JP2005335471A - 走行装置 - Google Patents

走行装置 Download PDF

Info

Publication number
JP2005335471A
JP2005335471A JP2004154806A JP2004154806A JP2005335471A JP 2005335471 A JP2005335471 A JP 2005335471A JP 2004154806 A JP2004154806 A JP 2004154806A JP 2004154806 A JP2004154806 A JP 2004154806A JP 2005335471 A JP2005335471 A JP 2005335471A
Authority
JP
Japan
Prior art keywords
speed
travel
traveling
motor
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004154806A
Other languages
English (en)
Other versions
JP4442319B2 (ja
Inventor
Buichi Kakinuma
武一 柿沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004154806A priority Critical patent/JP4442319B2/ja
Publication of JP2005335471A publication Critical patent/JP2005335471A/ja
Application granted granted Critical
Publication of JP4442319B2 publication Critical patent/JP4442319B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Motorcycle And Bicycle Frame (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 ステップ台のピッチ方向の揺動の影響を受けることなく、走行装置の正確な速度や走行距離を算出し、速度計や走行距離計に表示できるようにした走行装置を提供する。
【解決手段】 平行に配置された一対の車輪101と、駆動手段と、搭乗者のステップ台103と、搭乗者が保持するハンドルと、ステップ台103の角速度及び走行加速度を制御する姿勢検出センサとを備え、所定の走行状態を維持するための信号を駆動回路に出力し、車輪を駆動する走行装置であって、車輪101側に駆動手段のロータ109を介して回転プレート110と、ステップ台103側に駆動手段のステータ113を介して検出ユニット111がそれぞれ取り付けられ、検出ユニット111によって回転プレート110の回転から車輪の回転速度を検出するように構成され、車輪とステップ台との複合された回転情報から走行速度及び走行距離を表示する表示計を備えた。
【選択図】図4

Description

本発明は、例えば人間を搭乗させて二輪で走行する乗り物に使用して好適な走行装置に関し、詳しくは、この種の走行装置に速度計及び走行距離計を備えることによって走行の安全や交通法規への対応を実現できるようにしたものである。
例えば人間を搭乗させて二輪で走行する乗り物が提案されている(例えば、特許文献1参照。)。
米国特許第6288505号明細書
例えば、人間を搭乗させて二輪で走行する乗り物として、本願出願人は先に以下に述べるような走行装置を提案(特願2003−168224号)した。
先ず、本願出願人が提案した同軸二輪車の一実施形態の外観斜視図を図9に示す。図9に示す同軸二輪車1において、車輪軸2の両端には一対の車輪3(右車輪3R及び左車輪3L)が止着されている。この車輪3は、柔軟な特性を有するゴム材で形成されており、その内部には空気や窒素ガス等が充填される。このガス圧を調整して車輪3の柔軟性を調整することにより、機体の振動を吸収し、路面の凹凸による振動や段差による衝撃を低減することができる。
また、車輪軸2には、例えば人間が立ち姿勢で搭乗するための板状体の下に後述する制御装置等が格納される略直方体形状の筐体が接合されたベース4が、車輪軸2回りに傾動可能に支持されている。なお、以下の説明においては、両輪を結ぶ車輪軸2の中間点をX−Y−Z座標系の原点Oと仮定し、この原点Oを通りベース4の主面と平行で且つ車輪軸2に垂直な方向をX軸又はロール軸、原点Oを通る車輪軸方向をY軸又はピッチ軸、原点Oを通りベース4の主面と垂直な方向をZ軸又はヨー軸と定義する。また、同軸二輪車1の前方をX軸の正方向、左方をY軸の正方向、上方をZ軸の正方向とそれぞれ定義する。
ベース4には、図10に示すように、正逆回転可能なモータ10(10R及び10L)が装着されており、モータ10に隣接して、モータ10の回転位置を検出するためのロータリエンコーダ11(11R及び11L)が設けられている。また、モータ10と車輪3との間には、歯車又はタイミングベルトによる減速器12(12R及び12L)が介在されており、モータ10の回転がこの減速器12及びジョイント(図示せず)を介して車輪3に伝達される。
さらに、ベース4には、ベース4のピッチ軸、ヨー軸回りの角速度ωp、ωyawを検出するためのジャイロセンサ13のほか、X、Y、Z軸方向のリニア加速度Ax、Ay、Az及びピッチ軸、ロール軸、ヨー軸回りの角加速度αp、αr、αyawを検出するための加速度センサ14や、ベース4上の負荷重量を検出するための圧力センサ15等の各種センサが内蔵されている。
このうち、圧力センサ15は、図11のAの平面図及び図11のBの側面図に示すようにベース4の板状体を構成する支持台4aと可動台4bとの間の四隅に設けられており、この4つの圧力センサ15、15、15、15のセンサ信号から、ベース4上の負荷の重心座標(Xg、Yg)とその負荷重量Wgとを検出することができる。
すなわち、圧力センサ15〜15のセンサ信号がそれぞれPS、PS、PS、PSであり、無荷重状態で圧力センサ15〜15にかかる自重がWである場合、負荷重量Wgは、以下の式(1)のように求められる。
Figure 2005335471
また、圧力センサ15、15、15、15の座標が、それぞれ(Xps,Yps)、(−Xps,Yps)、(―Xps,―Yps)、(Xps,―Yps)である場合に、重心座標(Xg,Yg)は、以下の式(2)のように求められる。
Figure 2005335471
この式(2)において、W14は無荷重状態で圧力センサ15、15にかかる自重を示し、W23は無荷重状態で圧力センサ15、15にかかる自重を示し、W12は無荷重状態で圧力センサ15、15にかかる自重を示し、W34は無荷重状態で圧力センサ15、15にかかる自重を示す。
このようにして、圧力センサ15によりベース4上の負荷による負荷荷重トルクTが計算できるため、モータ10にその反作用のモーメントを与えることにより、ベース4上でバランスを保ち、姿勢を安定化することが可能となる。
さらにまた、ベース4の下部筐体には、マイクロコンピュータからなる制御装置16が搭載されており、この制御装置16に各種センサ信号、検出信号が入力される。制御装置16は、これらの入力信号に基づいて、後述するようにベース4のピッチ軸角度、ヨー軸角度を適切な値に保ちながら、機体を前進・後退・旋回させるモータトルクを発生するように制御する。
また、この同軸二輪車1は、図12に示すように、車輪軸2回りに傾動可能とされるベース4の重量中心Mが車輪軸2よりも下方に位置するように構成されている。これにより、停止時にも機体の重心位置が最も安定な位置に保たれ、転倒しにくくなる。なお、この図12ではベース4の上面の高さが車輪軸2よりも高くなっているが、ベース4の上面が車輪軸2より低くなっていても構わない。
ここで、ベース4上で姿勢を保つための制御概念について説明する。図13に示すように、ベース4上の負荷、例えば人間の体重による負荷荷重トルクTに対して、同じモーメントを発生するようにモータトルクTmを制御すると、ベース4はシーソーのように支点を中心にバランスを保つ。このバランスを保つ支点に相当する点、すなわち車輪軸2回りの回転モーメントがゼロとなる点をZMP(Zero Moment Point)と呼ぶ。このZMPが車輪3の路面との接地点に一致するとき、或いは路面との接地面内にあるとき、バランスが保たれてベース4上で姿勢を保つことができる。
