JP2004021693A - 搬送ロボットのテーブル角度制御方法 - Google Patents

搬送ロボットのテーブル角度制御方法 Download PDF

Info

Publication number
JP2004021693A
JP2004021693A JP2002176996A JP2002176996A JP2004021693A JP 2004021693 A JP2004021693 A JP 2004021693A JP 2002176996 A JP2002176996 A JP 2002176996A JP 2002176996 A JP2002176996 A JP 2002176996A JP 2004021693 A JP2004021693 A JP 2004021693A
Authority
JP
Japan
Prior art keywords
acceleration
axis
resultant vector
control method
angle control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002176996A
Other languages
English (en)
Inventor
Kazue Sumiya
角谷 和重
Shin Miyaji
宮治 伸
Naoto Tojo
東條 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002176996A priority Critical patent/JP2004021693A/ja
Priority to US10/462,701 priority patent/US6859684B2/en
Publication of JP2004021693A publication Critical patent/JP2004021693A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40042Control tilting angle of surface carried by robot

Abstract

【課題】テーブルに作用する加速度と重力との合力ベクトルがテーブルに対して垂直に作用するようにテーブルを傾動させることにより、テーブルに載置された物品の落下等を効果的に防止できるテーブル角度制御方法を提供する。
【解決手段】台車の移動に伴いテーブル又は台車に作用する加速度と重力の合力ベクトルがテーブルに対して垂直に作用するように、テーブルを傾動させる。また、台車を移動させるために台車の駆動手段へ入力される速度指令値から、テーブルに作用する加速度を推定するステップと、推定された加速度と重力との合力ベクトルを算出するステップと、得られた合力ベクトルがテーブルに対して垂直に作用するように、テーブルを傾動させるステップと、を有する。
【選択図】   図4

