WO2017073055A1 - 搬送装置 - Google Patents
搬送装置 Download PDFInfo
- Publication number
- WO2017073055A1 WO2017073055A1 PCT/JP2016/004701 JP2016004701W WO2017073055A1 WO 2017073055 A1 WO2017073055 A1 WO 2017073055A1 JP 2016004701 W JP2016004701 W JP 2016004701W WO 2017073055 A1 WO2017073055 A1 WO 2017073055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- acceleration
- action
- control
- linear acceleration
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 131
- 238000001514 detection method Methods 0.000 claims abstract description 48
- 230000005484 gravity Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/088—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
- B25J13/089—Determining the position of the robot with reference to its environment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
- B25J9/0045—Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
- B25J9/0048—Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base with kinematics chains of the type rotary-rotary-rotary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/005—Manipulators for mechanical processing tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/087—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices for sensing other physical parameters, e.g. electrical or chemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/088—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
- B25J9/1623—Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
Definitions
- the present invention relates to a transport apparatus configured to load and transport an object.
- Patent Document 1 discloses a mobile device having a stacking unit configured to stack an object to be transported. This moving device aims to be able to move an object to be conveyed while being relatively stopped with respect to the loading unit by inclining the loading unit.
- the transport device includes an action part having a loading surface configured to place an object, a base part configured to move, a support part that supports the action part movably with respect to the base part, and an action part And a detection unit provided on one of the base units, and a control unit.
- the detection unit is configured to detect the applied gravitational acceleration and linear acceleration.
- the control unit is configured to control the support unit so as to tilt the action unit and linearly move the action unit with respect to the base unit based on the gravitational acceleration and the linear acceleration.
- This transport device can prevent the object from falling on the loading surface even if it moves.
- FIG. 1 is a perspective view of a transport apparatus according to the embodiment.
- FIG. 2 is a top view of the transport device according to the embodiment.
- FIG. 3 is a side view of the transport apparatus according to the embodiment.
- FIG. 4 is a functional block diagram of the transport device according to the embodiment.
- FIG. 5 is a side view of the transport device in the moving embodiment.
- FIG. 1 1, 2, and 3 are a perspective view, a top view, and a side view, respectively, of a transfer apparatus 100 according to the embodiment.
- FIG. 4 is a functional block diagram of the transport apparatus 100.
- the transport apparatus 100 includes an action part 11 having a loading surface 11A configured to place the object 102, a base part 12 configured to move, and the action part 11 movably supported with respect to the base part 12.
- the support unit 13 includes an arm unit 31 coupled to the action unit 11 and the base unit 12, a joint unit 32 that deforms the arm unit 31 so as to be bent, an encoder 34 that detects the state of the joint unit 32, and the joint unit 32. And a motor 35 for driving the motor.
- the control unit 14 feeds back the output of the encoder 34 and controls the motor 35 to deform the arm unit 31 so as to be bent.
- the action part 11 is rotated by a desired angle with respect to the base part 12 with respect to the desired central axis C11 out of the plurality of directions Dm on the loading surface 11A, and is desired with respect to the base part 12. It can be linearly moved by a desired distance in the direction.
- the action part 11 can be inclined with respect to the base part 12 in a plurality of directions Dm on the loading surface 11A.
- the detection unit 15 includes a motion sensor 15A and a posture sensor 15B.
- the motion sensor 15A detects the applied acceleration, and is composed of an inertial force sensor in the embodiment.
- the attitude sensor 15B directly or indirectly detects an attitude in an absolute direction such as the vertical direction D1, and is composed of a gyro sensor in the embodiment.
- the detection unit 15 has a reference direction D15 that serves as a reference for the acceleration and posture to be detected. Since the detection unit 15 is fixed to the base unit 12, the motion sensor 15A detects the applied acceleration, and the posture sensor 15B is a posture of the detection unit 15 with respect to an absolute direction such as the vertical direction D1, that is, a reference direction. The angle of D15 is detected directly or indirectly.