この同軸二輪車1に体重Whの人間が搭乗した場合、図14に示すように、人間の傾き角θに応じてベース4の重量中心Mが車輪軸2を中心に傾く。このとき、車輪軸2がバランスをとるための車輪軸トルクTは以下の式(3)で表され、姿勢を保つためのモータトルクTmは減速器12の減速比をN:1としてT/Nで表される。
Figure 2005335471
このようにして、上述の同軸二輪車1では、上述の如くベース4の重量中心Mが車輪軸2よりも下方に位置するように構成されているため、式(3)のように、人間の体重Whによるモーメントとベース4の重量Wmによるモーメントとの差分を車輪軸トルクTとして加えるのみでよく、比較的小さいモータトルクでバランスを保つことができる。
さらに、ベース4上で姿勢を保つための力学モデルについて、図15に示すX−Z座標系を用いて詳細に説明する。ここで図15では簡単のため、車輪3は1つであるものとして説明する。また、車輪3、ベース4、及びベース4上の人間をそれぞれリンクとみなし、その重心位置座標をそれぞれ(x,z)、(x,z)、(x,z)とする。さらに、各リンクの質量をそれぞれm、m、mとし、慣性モーメントをI、I、Iとする。
定義した点Ω(σ,φ)回りの第iリンク(i=0,1,2)の各運動量は、重心位置座標を(x,z)とすると、以下の式(4)で表される。ここで、式(4)においてx、zの上に付されている1つの点は、x、zの1階微分であることを示している。
Figure 2005335471
したがって、全リンクの慣性力によるモーメントは、以下の式(5)で表される。ここで、式(5)においてx、zの上に付されている2つの点は、x、zの2階微分であることを示している。また、全リンクの重力によるモーメントは、重力加速度をgとして以下の式(6)で表される。
Figure 2005335471
この慣性力によるモーメントと重力によるモーメントとの和により、式(7)に示すように、点Ω(σ,φ)回りのモーメントMΩが与えられる。
Figure 2005335471
質量mである車輪3の重力によるモーメントを除けば、点Ω(σ,φ)を原点にとることで、上述のモーメントMΩは車輪軸2回りのモーメントMaとなる。この車輪軸2回りのモーメントMaは、以下の式(8)で表される。
Figure 2005335471
このモーメントMaを用いて上述のモーメントMΩを表せば、x=0であるとき、すなわち車輪3の重心位置が車輪軸2上にあるとき、以下の式(9)で与えられる。
Figure 2005335471
ここで、ZMPはモーメントMΩが0である床面上の点と定義される。そこで、車輪軸2の高さをh、ZMPの座標を(σzmp,−h)として式(7)に代入すると、以下の式(10)のようになる。この式(10)をσzmpについて解くことで、ZMPをリンク位置、加速度及び質量により表すことができる。
Figure 2005335471
また、上述した式(9)にZMPの座標(σzmp,−h)を代入すると、以下の式(11)のようになる。なお、この式(11)は、車輪軸2回りのモーメントのつり合いの式を示す。
Figure 2005335471
ここで、ZMPに作用する力を図16に図示する。図16において、FNは床反力、FTは転がり摩擦力、FはFNとFTとの合成ベクトルを表す。なお、床反力FNは実際には車輪3の接地面全体に分布するが、図16ではZMPに集約するものとして表している。この図から車輪軸2回りのモーメントのつり合いの式を表すと、以下の式(12)のようになる。
Figure 2005335471
なお、この式(12)に、以下の式(13)〜(15)を代入すると、上述した式(11)と同じものになる。
Figure 2005335471
ベース4上の姿勢が安定するには、式(12)においてσzmp=0となればよい。すなわち、車輪軸トルクT=−FT*hが成立すれば姿勢を保つことができる。したがって、T=FT=0を満たす以下の式(16)に示す状態変数を制御することにより、姿勢を安定させることができる。
Figure 2005335471
このとき、x、xは、機構構造により一意に定まるが、m、I、x、zは、人間であるため不定値である。このm、I、x、zによるベース4上でのモーメントMtは、以下の式(17)で与えられる。但し、ベース4は、図17のように水平に保たれるものとする。
Figure 2005335471
ここで、負荷が人間である場合には角速度ωが十分に小さいため、ω≒0と近似すると、式(18)においてxとその2階微分値をゼロにするときモーメントMtがゼロになる。xとその2階微分値をゼロにすることは、ベース4上での負荷荷重トルクTがゼロとなるようにx及びxを制御することと等価と考えてよい。また、この負荷荷重トルクTによるモーメントMtは、力F2でベース4上の作用点(xf,L)に作用することと等価である。したがって、このxfをゼロにするx、xを与えることができればT=0となり、姿勢を安定に保つ条件を満足することができる。
図17に示すように、ベース4上のジャイロセンサ信号をフィードバック制御してモータトルクTmを与えることによりx=xを保つように制御されているとき、xf=xとなるようにモータトルクTmを制御することで姿勢を安定に保つことができる。
具体的には、誤差Ef=xf−xとするとき、Ef>0であればxを正の方向に変位させるためにモータトルクTmを負として機体を前進させ、Ef<0であればxを負の方向に変位させるためにモータトルクTmを正として機体を後退させることで、誤差Efをゼロに収束させることができる。すなわち、Aを正の定数として、Tm=−A*EfとなるモータトルクTmを与えることでEfをゼロに収束させ、姿勢を安定に保つことができるようになる。
実際には、例えば図18のようにベース4がピッチ軸回りに角度θだけ傾いた場合、体重Mの人間によりT(=Mτ×L)の負荷荷重トルクが発生するため、その負荷荷重トルクTと逆方向の車輪軸トルクTを与えるようにモータトルクTmを制御することで、ZMPを車輪3の接地点と一致させ、姿勢を安定に保つことができるようになる。
ここで、ベース4上に人間が搭乗した場合、個人差はあるものの通常1〜2秒の周期で姿勢を保つために足裏に作用させる力を変動させているため、人間の体重による負荷荷重トルクTは不確定に変化する。したがって、リアルタイムにバランスがとれるようなトルクをモータ10に加算し、負荷変動に対してベース4の角度を一定に保つ必要がある。
そこで、上述の同軸二輪車1は、このような負荷変動をリアルタイムに相殺するために、制御装置16内に図19に示すような制御機構を有している。図19において、減算器20では、姿勢指令であるベース角度指令θrefとジャイロセンサ13及び加速度センサ14によって検出した現在のベース角度θとの偏差がとられ、この偏差が姿勢制御器21に供給される。姿勢制御器21は、このベース角度指令θrefと現在のベース角度θとからモータトルク電流値Tgyr[A]を計算する。
また、調整器22では、圧力センサ15のセンサ信号PS、PS、PS、PSを用いて負荷荷重トルクTを推定し、これを相殺するための推定負荷荷重トルク電流値T′/Km[A]を計算する。ここでKmはモータ定数[Nm/A]である。負荷の重心座標が(Xg、Yg)であり、負荷重量がWgである場合、推定負荷荷重トルクT′は、以下の式(18)のように与えられる。
Figure 2005335471
そして減算器23では、モータトルク電流値Tgyrと推定負荷荷重トルク電流値T′/Kmとの偏差がとられ、この偏差がモータ電流I[A]としてモータ24に与えられる。モータ24はこのモータ電流Iによって回転することによりモータトルクTmを発生し、加算器25では、このモータトルクTmと負荷荷重トルクTとが加算されてベース26に伝えられる。
このように、負荷荷重トルクTを相殺するためのモータトルクTmをモータ24に加算することにより、停止時においては負荷変動に対してベース角度を一定に保つことができる。
以上の制御機構により姿勢安定制御を行うことができるが、この状態で走行するには、さらに走行制御のための制御機構が必要となる。そこで、上述の同軸二輪車1は、実際には姿勢安定制御のためのモータトルクと走行制御のためのモータトルクとを独立して求める二輪構造の制御機構を有している。