Description

【0001】
【発明の属する技術分野】
本発明は、自走式搬送ロボットのテーブルに載置された物品の落下や荷崩れを防止するためのテーブル角度制御方法に関するものである。
【0002】
【従来の技術】
図21に示すように、車輪(92)の回転によって路面を走行する自走式台車(91)の上部にテーブル(93)を配備し、該テーブル(93)上に物品を載置して搬送するロボット(90)が知られている。
この種物品搬送ロボット(90)は、テーブル(93)を台車(91)に対して前後及び左右に傾動可能とすると共に、テーブル(93)に傾斜角センサ(図示せず)を配備しており、路面の傾きや台車(91)が障害物に乗り上げたときにテーブル(93)が水平に維持されるようにテーブル(93)を傾動させ、テーブル(93)に載置された物品の落下や荷崩れを防止している。
【0003】
【発明が解決しようとする課題】
しかしながら、搬送ロボット(90)が走行すると、加減速による慣性力や旋回時の遠心力などが作用するため、テーブル(93)を単に水平に維持するだけでは、物品の落下や荷崩れが生じることがあり、また、搬送物が液体の場合にはこぼれてしまうこともあった。
【0004】
本発明の目的は、テーブルに作用する加速度と重力との合力ベクトルがテーブルに対して垂直に作用するようにテーブルを傾動させることにより、テーブルに載置された物品の落下等を効果的に防止できるテーブル角度制御方法を提供することである。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1に記載の搬送ロボットのテーブル角度制御方法は、台車の移動に伴いテーブル又は台車に作用する加速度と重力の合力ベクトルがテーブルに対して垂直に作用するように、テーブルを傾動させる。
【0006】
本発明の請求項2に記載の搬送ロボットのテーブル角度制御方法は、
台車の移動に伴いテーブル又は台車に作用する加速度を測定するステップと、得られた加速度と重力との合力ベクトルがテーブルに対して垂直に作用するように、テーブルを傾動させるステップと、を有する。
【0007】
また、本発明の請求項3に記載の搬送ロボットのテーブル角度制御方法は、
台車を移動させるために台車の駆動手段へ入力される速度指令値から、テーブルに作用する加速度を推定するステップと、
推定された加速度と重力との合力ベクトルを算出するステップと、
得られた合力ベクトルがテーブルに対して垂直に作用するように、テーブルを傾動させるステップと、を有する。
【0008】
【作用及び効果】
本発明の請求項1及び請求項2に記載の搬送ロボットでは、テーブル又は台車に作用する合力ベクトルを測定し、測定された合力ベクトルがテーブルに対して垂直に作用するようにフィードバック制御を行なう。従って、テーブルに載置された物品には、テーブルに垂直な方向の力だけが作用するため、台車が加減速や旋回を伴う移動をしても、テーブル上の物品が落下したり荷崩れすることはない。
【0009】
また、本発明の請求項3に記載の搬送ロボットでは、台車を移動させるための速度指令値からテーブルに作用する合力ベクトルを予め算出し、算出された合力ベクトルがテーブルに対して垂直に作用するようにフィードフォワード制御を行なう。従って、テーブルに載置された物品には、テーブルに垂直な方向の力だけが作用するため、台車が加減速や旋回を伴う移動をしても、テーブル上の物品が落下したり荷崩れすることはない。
請求項3に記載の搬送ロボットは、フィードフォワード制御を行なうため、上記請求項1又は請求項2に記載のフィードバック制御に比べて遅延を生ずることなく、テーブルの傾動角の制御を行なうことができる利点がある。
【0010】
【発明の実施の形態】
図1は、本発明のテーブル角度制御方法を実施する物品搬送用ロボット(1)の一実施例を示している。図示の搬送ロボット(1)は、左右に走行車輪(12)を配備した台車(11)の上面にテーブル(20)が配備される。テーブル(20)は、図2に示すように、台車(11)の移動方向と平行な面内(図2中X軸方向)及び該面に対して垂直かつ鉛直な面内(図2中Y軸方向)で傾動可能となっており、これらの傾動を組み合わせることにより、所定の角度範囲内でテーブル(20)を傾動させることができる。なお、テーブルを傾動させる機構は、特に限定されるものではなく公知の機構を用いることができるが、後述する実施例で説明する機構が特に好ましい。
【0011】
テーブル(20)の傾斜角及びテーブル(20)に作用する加速度は、各種センサによって検出することができる。例えば、図3(a)に示すように、傾斜角を測定する傾斜角センサ(71)(72)と角速度を測定するジャイロ(73)(74)をテーブル(20)のX軸とY軸に配置することにより、又は、図3(b)に示すように、2軸加速度センサ(77)をテーブル(20)に配置することにより、X軸方向の加速度とY軸方向の加速度を検出することができる。テーブル(20)が傾斜するとき、X軸及び/又はY軸方向に加速度が生ずるから、2軸加速度センサ(77)を用いると、重力加速度の変化も測定することができる。さらに、図3(c)及び以下に説明するように、X軸及びY軸の夫々に加速度センサ(78)(79)を取り付けることにより、各軸毎の加速度を測定することができる。