- the motion sensor 15 ⁇ / b> A may further detect the angular velocity applied to the detection unit 15. Since the detection unit 15 is fixed to the base unit 12, the reference direction D15 is fixed to the base unit 12, and is fixed to the direction Dm. Therefore, the detection unit 15 can detect the direction of the linear acceleration AL100 applied by inertia with respect to the acceleration A1 in the direction Dm.
- the transport apparatus 100 can move in various substantially horizontal directions Dm.
- the control unit 14 is configured to control the support unit 13 so as to rotate the action unit 11 and linearly move the action unit 11 with respect to the base unit 12. Thereby, the conveying apparatus 100 can move in various directions Dm so as not to knock down the object 102 placed on the stacking surface 11A.
- FIG. 5 is a side view of the transport apparatus 100 moving in the direction Dm1 in the direction Dm with the acceleration A1.
- the linear acceleration AL100 in the direction opposite to the acceleration A1 is applied to the object 102 due to inertia.
- the gravitational acceleration AG100 is also applied to the object 102, a synthetic acceleration A100 that is the sum of the linear acceleration AL100 and the gravitational acceleration AG100 is applied to the object 102.
- the support unit 13 tilts the stacking surface 11 ⁇ / b> A of the action unit 11 so that the normal direction N ⁇ b> 11 ⁇ / b> A of the loading surface 11 ⁇ / b> A of the action unit tilts in the direction opposite to the linear acceleration AL ⁇ b> 100. Prevents the load surface 11A from falling over.
- the motion sensor 15A of the detection unit 15 shown in FIG. 4 detects the synthetic acceleration A100 applied to the detection unit 15.
- the attitude sensor 15B detects the direction of the gravitational acceleration AG100 applied to the detection unit 15.
- the detection unit 15 separates the combined acceleration A100 into the linear acceleration AL100 and the gravitational acceleration AG100 based on the detected direction of the combined acceleration A100, the gravitational acceleration AG100, and the direction of the linear acceleration AL100.
- the control unit 14 Based on the gravitational acceleration AG100 and the linear acceleration AL100 detected by the detection unit 15, the control unit 14 rotates the action unit 11 around the central axis C11 on the loading surface 11A and tilts the action unit 11 to the base unit 12. On the other hand, the support part 13 is controlled to move in a direction parallel to the linear acceleration AL100. Specifically, the control unit 14 obtains an angle by which the action unit 11 is rotated about the central axis C11 from the gravitational acceleration AG100 and the linear acceleration AL100, and a distance and a direction in which the action unit 11 is moved with respect to the base unit 12. Ask for.
- the control unit 14 controls the support unit 13 to rotate the action unit 11 about the central axis C11 by the obtained angle and move the action unit 11 with respect to the base part 12 in the obtained direction by the obtained distance.
- the control unit 14 controls the support unit 13 by feedforward control based on the gravitational acceleration AG100 and the linear acceleration AL100.
- the control unit 14 When the linear acceleration AL100 changes, the control unit 14 starts to linearly move the action part 11 with respect to the base part 12, and then rotates the action part 11 about the central axis C11 and tilts with respect to the base part 12.
- the support portion 13 is controlled so as to change the angle to be performed. Specifically, when the linear acceleration AL100 increases, the control unit 14 starts to linearly move the action unit 11 at a speed having a component in the direction of the linear acceleration AL100 with respect to the base part 12 and then moves the action unit 11.
- the support portion 13 is controlled to rotate around the central axis C ⁇ b> 11 and change the angle of inclination with respect to the base portion 12.
- the control unit 14 starts to linearly move the operating unit 11 with respect to the base unit 12 at a speed having a component in the opposite direction to the linear acceleration AL100.
- the support portion 13 is controlled so as to change the angle of tilting with respect to the base portion 12 by rotating around the central axis C11.
