WO2020071296A1 - 制御装置、制御方法及びプログラム - Google Patents

制御装置、制御方法及びプログラム

Info

Publication number
WO2020071296A1
WO2020071296A1 PCT/JP2019/038417 JP2019038417W WO2020071296A1 WO 2020071296 A1 WO2020071296 A1 WO 2020071296A1 JP 2019038417 W JP2019038417 W JP 2019038417W WO 2020071296 A1 WO2020071296 A1 WO 2020071296A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
transport
mounting table
acceleration
moving
Prior art date
Application number
PCT/JP2019/038417
Other languages
English (en)
French (fr)
Inventor
慎司 稲本
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201980064042.2A priority Critical patent/CN112839780A/zh
Priority to EP19869778.1A priority patent/EP3862149A4/en
Priority to US17/279,942 priority patent/US20220035373A1/en
Priority to JP2020550409A priority patent/JP7306406B2/ja
Publication of WO2020071296A1 publication Critical patent/WO2020071296A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/162Mobile manipulator, movable base with manipulator arm mounted on it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0426Programming the control sequence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50393Floor conveyor, AGV automatic guided vehicle

Definitions

  • the disclosed technology relates to a control device, a control method, and a program.
  • the dish may collapse or the drink may be spilled due to acceleration or deceleration that occurs during transportation.
  • the disclosed technology has been made in view of the above, and aims to safely transport an object to be transported.
  • the first control unit controls a moving speed of the moving unit.
  • the second control unit moves the transport unit relative to the moving unit according to acceleration or deceleration of the moving unit.
  • the transport target can be transported safely.
  • FIG. 2 is a diagram illustrating a configuration example of a transport robot according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a control device according to the first embodiment.
  • FIG. 7 is a diagram provided for describing an operation example of the transport robot according to the first embodiment.
  • FIG. 7 is a diagram provided for describing an operation example of the transport robot according to the first embodiment.
  • FIG. 7 is a diagram provided for describing an operation example of the transport robot according to the first embodiment.
  • FIG. 7 is a diagram provided for describing an operation example of the transport robot according to the first embodiment.
  • FIG. 7 is a diagram provided for describing an operation example of the transport robot according to the first embodiment.
  • FIG. 7 is a diagram provided for describing an operation example of the transport robot according to the first embodiment.
  • FIG. 7 is a diagram provided for describing an operation example of the transport robot according to the first embodiment.
  • FIG. 7 is a diagram provided for describing an operation example of the transport robot according to the first embodiment.
  • FIG. 13 is a diagram provided for describing an operation example of the transport robot according to the second embodiment.
  • FIG. 16 is a diagram provided for describing an operation example of the transport robot according to the third embodiment.
  • FIG. 16 is a diagram provided for describing an operation example of the transport robot according to the third embodiment.
  • FIG. 14 is a diagram illustrating a configuration example of a transport robot according to a fourth embodiment.
  • control device a control method, and a program disclosed in the present application
  • control method a control method
  • program disclosed in the present application are not limited by the embodiment.
  • components having the same function are denoted by the same reference numerals.
  • Example 1 ⁇ Configuration of transport robot> ⁇ Configuration of control device> ⁇ Determining the characteristics of the transported object> ⁇ Determination of mounting table acceleration upper limit and mounting table speed upper limit> ⁇ Operation of transport robot> ⁇ Relationship between forces applied to the object to be transported (Figs. 3 and 4)> ⁇ Countermeasure 1 (Figs. 5 to 7)> ⁇ Countermeasure 1-1 (Fig. 5)> ⁇ Countermeasure 1-2 (Fig. 6)> ⁇ Countermeasure 1-3 (Fig. 7)> ⁇ Countermeasure 2 (Figs.
  • FIG. 1 is a diagram illustrating a configuration example of the transport robot according to the first embodiment.
  • the transport robot 1 includes a chassis 11, a mounting table 12, a connection arm 13, and a control device 20.
  • the chassis 11 is a moving unit that moves the transport robot 1 along, for example, a floor surface, and has a moving mechanism such as a wheel WH or a caterpillar, for example.
  • various types of movable structures such as a walking mechanism composed of two or more legs and a spherical moving mechanism that rotates by itself can be used as the transport robot 1. It is also possible to use a moving unit.
  • the control device 20 is mounted in, for example, the chassis 11. Since the chassis 11 and the mounting table 12 are connected by the bending and telescopic connecting arms 13, the chassis 11 and the mounting table 12 can operate independently of each other.
  • the transport object CO is mounted on the upper surface of the mounting table 12.
  • the transport target CO foods and drinks such as dishes and drinks provided at restaurants are listed.
  • the dishes are placed on the mounting table 12 in a state of being served on a plate, and the drinks are mounted on the mounting table 12 while being poured into a glass.
  • the transport object CO placed on the mounting table 12 connected to the chassis 11 via the connecting arm 13 is transported as the chassis 11 moves while being mounted on the mounting table 12.
  • the mounting table 12 is an example of a “transport unit” that contacts the transport object CO and transports the transport object CO.
  • FIG. 2 is a diagram illustrating a configuration example of the control device according to the first embodiment.
  • the control device 20 includes a transport object sensor 21, a characteristic determination unit 22, an external situation sensor 23, an operation determination unit 24, a chassis control unit 25, a mounting table control unit 26, and a storage unit 27.
  • the characteristic determining unit 22, the operation determining unit 24, the chassis control unit 25, and the mounting table control unit 26 are realized by, for example, a processor.
  • the processor include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
  • the characteristic determination unit 22, the operation determination unit 24, the chassis control unit 25, and the mounting table control unit 26 may be realized by an LSI (Large Scale Integrated Circuit) including a processor and peripheral circuits.
  • the characteristic determination unit 22, the operation determination unit 24, the chassis control unit 25, and the mounting table control unit 26 may be realized using an ASIC (Application Specific Integrated Circuit) or the like.
  • ASIC Application Specific Integrated Circuit
  • the storage unit 27 is realized by, for example, a memory.
  • Examples of the memory include a random access memory (RAM) such as a synchronous dynamic random access memory (SDRAM), a read only memory (ROM), and a flash memory.
  • RAM random access memory
  • SDRAM synchronous dynamic random access memory
  • ROM read only memory
  • flash memory a flash memory
  • All or part of each process in the following description of the characteristic determination unit 22, the operation determination unit 24, the chassis control unit 25, and the mounting table control unit 26 is performed by a processor in which the control device 20 has a program corresponding to each process. May be implemented.
  • a program corresponding to each process in the following description may be stored in the memory, and the program may be read from the memory and executed by the processor.
  • the program is stored in a program server connected to the control device 20 via an arbitrary network, downloaded from the program server to the control device 20 and executed, or stored in a recording medium readable by the control device 20. Then, the program may be read from the recording medium and executed.
  • the recording medium readable by the control device 20 includes, for example, a memory card, a USB memory, an SD card, a flexible disk, a magneto-optical disk, a CD-ROM, a DVD, and a Blu-ray (registered trademark) disk.
  • the program is a data processing method described in an arbitrary language or an arbitrary description method, and may be in any format such as a source code or a binary code. Further, the program is not necessarily limited to a single program, and the functions are achieved by cooperating with a program that is distributed as a plurality of modules or a plurality of libraries or a separate program represented by an OS. Including things.
  • the transport object sensor 21 is installed on the upper surface side of the mounting table 12, for example.
  • the transport object sensor 21 has, for example, a camera, a depth sensor, and a temperature sensor, acquires an image of the transport object CO placed on the mounting table 12, depth information, and temperature information, and obtains a characteristic of the obtained result. Output to the determination unit 22 and the operation determination unit 24.
  • the external condition sensor 23 is installed, for example, on the front side of the chassis 11 in the traveling direction.
  • the external situation sensor 23 has, for example, a camera and a depth sensor, detects an obstacle present on the movement path of the transport robot 1, and outputs a detection result to the operation determination unit 24.
  • the characteristic determination unit 22 is configured to determine whether or not the transport object CO placed on the mounting table 12 is based on the acquisition result (that is, the image of the transport object CO, the depth information, and the temperature information) input from the transport object sensor 21. And outputs the result of the determination to the operation determining unit 24.
  • the storage unit 27 stores in advance the information of the map of the moving range of the transport robot 1 and the information of the destination of the transport robot 1 in the moving range.
  • the motion determining unit 24 determines a moving route of the transport robot 1 (that is, a moving route of the chassis 11) (hereinafter, simply referred to as a “moving route”) based on the map information and the destination information stored in the storage unit 27. May be called).
  • the operation determining unit 24 may also call the acceleration of the mounting table 12 (hereinafter, “mounting table acceleration”) based on the determination result input from the characteristic determining unit 22 (that is, the characteristic of the transport object CO). ) (Hereinafter sometimes referred to as “mounting table acceleration upper limit”).
  • the operation determining unit 24 determines the upper limit value (hereinafter, referred to as “mounting table speed”) of the moving speed of the mounting table 12 (hereinafter, referred to as “mounting table speed”) based on the determination result input from the characteristic determining unit 22. Platform speed upper limit value). Further, the operation determining unit 24 determines where and how to accelerate or decelerate the chassis 11 and the mounting table 12 on the moving route so as not to exceed the mounting table acceleration upper limit value and the mounting table speed upper limit value. . That is, the operation determining unit 24 determines the moving speed or the acceleration of the chassis 11 on the moving path of the chassis 11 before the movement of the chassis 11 is started based on the characteristics of the transport object CO, and the determined result is the chassis control unit 25.
  • mounting table speed the upper limit value of the moving speed of the mounting table 12
  • the operation determining unit 24 determines where and how to control the mounting table 12 on the movement route based on the determination result (that is, the characteristic of the transport object CO) input from the characteristic determining unit 22. 11 is determined before the start of the movement, and the determination result is output to the mounting table control unit 26. In this way, the operation determining unit 24 determines the operation of the chassis 11 and the mounting table 12 before the movement of the chassis 11 starts.
  • the operation determining unit 24 determines the moving speed or acceleration of the chassis 11 and the mounting table 12 on the moving path before the movement of the chassis 11 based on the characteristics of the transport object CO.
  • the movement determining unit 24 acquires information from the transport target sensor 21 and the external situation sensor 23 at any time even while the chassis 11 is moving, and determines the status of the transport target CO, the status of obstacles on the moving route, and the like.
  • the operation of the chassis 11 and the mounting table 12 may be determined according to the above.
  • the mounting table speed upper limit value may be obtained from allowable vibration.
  • the chassis controller 25 controls the motor (not shown) of the chassis 11 and driving devices such as the wheels WH to move the chassis 11 according to the determination result of the operation determining unit 24.
  • the mounting table control unit 26 controls the operation of the mounting table 12 by controlling the operation of the connecting arm 13 according to the determination result of the operation determining unit 24 during the movement of the transport robot 1, and moves the mounting table 12 forward, backward, left and right. Move up and down in three dimensions.
  • the mounting table control unit 26 may move the mounting table 12 in accordance with an instruction from the characteristic determining unit 22 when the characteristic determining unit 22 determines the characteristic of the transport object CO.
  • the control device 20 controls the movement of the mounting table 12 connected to the movable chassis 11 by adopting the above configuration.
  • the characteristic determining unit 22 instructs the mounting table control unit 26 to temporarily vibrate the mounting table 12 and then obtains the transport target CO acquired by the transport target sensor 21.