【0012】
本発明のテーブル角度制御方法は、テーブル(20)に作用する加速度と重力との合力ベクトルが、テーブル(20)に対して垂直に作用するように制御するものであり、「フィードバック制御」と「フィードフォワード制御」の2つの形態に分けることができる。
【0013】
[フィードバック制御]
この制御は、図4に示すように、テーブル(20)又は台車(11)に作用する慣性力と重力との合力ベクトルを観測し、得られた合力ベクトルがテーブル(20)に垂直に作用するようにテーブル(20)を傾動させる制御である。
X軸及びY軸方向の制御について夫々説明する。
【0014】
X軸方向の制御は、加速度センサ(78)によるX軸方向の加速度axの観測値に基づいて行われる。
図5(a)は、台車(11)が停止している状態又は等速移動状態を示している。この状態では、テーブル(20)には重力gのみが作用する。つまり、テーブルに取り付けられた加速度センサ(78)のX軸方向の加速度値はゼロであるから、テーブル(20)のX軸が水平となるように維持することにより、テーブル(20)と載置される物品(100)との間にX軸方向の力は作用せず、物品(100)の荷崩れ等は起こらない。
図5(b)は、台車(11)がX軸方向に加速又は減速した状態を示している。この状態では、テーブル(20)には、重力gに加えて、X軸方向の加速度ax(=a1)が作用し、加速度センサ(78)はX軸方向の加速度a1を検出する。つまり、物品(100)は、重力加速度gとa1との合力方向に力を受ける。このとき、慣性力追従制御により、図5(c)に示すように、テーブル(20)を合力と垂直な方向に傾動させるとax=0となる。物品(100)に作用するX軸方向の合力ベクトルは、テーブル(20)と垂直となるから、物品(100)には、テーブル(20)に平行な方向の力は作用せず、物品(100)の荷崩れ等は起こらない。
【0015】
Y軸方向についても、図6(a)〜(c)に示すように、Y軸方向の加速度センサ(79)の出力に基づいて、X軸方向の場合と同様の制御を行なう。なお、Y軸方向に加速度ayが作用するのは、台車(11)がY軸方向に移動した場合や、台車(11)が旋回した場合、または、台車(11)が傾斜面等を走行した場合である。
【0016】
X軸方向とY軸方向の両方向について、上記のように、テーブル(20)に作用する加速度を観測して、該加速度と重力との合力ベクトルがゼロとなるようにテーブル(20)を傾動させることにより、テーブル(20)に搭載された物品(100)の落下や荷崩れ等を防止することができる。
【0017】
[フィードフォワード制御]
この制御は、テーブル(20)に加速度を与える台車(11)の移動速度制御部(80)から、台車(11)を走行させるために台車(11)の駆動手段(82)に送信されるモータの回転角速度を観測し、得られた観測値からテーブル(20)に作用するX軸及びY軸方向の加速度を算出し、これら加速度と重力との合力ベクトルがテーブル(20)に垂直に作用するように、テーブル(20)を傾動させる制御である。前述のフィードバック制御では、テーブル(20)に加速度が作用してから、該加速度に対応するテーブル(20)の傾動角を算出するので、その応答に遅延を生ずるが、フィードフォワード制御では、予め加速度に対応する傾動角が算出できるので、遅延は生じない。
【0018】
次に、テーブル傾動機構について具体例を挙げて説明する。
【0019】
図7乃至図10に示すように、台車(11)の上面の基台(40)には、物品を載置するテーブル(20)と、該テーブル(20)を傾動させるテーブル駆動手段(51)が配備される。
テーブル駆動手段(51)は、2基の駆動モータ(52)(53)と、該駆動モータ(52)(53)に連繋された減速機構(54)(54)(なお、図示ではベルトとプーリ)と、該減速機構(54)(54)に連繋された差動ギア(傘歯車(55)(56)(24)から構成される)を具える。駆動モータ(52)(53)は、夫々取付具(41)(41)によって基台(40)に固定されている。また、駆動傘歯車(55)(56)は、図示のように、回転軸(57)(57)の軸心が一直線上となり、駆動傘歯車(55)(56)どうしが対向するように配置されている。回転軸(57)(57)は、基台(40)に突設された支持ブラケット(58)(58)の軸受(59)(59)に略中央位置で夫々支持される。
【0020】
駆動傘歯車(55)(56)の回転軸(57)(57)の先端は、図9及び図10に示すように、駆動傘歯車(55)(56)を貫通して延びている。回転軸(57)(57)の各先端は、軸径が小さくなっており、後述する支持筒(31)の軸受(33)(33)に夫々嵌まる。
【0021】
テーブル(20)には、テーブル(20)の下面から下方に向けて支柱(22)と補助支柱(23)が突設されている。支柱(22)の下端には、従動傘歯車(24)を嵌めて固定する有底の歯車固定孔(25)が開設されており、該歯車固定孔(25)の中央には、後述する支持軸(30)を軸承する軸支持孔(26)がさらに開設されている。軸支持孔(26)には、軸受(27)が配備されている。