- the control unit 14 starts moving the action unit 11 linearly at a speed in the direction of the linear acceleration AL100 with respect to the base part 12 and then moves the action part 11 to the central axis.
- the support portion 13 is controlled so as to change the angle of inclination with respect to the base portion 12 by rotating around C11.
- the control unit 14 starts to linearly move the action part 11 with respect to the base part 12 at a speed in the direction opposite to the linear acceleration AL100, and then moves the action part 11 to the central axis C11.
- the support portion 13 is controlled so as to change the angle at which it is tilted with respect to the base portion 12.
- the transport device 100 regards the direction Dm2 as the direction Dm1 and operates in the same manner as described above.
- the mobile device disclosed in Patent Document 1 aims to move the object to be conveyed while being relatively stopped with respect to the stacking unit by tilting the stacking unit. Similar to this mobile device, when the acceleration A1 at which the transport device 100 is moving is constant, the object 102 is overturned by inclining the loading surface 11A of the action portion 11 with respect to the base portion 12 at a constant angle. You can avoid it.
- the object 102 can be prevented from falling if the action part 11 is rotated and tilted simultaneously with the change.
- the action part 11 cannot actually be rotated simultaneously with the change of the acceleration A1, and the change of the acceleration A1 and the action part 11 are rotated.
- the target object 102 may be tilted with respect to the loading surface 11 ⁇ / b> A and fall down. Therefore, even in the mobile device disclosed in Patent Document 1, the object to be transported may be tilted with respect to the loading unit and fall down There is sex.
- the action part 11 is tilted so that the target object 102 moves upward in the direction opposite to the gravitational acceleration AG100, the target object 102 may further tilt and fall.
- the control unit 14 starts the linear movement of the operating unit 11 with respect to the base unit 12 and then moves the operating unit 11 to the central axis.
- the support portion 13 is controlled so as to change the angle of inclination with respect to the base portion 12 by rotating around C11.
- the control unit 14 controls the support unit 13 so that a combined acceleration A100 that is the sum of the gravitational acceleration AG100 and the linear acceleration AL100 is substantially perpendicular to the loading surface 11A. This prevents the object 102 from tilting and falling over the loading surface 11 ⁇ / b> A of the action unit 11.
- the object 102 is in contact with the stacking surface 11A at at least two positions P1 and P2.
- the control unit 14 is configured to control the support unit 13 so that a straight line L102 that passes through the center of gravity G102 of the object 102 and extends in the direction of the resultant acceleration A100 passes between the two positions P1 and P2. Thereby, even when the resultant acceleration A100 is not exactly perpendicular to the loading surface 11A, the object 102 is prevented from tilting and falling over the loading surface 11A of the action portion 11.
- the control unit 14 can control the support unit 13 only by the output of the detection unit 15.
- the detection unit 15 since the detection unit 15 is provided on the base unit 12, the angle, acceleration, and angular velocity can be obtained accurately and quickly, and the support unit 13 can be controlled quickly.
- the control unit 14 indirectly detects the position and tilt angle of the action unit 11 from the output of the encoder 34. Therefore, the angle of the action part 11, the distance of movement, and the speed are not necessarily determined accurately.
- control unit 14 can control the support unit 13 only by the output of the detection unit 16. The operation will be described below.
- the detection unit 16 includes a motion sensor 16A and a posture sensor 16B.
- the motion sensor 16A detects the applied acceleration, and is composed of an inertial force sensor in the embodiment.
- the attitude sensor 16B directly or indirectly detects an attitude in an absolute direction such as the vertical direction D1, and is composed of a gyro sensor in the embodiment.
- the detection unit 16 has a reference direction D16 serving as a reference for the acceleration and posture to be detected. Since the detection unit 16 is fixed to the action unit 11, the motion sensor 16A detects the applied acceleration, and the posture sensor 16B is a posture of the detection unit 16 with respect to an absolute direction such as the vertical direction D1, that is, a reference direction. The angle of D16 is detected directly or indirectly.