このような二輪構造の制御機構の物理モデルを図20に示す。なお、この図20においても、簡単のため、車輪3は1つであるものとして説明する。図20に示すように、ベース4にはジャイロセンサ13、加速度センサ14、圧力センサ15等の各種センサが内蔵されており、その下部にはモータステータ30、ロータリエンコーダ31、モータロータ32が存在し、モータロータ32の回転は減速器33及びジョイント34を介して車輪3に伝達される。
姿勢制御/調整器40は、姿勢指令であるベース角度指令θref、ジャイロセンサ13及び加速度センサ14によって検出した現在のベース角度θ、及び圧力センサ15のセンサ信号PS、PS、PS、PSから、上述したモータトルクTgyr及び推定負荷荷重トルクT′を計算する。また、モータ制御器41は、走行指令であるモータロータ32の回転位置指令Prefとロータリエンコーダ31によって検出したモータロータ32の現在の回転位置θrとから、走行のためのモータトルクを計算する。
そして、加算器42において、モータトルクTgyr及び推定負荷荷重トルクT′と走行のためのモータトルクとが加算され、この加算値がモータロータ32に供給される。
ここで、上述したベース角度指令θrefとは、搭乗者が安定に乗ることができるように、X軸方向の加速度Axに応じて設定されるベース角度の目標値である。具体的には、X軸加速度Axがゼロのときベース4が水平になるように、X軸加速度Axが正のときベース4を前方に傾けるように、X軸加速度Axが負のときベース4を後方に傾けるように、それぞれ設定される。
そこで、例えばX軸加速度Axが正の場合、図21に示すように、慣性力と重力との合成ベクトルの方向にZMPが位置するようにベース4を傾けると、搭乗者は姿勢を安定に保つことができる。なお、このベース角度指令θrefは、X軸加速度Axに比例して変化する。
制御機構のブロック図を図22に示す。減算器50では、姿勢指令であるベース角度指令θrefとジャイロセンサ13(及び加速度センサ14)によって検出した現在のベース角度θとの偏差がとられ、この偏差が姿勢制御器51に供給される。姿勢制御器51は、このベース角度指令θrefと現在のベース角度θとからモータトルクTgyrを計算し、このモータトルクTgyrを加算器54に供給する。
一方、減算器52では、走行指令であるモータロータ57の回転位置指令Prefとロータリエンコーダ58によって検出したモータロータ57の現在の回転位置θrとの偏差がとられ、この偏差がモータ制御器53に供給される。モータ制御器53は、この回転位置指令Prefと現在の回転位置θrとから、走行のためのモータトルクを計算し、このモータトルクを加算器54に供給する。
また、ベース4に負荷荷重トルクTが加えられると、圧力センサ15のセンサ信号PS、PS、PS、PSが調整器55に供給され、調整器55は、このセンサ信号に基づいて上述した推定負荷荷重トルクT′を計算する。
加算器54では、姿勢制御器51からのモータトルクTgyrとモータ制御器53からのモータトルクとが加算され、減算器56では、この加算値から推定負荷荷重トルクT′が減算される。これが最終的なモータトルクTmとなり、モータロータ57に与えられる。加算器59では、このモータトルクTmの反作用力と負荷荷重トルクTとが加算され、この加算値がモータステータ/ベース60に与えられる。
モータロータ57は、モータトルクTmに応じて回転制御される。このモータロータ57の回転位置θrは、減速比N:1の減速器61によって1/Nに変換され車輪3に伝達される。すなわち、車輪3の回転位置θwは、モータロータ57の回転位置θrの1/Nである。ロータリエンコーダ58は、このモータロータ57の回転位置θrを検出し、検出信号を減算器52に供給する。
一方、モータステータ/ベース60には、上述したように、モータトルクTmの反作用力と負荷荷重トルクTとの加算値が加わるが、それらが相互に打ち消されるため、モータステータ/ベース60の傾動は抑えられる。
図23は、図22に示したブロック図における処理を、ラプラス演算子を用いて数学モデルとして表現したものである。上述の如く、姿勢制御器51には、ベース角度指令θrefと現在のベース角度θとの偏差が与えられ、モータ制御器53には、モータロータ57の回転位置指令Prefと現在の回転位置θrとの偏差が与えられる。この姿勢制御器51及びモータ制御器53では、例えばPID(比例・積分・微分)演算を行うフィードバック制御により各モータトルクが計算される。
すなわち、Kp、Kpが比例ゲインとなり、Ki、Kiが積分ゲインとなり、Kd、Kdが微分ゲインとなる。これらの制御ゲインによって、モータが姿勢指令θref及び走行指令Prefに対して応答する追従性が変化する。例えば、モータロータ57は、比例ゲインKp,Kpを小さくすると、ゆっくりとした追従遅れをもって動くようになり、比例ゲインKp、Kpを大きくすると、高速に追従するようになる。このように、制御ゲインを変化させることにより、姿勢指令θref、走行指令Prefと、実際の動きの誤差の大きさや応答時間とを調整することが可能となる。
また、モータロータ57には、姿勢制御器51からのモータトルクとモータ制御器53からのモータトルクとの加算値から推定負荷荷重トルクT′が減算されたモータトルクTmが与えられ、回転角度θrだけ回転する。ここで、Jrはモータロータ57のイナーシャ(inertia)であり、Drはモータロータ57の粘性抵抗(ダンパ係数)である。
一方、モータステータ/ベース60には、上述の如くモータトルクTmの反作用力と負荷荷重トルクTとの加算値が加わるが、それらが相互に打ち消されるため傾動が抑えられる。ここで、Jはモータステータ/ベース60のイナーシャであり、Dはモータステータ/ベース60の粘性抵抗(ダンパ係数)である。
この図23に示した数学モデルは、より詳細には例えば図24に示すようになる。図24に示すように、姿勢制御器70は、ベース角度指令θrefと現在のベース角度θとの偏差に対してPID制御を行うことで姿勢制御のためのモータトルクTgyrを生成し、モータ制御器71は、モータ10の回転位置指令Prefと現在の回転位置θrとの偏差に対してPID制御を行うことで走行制御のためのモータトルクを生成する。
また、調整器72は、圧力センサ15のセンサ信号から推定負荷荷重トルクT′を生成する。加算器73ではこれらの各トルクが加算され、得られたモータトルクTmがモータ10に与えられる。モータ10は、このモータトルクTmにより回転駆動され、その回転が減速比16:1の減速器74によって1/16に変換され車輪3に伝達される。
以上、図20乃至図24では、簡単のため車輪3が1つであるものとして説明したが、左右2つの車輪3R,3Lを有する実際の同軸二輪車1では、例えば図22における姿勢制御器51が左右の車輪3R,3Lで共通に用いられる一方で、モータ制御器53が左右独立に設けられる。
この場合の制御機構のブロック図を図25に示す。ジャイロセンサ13からのセンサ値ωpは例えば通過帯域が0.1〜50Hzであるバンドパスフィルタ(BPF)80を介して角度算出器82に送られ、加速度センサ14からのセンサ値αpは例えば遮断周波数が0.1Hzのローパスフィルタ(LPF)81を介して角度算出器82に送られる。角度算出器82では、これらのセンサ値に基づいて現在のベース角度θ0が算出される。
また、減算器83では、姿勢指令であるベース角度指令θrefと現在のベース角度θとの偏差がとられ、この偏差が姿勢制御器84に供給される。姿勢制御器84は、このベース角度指令θrefと現在のベース角度θとから、上述したモータトルクTgyrを計算する。
一方、減算器85Rでは、右車輪3R用の走行指令であるモータロータ92Rの回転位置指令Prefrとロータリエンコーダ93Rによって検出したモータロータ92Rの現在の回転位置θrとの偏差がとられ、この偏差が位置比例制御器86Rに供給される。位置比例制御器86Rは、この偏差に対して位置比例(P)制御を行い、比例制御結果を減算器87Rに供給する。
また、微分器88Rは、ロータリエンコーダ93Rから供給されたモータロータ92Rの回転位置θrを微分し、微分結果を減算器87Rに供給する。そして減算器87Rでは、位置比例制御器86Rからの比例制御結果と微分器88Rからの微分結果との偏差がとられ、この偏差が速度比例制御器89Rに供給される。速度比例制御器89Rは、この偏差に対して速度比例(P)制御を行い、比例制御結果を加算器90Rに供給する。
加算器90Rでは、この比例制御結果とモータトルクTgyrと調整器94において圧力センサ15のセンサ信号PS、PS、PS、PSから求めた推定負荷荷重トルクT′とが加算され、加算値が電流制御アンプ91Rに供給される。電流制御アンプ91Rは、この加算値に基づいてモータ電流を生成し、モータロータ92Rを駆動する。このモータロータ92Rの回転位置は、減算器85Rと共に微分器88Rに供給される。左車輪3Lについても同様であるため、説明を省略する。