従動傘歯車(24)は、支柱(22)の歯車固定孔(25)に回転不能に固定されており、中央にて、支持軸(30)が軸受(28)を介して軸承される。従動傘歯車(24)は、駆動モータ(52)(53)に連繋された駆動傘歯車(55)(56)の両方と噛合している。
【0022】
支柱(22)の軸支持孔(26)及び従動傘歯車(24)に軸承される支持軸(30)は、図10に示すように、駆動傘歯車(55)(56)の回転軸(57)(57)の軸心と直交して延び、略中央にて支持筒(31)の側面を貫通し、他端が補助支柱(23)に開設された軸支持孔(26)に軸受(29)を介して軸承されている。支持筒(31)は、図9及び図10に示すように、両端面に軸受(33)(33)を具え、該軸受(33)(33)の孔(32)(32)に駆動傘歯車(55)(56)の回転軸(57)(57)の先端が軸承されている。
【0023】
支柱(22)及び補助支柱(23)は、支持軸(30)の両端を挟んで支持し、かつ、支持軸(30)に固定された支持筒(31)は、回転軸(57)(57)に回転自由に支持されている。従って、駆動傘歯車(55)(56)の回転軸(57)(57)と従動傘歯車(24)との間の距離は不変であり、従動傘歯車(24)は、駆動傘歯車(55)(56)と噛合した状態で維持される。
駆動モータ(52)(53)を駆動すると、駆動傘歯車(55)(56)が回転し、従動傘歯車(24)が駆動傘歯車(55)(56)上で相対的に移動して、テーブル(20)が傾動する。
【0024】
次に、テーブル(20)の傾動の制御について説明する。なお、説明をわかりやすくするために、図10に示すように、駆動傘歯車(55)(56)の回転軸(57)(57)と平行な軸(なお、以下では該軸を台車(11)の進行方向と平行に採り、「X軸」とする)周りの回転角をロール角θ1、該X軸と直交するY軸周りの回転角をピッチ角θ2とする。また、図9において、紙面左側の駆動モータ(52)を第1駆動モータ、第1駆動モータ(52)の動力を受ける駆動傘歯車(55)を第1駆動傘歯車と称し、紙面右側の駆動モータ(53)を第2駆動モータ、第2駆動モータ(53)の動力を受ける駆動傘歯車(56)を第2駆動傘歯車と称する。
【0025】
第1駆動モータ(52)及び第2駆動モータ(53)の回転と、テーブル(20)の傾動方向との関係について説明する。
【0026】
テーブル(20)が基台(40)に対して平行な状態から、第1駆動モータ(52)のみを回転させると、図11に示すように、第1駆動傘歯車(55)のみが回転する。第1駆動傘歯車(55)の回転によって、テーブル(20)は、図11の矢印方向に傾斜する。
同様に、第2駆動モータ(53)のみを回転させると、テーブル(20)が図12の矢印方向に傾斜する。
【0027】
さらに、図13に示すように、第1駆動モータ(52)及び第2駆動モータ(53)の両方を駆動し、第1駆動傘歯車(55)及び第2駆動傘歯車(56)を同方向に回転させると、テーブル(20)がX軸に垂直かつY軸に平行な面内で傾斜する。具体的には、実線矢印方向に駆動傘歯車(55)(56)を回転させたときには、実線矢印方向にテーブル(20)が傾斜し、一点鎖線矢印方向に駆動傘歯車(55)(56)を回転させたときには、一点鎖線矢印方向にテーブル(20)が傾斜する。
図14に示すように、第1駆動傘歯車(55)に対して、第2駆動傘歯車(56)を逆方向に回転させると、テーブル(20)がX軸に平行かつY軸に垂直な面内で傾斜する。具体的には、実線矢印方向に駆動傘歯車(55)(56)を回転させたときには、実線矢印方向にテーブル(20)が傾斜し、一点鎖線矢印方向に駆動傘歯車(55)(56)を回転させたときには、一点鎖線矢印方向にテーブル(20)が傾斜する。
【0028】
これらの動作を組み合わせることによって、図15に示すように、テーブル(20)を任意の角度に傾斜させることができる。
以下、上記テーブル傾動機構を用いて、本発明の角度制御方法について説明する。
【0029】
[フィードバック制御]
制御に際して、テーブル(20)の裏面には、図3(c)に示すように、X軸上及びY軸上に夫々テーブル(20)のX軸、Y軸方向の加速度を測定する加速度センサ(78)(79)を取り付けておく。
【0030】
図16は、フィードバックの制御系の構成及び制御信号の流れを示すブロック図、図17は、フィードバック制御における制御系の制御器(70)のブロック図、図18は、制御器(70)における制御フローを示している。
制御器(70)には、台車(11)の移動に伴って加速度センサ(78)(79)で観測される加速度が入力され、該加速度と重力との合力ベクトルがテーブル(20)に垂直に作用する。即ち、前述の図4乃至図6におけるX軸方向の加速度ax及びY軸方向の加速度ayがゼロとなるように、駆動モータ(52)(53)の回転を制御する。なお、図示はしていないが、駆動モータ(52)(53)の回転角、角速度及び電流はセンサによって計測され、モータドライバ(75)(76)へフィードバックすることにより、速度制御が行なわれている。
【0031】