  • the following characteristics of the transport object CO are determined based on the image, the depth information, and the temperature information.
  • the characteristic determination unit 22 determines whether or not the transport target CO has fluidity such as a source, that is, determines whether or not the transport target CO continuously shakes during the movement of the transport robot 1. Is determined as a characteristic of the transport object CO.
  • the characteristic determination unit 22 determines the difference in height between the liquid surface and the container, the viscosity of the liquid, and the like as the characteristics of the transport object CO.
  • the characteristic determining unit 22 determines, as the characteristic of the transport target object CO, how easily the serving is broken based on the shape (height and shape) of the serving dish. For example, when the shape of the serving is thin and flat, or when the serving is cotton-like, the characteristic determining unit 22 determines that the serving is likely to collapse due to the influence of the wind accompanying the movement of the transport robot 1.
  • the characteristic determining unit 22 determines whether or not the arrangement has a certain regularity as the characteristic of the transport target object CO.
  • the characteristic determination unit 22 determines whether or not the transport target CO is a high temperature as a characteristic of the transport target CO.
  • the characteristic determining unit 22 applies a load to the transport object CO before the movement of the chassis 11 starts, and the transport object sensor 21 before and after the load is applied. May be determined from the difference between the images of the transport object CO acquired by the above (that is, the difference between the image before applying the load and the image after applying the load).
  • the load applied to the transport object CO by the control of the mounting table 12 by the mounting table control unit 26 according to the instruction from the characteristic determination unit 22 includes, for example, at least one of acceleration, deceleration, and vibration of the transport object CO. Including.
  • the load when the load is applied to the transport object CO, the load is gradually increased starting from the minimum load, thereby preventing the transport object CO from falling or collapsing. For example, it is preferable to minimize the load when carrying the transport object CO while minimizing the load. Further, the extent to which the load on the transport object CO is increased may be set in advance, or may be determined based on information acquired by the transport object sensor 21.
  • a fan is provided for sending air to the transport object CO placed on the mounting table 12, a load is applied to the transport object CO by the wind before the movement of the chassis 11 is started, and the arrangement collapses from the difference between the images before and after the load. It is also possible to configure to determine ease.
  • the characteristic determination unit 22 determines the characteristics of the transport object CO by applying a load to the transport object CO before the movement of the chassis 11 starts.
  • the determination of the characteristics of the transport target CO may be used for the following determination whether the transport target CO can be transported at a specified speed, acceleration, and time before the transport of the transport target CO starts.
  • the transport object CO is a dish
  • the operation determining unit 24 determines the upper limit of the mounting table acceleration and the upper limit of the mounting table speed based on the characteristics of the transport object CO, for example, as follows.
  • the operation determining unit 24 determines the upper limit of the mounting table acceleration to a smaller value as the difference between the liquid level and the height of the container is smaller.
  • the operation determination unit 24 determines the mounting table acceleration upper limit to a smaller value as the viscosity of the liquid is smaller.
  • ⁇ Also for example, the higher the height of the arrangement, the more easily the arrangement is collapsed. Therefore, the higher the height of the arrangement, the higher the height of the arrangement, and the lower the upper limit of the mounting table acceleration.
  • the operation determining unit 24 determines the mounting table speed upper limit value to be smaller than the threshold value.
  • the operation determining unit 24 sets the mounting table acceleration upper limit value to be larger than the threshold value. Determine a smaller value.
  • the operation determination unit 24 determines the mounting table acceleration upper limit value to be smaller than the threshold value.
  • the operation determining unit 24 sets the upper limit of the mounting table acceleration and the upper limit of the mounting table speed to values smaller than the thresholds. decide.
  • FIGS. 3 to 10 are diagrams for explaining an operation example of the transport robot according to the first embodiment.
  • the operation of the mounting table 12 is controlled by controlling the operation of the connecting arm 13 by the mounting table control unit 26.
  • the operation example of the mounting table 12 will be described without the description of the connecting arm 13.
  • the inertial force F since the inertial force F is applied laterally ( ⁇ X direction) to the transport target CO, the transport target CO may be shifted from the mounting table 12 or the transport target CO may fall.
  • the inertial force F is a load in a direction different from the gravity mg always applied to the transport object CO, when the transport object CO is a dish, the inertia force F becomes a factor that breaks the serving of the dish. .
  • the following measures 1 to 3 are taken to reduce the lateral load applied to the transport object CO, preferably to 0 (zero).
  • the unit of speed is [cm / s] and the unit of acceleration is [cm / s 2 ].
  • ⁇ Countermeasure 1 (Figs. 5 to 7)> Since the inertial force applied to the transport object CO is proportional to the acceleration of the transport object CO, in the countermeasure 1, the mounting table control unit 26 is independent of the chassis 11 to reduce the absolute value of the acceleration of the transport object CO.
  • the operable mounting table 12 is moved with respect to the chassis 11 whose operation is controlled by the chassis control unit 25 as follows.
  • the measure 1 will be described by dividing it into measures 1-1, 1-2, and 1-3 (FIGS. 5, 6, and 7).
  • the acceleration of the chassis 11 may be referred to as “chassis acceleration”
  • the speed of the chassis 11 may be referred to as “chassis speed”.
  • ⁇ Countermeasure 1-1 (Fig. 5)>
  • time t1 is one second after time t0
  • time t2 is 1.5 seconds after time t0
  • the control unit 25 starts accelerating the chassis 11.
  • the measure 1-1 is, for example, to take the time when the chassis 11 starts to move or change its direction due to the design of the drive system of the chassis 11 or that the chassis 11 starts to move before the chassis 11 starts to move in consideration of safety. This is particularly useful when notifying the surroundings with sound.
  • ⁇ Countermeasure 1-2 (Fig. 6)>
  • time t12 is 0.5 seconds after time t11
  • time t13 is one second after time t11
  • the mounting table 12 when the positional relationship between the mounting table 12 and the chassis 11 is fixed (that is, when the mounting table 12 performs the same movement as the chassis 11), the mounting table 12 The load of the acceleration -100 is applied to the transport object CO to be placed.
  • the load applied to the transport object CO mounted on the mounting table 12 is reduced by an acceleration of ⁇ 50. Load can be reduced.
  • the chassis 11 starts decelerating at time t11 and stops at time t13, which is one second after time t11, whereas the mounting table 12 starts decelerating at time t11 and starts at time t11. It stops at time t14 two seconds after. Therefore, when the mounting table 12 is decelerated as shown in FIG. 6 with respect to the chassis 11 that is decelerated as shown in FIG. 6, the mounting table 12 moves with respect to the chassis 11 with respect to the chassis 11 in two seconds from time t11 to t14. Move by 50 cm in the direction (+ X direction). That is, in FIG. 6, when the load applied to the transport object CO mounted on the mounting table 12 is reduced by half from the load of the acceleration of ⁇ 100 to the load of the acceleration of ⁇ 50, the mounting table control unit 26 sets the The table 12 is moved by 50 cm with respect to the chassis 11.
  • ⁇ Countermeasure 1-3 (Fig. 7)>
  • time t22 is 0.05 seconds after time t21
  • time t23 is 0.1 seconds after time t21
  • the mounting table 12 A load of an acceleration of -1000 is applied to the mounted transport object CO.
  • the load applied to the transport object CO mounted on the mounting table 12 is reduced by an acceleration of -500. Load can be reduced.
  • the chassis 11 starts decelerating at time t21 and stops at time t23, which is 0.1 seconds after time t21, whereas the mounting table 12 starts decelerating at time t21. It stops at time t24 0.2 seconds after time t21. Accordingly, when the mounting table 12 is decelerated as shown in FIG. 7 with respect to the chassis 11 that is decelerated as shown in FIG. 7, the mounting table 12 is moved relative to the chassis 11 for 0.2 seconds from time t21 to t24. 5 cm in the traveling direction (+ X direction). That is, in FIG.
  • the mounting table control unit 26 It is sufficient to move the table 12 by 5 cm with respect to the chassis 11.
  • the amount of movement of the mounting table 12 with respect to the chassis 11 is reduced in comparison with the measure 1-2 in halving the load applied to the transport object CO as in the measure 1-2. It can be reduced to one tenth. Therefore, the measure 1-3 is particularly useful in a case where an obstacle suddenly occurs in the traveling direction of the transport robot 1 and the chassis 11 must be suddenly stopped.
  • Countermeasure 2 when the chassis 11 is accelerated, the mounting table controller 26 moves the mounting table 12 in the vertical direction ( ⁇ Y direction) so that the side surface S1 of the chassis 11 in the traveling direction is It is inclined so as to be lower than the side surface S2 on the side opposite to the traveling direction. That is, the mounting table control unit 26 tilts the mounting table 12 in the same direction as the traveling direction of the chassis 11 when the chassis 11 is accelerated.
  • the mounting table control unit 26 performs, for example, Equation (1) or Equation (2) when the chassis 11 is accelerated.
  • the mounting table control unit 26 tilts the mounting table 12 in the same direction as the traveling direction of the chassis 11, so that the transport object CO mounted on the mounting table 12 has a component corresponding to the inertial force F.
  • the force K1 and the component K2 of gravity can be balanced. Accordingly, for example, when the chassis 11 is accelerated, the mounting table controller 26 sets the angle ⁇ 1 to a larger value as the acceleration a in the same direction as the traveling direction of the chassis 11 is larger.
  • the mounting table controller 26 tilts the mounting table 12 so that the side surface S2 is lower than the side surface S1 in the vertical direction ( ⁇ Y direction), as shown in FIG. That is, the mounting table control unit 26 tilts the mounting table 12 in the direction opposite to the traveling direction of the chassis 11 when the chassis 11 is decelerated.
  • the mounting table control unit 26 performs, for example, Equation (3) or Equation (4) when the chassis 11 is decelerated.
  • the mounting table control unit 26 tilts the mounting table 12 in the direction opposite to the traveling direction of the chassis 11, so that the transport object CO mounted on the mounting table 12 has a component corresponding to the inertial force F.
  • the force K1 and the component K2 of gravity can be balanced.
  • the mounting table control unit 26 sets the angle ⁇ 2 to a larger value as the acceleration a in the direction opposite to the traveling direction of the chassis 11 is larger.
  • the angles ⁇ 1 and ⁇ 2 increase as the absolute value of the acceleration a increases.
  • the absolute value of the acceleration a may suddenly increase, for example, when an obstacle suddenly occurs in the traveling direction of the transport robot 1 and the chassis 11 must be suddenly stopped.
  • the mounting table control unit 26 rapidly increases the angles ⁇ 1 and ⁇ 2 in accordance with the sudden increase of the absolute value of the acceleration a. An increase in the lateral load on the object CO can be suppressed.
  • angles ⁇ 1 and ⁇ 2 suddenly increase, for example, when the object to be transported placed on the mounting table 12 is a dish, the serving of the dish may be broken. Further, the angles ⁇ 1 and ⁇ 2 need to be appropriately increased or decreased in accordance with the acceleration, and a sharp increase or decrease requires more precise timing control. If the timing is shifted, a load is applied to the transport object CO mounted on the mounting table 12.
  • measures 2 and 1 are used together in order to suppress the increase of the inclination angles ⁇ 1 and ⁇ 2 of the mounting table 12. Is preferred.
  • a load of “1 / cos ⁇ 1” times mxg is applied to the transport object CO vertically downward with respect to the mounting surface of the mounting table 12 having the gravity of mg.
  • the angle ⁇ 1 takes a value of 0 ° to 90 °
  • “1 / cos ⁇ 1” is 1 to ⁇ .
  • the angle ⁇ 1 increases, and “1 / cos ⁇ 1” increases.
  • the mounting table control unit 26 moves the mounting table 12 in a direction perpendicular to the mounting surface at the same time as tilting the mounting table 12 according to the countermeasure 2 according to the acceleration or deceleration of the chassis 11. Let it. For example, when the chassis 11 is accelerated or decelerated, the mounting table controller 26 tilts the mounting table 12 in accordance with the measure 2 and simultaneously accelerates the mounting table 12 vertically downward with respect to the mounting surface.
  • the first embodiment has been described above.