- the motion sensor 16 ⁇ / b> A may further detect the angular velocity applied to the detection unit 16. Since the detection unit 16 is fixed to the action unit 11, the reference direction D16 is fixed to the action unit 11, and is fixed to the direction Dm. Therefore, the detection unit 16 can detect the direction of the linear acceleration AL100 applied by inertia with respect to the acceleration A1 in the direction Dm.
- the motion sensor 16 ⁇ / b> A of the detection unit 16 detects the combined acceleration A ⁇ b> 100 applied to the detection unit 16.
- the attitude sensor 16B detects the direction of the gravitational acceleration AG100 applied to the detection unit 16.
- the detection unit 16 separates the combined acceleration A100 into the linear acceleration AL100 and the gravitational acceleration AG100 based on the detected direction of the combined acceleration A100, the gravitational acceleration AG100, and the direction of the linear acceleration AL100.
- the control unit 14 controls the support unit 13 so that the direction of the resultant acceleration A100 detected by the detection unit 16 is substantially perpendicular to the loading surface 11A fixed to the reference direction D16. 11 is linearly moved with respect to the base portion 12 and is rotated and inclined. In this way, the control unit 14 controls the support unit 13 by feedback control based on the resultant acceleration A100.
- control unit 14 rotates the action unit 11 around the central axis C11 based on only the output of the detection unit 16 with respect to the base unit 12 similarly to the case where the output of the detection unit 15 is used.
- the support portion 13 is controlled so as to change the angle of inclination.
- the detection unit 16 can directly and accurately detect the angle of inclination of the action unit 11.
- control unit 14 controls the support unit 13 based on the outputs of both the detection units 15 and 16. The operation will be described below.
- control unit 14 rotates the action unit 11 about the central axis C11 by the angle obtained based on the gravitational acceleration AG100 and the linear acceleration AL100 detected by the detection unit 15, and obtains the obtained distance.
- the support part 13 is controlled by feedforward control so that the action part 11 is moved relative to the base part 12.
- control unit 14 controls the support unit 13 by feedback control based on the output of the detection unit 16 so that the angle of inclination of the action unit 11 becomes the calculated angle. That is, the control unit 14 is configured to control the support unit 13 by feedforward control based on the gravitational acceleration AG100 and the linear acceleration AL100, and to control the support unit 13 by feedback control based on the gravitational acceleration AG100 and the linear acceleration AL100. Has been.
- the control unit 14 uses a common control algorithm regardless of the structure of the support unit 13. Can be controlled. Thereby, the development efficiency of the control algorithm can be improved. For example, even if the support part 13 has a structure different from the structure of the pantograph having the arm part 31 and the joint part 32, the support part 13 can be controlled by a common control algorithm.