制御器(70)は、予め設定された制御周期(図18のステップS1)毎に加速度センサ(78)(79)の観測値を読み込む(ステップS2)。
制御器(70)は、観測された加速度センサ(78)(79)の値に基づいて、X軸方向の加速度axとY軸方向の加速度ayの目標値が夫々ゼロとなるように目標値と観測値と差分を算出する。
ロール角方向では、得られた各差分に、ゲインG21及びG22を掛けて、その差分が減少する方向の角速度リファレンスを決定する(ステップS3)。2台の駆動モータ(52)(53)を同方向に回転させることによりロール角方向にテーブル(20)が傾斜するから(図13参照)、モータドライバ(75)(76)には、得られたリファレンスをプラス入力する(ステップS4)。
ピッチ角方向についても同様に、ピッチ角の目標値と、ピッチ角傾斜センサ(72)で得られた現在のテーブル(20)のピッチ角の差分にゲインG21及びG22を掛けて、その差分が減少する方向の角速度リファレンスを決定する(ステップS3)。両駆動モータ(52)(53)を逆回転させることによりピッチ角方向にテーブル(20)が傾斜するから(図14参照)、図17に示すように、モータドライバ(75)にリファレンスをプラス入力し、モータドライバ(76)にはリファレンスをマイナス入力する。
【0032】
両駆動モータ(52)(53)への速度指令が決定され(ステップS4)、モータドライバ(75)(76)を介して所定の電流値が駆動モータ(52)(53)に印加されることにより、テーブル(20)に作用する加速度と重力との合力ベクトルがテーブル(20)に対して垂直となるようにテーブル(20)が傾動する。
【0033】
[フィードフォワード制御]
制御系のブロック図19及びフロー図20を参照しながら説明を行なう。なお、フィードバック制御の場合と重複する部分については説明を省略する。
台車(11)の車輪(12)は、モータ等の駆動手段(82)に連繋され、駆動手段(82)の駆動により、車輪(12)が回転して台車(11)が走行する。駆動手段(82)の駆動制御は、図19に示すように、移動速度制御部(80)によって行なわれ、移動速度制御部(80)には、外部から移動速度指令が入力されて、駆動手段(82)の回転角速度が決定される。
そこで、本実施例では、所定周期毎(ステップS11)に、現在のテーブル(20)の傾斜角度及び/又は角速度を読み込み(ステップS12)と、移動速度制御部(80)に入力された移動速度指令からテーブルXY方向へ働く加速度を求める(ステップS13)。
移動速度制御部(80)で求められたX軸方向及びY軸方向の加速度情報は、目標姿勢演算部(84)に入力され、目標姿勢演算部(84)にて、各方向の加速度と重力との合力ベクトルが、テーブル(20)に対して垂直に作用するテーブル(20)の目標傾斜角を算出し(ステップS14)、ステップS12とステップS14で得られた角度情報から前述の図17と同様の手法で角速度のリファレンスを算出し(ステップS15)、モータドライバ(75)(76)への角速度指令を行なって(ステップS16)、テーブル(20)を傾動させる。
【0034】
上記フィードフォワード制御により、遅延のないテーブル角度制御を行なうことができる。
【0035】
上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
【図面の簡単な説明】
【図1】搬送ロボットの制御状態を示す説明図である。
【図2】テーブルの軸及び角方向を示す斜視図である。
【図3】テーブルへの各種センサの配置を示す説明図である。
【図4】テーブルに載置される物品に作用する加速度及び重力の合力ベクトルを示す説明図である。
【図5】フィードバック制御におけるX軸方向のテーブルの傾動を説明する図である。
【図6】フィードバック制御におけるY軸方向のテーブルの傾動を説明する図である。
【図7】テーブルの傾動機構の縦断面図である。
【図8】図7の図8−図8線に沿う矢視断面図である。
【図9】図7の図9−図9線に沿う矢視断面図である。
【図10】テーブル傾動機構の要部を拡大して示す分解斜視図である。
【図11】第1駆動モータのみを駆動したときのテーブルの傾動状態を示す斜視図である。
【図12】第2駆動モータのみを駆動したときのテーブルの傾動状態を示す斜視図である。
【図13】両駆動モータを同方向に駆動したときのテーブルのX軸周りの傾動状態を示す斜視図である。
【図14】両駆動モータを逆方向に駆動したときのテーブルのY軸周りの傾動状態を示す斜視図である。
【図15】テーブルの全傾動範囲を示す斜視図である。
【図16】フィードバックの制御系の構成及び制御信号の流れを示すブロック図である。
【図17】フィードバックの制御系における制御器の詳細な制御ブロック図である。
【図18】フィードバック制御における制御フローを示している。
【図19】フィードフォワードの制御系の構成及び制御信号の流れを示すブロック図である。
【図20】フィードフォワード制御における制御フローを示している。
【図21】従来の搬送ロボットの制御状態を示す説明図である。
【符号の説明】
(1)  搬送ロボット
(11) 台車
(12) 車輪
(20) テーブル