  • FIG. 10 is a diagram provided for describing an operation example of the transport robot according to the second embodiment. In the second embodiment, measures 1, 2, and 3 are performed together.
  • time t34 is 0 at time t31.
  • the mounting table control unit 26 linearly increases the mounting table acceleration A2 from time t31 to time t33.
  • the mounting table acceleration A2 at time t32 is -250
  • the mounting table speed V2 is 99.375.
  • the mounting table acceleration A2 becomes -500
  • the mounting table speed V2 becomes 97.5.
  • the mounting table speed V2 of the mounting table 12 at time t34 when the chassis 11 stops is 52.5
  • the mounting table speed V2 at time t35 is 2.5.
  • the mounting table control unit 26 gradually reduces the mounting table acceleration A2 of the mounting table 12 to set the mounting table acceleration V2 to 0 in synchronization with the stop of the mounting table 12 at time t37.
  • the mounting table control unit 26 linearly decreases the mounting table acceleration A2 from time t35 to time t37.
  • the mounting table acceleration A2 at time t36 is -250
  • the mounting table speed V2 is 0.625.
  • the mounting table control unit 26 gradually increases the inclination of the mounting table 12 with respect to the direction opposite to the traveling direction of the chassis 11 in accordance with the increase in the mounting table acceleration A2 during the time t31 to t33.
  • the angle ⁇ of the mounting table 12 at time t32 is ⁇ A
  • the angle ⁇ of the mounting table 12 at time t33 is an angle ⁇ B larger than ⁇ A.
  • the mounting table control unit 26 keeps the angle ⁇ at ⁇ B during the time t33 to t35 when the mounting table acceleration A2 is constant, and thereafter, during the time t35 to t37, in accordance with the decrease in the mounting table acceleration A2.
  • the angle ⁇ of the mounting table 12 at time t36 is ⁇ A.
  • the mounting table control unit 26 accelerates the mounting table 12 vertically downward with respect to the mounting surface from time t31 when the mounting table 12 starts to decelerate to time t37 when the mounting table 12 stops. Specifically, the mounting table control unit 26 controls the mounting table 12 to accelerate downwardly in the vertical direction with respect to the mounting surface (the mounting table acceleration) from time t31 to time t33 when the mounting table acceleration A2 is gradually increased. A2 ′) is given while gradually increasing. Next, the mounting table control unit 26 keeps the mounting table acceleration A2 'constant during the time t33 to t35 when the mounting table acceleration A2 is constant.
  • the mounting table control unit 26 decreases the mounting table acceleration A2 ′ with respect to the mounting table 12 from time t35 to time t37 when the mounting table acceleration A2 is gradually reduced, and then the mounting table 12 stops in the horizontal direction.
  • the mounting table acceleration A2 ′ is set to 0.
  • the chassis 11 To a predetermined height h7.
  • the vertical downward speed (mounting table acceleration V2 ′) is x.
  • the mounting table control unit 26 moves the mounting table 12 vertically upward from time t37 to t38 when the horizontal movement of the mounting table 12 is stopped and the mounting table 12 becomes parallel to the horizontal direction.
  • the mounting table A2 ′ y. Accordingly, the mounting table 12 is completely stopped with respect to the chassis 11 at time t38 which is “0.21+ (x / y)” seconds after time t31.
  • the height h8 of the mounting table 12 with respect to the chassis 12 may be, for example, 0.
  • FIGS. 11 and 12 are diagrams for explaining an operation example of the transport robot according to the third embodiment.
  • the case where the mounting table 12 is moved within the range of the width of the chassis 11 has been described as an example (FIGS. 5, 6, 7, and 10).
  • the moving range of the mounting table 12 is not limited to the range of the horizontal width of the chassis 11, and the mounting table control unit 26 moves the mounting table 12 beyond the horizontal width of the chassis 11 as shown in FIGS. You may let it.
  • the third embodiment has been described above.
  • FIG. 13 is a diagram illustrating a configuration example of the transport robot according to the fourth embodiment.
  • the transport robot 2 includes a chassis 11, a hand 16, a connecting arm 15, and a control device 20.
  • various movable components can be used as the moving unit of the transport robot 2 instead of the chassis 11. Since the chassis 11 and the hand 16 are connected by the connecting arm 15 that is bendable and extendable, the chassis 11 and the hand 16 can operate independently of each other.
  • the hand 16 grips the transport object CO.
  • the transport object CO gripped by the hand 16 connected to the chassis 11 via the connection arm 15 is transported as the chassis 11 moves while being gripped by the hand 16.
  • the hand 16 is an example of a “transport unit” that contacts the transport target CO and transports the transport target CO.
  • the transport robot 2 according to the fourth embodiment includes the hand 16 instead of the mounting table 12 included in the transport robot 1 according to the first embodiment (FIG. 1).
  • the control device 20 according to the fourth embodiment includes a “hand control unit” instead of the “mounting table control unit 26” in FIG.
  • the hand control unit performs the same control on the hand 16 as the control performed on the mounting table 12 by the mounting table control unit 26 in the first to third embodiments.
  • the fourth embodiment has been described above.
  • the disclosed technology is applicable not only when the transport robots 1 and 2 go straight, but also when the vehicle decelerates and accelerates simultaneously in different directions when turning.
  • the disclosed technology can be applied in accordance with the inertial force that acts at that time.
  • the fifth embodiment has been described above.
  • the chassis control unit 25 controls the moving speed of the chassis 11.
  • the mounting table control unit 26 moves the mounting table 12 with respect to the chassis 11 according to acceleration or deceleration of the chassis 11.
  • the mounting table control unit 26 accelerates the mounting table 12 in the same direction as the traveling direction of the chassis 11 when accelerating the chassis 11 (FIG. 5), and in the opposite direction to the traveling direction of the chassis 11 when decelerating the chassis 11.
  • the mounting table 12 is accelerated (FIGS. 6 and 7).
  • the load applied to the transport object CO placed on the mounting table 12 as the transport robot 1 moves can be reduced, so that the transport object CO can be transported safely.
  • the mounting table controller 26 sets the absolute value
  • 100, FIG. 6:
  • 100, FIG. 7:
  • 1000), the mounting table 12 is accelerated or decelerated with an absolute value acceleration
  • 50, FIG. 6:
  • 50, FIG. 7:
  • 500) smaller than the absolute value. .
  • the relative acceleration of the mounting table 12 with respect to the chassis 11 can be set to an appropriate acceleration in reducing the load on the transport object CO mounted on the mounting table 12.
  • the mounting table control unit 26 starts accelerating the mounting table 12 before the chassis control unit 25 starts accelerating the chassis 11 (FIG. 5). By doing so, it is possible to reduce the load on the transport object CO when the movement of the stopped chassis 11 is started.
  • the mounting table controller 26 controls the movement of the mounting table 12 so that the mounting table 12 is stopped with respect to the chassis 11 when the chassis controller 25 stops accelerating or decelerating the chassis 11. (FIGS. 5, 6, 7). By doing so, it is possible to reduce the load on the transport object CO when the moving speed of the chassis 11 becomes constant, and the mounting table 12 moves beyond the movable range of the connecting arm 13 with respect to the chassis 11. And trying to move can be prevented.
  • the mounting table control unit 26 changes the angle of the mounting table 12 with respect to the horizontal direction according to acceleration or deceleration of the chassis 11. For example, the mounting table control unit 26 tilts the mounting table 12 in the same direction as the traveling direction of the chassis 11 when accelerating the chassis 11 (FIG. 8), and mounts the mounting table 12 in the opposite direction to the traveling direction of the chassis 11 when decelerating the chassis 11. The table 12 is tilted (FIG. 9). By doing so, the load on the transport object CO can be further reduced.
  • the mounting table control unit 26 sets the direction parallel to the mounting surface of the mounting table 12 to be parallel to the direction of the combined acceleration obtained by combining the horizontal acceleration acting on the transport object CO and the gravitational acceleration.
  • the angle of the mounting table 12 with respect to the horizontal direction is changed. By doing so, the angle of the mounting table 12 with respect to the horizontal direction can be controlled to an angle that can minimize the load on the load CO.
  • the mounting table controller 26 moves the mounting table 12 in a direction perpendicular to the mounting surface according to acceleration or deceleration of the chassis 11. For example, the mounting table controller 26 accelerates the mounting table 12 vertically downward with respect to the mounting surface when the chassis 11 is accelerated or decelerated. By doing so, the load on the transport object CO can be further reduced.
  • the operation determining unit 24 determines the moving speed or the acceleration of the chassis 11 on the moving route before the movement of the chassis 11 based on the characteristics of the transported object CO. By doing so, the transport object CO can be transported at an appropriate moving speed or acceleration based on the characteristics of the transport object CO.
  • the characteristic determination unit 22 determines the characteristics of the transport object CO by applying a load to the transport object CO before the movement of the chassis 11 starts. In this way, the characteristics of the transport object CO can be accurately determined.
  • a control device for controlling the movement of a transport unit connected to a movable moving unit A first control unit that controls the moving speed of the moving unit, A second control unit that moves the transport unit with respect to the moving unit according to acceleration or deceleration of the moving unit, A control device comprising: (2) The second control unit provides the transport unit with an acceleration in a direction opposite to the direction of the acceleration that the first control unit provides to the moving unit, The control device according to (1). (3) The second control unit accelerates or decelerates the transport unit with an acceleration having an absolute value smaller than the absolute value of the acceleration given to the moving unit by the first control unit. The control device according to (1) or (2).
  • the second control unit starts the acceleration of the transport unit before the first control unit starts the acceleration of the moving unit, The control device according to any one of (1) to (3).
  • the second control unit controls the movement of the transport unit so that the transport unit is stopped with respect to the movable unit when the first control unit stops accelerating or decelerating the movable unit. Do The control device according to (4).
  • the second control unit performs deceleration of the transport unit even after the first control unit finishes deceleration of the moving unit, The control device according to any one of (1) to (5).
  • the second control unit changes an angle of the transport unit with respect to a horizontal direction according to acceleration or deceleration of the moving unit, The control device according to any one of (1) to (6).
  • the second control unit tilts the transport unit in the same direction as the traveling direction when accelerating the moving unit, and tilts the transport unit in a direction opposite to the traveling direction when decelerating the moving unit.
  • the control device according to (7). The second control unit is such that the mounting surface of the transport object in the transport unit is perpendicular to a direction of a combined force obtained by combining a horizontal inertial force and gravity acting on the transport object. Changing the angle of the carrier, The control device according to (7) or (8). (10) The second control unit, in response to acceleration or deceleration of the moving unit, to move the transport unit in a direction perpendicular to the mounting surface of the transport unit, The control device according to any one of (1) to (9).
  • the second control unit during acceleration or deceleration of the moving unit, accelerates the transport unit vertically downward with respect to the mounting surface of the transport unit, The control device according to (10).
  • a determination unit that determines the characteristics of the transport target transported using the transport unit, A determining unit that determines the moving speed or acceleration on the moving route of the moving unit before the moving unit starts moving, based on the characteristic;
  • the control device according to any one of (1) to (11), further comprising: (13)
  • the determining unit determines the characteristic by applying a load to the transport target using the transport unit before the movement of the moving unit starts, The control device according to (12).
  • the load includes at least one of acceleration, deceleration, and vibration of the object to be transported, The control device according to (13).
  • a control method for controlling movement of a transport unit connected to a movable moving unit, Moving the transport unit relative to the moving unit according to acceleration or deceleration of the moving unit Control method.
  • a program for controlling movement of a transport unit connected to a movable movable unit, Moving the transport unit relative to the moving unit according to acceleration or deceleration of the moving unit A program for causing a control device to execute processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