このように、上述の同軸二輪車1では、左右の車輪3R,3Lで共通な姿勢安定制御用の制御機構と、左右独立な走行制御用の制御機構とを有し、それらが独立した制御を行うため、姿勢安定制御と走行制御とを安定して両立することができる。
次に、上述の同軸二輪車1における速度制御について説明する。
上述したように、上述の同軸二輪車1では、ベース4の四隅に設けられた4つの圧力センサ15〜15のセンサ信号PS、PS、PS、PSからベース4上の負荷の重心座標(Xg,Yg)とその負荷重量Wgとを検出し、負荷荷重トルクT1を求めているが、さらに、この重心座標(Xg,Yg)を走行する方向、速度の制御指令として用いる。具体的には、負荷重量Wgが所定の値以上である場合に、重心位置のX座標Xgに基づき速度指令Vxを変化させる。
その様子を図26に示す。ここで図26において、XからXまでの範囲は停止領域であり、この範囲内では指令走行速度をゼロとする。この停止領域は、車輪3の路面との接地面のX座標範囲とすることが好ましい。この場合、例えば負荷重量Wgが大きいときや車輪3のガス圧が低いときには車輪3の路面との接地面積が大きくなるため、停止領域の範囲も大きくなる。このように停止領域(不感帯)を設けることで、搭乗者の意図しない僅かな重心移動によって機体が前進・後退することを防止することができる。
X座標がX以上になると、前進最大速度SfMAX に達するまで、X座標の大きさに応じて指令速度が増加する。また、X座標がX以上になると強制的に減速停止し、再び停止領域内で姿勢を安定させるまで停止する。このように、強制的に減速停止する領域を設けることで、最大速度で走行している際の搭乗者の安全性を確保することができる。
同様に、X座標がX以下になると、後退最大速度SbMAXに達するまで、X座標の大きさに応じて指令速度が増加する。なお、この後退最大速度SbMAXは、前進最大速度SfMAXよりも小さいことが好ましい。また、X座標がX以下になると強制的に減速停止し、再び停止領域内で姿勢を安定させるまで停止する。
X座標がXからXまで、或いはXからXまでの間では、そのX座標Xgに応じて、例えば以下の式(19)により、モータ10Rの回転位置指令Prefrとモータ10Lの回転位置指令Preflとが生成される。ここで、式(19)において、Gは正の一定ゲインであり、例えば負荷重量Wgに応じて可変にすることができる。
Figure 2005335471
なお、時刻t=0での速度指令がVxであり、時刻t=tでの速度指令がVxである場合、加速度を連続的に変化させ、機構的な共振振動を生じさせないように走行することが好ましい。この場合、Vxに到達するまでの時間をΔtとすると、時刻t(0≦t≦t)での走行速度指令Vref(t)は、例えば以下の式(20)により算出することができる。
Figure 2005335471
このとき、モータ10の回転位置指令Pref(t)は、式(20)の走行速度指令Vref(t)を積分した値となり、以下の式(21)に示すような5次関数で与えられる。ここで、式(21)において、Prefは時刻t=0での回転位置指令である。
Figure 2005335471
また、前進・後退させるのみでなく、負荷重量Wgが所定の値以上である場合、重心位置のY座標Ygに基づき、例えば図27に示すように旋回速度指令Vrを変化させることもできる。ここで図27において、−YからYまでの範囲は停止領域であり、この範囲内では指令旋回速度をゼロとする。
なお、この停止領域は、原点O近傍で任意に設定することができる。このように停止領域(不感帯)を設けることで、搭乗者の意図しない僅かな重心移動によって機体が旋回することを防止することができる。Y座標がY以上になると、右回り最大速度CWMAXに達するまで、Y座標の大きさに応じて指令旋回速度が増加する。同様に、Y座標が−Y以下になると、左回り最大速度CCWMAXに達するまで、Y座標の大きさに応じて指令旋回速度が増加する。
Y座標がY以上又は−Y以下では、そのY座標Ygに応じて、モータ10Rの回転位置指令Rrefrとモータ10Lの回転位置指令Rreflとが生成される。走行速度がゼロである場合、モータ10Rの回転位置指令Rrefrとモータ10Lの回転位置指令Rreflとは、例えば以下の式(22)に示すような逆位相指令となる。ここで、式(22)において、Gは正の一定ゲインであり、例えば負荷重量Wgに応じて可変にすることができる。
Figure 2005335471
一方、走行速度がゼロでない場合、モータ10Rの回転位置指令Rrefrとモータ10Lの回転位置指令Rreflとは、例えば以下の式(23),(24)に示すような同位相指令となる。ここで、式(23),(24)において、G2は正の一定ゲインであり、例えば負荷重量Wgに応じて可変にすることができる。
Figure 2005335471
ここで、不整地路面等の凹凸を有する路面や傾斜路面を走行する場合には、左右のモータ10R,10Lの回転位置指令で与えられる目標方向に走行することが困難になり、目標方向と実際の走行方向とにずれが生じる虞がある。また、左右の車輪3R,3Lのガス圧の違いにより車輪3の有効直径が異なる場合にも、同様に目標方向と実際の走行方向とにずれが生じる虞がある。
そこで、上述の同軸二輪車1では、ヨー軸回りの角速度ωyawを検出するジャイロセンサ13により実際の走行方向を検出し、左右のモータ10R,10Lの回転速度を独立に制御することで、目標方向と実際の走行方向とのずれを解消する。
一例として、図28のAに示すように右車輪3Rよりも左車輪3Lの方の有効直径が短く、図28のBに示すように、直進する際にヨー軸回りのジャイロセンサ信号としてωyaw[rad/sec]が検出される場合について説明する。このような場合、回転速度指令Vrefr,Vreflの加算平均をVrefとしたとき、以下の式(25)、(26)に示すように、左右のモータ10R、10Lに与える回転速度指令Vrefr,Vreflを補正することにより、機体を直進させることができる。ここで、式(25)、(26)において、Kは正の定数である。
Figure 2005335471
また、図28のCに示すように目標方向としてDref[rad/sec]が与えられている場合には、以下の式(27)、(28)に示すように左右の車輪に回転速度指令Vrefr、Vreflを与える。
Figure 2005335471
このようにして得られた回転速度指令Vrefr、Vreflは、それぞれ以下の式(29)、(30)により車輪の回転位置指令Prefr、Preflに変換される。ここで、式(29)、(30)において、kはサンプリング回数を表す整数であり、Pref(k)はkサンプリングでの回転位置指令を示す。
Figure 2005335471
同様に、旋回する場合についても、左右の車輪3R、3Lのガス圧の違いや路面状況の違いなどから、旋回速度にずれが生じる虞がある。この場合にも、ヨー軸回りの角速度ωyawを検出するジャイロセンサ13により実際の旋回速度を検出し、左右のモータ10R、10Lの回転速度を独立に制御することで、目標となる旋回速度と実際の旋回速度とのずれを解消することができる。
一例として、右車輪3Rよりも左車輪3Lの方の有効直径が短く、旋回する際にヨー軸回りのジャイロセンサ信号としてωyaw[rad/sec]が検出されている場合について説明する。右車輪3Rの回転位置指令Rrefr及び左車輪3Lの回転位置指令Rreflを微分した信号をそれぞれVrefr、Vreflとすると、旋回速度の誤差ωerrは以下の式(31)で表される。
Figure 2005335471
この場合、以下の式(32)、(33)に示すように、左右のモータ10R、10Lに与える回転位置指令Rrefr、Rreflを補正することにより、機体を目標通りに旋回させることができる。ここで、式(32)、(33)において、Gは正の一定ゲインであり、例えば負荷重量Wgに応じて可変にすることができる。
Figure 2005335471
このように、上述の同軸二輪車1では、ヨー軸回りの角速度ωyawを検出するジャイロセンサ13により実際の走行方向、旋回速度を検出し、左右のモータ10R、10Lの回転速度を独立に制御することで、目標方向(旋回速度)と走行方向(旋回速度)とのずれを解消することができる。