Claims (3)

  1. 物品が載置されるテーブルを自走式の台車に対して前後及び/又は左右に傾動可能に配備した搬送ロボットのテーブル角度制御方法において、
    台車の移動に伴いテーブル又は台車に作用する加速度と重力の合力ベクトルがテーブルに対して垂直に作用するように、テーブルを傾動させることを特徴とする搬送ロボットのテーブル角度制御方法。
  2. 台車の移動に伴いテーブル又は台車に作用する加速度を測定するステップと、
    得られた加速度と重力との合力ベクトルがテーブルに対して垂直に作用するように、テーブルを傾動させるステップと、
    を有することを特徴とする請求項1に記載の搬送ロボットのテーブル角度制御方法。
  3. 物品が載置されるテーブルを自走式の台車に対して前後及び/又は左右に傾動可能に配備した搬送ロボットのテーブル角度制御方法において、
    台車を移動させるために台車の駆動手段へ入力される速度指令値から、テーブルに作用する加速度を推定するステップと、
    推定された加速度と重力との合力ベクトルを算出するステップと、
    得られた合力ベクトルがテーブルに対して垂直に作用するように、テーブルを傾動させるステップと、
    を有することを特徴とする搬送ロボットのテーブル角度制御方法。
JP2002176996A 2002-06-18 2002-06-18 搬送ロボットのテーブル角度制御方法 Pending JP2004021693A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002176996A JP2004021693A (ja) 2002-06-18 2002-06-18 搬送ロボットのテーブル角度制御方法
US10/462,701 US6859684B2 (en) 2002-06-18 2003-06-17 Method of controlling table angle of transport robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176996A JP2004021693A (ja) 2002-06-18 2002-06-18 搬送ロボットのテーブル角度制御方法