運搬対象物を安全に運搬すること。制御装置(20)は、移動可能な移動部(11)と連結された運搬部(12)の移動を制御する制御装置であって、前記移動部の移動速度を制御する第一制御部(25)と、前記移動部の加速または減速に応じて前記運搬部を前記移動部に対して移動させる第二制御部(26)とを具備する。

Description

制御装置、制御方法及びプログラム
 開示の技術は、制御装置、制御方法及びプログラムに関する。
 近年、例えば荷物等の様々な運搬対象物をロボットによって運搬する技術が検討されている。飲食店における運搬対象物の一例として、飲食店で提供される料理や飲み物等の飲食物が挙げられる。
特開2016-034685号公報 特開2005-001055号公報 特開2007-195750号公報
 例えば運搬対象物が繊細な盛り付けの料理や転倒しやすい飲み物等である場合には、運搬の際に生じる加速や減速により料理が崩れたり、飲み物がこぼれたりする可能性がある。
 開示の技術は、上記に鑑みてなされたものであって、運搬対象物を安全に運搬することを目的とする。
 開示の態様では、移動可能な移動部と連結された運搬部の移動を制御する制御装置は、第一制御部と、第二制御部とを有する。前記第一制御部は、前記移動部の移動速度を制御する。前記第二制御部は、前記移動部の加速または減速に応じて前記運搬部を前記移動部に対して移動させる。
 開示の態様によれば、運搬対象物を安全に運搬することができる。
実施例1の運搬ロボットの構成例を示す図である。 実施例1の制御装置の構成例を示す図である。 実施例1の運搬ロボットの動作例の説明に供する図である。 実施例1の運搬ロボットの動作例の説明に供する図である。 実施例1の運搬ロボットの動作例の説明に供する図である。 実施例1の運搬ロボットの動作例の説明に供する図である。 実施例1の運搬ロボットの動作例の説明に供する図である。 実施例1の運搬ロボットの動作例の説明に供する図である。 実施例1の運搬ロボットの動作例の説明に供する図である。 実施例2の運搬ロボットの動作例の説明に供する図である。 実施例3の運搬ロボットの動作例の説明に供する図である。 実施例3の運搬ロボットの動作例の説明に供する図である。 実施例4の運搬ロボットの構成例を示す図である。
 以下に、本願の開示する制御装置、制御方法及びプログラムの実施例を図面に基づいて説明する。なお、この実施例により本願の開示する制御装置、制御方法及びプログラムが限定されるものではない。また、実施例において同一の機能を有する構成には同一の符号を付す。
 また、以下に示す項目順序に従って開示の技術を説明する。
  [実施例1]
   <運搬ロボットの構成>
   <制御装置の構成>
   <運搬対象物の特性の判断>
   <載置台加速度上限値及び載置台速度上限値の決定>
   <運搬ロボットの動作>
   <運搬対象物にかかる力の関係(図3,4)>
   <対策1(図5~7)>
    <対策1-1(図5)>
    <対策1-2(図6)>
    <対策1-3(図7)>
   <対策2(図8,9)>
   <対策3>
  [実施例2]
   <運搬ロボットの動作>
  [実施例3]
   <運搬ロボットの動作>
  [実施例4]
   <運搬ロボットの構成>
  [実施例5]
   <運搬ロボットの動作>
  [開示の技術の効果]
 [実施例1]
 <運搬ロボットの構成>
 図1は、実施例1の運搬ロボットの構成例を示す図である。図1において、運搬ロボット1は、シャシー11と、載置台12と、連結アーム13と、制御装置20とを有する。シャシー11は、運搬ロボット1を例えば床面に沿って移動させる移動部であり、その移動手段として、例えば車輪WHやキャタピラなどによる走行機構を有する。ただし、シャシー11による走行機構に代えて、2本以上の脚などで構成された歩行機構や、それ自体が回転して移動する球体状の移動機構など、移動可能な種々の構成を運搬ロボット1の移動部とすることも可能である。
 制御装置20は、例えばシャシー11内に搭載される。シャシー11と載置台12とは屈曲及び伸縮自在な連結アーム13により連結されているため、シャシー11と載置台12とは互いに独立して動作可能である。載置台12の上面には、運搬対象物COが載置される。運搬対象物COの一例として、飲食店で提供される料理や飲み物等の飲食物が挙げられる。例えば、料理は皿に盛り付けられた状態で載置台12に載せられ、飲み物はコップに注がれた状態で載置台12に載せられる。連結アーム13を介してシャシー11と連結された載置台12に載せられた運搬対象物COは、載置台12に載せられた状態で、シャシー11の移動に伴って運搬される。載置台12は、運搬対象物COに接触して運搬対象物COを運搬する「運搬部」の一例である。
 <制御装置の構成>
 図2は、実施例1の制御装置の構成例を示す図である。図2において、制御装置20は、運搬対象物センサ21と、特性判断部22と、外部状況センサ23と、動作決定部24と、シャシー制御部25と、載置台制御部26と、記憶部27とを有する。
 特性判断部22、動作決定部24、シャシー制御部25及び載置台制御部26は、例えばプロセッサにより実現される。プロセッサの一例として、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)等が挙げられる。また、特性判断部22、動作決定部24と、シャシー制御部25及び載置台制御部26は、プロセッサと周辺回路とを含むLSI(Large Scale Integrated circuit)によって実現されても良い。さらに、特性判断部22、動作決定部24と、シャシー制御部25及び載置台制御部26は、ASIC(Application Specific Integrated Circuit)等を用いて実現されても良い。
 記憶部27は、例えば、メモリにより実現される。メモリの一例として、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が挙げられる。
 また、特性判断部22、動作決定部24、シャシー制御部25及び載置台制御部26での以下の説明における各処理の全部または一部は、各処理に対応するプログラムを制御装置20が有するプロセッサに実行させることによって実現しても良い。例えば、以下の説明における各処理に対応するプログラムがメモリに記憶され、プログラムがプロセッサによってメモリから読み出されて実行されても良い。また、プログラムは、任意のネットワークを介して制御装置20に接続されたプログラムサーバに記憶され、そのプログラムサーバから制御装置20にダウンロードされて実行されたり、制御装置20が読み取り可能な記録媒体に記憶され、その記録媒体から読み出されて実行されても良い。制御装置20が読み取り可能な記録媒体には、例えば、メモリカード、USBメモリ、SDカード、フレキシブルディスク、光磁気ディスク、CD-ROM、DVD、及び、Blu-ray(登録商標)ディスク等の可搬の記憶媒体が含まれる。また、プログラムは、任意の言語や任意の記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。また、プログラムは必ずしも単一的に構成されるものに限られず、複数のモジュールや複数のライブラリとして分散構成されるものや、OSに代表される別個のプログラムと協働してその機能を達成するものも含む。
 運搬対象物センサ21は、例えば、載置台12の上面側に設置される。運搬対象物センサ21は、例えば、カメラ、デプスセンサ、及び、温度センサを有し、載置台12上に載置された運搬対象物COの画像、奥行情報及び温度情報を取得し、取得結果を特性判断部22及び動作決定部24へ出力する。
 外部状況センサ23は、例えば、シャシー11の進行方向前面側に設置される。外部状況センサ23は、例えば、カメラ及びデプスセンサを有し、運搬ロボット1の移動経路上に存在する障害物を検知し、検知結果を動作決定部24へ出力する。
 特性判断部22は、運搬対象物センサ21から入力される取得結果(つまり、運搬対象物COの画像、奥行情報及び温度情報)に基づいて、載置台12上に載置された運搬対象物COの特性を判断し、判断結果を動作決定部24へ出力する。
 記憶部27には、運搬ロボット1の移動範囲のマップの情報と、移動範囲内における運搬ロボット1の目的地の情報とが予め設定され記憶されている。
 動作決定部24は、記憶部27に記憶されているマップの情報と目的地の情報とに基づいて、運搬ロボット1の移動経路(つまり、シャシー11の移動経路)(以下では単に「移動経路」と呼ぶことがある)を決定する。また、動作決定部24は、特性判断部22から入力される判断結果(つまり、運搬対象物COの特性)に基づいて、載置台12の加速度(以下では「載置台加速度」と呼ぶことがある)の上限値(以下では「載置台加速度上限値」と呼ぶことがある)を決定する。また、動作決定部24は、特性判断部22から入力される判断結果に基づいて、載置台12の移動速度(以下では「載置台速度」と呼ぶことがある)の上限値(以下では「載置台速度上限値」と呼ぶことがある)を決定する。また、動作決定部24は、載置台加速度上限値及び載置台速度上限値を超えないように、移動経路上の何処でどのようにシャシー11及び載置台12の加速または減速を行うかを決定する。つまり、動作決定部24は、運搬対象物COの特性に基づいて、シャシー11の移動経路上におけるシャシー11の移動速度または加速度をシャシー11の移動開始前に決定し、決定結果をシャシー制御部25へ出力する。また、動作決定部24は、特性判断部22から入力される判断結果(つまり、運搬対象物COの特性)に基づいて、移動経路上の何処でどのように載置台12を制御するかをシャシー11の移動開始前に決定し、決定結果を載置台制御部26へ出力する。このようにして、動作決定部24は、シャシー11の移動開始前に、シャシー11及び載置台12の動作を決定する。
 このように、動作決定部24は、運搬対象物COの特性に基づいて、シャシー11及び載置台12の移動経路上における移動速度または加速度をシャシー11の移動開始前に決定する。
 なお、動作決定部24は、シャシー11の移動中にも随時、運搬対象物センサ21及び外部状況センサ23から情報を取得し、運搬対象物COの状況や、移動経路上の障害物の状況等に応じて、シャシー11及び載置台12の動作を決定しても良い。
 また、運搬ロボット1の走行中の振動の大きさは、走行場所と速度とに依るため、事前の走行、または、過去の運搬時の走行情報に基づいて振動と速度との関係を得ておき、許容可能な振動から載置台速度上限値を求めても良い。
 シャシー制御部25は、動作決定部24での決定結果に従って、シャシー11が有するモータ(図示省略)や車輪WH等の駆動装置を制御して、シャシー11を移動させる。
 載置台制御部26は、運搬ロボット1の移動中に、動作決定部24での決定結果に従って連結アーム13の動作を制御することにより載置台12の動作を制御して、載置台12を前後左右上下の三次元で動かす。
 なお、載置台制御部26は、特性判断部22が運搬対象物COの特性を判断する際に、特性判断部22からの指示に従って載置台12を動かしても良い。
 制御装置20は、以上のような構成を採ることにより、移動可能なシャシー11と連結された載置台12の移動を制御する。
 <運搬対象物の特性の判断>
 特性判断部22は、例えば、シャシー11の移動開始前に、載置台制御部26に指示して載置台12を一時的に振動させた上で運搬対象物センサ21により取得された運搬対象物COの画像、奥行情報及び温度情報に基づいて、運搬対象物COの以下のような特性を判断する。