さらにこのような同軸二輪車1のソフトウェア構成を、図29を用いて説明する。図29に示すように、最下位層のハードウェア・レイヤ150から順に、カーネル・レイヤ151、オンボディ・レイヤ152、ネットワーク・レイヤ153、そして最上位層のアプリケーション・レイヤ154という階層構造で構成される。
ハードウェア・レイヤ150は、回路の階層であり、例えばモータ制御回路、中央制御回路、センサ回路の制御回路等が含まれる。カーネル・レイヤ151は、モータサーボ演算や姿勢制御演算、走行制御演算、或いはリアルタイム走行目標値演算等の各種演算を行う階層である。このハードウェア・レイヤ150及びカーネル・レイヤ151において、基本的な姿勢安定制御と走行制御とが実現される。オンボディ・レイヤ152は、走行目標値演算、障害物回避軌道の生成等を行う階層である。
これらの各階層は、それぞれ異なるサンプリングの制御周期で実行され、上位階層ほどその周期は長くなる。例えば最下位層のハードウェア・レイヤ150では、その制御周期が0.1msecと短い周期であるのに対して、カーネル・レイヤ151では1msec、オンボディ・レイヤ152では10msecと長い周期になっている。
続いて、同軸二輪車1における回路の全体構成について説明する。図30に示すように、センサ回路200には、圧力センサ15〜15からのセンサ信号PS1,PS2,PS3,PS4が供給される。センサ回路200は、このセンサ信号のほか、ピッチ軸回り及びヨー軸回りの角速度を検出するジャイロセンサ13からのセンサ信号ωp,ωyawと、X,Y,Z軸方向のリニア加速度及びピッチ軸,ロール軸,ヨー軸回りの角加速度を検出する加速度センサ14からのセンサ信号Ax,Ay,Az,αp,αr,αyawとを合わせて、制御装置16に供給する。
制御装置16は、これらのセンサ信号に基づいて、上述したようにモータトルクTgyrや、走行指令であるモータロータの回転位置指令Prefを生成し、これらを左右のモータドライバ203R,203Lに供給する。モータドライバ203R,203Lは、このモータトルクTgyr、モータロータの回転位置指令Pref等に基づいて、例えば200Wのモータ10R,10Lを駆動するための最適なモータ電流を算出し、モータ10R,10Lに供給する。このモータ10R,10Lの回転位置は、ロータエンコーダ11R,11Lによって求められ、モータドライバ203R,203Lにフィードバックされる。
サーボオン/パワースイッチ204は、制御装置16及び電源スイッチ205と接続されており、電源スイッチ205からの信号は電源管理回路206に供給される。この電源管理回路206は、バッテリ207と接続されており、制御装置16、音声処理回路201及び画像処理回路202に24Vの制御用電源を供給するほか、モータドライバ203R,203Lにモータ電源を供給する。電源管理回路206には、モータドライバ203R,203Lを介してモータ10R,10Lの回生電力が供給され、電源管理回路206は、この回生電力を用いてバッテリ207を充電する。
図30に示した全体構成の詳しい内部構成を、図31を用いて説明する。図31に示すように、センサ回路200には、圧力センサ15〜15からのセンサ信号PS1,PS2,PS3,PS4、ジャイロセンサ13,13からのセンサ信号ωp,ωyaw、加速度センサ14からのセンサ信号Ax,Ay,Az,αp,αr,αyawが供給される。センサ回路200は、圧力センサ15からのセンサ信号PS1,PS2,PS3,PS4を例えば10mv/Nの圧力ゲインでゲイン調整し、さらに図示しないアナログ−デジタル変換器を介してデジタル信号に変換した後、制御装置16の重心演算部210に供給する。
また、センサ回路200は、ジャイロセンサ13,13からのセンサ信号ωp,ωyawを例えば1.6V/(rad/sec)の姿勢ゲインでゲイン調整すると共に、加速度センサ14からのセンサ信号Ax,Ay,Az,αp,αr,αyawを例えば1.6V/(rad/sec)の姿勢ゲインでゲイン調整し、さらに図示しないアナログ−デジタル変換器を介してデジタル信号に変換した後、信号前処理部211に供給する。この信号前処理部211は、入力された信号に対してデジタルフィルタを施したり、オフセット調整や姿勢位置すなわちベース角度θ0の算出をしたりする前処理を行う。
重心演算部210は、圧力センサ15〜15からのセンサ信号PS1,PS2,PS3,PS4に基づいて前述したようにベース4上の負荷の重心位置座標(Xg、Yg)とその負荷重量Wgとを計算し、この重心位置座標(Xg、Yg)及び負荷重量Wgの情報を走行指令算出器212に供給すると共に、重心位置のY座標Yg及び負荷重量Wgの情報を旋回指令発生器215に供給する。
走行指令算出器212は、例えば図26に示したような重心位置X座標−走行速度特性に基づき速度指令Vxを生成し、回転速度指令発生器213は、この速度指令Vxに基づいて前述した5次関数演算を行うことにより、回転速度指令Vref(t)を生成する。回転速度指令発生器213は、回転位置指令Pref(t)を回転位置指令発生器214、旋回指令発生器215、及び姿勢指令発生器216に供給する。
旋回指令発生器215は、重心演算部210から供給された重心位置のY座標Yg及び負荷重量Wg、信号前処理部211から供給されたヨー軸回りの回転角速度ωyaw、及び回転速度指令発生器213から供給された回転速度指令Vref(t)に基づいて旋回する際の位相指令、例えばYg*G1を生成し、この位相指令を回転位置指令発生器214に供給する。
回転位置指令発生器214は、回転速度指令発生器213から供給された回転速度指令Vref(t)を積分して回転位置指令Pref(t)を生成し、左右のモータドライバに回転位置指令Prefr(t),Prefl(t)を供給する。この際、回転位置指令発生器214は、旋回指令発生器215からの位相指令を考慮して回転位置指令Prefr(t),Prefl(t)を生成する。
姿勢指令発生器216は、回転速度指令発生器213から供給された回転速度指令Vref(t)に基づき、図21を用いて説明したように姿勢指令であるベース角度指令θrefを計算し、このベース角度指令θrefを減算器217に供給する。減算器217では、このベース角度指令θrefから信号前処理部211で求められた現在のベース角度θ0が減算され、偏差が姿勢制御器218に供給される。姿勢制御器218は、この偏差を元にしてPID制御を行い、モータトルクTgyrを求める。
なお、PID制御を行う際には、ベース4上の負荷重量Wgに応じてPIゲインを変更するようにしてもよい。具体的には、負荷重量Wgが大きくなると比例ゲインを大きくし、積分ゲインを小さくすることが好ましい。姿勢制御部218は、このモータトルクTgyrを左右のモータドライバ203R,203Lに供給する。
右車輪3R用のモータドライバ203Rにおいて、減算器230Rでは、モータ10R用の走行指令である回転位置指令Prefrとロータリエンコーダ11Rによって検出したモータ10Rの現在の回転位置θrとの偏差がとられ、この偏差が位置比例制御器231Rに供給される。位置比例制御器231Rは、この偏差に対して位置比例(P)制御を行い、比例制御結果を減算器232Rに供給する。また、微分器233Rは、ロータリエンコーダ11Rから供給されたモータ10Rの回転位置θrを微分し、微分結果を減算器232Rに供給する。
そして減算器232Rでは、位置比例制御器231Rからの比例制御結果と微分器233Rからの微分結果との偏差がとられ、この偏差が速度比例・積分制御器234Rに供給される。速度比例・積分制御器234Rは、この偏差に対して速度比例・積分(PI)制御を行い、比例・積分制御結果を加算器235Rに供給する。加算器235Rでは、この比例・積分制御結果とモータトルクTgyrとが加算され、加算値が電流制御アンプ236Rに供給される。
電流制御アンプ236Rは、この加算値に基づいてモータ電流を生成し、例えば200Wのモータ10Rを駆動する。このモータ10Rの回転位置は、減算器230Rと共に微分器233Rに供給される。左車輪3Lについても同様であるため、説明を省略する。
電源管理回路206は、例えば24Vのバッテリ207と接続されており、制御装置16に24V,1Aの制御用電源を供給するほか、モータドライバ203R,203Lにそれぞれ24V,30Aのモータ電源を供給する。電源管理回路206には、モータドライバ203R,203Lを介してモータ10R,10Lの回生電力が供給され、電源管理回路206は、この回生電力を用いてバッテリ207を充電する。