- the transfer device 100 can be regarded as moving at an acceleration in a certain direction instantaneously. Therefore, by operating as described above with the acceleration direction as the acceleration A1 in the direction Dm1, the conveyance device 100 can prevent the object 102 from overturning even when moving while changing the direction.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Manipulator (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
11A 積載面
12 ベース部
13 支持部
14 制御部
15 検出部(第1の検出部)
16 検出部(第2の検出部)
31 アーム部
32 関節部
34 エンコーダ
100 搬送装置。
102 対象物
A100 合成加速度
AG100 重力加速度(第1の重力加速度、第2の重力加速度)
AL100 リニア加速度(第1のリニア加速度、第2のリニア加速度)
Claims (13)
- 対象物を載せるように構成された積載面を有する作用部と、
移動するように構成されたベース部と、
前記作用部を前記ベース部に対して可動に支持する支持部と、
印加された第1の重力加速度と第1のリニア加速度とを検出するように構成されて、前記作用部と前記ベース部のうちの一方に設けられた第1の検出部と、
前記第1の重力加速度と前記第1のリニア加速度とに基づき、前記作用部を傾斜させかつ前記作用部を前記ベース部に対して直線移動させるように前記支持部を制御するように構成された制御部と、
を備えた搬送装置。 - 前記制御部は、前記第1のリニア加速度が変化した場合に、前記作用部を直線移動させ始めた後に前記作用部を回転させて傾斜する角度を変化させるように前記支持部を制御するように構成されている、請求項1に記載の搬送装置。
- 前記制御部は、前記第1のリニア加速度が変化した場合に、前記第1のリニア加速度と平行な方向に前記作用部を直線移動させ始めた後に前記作用部を回転させて傾斜する角度を変化させるように前記支持部を制御するように構成されている、請求項2に記載の搬送装置。
- 前記制御部は、前記第1のリニア加速度が大きくなった場合に、前記第1のリニア加速度の方向の成分を有する速度で前記作用部を直線移動させ始めた後に前記作用部を回転させて傾斜する角度を変化させるように前記支持部を制御するように構成されている、請求項3に記載の搬送装置。
- 前記制御部は、前記第1のリニア加速度が小さくなった場合に、前記第1のリニア加速度と反対の方向の成分を有する速度で前記作用部を直線移動させ始めた後に前記作用部を回転させて傾斜する角度を変化させるように前記支持部を制御するように構成されている、請求項3または4に記載の搬送装置。
- 前記制御部は、前記第1のリニア加速度が大きくなった場合に、前記第1のリニア加速度の方向の速度で前記作用部を直線移動させ始めた後に前記作用部を回転させて傾斜する角度を変化させるように前記支持部を制御するように構成されている、請求項3に記載の搬送装置。
- 前記制御部は、前記第1のリニア加速度が小さくなった場合に、前記第1のリニア加速度と反対の方向の速度で前記作用部を直線移動させ始めた後に前記作用部を回転させて傾斜する角度を変化させるように前記支持部を制御するように構成されている、請求項3または6に記載の搬送装置。
- 印加された第2の加速度を検出するように構成されて、前記作用部に設けられた第2の検出部をさらに備え、
前記作用部と前記ベース部のうちの前記一方は前記ベース部であり、
前記制御部は、前記第1の重力加速度と前記第1のリニア加速度と前記第2の加速度とに基づき、前記作用部を傾斜させかつ前記作用部を前記ベース部に対して直線移動させるように前記支持部を制御するように構成されている、請求項1に記載の搬送装置。 - 前記第2の検出部は、前記第2の加速度に基づき、前記作用部に印加された第2の重力加速度と第2のリニア加速度とを検出し、
前記制御部は、前記第1の重力加速度と前記第1のリニア加速度と前記第2のリニア加速度と前記第2の重力加速度とに基づき、前記作用部を傾斜させかつ前記作用部を前記ベース部に対して直線移動させるように前記支持部を制御するように構成されている、請求項8に記載の搬送装置。 - 前記制御部は、
前記第1の重力加速度と前記第1のリニア加速度とに基づき、前記支持部をフィードフォワード制御により制御し、
前記第2の重力加速度と前記第2のリニア加速度とに基づき、前記支持部をフィードバック制御により制御する、
ように構成されている、請求項9に記載の搬送装置。 - 前記制御部は、前記第1の重力加速度と前記第1のリニア加速度との和である合成加速度が前記積載面に対して実質的に直角になるように前記支持部を制御するように構成されている、請求項1に記載の搬送装置。
- 前記対象物は少なくとも2つの位置で前記積載面と接触しており、
前記制御部は、前記対象物の重心を通りかつ前記第1の重力加速度と前記第1のリニア加速度との和である合成加速度の方向に延びる直線が前記2つの位置の間を通るように前記支持部を制御するように構成されている、請求項1に記載の搬送装置。 - 前記支持部は、
前記作用部と前記ベース部とに結合するアーム部と、
前記アーム部を折り曲げるように変形させる関節部と、
前記関節部の状態を検知するエンコーダと、
を有し、
前記制御部は、前記エンコーダの出力と前記第1の検出部の出力とに基づき前記支持部を制御するように構成されている、請求項1から12のいずれか一項に記載の搬送装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/750,531 US20180236668A1 (en) | 2015-10-27 | 2016-10-26 | Carrier device |