 例えば、特性判断部22は、運搬対象物COがソース等のような流動性を有するものであるか否か、つまり、運搬対象物COが運搬ロボット1の移動中に揺れ続けるものであるか否かを運搬対象物COの特性として判断する。
 また例えば、特性判断部22は、運搬対象物COが液体である場合に、液面と器との高さの差や、液体の粘度等を運搬対象物COの特性として判断する。
 また例えば、特性判断部22は、運搬対象物COが料理である場合に、料理の盛り付けの形状(高さや形)から盛り付けの崩れやすさを運搬対象物COの特性として判断する。特性判断部22は、例えば、盛り付けの形状が薄い平面状である場合や、綿状である場合は、運搬ロボット1の移動に伴う風の影響により盛りつけが崩れやすいと判断する。
 また例えば、特性判断部22は、盛り付けが一定の規則性を有するものであるか否かを運搬対象物COの特性として判断する。
 また例えば、特性判断部22は、運搬対象物COが高温のものであるか否かを運搬対象物COの特性として判断する。
 なお、特性判断部22は、運搬対象物COの特性をより詳細に判断するために、シャシー11の移動開始前に、運搬対象物COに負荷をかけ、負荷をかける前後で運搬対象物センサ21により取得された運搬対象物COの画像の差分(つまり、負荷をかける前の画像と負荷をかけた後の画像との差分)から盛り付けの崩れやすさを判断してもよい。特性判断部22からの指示に従った載置台制御部26による載置台12の制御によって運搬対象物COにかけられる負荷は、例えば、運搬対象物COの加速、減速及び振動のうちの少なくとも一つを含む。但し、運搬対象物COに負荷を与える際には、最小限の負荷から始めて負荷を徐々に大きくすることで、運搬対象物COの転倒や盛りつけの崩壊を防ぐ。例えば、運搬対象物COへの負荷を最も抑えて運搬を行う際の負荷を最小限の負荷とすることが好ましい。また、運搬対象物COへの負荷をどこまで上げるかは、事前設定されても良く、また、運搬対象物センサ21により取得された情報に基づいて定められても良い。
 また、載置台12に載置された運搬対象物COに風を送るファンを設け、シャシー11の移動開始前に運搬対象物COに風による負荷をかけ、その前後の画像の差分から盛り付けの崩れやすさを判断するように構成することも可能である。
 このように、特性判断部22は、シャシー11の移動開始前に運搬対象物COに負荷を与えることにより運搬対象物COの特性を判断する。
 なお、運搬対象物COの特性の判断は、運搬対象物COの運搬開始前に、指定された速度、加速度、時間で運搬対象物COが運搬可能であるか以下の判断に使用されても良い。例えば運搬対象物COが料理である場合に、運搬開始前に盛り付けが崩れることが分かれば、分かった時点で盛り付けを変更等の対応をとることが可能になる。
 <載置台加速度上限値及び載置台速度上限値の決定>
 動作決定部24は、運搬対象物COの特性に基づいて、載置台加速度上限値及び載置台速度上限値を例えば以下のように決定する。
 例えば、動作決定部24は、液面と器との高さの差が小さいほど、載置台加速度上限値をより小さい値に決定する。
 また例えば、動作決定部24は、液体の粘度が小さいほど、載置台加速度上限値をより小さい値に決定する。
 また例えば、盛りつけの高さが高いほど盛りつけが崩れやすいため、動作決定部24は、盛りつけの高さが高いほど、載置台加速度上限値をより小さい値に決定する。
 また例えば、盛り付けの形状が薄い平面状や綿状である場合は、風の影響により盛りつけが崩れやすいため、動作決定部24は、載置台速度上限値を閾値よりも小さい値に決定する。
 また例えば、盛り付けが一定の規則性を有するものである場合は、盛りつけの僅かな崩れが客からのクレームにつながる可能性があるため、動作決定部24は、載置台加速度上限値を閾値よりも小さい値に決定する。
 また例えば、動作決定部24は、運搬対象物COが流動性を有するものである場合は、載置台加速度上限値を閾値よりも小さい値に決定する。
 また例えば、運搬対象物COが高温のものである場合は、事故時の被害が大きくなるため、動作決定部24は、載置台加速度上限値及び載置台速度上限値をともに閾値よりも小さい値に決定する。
 <運搬ロボットの動作>
 図3~図10は、実施例1の運搬ロボットの動作例の説明に供する図である。なお、上記のように、運搬ロボット1においては、載置台制御部26によって連結アーム13の動作が制御されることにより載置台12の動作が制御される。しかし、以下の図3~図12を用いた動作例の説明では、説明が煩雑になることを避けるために、連結アーム13の説明を省いて載置台12の動作例を説明する。
 <運搬対象物にかかる力の関係(図3,4)>
 図3に示すように、運搬対象物COが静止した状態にある場合は、質量mの運搬対象物COに対して、重力mgと、載置台12からの表面抗力Nとがかかり、「N=mg」となる。
 これに対し、図4に示すように、運搬対象物COが加速度aで加速し、かつ、運搬対象物COが載置台12からずれない状態では、慣性形(静止系)で見ると、運搬物対象物COに対して、重力mgと、載置台12からの表面抗力Nと、載置台12からの摩擦力fと、慣性力F(=ma)とがかかる。この際、慣性力Fは運搬対象物COに対し横向き(±X方向)にかかるため、運搬対象物COが載置台12からずれたり、運搬対象物COが転倒したりすることがある。また、慣性力Fは、運搬対象物COに常にかかる重力mgとは異なる向きの負荷であるため、運搬対象物COが料理である場合には、慣性力Fが料理の盛り付けを崩す要因となる。
 そこで、本実施例では、以下の対策1~3を採ることにより、運搬対象物COにかかる横向きの負荷を減少させ、好ましくは0(ゼロ)にする。
 なお、以下では、速度の単位を[cm/s]とし、加速度の単位を[cm/s]として説明する。
 <対策1(図5~7)>
 運搬対象物COにかかる慣性力は運搬対象物COの加速度に比例するため、対策1では、載置台制御部26は、運搬対象物COの加速度の絶対値を小さくするために、シャシー11と独立して動作可能な載置台12を、シャシー制御部25により動作が制御されるシャシー11に対して以下のように移動させる。以下、対策1を対策1-1,1-2,1-3(図5,6,7)に分けて説明する。以下では、シャシー11の加速度を「シャシー加速度」と呼び、シャシー11の速度を「シャシー速度」と呼ぶことがある。
 <対策1-1(図5)>
 例えば、図5に示すように、時刻t0,t1においてシャシー速度V1=0で静止状態にあるシャシー11が、進行方向に向かって時刻t1においてシャシー加速度A1=100で加速し始め、時刻t2においてシャシー加速度A1をA1=100で一定に保ったまま加速し続け、時刻t3において加速を終えて一定のシャシー速度V1=100に達する場合を想定する。ここで、例えば、時刻t1は時刻t0の1秒後、時刻t2は時刻t0の1.5秒後、時刻t3は時刻t0の2秒後であるとする。よって、シャシー速度V1は、時刻t2でV1=50となり、時刻t3でV1=100となる。
 このように進行方向に向かって加速するシャシー11に対し、載置台制御部26は、時刻t0において、載置台12をシャシー11の進行方向に向かって載置台加速度A2=50で加速し始める。また、載置台制御部26は、時刻t1,t2において載置台加速度A2をA2=50で一定に保ったまま載置台12を加速し続け、時刻t3において載置台12の加速を終了させる。よって、載置台速度V2は、時刻t1でV2=50となり、時刻t2でV2=75となり、時刻t3でV2=100となる。よって、時刻t3で、載置台12はシャシー11に対して停止した状態となる。
 このように、シャシー11が停止状態から進行方向に向かって加速する場合は、載置台制御部26が載置台12を所定の速度(例えば、時刻t1のV2=50)まで加速した上で、シャシー制御部25がシャシー11の加速を開始する。また、シャシー11の加速が終了した時点で(例えば、時刻t3で)、載置台制御部26は、載置台速度V2をシャシー速度V1と同一の速度(例えば、V2=V1=100)になるように制御する。これにより、載置台12に載置される運搬対象物COに対してかかる負荷を50の加速度の負荷に抑えることができる。
 対策1-1は、例えばシャシー11の駆動系の設計によりシャシー11の動きだしや方向転換に時間を要する場合や、安全性を考慮してシャシー11の動きだし前に、シャシー11が動き出すことを光や音で周囲に知らせる場合に特に有用である。
 <対策1-2(図6)>
 例えば、図6に示すように、進行方向に向かってシャシー速度V1=100で移動中にあるシャシー11が、時刻t11においてシャシー加速度A1=-100で減速し始め、時刻t12においてシャシー加速度A1をA1=-100で一定に保ったまま減速し続け、時刻t13において停止する場合を想定する。ここで、例えば、時刻t12は時刻t11の0.5秒後、時刻t13は時刻t11の1秒後、時刻t14は時刻t11の2秒後であるとする。よって、シャシー速度V1は、時刻t12でV1=50となり、時刻t13でV1=0となる。
 このように進行方向に向かって減速するシャシー11に対し、載置台制御部26は、進行方向に向かって載置台速度V2=100(つまり、シャシー速度V1=100と同一の速度)で移動中にある載置台12を、時刻t11において載置台加速度A2=-50で減速し始め、時刻t12,t13において載置台加速度A2をA2=-50で一定に保ったまま減速し続ける。よって、載置台速度V2は、時刻t12でV2=75となり、時刻t13でV2=50となり、時刻t14でV2=0となる。よって、時刻t14で、載置台12はシャシー11に対して停止した状態となる。
 ここで、例えば、図6において載置台12とシャシー11との間の位置関係が固定されている場合は(つまり、載置台12がシャシー11と同一の動きをする場合は)、載置台12に載置される運搬対象物COに対して加速度-100の負荷がかかってしまう。
 これに対し、載置台12とシャシー11との間の位置関係を図6のように変化させることにより、載置台12に載置される運搬対象物COに対してかかる負荷を-50の加速度の負荷に抑えることができる。
 また、図6では、シャシー11は時刻t11で減速を開始して、時刻t11から1秒後の時刻t13で停止するのに対し、載置台12は、時刻t11で減速を開始して、時刻t11から2秒後の時刻t14で停止する。よって、図6のように減速するシャシー11に対し載置台12を図6のように減速させた場合、時刻t11~t14の2秒間で、載置台12はシャシー11に対して、シャシー11の進行方向(+X方向)に50cmだけ移動する。つまり、図6では、載置台12に載置される運搬対象物COに対してかかる負荷を-100の加速度の負荷から-50の加速度の負荷に半減させるにあたり、載置台制御部26は、載置台12をシャシー11に対して50cm移動させる。
 <対策1-3(図7)>
 例えば、図7に示すように、進行方向に向かってシャシー速度V1=100で移動中にあるシャシー11が、時刻t21においてシャシー加速度A1=-1000で減速し始め、時刻t22においてシャシー加速度A1をA1=-1000で一定に保ったまま減速し続け、時刻t23において停止する場合を想定する。ここで、例えば、時刻t22は時刻t21の0.05秒後、時刻t23は時刻t21の0.1秒後、時刻t24は時刻t21の0.2秒後であるとする。よって、シャシー速度V1は、時刻t22でV1=50となり、時刻t23でV1=0となる。