以上説明したように、本願発明者が先に提案した同軸二輪車1では、ジャイロセンサ13及び加速度センサ14を用いてベース4の角度制御を行うモータトルクTgyrと、圧力センサ15を用いて負荷荷重トルクを相殺するモータトルクT1'とを生成する、左右の車輪3R,3Lで共通な姿勢制御器と、圧力センサ15を用いて走行制御を行うモータトルクを生成する、左右独立なモータ制御器とを設け、それらが独立した制御を行うため、姿勢安定制御と走行制御とを安定して両立することができる。
また、本願発明者が先に提案した同軸二輪車1では、ベース4上の負荷の重心座標に応じて走行制御を行うが、車輪3の路面との接地面のX座標範囲、Y座標範囲に停止領域(不感帯)を設けているため、搭乗者の意図しない僅かな重心移動によって機体が前進・後退・旋回することを防止することができる。
さらに、本願発明者が先に提案した同軸二輪車1では、ヨー軸回りの角速度ωyawを検出するジャイロセンサ13により実際の走行方向、旋回速度を検出し、左右のモータ10R,10Lの回転速度を独立に制御することで、目標方向(旋回速度)と走行方向(旋回速度)とのずれを解消することができる。
このような同軸二輪車による走行装置を、本願出願人は先に提案した。
また、上述したような同軸二輪車による走行装置であって、搭乗者が握るハンドルや着座するシートを備えた走行装置として、例えば、特開平4−201793号公報に記載した技術で提案されている。
ところで上述したような走行装置では、速度表示計や走行距離表示計がなく、このため、走行の安全や走行装置のメンテナンスを考慮した場合、非常に不便であり、かつ交通法規への対応もできない。また、速度表示計や走行距離表示計を取り付けたことを想定した場合、単に車輪の回転速度から走行装置の速度や走行距離を算出すると、走行装置そのものが平行に配置された二輪構造のため人間が搭乗するステップ台のピッチ軸角速度、すなわち、ステップ台のピッチ方向の揺動の影響を受け、正確な速度や走行距離を算出することができないといった問題がある。
本発明は上述したような点に鑑みてなされたものであって、新たなセンサの設置を必要とせず、また、ステップ台のピッチ方向の揺動の影響を受けることなく、走行装置の正確な速度や走行距離を算出し、速度計や走行距離計に表示できるようにした走行装置を得ることを目的とする。
本発明の目的を達成するため、請求項1の走行装置は、車輪と前記筐体との複合された回転情報から走行装置の走行速度及び走行距離を表示する速度表示計及び走行距離計を備えたことを特徴とする。
また、請求項2の走行装置によれば、走行速度は、姿勢検出手段からのジャイロセンサによるピッチ軸角速度、つまり筐体の回転情報を加,減算することにより走行速度を算出し、速度表示計に表示することを特徴とする。
また、請求項3の走行装置によれば、走行速度は、一対の前記車輪の回転平均値をもって走行速度とすることを特徴とする。
また、請求項4の走行装置によれば、走行距離は、走行速度の積分値を算出し、走行距離計に表示することを特徴とする。
また、請求項5の走行装置によれば、速度表示計及び走行距離計は、ステーの上端部や前記ハンドル部分に取り付けられていることを特徴とする。
請求項1の発明によれば、ステップ台のピッチ方向の揺動の影響を受けることなく、走行装置の正確な速度や走行距離を算出し、速度計や走行距離計に表示することができる。これによって、走行装置の走行の安全や交通法規への対応、走行状態の把握が行え、走行装置のメンテナンス時期の目安が可能となり保守,点検に好適である。
また、請求項2の発明によれば、ステップ台のピッチ軸方向の揺動があっても正確な速度や走行距離を算出し、速度計や走行距離計に表示することができる。
また、請求項3の発明によれば、走行装置の旋回時においても内輪と外輪との回転平均値から容易に走行速度を算出することができる。
また、請求項4の発明によれば、走行速度の積分値をもって容易に走行距離を算出することができる。
また、請求項5の発明によれば、走行装置の走行中において、速度表示計及び走行距離計を容易に視認でき、走行の安全性を確保することができる。
以下、本発明による走行装置の実施の形態を図面を参照して説明する。図1は本発明による走行装置を適用した同軸二輪車の一実施形態の構成を示す全体の外観斜視図、図2は同じく全体の背面図、図3は同じく全体の右側面図である。
図1乃至図3において、左右一対の車輪101、102が設けられる。これらの左右の車輪101、102は、それぞれの車輪中心が一直線上になるように配置されると共に、搭乗者が乗るステップ台(筐体)103によって支持されている。このステップ台103は車輪101、102の車輪中心より重心を低くした位置にある。車輪101、102とステップ台103との構成とそれぞれの関係は後述する。
ステップ台103の端部(走行装置の進行方向である図3において右端側)には、上方にステー104が垂設され、このステー104の上端部にハンドル105が設けられている。ステー104の上端部のハンドルポストには速度計と走行距離計とが一体化された表示計106が取り付けられている。
ここで、車輪101,102とステップ台103との構成について説明する。なお、車輪101,102は同一構成であるので、一方の車輪101とステップ台103を図4乃至図5について説明する。
車輪101はステップ台103に固定された減速機107の出力軸108を介して車輪駆動モータ100Lを構成するモータ軸及びモータロータ109に結合され、モータロータ109の他端部にはロータ角度検出用の円盤である回転プレート110が取り付けられている。この回転プレート110の回転速度は検出ユニット111により検出される。
検出ユニット111は回路基板112に実装され、この回路基板112は車輪駆動モータ100Lを構成するモータステータ113が固定されたモータケース114に固定されている。そして、モータケース114は減速機107のハウジングを介してステップ台103に固定されている。
このように構成することで、上述した車輪101とステップ台103とは、車輪101側がモータロータ109と一体に回転し、ステップ台103側がモータステータ113と一体にされることで、ステップ台103が走行装置の走行方向に図5の矢印で示すように車輪の軸中心Oを中心としてピッチ回転(揺動移動)されるように構成されている。したがって、回転プレート110と検出ユニット111とは相対的に影響を及ぼし合うようにされている。
図6は上述した走行装置のシステム構成のブロック図を示し、ロータ角度検出器115Lを有する車輪駆動モータ100L、ロータ角度検出器115Rを有する車輪駆動モータ100Rは、それぞれ駆動回路116,117を介して演算回路(CPU)118及び記憶装置(メモリ)119を有する演算装置120に接続され、演算装置120には走行装置のステップ台103に搭乗した搭乗者の姿勢を検出するための姿勢検出センサ121が接続されている。
姿勢検出センサ121は、ステップ台103の姿勢を検出するためにジャイロセンサ122によるピッチ軸角速度、ヨー軸角速度、ロール軸角速度と、加速度センサ123によるX軸加速度、Y軸加速度、Z軸加速度を検出する。これにより、走行装置は上述した姿勢検出センサ121からの信号から演算装置120は所定の走行状態を維持するための信号を駆動回路116,117に出力し、車輪101,102を駆動する。
なお、駆動回路116,117と演算装置120との間には二次電池からなる電源124と、走行装置を非常停止するためのスイッチ125が接続されている。
次に、上述のように構成した走行装置における走行速度と走行距離の算出方法について説明する。
本発明の走行装置によれば、車輪101,102の回転速度はモータロータ109と共に回転する回転プレート110の回転速度を検出ユニット111によって検出することによって可能であるが、走行装置の走行中ではステップ台103のピッチ軸角速度の影響を受け、正確な速度や走行距離を算出することができないといったことは、先の発明が解決しようとする課題で説明した。
そこで、本発明は車輪101,102とステップ台103の複合された回転情報から、姿勢検出センサ121からのジャイロセンサ122によるステップ台103のピッチ軸角速度、つまり、ステップ台103の回転情報を加,減算することにより、ステップ台103の影響を受けずに、走行装置本来の正確な走行が可能となる。
