 보르데텔라 브론키셉티카 (bbs) 균주 및 그의제조 방법, 그를 포함하는 면역원성 조성물 및 그를 이용한포유동물의 bbs 감염증을 치료 또는 예방하는 방법
KR101281361B1 (ko) 2011-07-18 2013-07-02 서울대학교산학협력단 북미형 돼지 생식기 호흡기 증후군 바이러스 예방 백신 조성물 및 이를 포함하는 혼합백신 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100267747B1 (ko) * 1998-04-03 2000-10-16 이재진 돼지 대장균 및 유행성 설사바이러스에 의한 설사증 예방 및치료용 난황항체를 이용한 복합 면역제제
KR20040092760A (ko) * 2003-04-29 2004-11-04 박봉균 약독화된 돼지 유행성설사병 바이러스, 그를 포함하는면역원성 조성물 및 상기 바이러스를 검출하는 방법
KR100737434B1 (ko) * 2006-03-10 2007-07-09 대한민국 돼지전염성위장염바이러스, 유행성설사바이러스 및로타바이러스의 혼합생백신 및 이를 이용한 백신접종방법
KR101442493B1 (ko) * 2014-02-21 2014-09-26 우진 비앤지 주식회사 돼지유행성설사병바이러스 약독화주 및 이를 포함하는 돼지유행성 설사병 백신 조성물

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517318A (zh) * 2018-03-30 2018-09-11 河南省动物疫病预防控制中心 一种猪流行性腹泻病毒的变异毒株及其应用
CN108517318B (zh) * 2018-03-30 2021-11-16 河南省动物疫病预防控制中心 一种猪流行性腹泻病毒的变异毒株及其应用
CN111041002A (zh) * 2019-12-23 2020-04-21 武汉科前生物股份有限公司 猪流行性腹泻病毒变异株2a、2b二价灭活疫苗及其制备方法
CN111041002B (zh) * 2019-12-23 2021-08-20 武汉科前生物股份有限公司 猪流行性腹泻病毒变异株2a、2b二价灭活疫苗及其制备方法
CN114350618A (zh) * 2021-12-31 2022-04-15 广州格雷特生物科技有限公司 一种猪流行性腹泻病毒及其应用
CN114350618B (zh) * 2021-12-31 2023-06-02 广州格雷特生物科技有限公司 一种猪流行性腹泻病毒及其应用

Also Published As

Publication number Publication date
KR101654023B1 (ko) 2016-09-06

Similar Documents

Publication Publication Date Title
WO2017073851A1 (ko) 돼지유행성설사병바이러스 약독화주 및 불활화백신 조성물과 이를 이용한 경구 투여용 백신 조성물
US11103569B2 (en) Vaccine for protection against Streptococcus suis
JP2020506915A (ja) ブタコロナウイルスワクチン
KR101554080B1 (ko) 1b형 소 바이러스성 설사 바이러스 백신 조성물 및 방법
KR101656301B1 (ko) 마이코플라즈마 보비스 백신
KR102336158B1 (ko) 돼지유행성설사병바이러스 및 돼지로타바이러스에 대한 백신 조성물
KR101442493B1 (ko) 돼지유행성설사병바이러스 약독화주 및 이를 포함하는 돼지유행성 설사병 백신 조성물
KR102243374B1 (ko) 소 코로나바이러스, 소 로타바이러스 및 소 바이러스성설사병바이러스에 대한 백신 조성물
US11696944B2 (en) Vaccine for protection against Streptococcus suis
El-Jakee et al. A novel bivalent Pasteurellosis-RHD vaccine candidate adjuvanted with Montanide ISA70 protects rabbits from lethal challenge
CN108066758B (zh) 貉犬瘟热-细小病毒性肠炎二联活疫苗及其制备方法和用途
WO2020130224A1 (ko) 마이코플라즈마 폐렴 및 흉막폐렴 예방용 백신 조성물
KR101510807B1 (ko) 낭충봉아부패병 바이러스의 배양방법 및 검출방법
CA2890466C (en) Attenuated mannheimia haemolytica vaccines and methods of making and use
KR100502008B1 (ko) 약독화된 돼지 유행성설사병 바이러스, 그를 포함하는면역원성 조성물 및 상기 바이러스를 검출하는 방법
KR102365045B1 (ko) 부유세포 배양에 적응된 O/ME-SA/Ind-2001 유전형 구제역 바이러스 백신주 및 이의 제조방법
US20240197851A1 (en) A vaccine for protection against streptococcus suis serotype 9, sequence type 16
WO2016099226A1 (ko) 신규한 돼지 유행성설사 바이러스 및 그의 이용
Straub Experiences with two BHV1 marker vaccines
JP2007068401A (ja) 西ナイルウイルスワクチン
WO2014061914A1 (ko) 전염성기관지염 바이러스 k40/09주 및 이를 이용한 전염성 기관지염 백신
KR100622399B1 (ko) 불활화시킨 tgev 및 pedv을 함유하는 혼합불활화백신 및 그 제조방법
JP3043353B2 (ja) ワクチン
KR102320271B1 (ko) 부유세포 배양에 적응된 A/ASIA/Sea-97 유전형 구제역 바이러스 백신주 및 이를 포함하는 구제역 바이러스 백신 조성물
WO2023085760A1 (ko) 신규한 재조합 뉴캣슬바이러스벡터 및 이를 포함하는 백신 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860035

Country of ref document: EP

Kind code of ref document: A1