Publications (1)

Publication Number Publication Date
JP2004021693A true JP2004021693A (ja) 2004-01-22

Family

ID=29996488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176996A Pending JP2004021693A (ja) 2002-06-18 2002-06-18 搬送ロボットのテーブル角度制御方法

Country Status (2)

Country Link
US (1) US6859684B2 (ja)
JP (1) JP2004021693A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105844A (ja) * 2006-10-27 2008-05-08 Toshiba Schneider Inverter Corp 搬送装置
KR20180037482A (ko) * 2016-10-04 2018-04-12 한양대학교 에리카산학협력단 물체수송장치
JP2021064238A (ja) * 2019-10-16 2021-04-22 トヨタ自動車株式会社 物品搬送ロボット

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005053296B4 (de) * 2005-11-08 2009-08-13 Kuka Innotec Gmbh Verfahren und Vorrichtung zum automatisierten Stapeln von Reifen auf einem Träger
US8352323B2 (en) 2007-11-30 2013-01-08 Blaze Mobile, Inc. Conducting an online payment transaction using an NFC enabled mobile communication device
CA2898187C (en) 2013-01-15 2017-07-11 Wynright Corporation Automatic tire loader/unloader for stacking/unstacking tires in a trailer
US11065021B2 (en) 2018-10-03 2021-07-20 Daniel Ezra Walzman Osteotomy device
US11858573B2 (en) * 2019-08-29 2024-01-02 Conceptual Innovations, L.L.C. Steerable drive wheel
CN116442208A (zh) * 2022-01-07 2023-07-18 腾讯科技(深圳)有限公司 欠驱动系统机器人的运动控制方法和欠驱动系统机器人

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657104A (en) * 1983-07-23 1987-04-14 Cybermation, Inc. Concentric shaft mobile base for robots and the like
GB9425390D0 (en) * 1994-12-12 1995-02-15 Black & Decker Inc A double bevel table saw
GB9425391D0 (en) * 1994-12-12 1995-02-15 Black & Decker Inc Bevel table saw adjustment
US5974348A (en) * 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations
JP2001058605A (ja) * 1999-08-23 2001-03-06 Fuji Photo Film Co Ltd シート体生産システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105844A (ja) * 2006-10-27 2008-05-08 Toshiba Schneider Inverter Corp 搬送装置
KR20180037482A (ko) * 2016-10-04 2018-04-12 한양대학교 에리카산학협력단 물체수송장치
KR101949348B1 (ko) * 2016-10-04 2019-02-18 한양대학교 에리카산학협력단 물체수송장치
JP2021064238A (ja) * 2019-10-16 2021-04-22 トヨタ自動車株式会社 物品搬送ロボット
US11945096B2 (en) 2019-10-16 2024-04-02 Toyota Jidosha Kabushiki Kaisha Product conveyance robot

Also Published As

Publication number Publication date
US6859684B2 (en) 2005-02-22
US20040006408A1 (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4779982B2 (ja) 移動体及び移動体の制御方法
JP3993883B2 (ja) 倒立二輪走行型ロボット及びその制御方法
JP4600539B2 (ja) 走行装置、走行装置の制御方法
JP4798181B2 (ja) 移動体、走行装置、移動体の制御方法
US8352170B2 (en) Traveling apparatus and method of controlling parallel two-wheeled vehicle
US11029695B2 (en) Acceleration controls for a mobile drive unit
US20100057319A1 (en) Inverted two-wheel guided vehicle and control method therefor
US8935050B2 (en) Moving body control system, moving body control method, and non-transitory computer readable medium storing control program
JP2007011634A (ja) 移動台車の制御方法及び移動台車
JP2008052362A (ja) 自律移動装置
JP2010225139A (ja) 移動機器
JP2007219986A (ja) 倒立移動装置及びその制御方法
KR101117040B1 (ko) 도립 진자형 이동 기구
WO2022059714A1 (ja) 二輪車
JP2004021693A (ja) 搬送ロボットのテーブル角度制御方法
JP2005335471A (ja) 走行装置
JP5105528B2 (ja)
JP2004338507A (ja) 自動二輪車
US20160194042A1 (en) Three-wheeled mobile robot
US11845415B2 (en) AGV having dynamic safety zone
JP2005080902A (ja) 駆動体及び走行車両の姿勢制御方法及装置
JP2017043222A (ja) 移動装置及び移動装置の制御方法
JPH0995116A (ja) 物品搬送車
JP2003226485A (ja) クレーンの走行制御方法及び走行制御装置
JP6515297B1 (ja) 台部安定化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313