例えば、減速機107の入出力回転が同方向の場合、車輪101が所定の速度で反時計回り方向に回転し、走行装置が矢印方向に走行している状態において、ステップ台103が搭乗者の体重移動によって一点鎖線で示すように進行方向とは反対の後ろに傾いた瞬間には、車輪の回転速度を検出している検出ユニット111は車輪の回転速度が増速したと見做される。この場合、ステップ台103が後ろに傾いたピッチ軸角速度分減算する。
これに対して、ステップ台103が搭乗者の体重移動によって二点鎖線で示すように進行方向に前に傾いた瞬間には、車輪の回転速度を検出している検出ユニット111は車輪の回転速度が減速したと見做される。この場合、ステップ台103が前に傾いたピッチ軸角速度分加算するというものである。
ここで、数式を当てはめて説明すると、左車輪駆動モータの回転速度をrmL、ジャイロセンサのピッチ軸角速度をrjP、減速機の減速比をn、車輪の直径をdとすると、走行速度Sは、
Figure 2005335471
となり、上式からステップ台103の回転移動があっても走行装置本来の正確な走行を求めることができる。
また、平行に配置された二輪で走行する走行装置は、左右の車輪101,102の回転差により旋回走行を行うため、左右車輪の平均値をもって走行装置の走行速度とみなす。
これを式で表すと、走行速度Sは、
Figure 2005335471
となり、上式から左右車輪の平均値の走行速度を求めることができる。〔数26〕でrmR は 右車輪駆動モータの回転速度である。
また、走行装置の走行距離は、上式で求めた走行速度の積分値から求めることができる。
これを式で表すと、走行距離Oは、
Figure 2005335471
となる。〔数27〕でSは走行速度、tは時間である。
上述のように算出された走行速度及び走行距離は、ステー104の上端部のハンドルポストに取り付けられた表示計106で見ることができる。図7はこの表示計104を上から見た平面図であって、表示計106には速度計126と走行距離計127とが一体化されて表示されている。
以上、説明したように本発明による走行装置は、新たにセンサの設置を必要とせず、車輪の回転を検出する回転プレートや検出ユニットからなるロータリエンコーダ等のセンサ情報に基づいて走行速度及び走行距離を算出し、表示計106に表示することができるというものである。
また、走行速度及び走行距離を表示計106に表示できることにより、走行装置の走行の安全や交通法規への対応ができ、このことから走行状態の把握が可能となり、しかも、メンテナンス時期の目安となり走行装置の保守,点検が容易となる。
本発明は、上述しかつ図面に示された実施の形態に限定されるものでなく、その要旨を逸脱しない範囲内で種々の変形実施が可能である。
本発明による走行装置を適用した同軸二輪車の一実施形態の構成を示す外観斜視図である。 同じく本発明による走行装置の全体の正面図である。 同じく本発明による走行装置の全体の側面図である。 車輪とステップ台との詳細な構成の断面図である。 同じく車輪とステップ台との位置関係の側面図である。 走行装置のシステム構成のブロック図である。 走行速度と走行距離計の表示計を上から見た平面図である。 本願発明者が先に提案した同軸二輪車の実施形態を示す外観斜視図である。 同軸二輪車のベースを説明するための側断面図である。 同軸二輪車のべースに設けられた圧力センサを示す図であり、同図(A)は平面図を示し、同図(B)は側面図を示す。 同軸二輪車の重量中心と車輪軸との位置関係を示す図である。 負荷荷重トルクとモータトルクとのつり合いを説明する図である。 人間が搭乗した場合の姿勢制御を説明する図である。 ベース上で姿勢を保つための力学モデルを説明する図である。 ベース上で姿勢を保つための力学モデルを説明する図である。 ベース上で姿勢を保つための力学モデルを説明する図である。 同軸二輪車における力学モデルを説明する図である。 姿勢安定制御のための制御機構を示す図である。 車輪が1つである場合における姿勢安定制御及び走行制御のための制御機構を示す図である。 同軸二輪車における姿勢指令を説明する図である。 車輪が1つである場合における姿勢安定制御及び走行制御のための制御機構を示すブロック図である。 図22に示すブロック図を数学モデルとして示す図である。 図23に示す数学モデルの詳細な具体例を示す図である。 車輪が2つである場合における姿勢安定制御及び走行制御のための制御機構を示すブロック図である。 前進・後退する場合の走行速度制御を説明する図である。 旋回する場合の走行速度制御を説明する図である。 直進する際にヨー軸回りのジャイロセンサ信号が検出される場合の制御方法を説明する図である。
符号の説明
101,102…車輪、103…ステップ台、100L,100R…車輪駆動モータ、104…ステー、105…ハンドル、106…表示計、107…減速機、109…モータロータ、110…回転プレート、111…検出ユニット、113…モータステータ、115L,115R …ロータ角度検出器、116,117…駆動回路、120…演算装置、121…姿勢検出センサ、122…ジャイロセンサ、123…加速度センサ、126…速度計、127…走行距離計

Claims (5)

  1. 平行に配置された一対の車輪と、
    前記車輪を独立に回転駆動する駆動手段と、
    前記車輪を回転自在に支持し搭乗者のステップ台を構成する筐体と、
    前記筐体にステー及び搭乗者が保持するハンドルと、
    前記筐体には、ピッチ軸、ヨー軸、ロール軸の角速度を検出するジャイロセンサと、X軸、Y軸、Z軸の加速度を検出する加速度センサとを設け、前記筐体の走行時の角速度及び加速度を検出して前記筐体の角速度及び走行加速度を制御する姿勢検出手段と、
    を備え、前記姿勢検出手段からの信号から演算装置を介して所定の走行状態を維持するための信号を駆動回路に出力し、前記駆動手段によって前記車輪を駆動する走行装置であって、
    前記車輪側に前記駆動手段のロータを介して位置検出用の円盤である回転プレートと、前記筐体側に前記駆動手段のステータを介して検出手段がそれぞれ取り付けられ、前記検出手段によって前記回転プレートの回転から前記車輪の回転速度を検出するように構成され、前記車輪と前記筐体との複合された回転情報から走行装置の走行速度及び走行距離を表示する速度表示計及び走行距離計を備えたことを特徴とする走行装置。
  2. 前記走行速度は、前記姿勢検出手段からのジャイロセンサによるピッチ軸角速度である前記筐体の回転情報を加,減算することにより走行速度を算出し、速度表示計に表示することを特徴とする請求項1に記載の走行装置。
  3. 前記走行速度は、一対の前記車輪の回転平均値をもって走行速度とすることを特徴とする請求項1に記載の走行装置。
  4. 前記走行距離は、走行速度の積分値を算出し、走行距離計に表示することを特徴とする請求項1に記載の走行装置。
  5. 前記速度表示計及び走行距離計は、前記ステーの上端部や前記ハンドル部分に取り付けられていることを特徴とする請求項1に記載の走行装置。
JP2004154806A 2004-05-25 2004-05-25 走行装置 Expired - Fee Related JP4442319B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154806A JP4442319B2 (ja) 2004-05-25 2004-05-25 走行装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154806A JP4442319B2 (ja) 2004-05-25 2004-05-25 走行装置

Publications (2)

Publication Number Publication Date
JP2005335471A true JP2005335471A (ja) 2005-12-08
JP4442319B2 JP4442319B2 (ja) 2010-03-31

Family

ID=35489517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154806A Expired - Fee Related JP4442319B2 (ja) 2004-05-25 2004-05-25 走行装置

Country Status (1)

Country Link
JP (1) JP4442319B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176398A (ja) * 2005-12-28 2007-07-12 Equos Research Co Ltd 走行車両