 このように進行方向に向かって減速するシャシー11に対し、載置台制御部26は、進行方向に向かって載置台速度V2=100(つまり、シャシー速度V1=100と同一の速度)で移動中にある載置台12を、時刻t21において載置台加速度A2=-500で減速し始め、時刻t22,t23において載置台加速度A2をA2=-500で一定に保ったまま減速し続ける。よって、載置台速度V2は、時刻t22でV2=75となり、時刻t23でV2=50となり、時刻t24でV2=0となる。よって、時刻t24で、載置台12はシャシー11に対して停止した状態となる。
 ここで、例えば、図7において載置台12とシャシー11との間の位置関係が固定されている場合は(つまり、載置台12がシャシー11と同一の動きをする場合は)、載置台12に載置される運搬対象物COに対して加速度-1000の負荷がかかってしまう。
 これに対し、載置台12とシャシー11との間の位置関係を図7のように変化させることにより、載置台12に載置される運搬対象物COに対してかかる負荷を-500の加速度の負荷に抑えることができる。
 また、図7では、シャシー11は時刻t21で減速を開始して、時刻t21から0.1秒後の時刻t23で停止するのに対し、載置台12は、時刻t21で減速を開始して、時刻t21から0.2秒後の時刻t24で停止する。よって、図7のように減速するシャシー11に対し載置台12を図7のように減速させた場合、時刻t21~t24の0.2秒間で、載置台12はシャシー11に対して、シャシー11の進行方向(+X方向)に5cmだけ移動する。つまり、図7では、載置台12に載置される運搬対象物COに対してかかる負荷を-1000の加速度の負荷から-500の加速度の負荷に半減させるにあたり、載置台制御部26は、載置台12をシャシー11に対して5cmだけ移動させれば足りる。このように、対策1-3では、対策1-2と同様に運搬対象物COに対してかかる負荷を半減させるにあたり、シャシー11に対する載置台12の移動量を、対策1-2と比較して10分の1に抑えることができる。よって、対策1-3は、運搬ロボット1の進行方向に障害物が突然発生してシャシー11を急に停止せざるを得ない場合等に特に有用である。
 以上、対策1について説明した。
 <対策2(図8,9)>
 対策2では、載置台制御部26は、シャシー11の加速時には、図8に示すように、載置台12を、鉛直方向(±Y方向)においてシャシー11の進行方向側の側面S1がシャシー11の進行方向と逆方向側の側面S2よりも下になるように傾ける。つまり、載置台制御部26は、シャシー11の加速時には、載置台12を、シャシー11の進行方向と同方向に傾ける。
 運搬対象物COの質量をm、運搬対象物COに働く水平方向の加速度を「a」と表した場合、載置台制御部26が、シャシー11の加速時に、例えば式(1)または式(2)の関係が成り立つ角度θ1で載置台12を水平方向に対して傾けることで、運搬対象物COにかかる横向きの負荷を0(ゼロ)にすることができる。つまり、シャシー11の加速時に、載置台制御部26が載置台12をシャシー11の進行方向と同方向に傾けることで、載置台12に載置される運搬対象物COにおいて、慣性力Fの分力K1と重力の分力K2とをつり合わせることができる。よって例えば、載置台制御部26は、シャシー11の加速時に、シャシー11の進行方向と同方向の加速度aが大きいほど、角度θ1をより大きい値にする。
 mg×sinθ1 = m × a × cosθ1 …(1)
 a = g×sinθ1/cosθ1 = g×tanθ1 …(2)
 また、載置台制御部26は、シャシー11の減速時には、図9に示すように、載置台12を、鉛直方向(±Y方向)において側面S2が側面S1よりも下になるように傾ける。つまり、載置台制御部26は、シャシー11の減速時には、載置台12を、シャシー11の進行方向と逆方向に傾ける。
 運搬対象物COの質量をm、運搬対象物COに働く水平方向の加速度を「a」と表した場合、載置台制御部26が、シャシー11の減速時に、例えば式(3)または式(4)の関係が成り立つ角度θ2で載置台12を水平方向に対して傾けることで、運搬対象物COにかかる横向きの負荷を0(ゼロ)にすることができる。つまり、シャシー11の減速時に、載置台制御部26が載置台12をシャシー11の進行方向と逆方向に傾けることで、載置台12に載置される運搬対象物COにおいて、慣性力Fの分力K1と重力の分力K2とをつり合わせることができる。よって例えば、載置台制御部26は、シャシー11の減速時に、シャシー11の進行方向と逆方向の加速度aが大きいほど、角度θ2をより大きい値にする。
 mg×sinθ2 = m × a × cosθ2 …(3)
 a = g×sinθ2/cosθ2 = g×tanθ2 …(4)
 例えば、載置台制御部26は、運搬ロボット1の移動中に、載置台12において運搬対象物COが載置される載置面(つまり、載置台12の上面)が、運搬対象物COに働く水平方向の慣性力F(F=ma)と重力mgとを合成した合成力の方向に垂直になるように、角度θ1,θ2を変化させるのが好ましい。
 ここで、式(2)または式(4)から、加速度aの絶対値が大きくなるにつれて、角度θ1,θ2が大きくなることが分かる。これに対し、運搬ロボット1の進行方向に障害物が突然発生してシャシー11を急に停止せざるを得ない場合等、加速度aの絶対値が急激に増加する場合がある。このように、加速度aの絶対値が急激に増加する場合には、加速度aの絶対値の急激な増加に合わせて、載置台制御部26が角度θ1,θ2を急激に増加させることにより、運搬対象物COにかかる横向きの負荷の増加を抑えることができる。一方で、角度θ1,θ2が急激に増加すると、例えば、載置台12上に載置された運搬対象物が料理である場合には、料理の盛り付けが崩れてしまう可能性がある。また、角度θ1,θ2の増減は、加速度に合せて適切に行なう必要があり、急激な増減のためには、より精密なタイミングの制御が求められることになる。このタイミングにずれが生じた場合は、載置台12上に載置された運搬対象物COに負荷がかかってしまう。
 そこで、特に加速度aの絶対値が急激に増加する場合には、載置台12の傾きの角度θ1,θ2の増加量を抑えるべく、対策2と対策1(特に、対策1-3)とを併用するのが好ましい。
 また、動作決定部24が、シャシー11の加速/減速に伴って緩やかに増減するような角度θ1,θ2を決定し、角度θ1,θ2の増減に合わせて移動経路上で増減する加速度aを決定しても良い。例えば、動作決定部24は、角度θ1または角度θ2を0(ゼロ)から一定の角速度ω[rad/s]で増加させる場合、式(5)に従って加速度aを決定すると良い。
 a = g×tan(ωt) …(5)
 以上、対策2について説明した。
 <対策3>
 上記のように、対策2を採ることで運搬対象物COへの横向きの負荷を0(ゼロ)にすることが可能である。しかし、対策2を採った場合の運搬対象物COにかかる載置台12の載置面に対して垂直方向下向きの負荷は、運搬対象物COが停止中や等速移動中にある場合に運搬対象物COにかかる負荷「m×g」よりも大きいものになる。例えば、上記の図8の例では、運搬対象物COに対し、重力mgの載置台12の載置面に対して垂直方向下向きの分力「m×g×cosθ1」と、慣性力F(=ma)の載置台12の載置面に対して垂直方向下向きの分力「m×a×sinθ1」との和の力「m×g×cosθ1+m×a×sinθ1」が、載置台12の載置面に対して垂直方向下向きにかかることとなる。
 ここで、m×g×sinθ1=m×a×cosθ1から、a=g×sinθ1/cosθ1となるため、上述した力「m×g×cosθ1+m×a×sinθ1」は、以下の式(6)のようになる。
 m×g×cosθ1+m×a×sinθ1=m×g×cosθ1+m×(g×sinθ1/cosθ1)×sinθ1
 =m×g×(cosθ1+(sinθ1)/cosθ1)
 =m×g×(cosθ1+(1-(cosθ1))/cosθ1)
 =m×g/cosθ1 …(6)
 つまり、対策2を採った場合、運搬対象物COに対しては、重力mgの載置台12の載置面に対して垂直方向下向きに、m×gの「1/cosθ1」倍の負荷がかかる。例えば角度θ1が0°~90°の値をとる場合、「1/cosθ1」は、1~∞となる。また、対策2では、加速度aが増加するにしたがって角度θ1が増大し、「1/cosθ1」が大きくなる。
 そこで、対策3では、載置台制御部26は、シャシー11の加速または減速に応じて、対策2に従って載置台12を傾けるのと同時に、載置台12をその載置面に対して垂直方向に移動させる。例えば、載置台制御部26は、シャシー11の加速時または減速時に、対策2に従って載置台12を傾けるのと同時に、載置台12をその載置面に対して垂直方向下向きに加速させる。
 以上、実施例1について説明した。
 [実施例2]
 <運搬ロボットの動作>
 図10は、実施例2の運搬ロボットの動作例の説明に供する図である。実施例2では、対策1,2,3を併せて行う。
 例えば、図10に示すように、進行方向(図面中、X方向)に向かってシャシー速度V1=100で移動中にあるシャシー11が時刻t31においてシャシー加速度A1=-1000で減速し始めて時刻t34で停止する場合を想定する。ここで、例えば、時刻t32は時刻t31の0.005秒後(T=0.005)、時刻t33は時刻t31の0.01秒後(T=0.01)、時刻t34は時刻t31の0.1秒後(T=0.1)、時刻t35は時刻t31の0.2秒後(T=0.2)、時刻t36は時刻t31の0.205秒後(T=0.205)、時刻t37は時刻t31の0.21秒後(T=0.21)であるとする。
 このように進行方向に対して減速するシャシー11に対し、載置台制御部26は、進行方向に向かって載置台速度V2=100(つまり、シャシー速度V1=100と同一の速度)で移動中にある載置台12を、時刻t31から徐々に載置台加速度A2を増加することで、時刻t33でシャシー加速度A1の半分の加速度(A2=-250)まで加速する。ここで、説明の簡略化のため、時刻t31から時刻t33までの間、載置台制御部26は、載置台加速度A2を直線的に増加するものとする。その場合、時刻t32での載置台加速度A2は-250となり、載置台速度V2は99.375となる。また、時刻t33での載置台加速度A2は-500となり、載置台速度V2は97.5となる。
 次に、載置台制御部26は、時刻t33から時刻t35にかけて、一定の載置台加速度A2=-500で載置台12を減速する。その場合、シャシー11が停止した時刻t34での載置台12の載置台速度V2は52.5となり、時刻t35での載置台速度V2は2.5となる。
 次に、載置台制御部26は、載置台12の載置台加速度A2を徐々に減少することで、時刻t37での載置台12の停止にあわせて載置台加速度V2を0にする。ここで、説明の簡略化のため、時刻t35から時刻t37までの間、載置台制御部26は、載置台加速度A2を直線的に減少するものとする。その場合、時刻t36での載置台加速度A2は-250となり、載置台速度V2は0.625となる。
 また、載置台制御部26は、時刻t31~t33の間、載置台加速度A2の増加に合せて、載置台12のシャシー11の進行方向と逆方向に対する傾きを徐々に増加させる。その場合、時刻t32での載置台12の角度θをθAとすると、時刻t33での載置台12の角度θは、θAよりも大きな角度θBとなる。
 次に、載置台制御部26は、載置台加速度A2が一定である時刻t33~t35の間、角度θをθBに保ち、その後、時刻t35~t37の間、載置台加速度A2の減少に合せて角度θを徐々に減少させて、時刻t37で載置台12を水平(θ=0)にする。その場合、時刻t36での載置台12の角度θはθAとなる。