CN201680052419.9A CN108136586A (zh) | 2015-10-27 | 2016-10-26 | 搬运装置 |
JP2017547619A JPWO2017073055A1 (ja) | 2015-10-27 | 2016-10-26 | 搬送装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562246981P | 2015-10-27 | 2015-10-27 | |
US62/246,981 | 2015-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017073055A1 true WO2017073055A1 (ja) | 2017-05-04 |
Family
ID=58631407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004701 WO2017073055A1 (ja) | 2015-10-27 | 2016-10-26 | 搬送装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180236668A1 (ja) |
JP (1) | JPWO2017073055A1 (ja) |
CN (1) | CN108136586A (ja) |
WO (1) | WO2017073055A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021117647A1 (ja) * | 2019-12-13 | 2021-06-17 | ソニーグループ株式会社 | パラレルリンク装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6262193B2 (ja) * | 2015-12-24 | 2018-01-17 | Ntn株式会社 | リンク作動装置 |
JP7306406B2 (ja) * | 2018-10-05 | 2023-07-11 | ソニーグループ株式会社 | 制御装置、制御方法及びプログラム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000006064A (ja) * | 1998-06-18 | 2000-01-11 | Mecs Corp | 基板搬送ロボット |
JP2001301626A (ja) * | 2000-04-25 | 2001-10-31 | Ishikawajima Transport Machinery Co Ltd | 走行装置の揺れ防止方法及び装置 |
JP2005001055A (ja) * | 2003-06-11 | 2005-01-06 | Fanuc Ltd | ロボット装置 |
JP2006136962A (ja) * | 2004-11-11 | 2006-06-01 | Hitachi Ltd | 移動ロボット |
JP2007203965A (ja) * | 2006-02-03 | 2007-08-16 | Toyota Motor Corp | 倒立車輪型の走行体 |
JP2010225139A (ja) * | 2009-02-27 | 2010-10-07 | Toshiba Corp | 移動機器 |
JP2011005608A (ja) * | 2009-06-29 | 2011-01-13 | Seiko Epson Corp | 搬送ロボット装置および搬送ロボット装置の制御方法 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4926760A (en) * | 1989-01-27 | 1990-05-22 | Sack Allen J | Self leveling tables |
US5382885A (en) * | 1993-08-09 | 1995-01-17 | The University Of British Columbia | Motion scaling tele-operating system with force feedback suitable for microsurgery |
US6915878B2 (en) * | 1994-05-27 | 2005-07-12 | Deka Products Limited Partnership | Self-balancing ladder and camera dolly |
JP3640087B2 (ja) * | 1994-11-29 | 2005-04-20 | 豊田工機株式会社 | 工作機械 |
US5847528A (en) * | 1995-05-19 | 1998-12-08 | Canadian Space Agency | Mechanism for control of position and orientation in three dimensions |
DE19534535C2 (de) * | 1995-09-18 | 2000-05-31 | Leitz Mestechnik Gmbh | Koordinatenmeßmaschine |
US5987726A (en) * | 1996-03-11 | 1999-11-23 | Fanuc Robotics North America, Inc. | Programmable positioner for the stress-free assembly of components |
US5870834A (en) * | 1996-10-22 | 1999-02-16 | Sheldon/Van Someren, Inc. | Six-axis metrology sensor device |
US6047610A (en) * | 1997-04-18 | 2000-04-11 | Stocco; Leo J | Hybrid serial/parallel manipulator |