 さらに、載置台制御部26は、載置台12を減速し始めた時刻t31から載置台12が停止する時刻t37までの間、載置台12を、載置面に対して垂直方向下向きに加速させる。具体的には、載置台制御部26は、載置台加速度A2を徐々に増加させる時刻t31~t33までの間、載置台12に、その載置面に対して垂直方向下向きの加速度(載置台加速度A2')を徐々に増加させながら与える。次に、載置台制御部26は、載置台加速度A2が一定である時刻t33~t35の間、載置台加速度A2'を一定に保つ。次に、載置台制御部26は、載置台加速度A2を徐々に減少させる時刻t35~t37までの間、載置台12に対する載置台加速度A2'を減少させ、その後、載置台12が水平方向に停止する時刻t37で、載置台加速度A2'を0とする。これにより、載置台12のシャシー11に対する高さhは、時刻t31における高さh1から徐々に小さくなり(h=h1→h2→h3→h4→h5→h6)、時刻t37において、例えば、シャシー11から所定の高さh7となる。このときの鉛直方向下向きの速度(載置台加速度V2')をxとする。
 その後、載置台制御部26は、載置台12の水平方向への移動が停止して載置台12が水平方向と平行な状態になった時刻t37~t38の間、載置台12に、鉛直方向上向きの載置台加速度A2'=yを与える。これにより、載置台12は、時刻t31から「0.21+(x/y)」秒後の時刻t38において、シャシー11に対して完全に停止した状態になる。その際、載置台12のシャシー12に対する高さh8は、例えば、0であってよい。
 以上、実施例2について説明した。
 [実施例3]
 <運搬ロボットの動作>
 図11,12は、実施例3の運搬ロボットの動作例の説明に供する図である。
 実施例1,2では、シャシー11の横幅の範囲内で載置台12を移動させる場合を一例として説明した(図5,6,7,10)。しかし、載置台12の移動範囲はシャシー11の横幅の範囲内に限定されず、図11,図12に示すように、載置台制御部26は、シャシー11の横幅を超えて載置台12を移動させても良い。
 以上、実施例3について説明した。
 [実施例4]
 <運搬ロボットの構成>
 図13は、実施例4の運搬ロボットの構成例を示す図である。図4において、運搬ロボット2は、シャシー11と、ハンド16と、連結アーム15と、制御装置20とを有する。なお、実施例1と同様、シャシー11に代えて、移動可能な種々の構成を運搬ロボット2の移動部とすることも可能である。シャシー11とハンド16とは屈曲及び伸縮自在な連結アーム15により連結されているため、シャシー11とハンド16とは互いに独立して動作可能である。ハンド16は、運搬対象物COを把持する。連結アーム15を介してシャシー11と連結されたハンド16に把持された運搬対象物COは、ハンド16に把持された状態で、シャシー11の移動に伴って運搬される。ハンド16は、運搬対象物COに接触して運搬対象物COを運搬する「運搬部」の一例である。
 このように、実施例4の運搬ロボット2は、実施例1の運搬ロボット1(図1)が有する載置台12に代えて、ハンド16を有する。このため、実施例4の制御装置20は、図2において、「載置台制御部26」に代えて「ハンド制御部」を有する。そして、実施例4では、ハンド制御部が、実施例1~3において載置台制御部26が載置台12に対して行った制御と同様の制御をハンド16に対して行う。
 以上、実施例4について説明した。
 [実施例5]
 <運搬ロボットの動作>
 開示の技術は、運搬ロボット1,2が停止中から移動開始するとき、及び、移動中から停止するときだけでなく、移動経路上のあらゆる地点において適用可能である。
 また、開示の技術は、運搬ロボット1,2が直進するときだけでなく、曲がる際に減速と加速とをそれぞれ別の向きに同時に行うときにも適用可能である。
 また、運搬ロボット1,2が、曲がる際に弧を描いて曲がる場合でも、その際に働く慣性力に合わせて開示の技術を適用可能である。
 以上、実施例5について説明した。
 [開示の技術の効果]
 以上のように開示の技術では、運搬ロボット1に搭載される制御装置20において、シャシー制御部25は、シャシー11の移動速度を制御する。載置台制御部26は、シャシー11の加速または減速に応じて載置台12をシャシー11に対して移動させる。例えば、載置台制御部26は、シャシー11の加速時にはシャシー11の進行方向と同方向に載置台12を加速させる一方で(図5)、シャシー11の減速時にはシャシー11の進行方向と逆方向に載置台12を加速させる(図6,7)。こうすることで、載置台12に載置される運搬対象物COに対して運搬ロボット1の移動に伴ってかかる負荷を軽減することができるため、運搬対象物COを安全に運搬することができる。特に、盛り付けられた料理のように崩れやすい運搬対象物COを崩壊させることなく運搬することができる。
 また、載置台制御部26は、シャシー制御部25がシャシー11に与える加速度の絶対値|A1|(図5:|A1|=100,図6:|A1|=100,図7:|A1|=1000)よりも小さい絶対値の加速度|A2|(図5:|A2|=50,図6:|A2|=50,図7:|A2|=500)で載置台12を加速または減速させる。こうすることで、シャシー11に対する載置台12の相対的な加速度を、載置台12に載置される運搬対象物COにかかる負荷を軽減する上で、適切な加速度にすることができる。
 また、載置台制御部26は、シャシー制御部25がシャシー11の加速を開始するより前に載置台12の加速を開始する(図5)。こうすることで、停止中のシャシー11の移動が開始される際に運搬対象物COにかかる負荷を軽減することができる。
 また、載置台制御部26は、シャシー制御部25がシャシー11の加速または減速を停止した際に載置台12がシャシー11に対して停止した状態となるように、載置台12の移動を制御する(図5,6,7)。こうすることで、シャシー11の移動速度が一定の速度になる際に運搬対象物COにかかる負荷を軽減することができるとともに、載置台12がシャシー11に対して連結アーム13の可動範囲を越えて移動しようとすることを防止することができる。
 また、載置台制御部26は、シャシー11の加速または減速に応じて、水平方向に対する載置台12の角度を変化させる。例えば、載置台制御部26は、シャシー11の加速時にはシャシー11の進行方向と同方向に載置台12を傾ける一方で(図8)、シャシー11の減速時にはシャシー11の進行方向と逆方向に載置台12を傾ける(図9)。こうすることで、運搬対象物COにかかる負荷をさらに軽減することができる。
 また、載置台制御部26は、載置台12の載置面に平行な方向と、運搬対象物COに働く水平方向の加速度と重力加速度とを合成した合成加速度の方向とが平行になるように、水平方向に対する載置台12の角度を変化させる。こうすることで、水平方向に対する載置台12の角度を、搬対象物COにかかる負荷を最小にできる角度に制御することができる。
 また、載置台制御部26は、シャシー11の加速または減速に応じて、載置台12をその載置面に対して垂直方向に移動させる。例えば、載置台制御部26は、シャシー11の加速時または減速時に、載置台12をその載置面に対して垂直方向下向きに加速させる。こうすることで、運搬対象物COにかかる負荷をさらに軽減することができる。
 また、動作決定部24は、運搬対象物COの特性に基づいて、シャシー11の移動経路上における移動速度または加速度をシャシー11の移動開始前に決定する。こうすることで、運搬対象物COの特性を踏まえて、適切な移動速度または加速度で運搬対象物COを運搬することができる。
 また、特性判断部22は、シャシー11の移動開始前に運搬対象物COに負荷を与えることにより運搬対象物COの特性を判断する。こうすることで、運搬対象物COの特性を正確に判断することができる。
 なお、開示の技術は以下のような構成も採ることができる。
(1)
 移動可能な移動部と連結された運搬部の移動を制御する制御装置であって、
 前記移動部の移動速度を制御する第一制御部と、
 前記移動部の加速または減速に応じて前記運搬部を前記移動部に対して移動させる第二制御部と、
 を具備する制御装置。
(2)
 前記第二制御部は、前記第一制御部が前記移動部に対して与える加速度の向きと逆向きの加速度を前記運搬部に与える、
 前記(1)に記載の制御装置。
(3)
 前記第二制御部は、前記第一制御部が前記移動部に与える加速度の絶対値よりも小さい絶対値の加速度で前記運搬部を加速または減速させる、
 前記(1)または(2)に記載の制御装置。
(4)
 前記第二制御部は、前記第一制御部が前記移動部の加速を開始するより前に前記運搬部の加速を開始する、
 前記(1)~(3)の何れか一つに記載の制御装置。
(5)
 前記第二制御部は、前記第一制御部が前記移動部の加速または減速を停止した際に前記運搬部が前記移動部に対して停止した状態となるように、前記運搬部の移動を制御する、
 前記(4)に記載の制御装置。
(6)
 前記第二制御部は、前記第一制御部が前記移動部の減速を終えた後も前記運搬部の減速を行なう、
 前記(1)~(5)の何れか一つに記載の制御装置。
(7)
 前記第二制御部は、前記移動部の加速または減速に応じて、水平方向に対する前記運搬部の角度を変化させる、
 前記(1)~(6)の何れか一つに記載の制御装置。
(8)
 前記第二制御部は、前記移動部の加速時には前記進行方向と同方向に前記運搬部を傾ける一方で、前記移動部の減速時には前記進行方向と逆方向に前記運搬部を傾ける、
 前記(7)に記載の制御装置。
(9)
 前記第二制御部は、前記運搬部における前記運搬対象物の載置面が、前記運搬対象物に働く水平方向の慣性力と重力とを合成した合成力の方向に垂直になるように、前記運搬部の前記角度を変化させる、
 前記(7)または(8)に記載の制御装置。
(10)
 前記第二制御部は、前記移動部の加速または減速に応じて、前記運搬部を当該運搬部の載置面に対して垂直方向に移動させる、
 前記(1)~(9)の何れか一つに記載の制御装置。
(11)
 前記第二制御部は、前記移動部の加速時または減速時に、前記運搬部を当該運搬部の載置面に対して垂直方向下向きに加速させる、
 前記(10)に記載の制御装置。
(12)
 前記運搬部を用いて運搬される運搬対象物の特性を判断する判断部と、
 前記特性に基づいて、前記移動部の移動経路上における前記移動速度または加速度を前記移動部の移動開始前に決定する決定部と、
 をさらに具備する前記(1)~(11)の何れか一つに記載の制御装置。
(13)
 前記判断部は、前記移動部の移動開始前に前記運搬部を用いて前記運搬対象物に負荷を与えることにより前記特性を判断する、
 前記(12)に記載の制御装置。
(14)
 前記負荷は、前記運搬対象物の加速、減速及び振動のうちの少なくとも一つを含む、
 前記(13)に記載の制御装置。
(15)
 移動可能な移動部と連結された運搬部の移動を制御する制御方法であって、
 前記移動部の加速または減速に応じて前記運搬部を前記移動部に対して移動させる、
 制御方法。
(16)
 移動可能な移動部と連結された運搬部の移動を制御するためのプログラムであって、
 前記移動部の加速または減速に応じて前記運搬部を前記移動部に対して移動させる、
 処理を制御装置に実行させるためのプログラム。
1,2 運搬ロボット
11 シャシー
12 載置台
13,15 連結アーム
16 ハンド
20 制御装置
21 運搬対象物センサ
22 特性判断部
23 外部状況センサ
24 動作決定部
25 シャシー制御部
26 載置台制御部
27 記憶部