JPH11274031A (ja) * | 1998-03-20 | 1999-10-08 | Canon Inc | 露光装置およびデバイス製造方法ならびに位置決め装置 |
US6021579A (en) * | 1998-04-01 | 2000-02-08 | Joseph M. Schimmels | Spatial parallel compliant mechanism |
SE513503C2 (sv) * | 1998-08-26 | 2000-09-25 | Alfa Laval Agri Ab | Förfarande och anordning för att styra rörelsen hos en robotarm hos en mjölkningsrobot |
US6497548B1 (en) * | 1999-08-05 | 2002-12-24 | Shambhu Nath Roy | Parallel kinematics mechanism with a concentric sperical joint |
US6418811B1 (en) * | 2000-05-26 | 2002-07-16 | Ross-Hime Designs, Inc. | Robotic manipulator |
US6837892B2 (en) * | 2000-07-24 | 2005-01-04 | Mazor Surgical Technologies Ltd. | Miniature bone-mounted surgical robot |
SE0004466D0 (sv) * | 2000-12-04 | 2000-12-04 | Abb Ab | Mobile Robot |
US20040051260A1 (en) * | 2001-04-09 | 2004-03-18 | Axis Corp | Lifting and leveling apparatus and method |
US6729202B2 (en) * | 2001-05-31 | 2004-05-04 | UNIVERSITé LAVAL | Cartesian parallel manipulators |
US6672430B2 (en) * | 2001-07-09 | 2004-01-06 | Heidelberger Druckmaschinen Ag | Device and method for adjusting a force applied to a movable element |
US7040033B2 (en) * | 2001-10-05 | 2006-05-09 | Trustees Of Stevens Institute Of Technology | Six degrees of freedom precision measuring system |
US6948576B2 (en) * | 2002-01-10 | 2005-09-27 | Jorge Angeles | Driving and transmission unit for use in rolling vehicles |
US7152882B2 (en) * | 2002-03-28 | 2006-12-26 | Sanyo Electric Co., Ltd. | Mobile carriage |
CN1233511C (zh) * | 2002-05-23 | 2005-12-28 | 河北工业大学 | 可重组模块化3~6自由度结构解耦并联微动机器人 |
EP1509747B1 (en) * | 2002-06-04 | 2011-10-19 | Zygo Corporation | Metrology system for precision 3d motion |
JP4411867B2 (ja) * | 2003-06-04 | 2010-02-10 | トヨタ自動車株式会社 | 重心移動により操舵可能な車両 |
US7039498B2 (en) * | 2003-07-23 | 2006-05-02 | Newport Corporation | Robot end effector position error correction using auto-teach methodology |
EP1529556B1 (en) * | 2003-11-04 | 2013-02-20 | Toyota Jidosha Kabushiki Kaisha | Travelling apparatus and method for controlling thereof |
KR101151515B1 (ko) * | 2004-02-04 | 2012-07-06 | 메이저 서기컬 테크놀로지스 엘티디. | 로봇 자세에 대한 확인 시스템 |
JP4886201B2 (ja) * | 2005-03-14 | 2012-02-29 | 株式会社日立製作所 | 移動ロボット |
CN100557539C (zh) * | 2005-07-26 | 2009-11-04 | 松下电器产业株式会社 | 倒立二轮行走型机器人及其控制方法 |
US7798264B2 (en) * | 2006-11-02 | 2010-09-21 | Hutcheson Timothy L | Reconfigurable balancing robot and method for dynamically transitioning between statically stable mode and dynamically balanced mode |
US8083013B2 (en) * | 2006-12-06 | 2011-12-27 | The Regents Of The University Of California | Multimodal agile robots |
JP4605204B2 (ja) * | 2007-10-24 | 2011-01-05 | トヨタ自動車株式会社 | 倒立振子型移動体、及びその制御方法 |