Claims (16)

  1.  移動可能な移動部と連結された運搬部の移動を制御する制御装置であって、
     前記移動部の移動速度を制御する第一制御部と、
     前記移動部の加速または減速に応じて前記運搬部を前記移動部に対して移動させる第二制御部と、
     を具備する制御装置。
  2.  前記第二制御部は、前記第一制御部が前記移動部に対して与える加速度の向きと逆向きの加速度を前記運搬部に与える、
     請求項1に記載の制御装置。
  3.  前記第二制御部は、前記第一制御部が前記移動部に与える加速度の絶対値よりも小さい絶対値の加速度で前記運搬部を加速または減速させる、
     請求項1に記載の制御装置。
  4.  前記第二制御部は、前記第一制御部が前記移動部の加速を開始するより前に前記運搬部の加速を開始する、
     請求項1に記載の制御装置。
  5.  前記第二制御部は、前記第一制御部が前記移動部の加速または減速を停止した際に前記運搬部が前記移動部に対して停止した状態となるように、前記運搬部の移動を制御する、
     請求項4に記載の制御装置。
  6.  前記第二制御部は、前記第一制御部が前記移動部の減速を終えた後も前記運搬部の減速を行なう、
     請求項1に記載の制御装置。
  7.  前記第二制御部は、前記移動部の加速または減速に応じて、水平方向に対する前記運搬部の角度を変化させる、
     請求項1に記載の制御装置。
  8.  前記第二制御部は、前記移動部の加速時には前記移動部の進行方向と同方向に前記運搬部を傾ける一方で、前記移動部の減速時には前記進行方向と逆方向に前記運搬部を傾ける、
     請求項7に記載の制御装置。
  9.  前記第二制御部は、前記運搬部における運搬対象物の載置面が、前記運搬対象物に働く水平方向の慣性力と重力とを合成した合成力の方向に垂直になるように、前記運搬部の前記角度を変化させる、
     請求項7に記載の制御装置。
  10.  前記第二制御部は、前記移動部の加速または減速に応じて、前記運搬部を当該運搬部の載置面に対して垂直方向に移動させる、
     請求項7に記載の制御装置。
  11.  前記第二制御部は、前記移動部の加速時または減速時に、前記運搬部を当該運搬部の載置面に対して垂直方向下向きに加速させる、
     請求項10に記載の制御装置。
  12.  前記運搬部を用いて運搬される運搬対象物の特性を判断する判断部と、
     前記特性に基づいて、前記移動部の移動経路上における前記移動速度または加速度を前記移動部の移動開始前に決定する決定部と、
     をさらに具備する請求項1に記載の制御装置。
  13.  前記判断部は、前記移動部の移動開始前に前記運搬部を用いて前記運搬対象物に負荷を与えることにより前記特性を判断する、
     請求項12に記載の制御装置。
  14.  前記負荷は、前記運搬対象物の加速、減速及び振動のうちの少なくとも一つを含む、
     請求項13に記載の制御装置。
  15.  移動可能な移動部と連結された運搬部の移動を制御する制御方法であって、
     前記移動部の加速または減速に応じて前記運搬部を前記移動部に対して移動させる、
     制御方法。
  16.  移動可能な移動部と連結された運搬部の移動を制御するためのプログラムであって、
     前記移動部の加速または減速に応じて前記運搬部を前記移動部に対して移動させる、
     処理を制御装置に実行させるためのプログラム。
PCT/JP2019/038417 2018-10-05 2019-09-27 制御装置、制御方法及びプログラム WO2020071296A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980064042.2A CN112839780A (zh) 2018-10-05 2019-09-27 控制装置、控制方法和程序
EP19869778.1A EP3862149A4 (en) 2018-10-05 2019-09-27 CONTROL DEVICE, CONTROL METHOD AND PROGRAM
US17/279,942 US20220035373A1 (en) 2018-10-05 2019-09-27 Control device, control method, and computer program
JP2020550409A JP7306406B2 (ja) 2018-10-05 2019-09-27 制御装置、制御方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-190329 2018-10-05
JP2018190329 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071296A1 true WO2020071296A1 (ja) 2020-04-09

Family

ID=70055089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038417 WO2020071296A1 (ja) 2018-10-05 2019-09-27 制御装置、制御方法及びプログラム

Country Status (5)

Country Link
US (1) US20220035373A1 (ja)
EP (1) EP3862149A4 (ja)
JP (1) JP7306406B2 (ja)
CN (1) CN112839780A (ja)
WO (1) WO2020071296A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220379477A1 (en) * 2021-05-28 2022-12-01 Illinois Tool Works Inc. Systems and methods to configure a robotic welding system
EP4296012A1 (en) * 2021-06-25 2023-12-27 Samsung Electronics Co., Ltd. Traveling robot device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315409A (ja) * 1989-06-13 1991-01-23 Matsushita Refrig Co Ltd 液体運搬用ワゴン
JP2003089335A (ja) * 2001-09-18 2003-03-25 Honda Motor Co Ltd 乗員保護装置
JP2005001055A (ja) 2003-06-11 2005-01-06 Fanuc Ltd ロボット装置
JP2007195750A (ja) 2006-01-26 2007-08-09 Matsushita Electric Works Ltd 配膳車
JP2011005608A (ja) * 2009-06-29 2011-01-13 Seiko Epson Corp 搬送ロボット装置および搬送ロボット装置の制御方法
JP2011178375A (ja) * 2010-03-03 2011-09-15 Shigeki Shibano 機能付車輌
JP2012162195A (ja) * 2011-02-08 2012-08-30 Mitsubishi Heavy Ind Ltd 軌道系交通車両及びその車体姿勢制御装置
JP2014060373A (ja) * 2012-09-19 2014-04-03 Sumitomo Precision Prod Co Ltd アライメント装置およびそのための回転条件調整方法および装置、並びに基板処理装置
JP2015196600A (ja) * 2014-03-31 2015-11-09 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 物管理システムおよび運搬ロボット
JP2016034685A (ja) 2014-08-04 2016-03-17 キヤノン株式会社 搬送制御装置、搬送制御方法およびプログラム
WO2017188130A1 (ja) * 2016-04-28 2017-11-02 日本バルカー工業株式会社 感圧検出方法、感圧センサー、感圧検出装置および感圧検出システム
KR20180042975A (ko) * 2016-10-19 2018-04-27 네이버 주식회사 적재물 무게중심 위치 감지를 통해 가감속 제어가 가능한 이동 유닛
KR20180079692A (ko) * 2017-01-02 2018-07-11 곽미영 무인 운반차

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334740A (ja) * 2002-05-15 2003-11-25 Mitsubishi Electric Corp 許容速度決定方法および速度制御装置
JP5013256B2 (ja) * 2007-08-07 2012-08-29 株式会社エクォス・リサーチ 車両
JP2012232370A (ja) * 2011-04-28 2012-11-29 Seiko Epson Corp ロボットコントローラー、簡易設置型ロボット、及び簡易設置型ロボットの制御方法
JP6719183B2 (ja) * 2015-08-21 2020-07-08 シャープ株式会社 自律走行装置
JPWO2017073055A1 (ja) * 2015-10-27 2018-08-16 パナソニックIpマネジメント株式会社 搬送装置
JP2019126850A (ja) * 2018-01-22 2019-08-01 ファナック株式会社 ロボットの制御方法および制御装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315409A (ja) * 1989-06-13 1991-01-23 Matsushita Refrig Co Ltd 液体運搬用ワゴン
JP2003089335A (ja) * 2001-09-18 2003-03-25 Honda Motor Co Ltd 乗員保護装置
JP2005001055A (ja) 2003-06-11 2005-01-06 Fanuc Ltd ロボット装置
JP2007195750A (ja) 2006-01-26 2007-08-09 Matsushita Electric Works Ltd 配膳車
JP2011005608A (ja) * 2009-06-29 2011-01-13 Seiko Epson Corp 搬送ロボット装置および搬送ロボット装置の制御方法
JP2011178375A (ja) * 2010-03-03 2011-09-15 Shigeki Shibano 機能付車輌
JP2012162195A (ja) * 2011-02-08 2012-08-30 Mitsubishi Heavy Ind Ltd 軌道系交通車両及びその車体姿勢制御装置
JP2014060373A (ja) * 2012-09-19 2014-04-03 Sumitomo Precision Prod Co Ltd アライメント装置およびそのための回転条件調整方法および装置、並びに基板処理装置
JP2015196600A (ja) * 2014-03-31 2015-11-09 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 物管理システムおよび運搬ロボット
JP2016034685A (ja) 2014-08-04 2016-03-17 キヤノン株式会社 搬送制御装置、搬送制御方法およびプログラム
WO2017188130A1 (ja) * 2016-04-28 2017-11-02 日本バルカー工業株式会社 感圧検出方法、感圧センサー、感圧検出装置および感圧検出システム
KR20180042975A (ko) * 2016-10-19 2018-04-27 네이버 주식회사 적재물 무게중심 위치 감지를 통해 가감속 제어가 가능한 이동 유닛
KR20180079692A (ko) * 2017-01-02 2018-07-11 곽미영 무인 운반차

Also Published As

Publication number Publication date
CN112839780A (zh) 2021-05-25
EP3862149A4 (en) 2021-12-22
EP3862149A1 (en) 2021-08-11
JPWO2020071296A1 (ja) 2021-09-02
JP7306406B2 (ja) 2023-07-11
US20220035373A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2020071296A1 (ja) 制御装置、制御方法及びプログラム
CN108140160B (zh) 主动平衡的移动驱动单元
JP2011005608A (ja) 搬送ロボット装置および搬送ロボット装置の制御方法
US10455155B1 (en) Counter-balanced suspended image stabilization system
JP2019117431A (ja) 自律移動ロボット
CN111142580B (zh) 云台、云台控制方法、控制装置及计算机存储介质
WO2020179386A1 (ja) 移動体制御方法、移動体制御システム、及びプログラム
JP2016120561A (ja) 搬送ロボット、及びその制御方法
JP2016224654A (ja) 自律走行ロボット
US11772265B2 (en) Method, system, and non-transitory computer-readable recording medium for controlling movement of a robot
JP5454333B2 (ja) 移動体装置及び移動制御プログラム
US20190255705A1 (en) Simulation apparatus, simulation method, and simulation program
JP2019168287A (ja) 姿勢角演算装置、移動装置、姿勢角演算方法、およびプログラム
JP7485446B2 (ja) 搬送システム、搬送ロボット、管制装置、制御方法、及びプログラム
TW201719308A (zh) 多旋翼飛行器及其控制方法
JP6809964B2 (ja) 制御装置
US20180236668A1 (en) Carrier device
US20230084455A1 (en) Driving robot and controlling method thereof
JPWO2020004204A1 (ja) ロボット、及び制御方法
US10274924B2 (en) System and method for docking an actively stabilized platform
JP2023163903A (ja) 移動体、移動体の制御方法、及びプログラム
US20240100711A1 (en) Serving robot and control method thereof
KR20230025604A (ko) 서빙 로봇
CN114667462A (zh) 激光雷达装置、系统以及其控制方法
JPH0995116A (ja) 物品搬送車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550409

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019869778

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019869778

Country of ref document: EP

Effective date: 20210506