US8442661B1 (en) * | 2008-11-25 | 2013-05-14 | Anybots 2.0, Inc. | Remotely controlled self-balancing robot including a stabilized laser pointer |
-
2016
- 2016-10-26 JP JP2017547619A patent/JPWO2017073055A1/ja active Pending
- 2016-10-26 US US15/750,531 patent/US20180236668A1/en not_active Abandoned
- 2016-10-26 WO PCT/JP2016/004701 patent/WO2017073055A1/ja active Application Filing
- 2016-10-26 CN CN201680052419.9A patent/CN108136586A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000006064A (ja) * | 1998-06-18 | 2000-01-11 | Mecs Corp | 基板搬送ロボット |
JP2001301626A (ja) * | 2000-04-25 | 2001-10-31 | Ishikawajima Transport Machinery Co Ltd | 走行装置の揺れ防止方法及び装置 |
JP2005001055A (ja) * | 2003-06-11 | 2005-01-06 | Fanuc Ltd | ロボット装置 |
JP2006136962A (ja) * | 2004-11-11 | 2006-06-01 | Hitachi Ltd | 移動ロボット |
JP2007203965A (ja) * | 2006-02-03 | 2007-08-16 | Toyota Motor Corp | 倒立車輪型の走行体 |
JP2010225139A (ja) * | 2009-02-27 | 2010-10-07 | Toshiba Corp | 移動機器 |
JP2011005608A (ja) * | 2009-06-29 | 2011-01-13 | Seiko Epson Corp | 搬送ロボット装置および搬送ロボット装置の制御方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021117647A1 (ja) * | 2019-12-13 | 2021-06-17 | ソニーグループ株式会社 | パラレルリンク装置 |
Also Published As
Publication number | Publication date |
---|---|
US20180236668A1 (en) | 2018-08-23 |
CN108136586A (zh) | 2018-06-08 |
JPWO2017073055A1 (ja) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017073055A1 (ja) | 搬送装置 | |
JP2011005608A (ja) | 搬送ロボット装置および搬送ロボット装置の制御方法 | |
JP6474365B2 (ja) | 物品をパレットに積み込むためのパレタイズシステム | |
JP4824492B2 (ja) | 移動型ロボット | |
TWI436868B (zh) | Transfer arm, transfer method and control method | |
US20140277721A1 (en) | Robot system and method for transferring workpiece | |
JP4718900B2 (ja) | 振り分け装置及び振り分け方法 | |
JP2007283436A (ja) | ロボット、ロボットシステム及びハンド装置の姿勢制御方法 | |
JP6251013B2 (ja) | ドリンク容器を載置するための載置台装置 | |
WO2019049772A1 (ja) | 移載装置 | |
JP2016224654A (ja) | 自律走行ロボット | |
JP2020044588A (ja) | 物品移動装置およびロボットアームのエンドエフェクタ | |
JP7211208B2 (ja) | デパレタイズ装置及びデパレタイズ方法 | |
JP2009101898A (ja) | 倒立車輪型移動体、及びその制御方法 | |
JP5360178B2 (ja) | 走行体 | |
JP2004021693A (ja) | 搬送ロボットのテーブル角度制御方法 | |
JP6809964B2 (ja) | 制御装置 | |
JP2001301626A (ja) | 走行装置の揺れ防止方法及び装置 | |
US20180237248A1 (en) | Belt-form body conveyor | |
WO2022050203A1 (ja) | ロボット及びワーク搬送方法 | |
JP2006315178A (ja) | 産業用ロボット | |
JP6689660B2 (ja) | 建設機械の傾斜検出装置 | |
JP2016047589A (ja) | ロボットハンド | |
CN111494845B (zh) | 消防机器人及其控制方法 | |
JP2017043222A (ja) | 移動装置及び移動装置の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16859293 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15750531 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017547619 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16859293 Country of ref document: EP Kind code of ref document: A1 |