WO2007129505A1 (ja) * 2006-05-09 2007-11-15 Equos Research Co., Ltd. 車両、特性量推定装置及び搭載物判定装置
JP2007302061A (ja) * 2006-05-09 2007-11-22 Equos Research Co Ltd 車両
JP2008062769A (ja) * 2006-09-06 2008-03-21 Yoshihiro Suda 乗用移動車両
WO2010106847A1 (ja) * 2009-03-16 2010-09-23 株式会社村田製作所 移動方向制御装置及びコンピュータプログラム
CN104843117A (zh) * 2015-05-28 2015-08-19 纳恩博(北京)科技有限公司 一种两轮动平衡车
US9809273B2 (en) 2014-02-12 2017-11-07 Royalty Bugaboo Gmbh Foldable vehicle
USRE46964E1 (en) 2012-02-12 2018-07-24 Solowheel Inc. Two-wheel self-balancing vehicle with independently movable foot placement sections
US10252724B2 (en) 2015-09-24 2019-04-09 P&N Phc, Llc Portable two-wheeled self-balancing personal transport vehicle
US10597107B2 (en) 2014-06-13 2020-03-24 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
CN113771997A (zh) * 2021-06-25 2021-12-10 戴上 一种稳定性高的带杆滑板
USD941948S1 (en) 2016-07-20 2022-01-25 Razor Usa Llc Two wheeled board
USD958278S1 (en) 2016-07-20 2022-07-19 Razor Usa Llc Two wheeled board
USD960043S1 (en) 2016-07-20 2022-08-09 Razor Usa Llc Two wheeled board
US11654995B2 (en) 2017-12-22 2023-05-23 Razor Usa Llc Electric balance vehicles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253152A (zh) * 2013-05-14 2013-08-21 杭州亿脑智能科技有限公司 平衡车电机扭矩确定方法
CN110155228A (zh) * 2017-12-29 2019-08-23 沈江 一种防滑且方便更换车轮的平衡车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000326861A (ja) * 1999-05-20 2000-11-28 Seirei Ind Co Ltd 移動農機
JP2001278144A (ja) * 2000-03-29 2001-10-10 Sanyo Electric Co Ltd 車 両
JP2003005832A (ja) * 2001-06-25 2003-01-08 Shin Kobe Electric Mach Co Ltd 自動走行車
JP2004500271A (ja) * 1999-12-08 2004-01-08 デカ・プロダクツ・リミテッド・パートナーシップ 個人用バランス乗物
JP2004074814A (ja) * 2002-08-09 2004-03-11 Matsushita Electric Works Ltd 人用移動機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000326861A (ja) * 1999-05-20 2000-11-28 Seirei Ind Co Ltd 移動農機
JP2004500271A (ja) * 1999-12-08 2004-01-08 デカ・プロダクツ・リミテッド・パートナーシップ 個人用バランス乗物
JP2001278144A (ja) * 2000-03-29 2001-10-10 Sanyo Electric Co Ltd 車 両
JP2003005832A (ja) * 2001-06-25 2003-01-08 Shin Kobe Electric Mach Co Ltd 自動走行車
JP2004074814A (ja) * 2002-08-09 2004-03-11 Matsushita Electric Works Ltd 人用移動機器

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176398A (ja) * 2005-12-28 2007-07-12 Equos Research Co Ltd 走行車両
WO2007129505A1 (ja) * 2006-05-09 2007-11-15 Equos Research Co., Ltd. 車両、特性量推定装置及び搭載物判定装置
JP2007302061A (ja) * 2006-05-09 2007-11-22 Equos Research Co Ltd 車両
JP2008062769A (ja) * 2006-09-06 2008-03-21 Yoshihiro Suda 乗用移動車両
WO2010106847A1 (ja) * 2009-03-16 2010-09-23 株式会社村田製作所 移動方向制御装置及びコンピュータプログラム
JP5321681B2 (ja) * 2009-03-16 2013-10-23 株式会社村田製作所 移動方向制御装置及びコンピュータプログラム
US9128488B2 (en) 2009-03-16 2015-09-08 Murata Manufacturing Co., Ltd. Movement direction control apparatus and computer program
USRE49608E1 (en) 2012-02-12 2023-08-15 Solowheel Inc. Two-wheel self-balancing vehicle with independently movable foot placement sections
USRE46964E1 (en) 2012-02-12 2018-07-24 Solowheel Inc. Two-wheel self-balancing vehicle with independently movable foot placement sections
US9809273B2 (en) 2014-02-12 2017-11-07 Royalty Bugaboo Gmbh Foldable vehicle
US10696348B2 (en) 2014-06-13 2020-06-30 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US10597107B2 (en) 2014-06-13 2020-03-24 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US10696347B2 (en) 2014-06-13 2020-06-30 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US10850788B2 (en) 2014-06-13 2020-12-01 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US10988200B2 (en) 2014-06-13 2021-04-27 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US11173980B2 (en) 2014-06-13 2021-11-16 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US11180213B2 (en) 2014-06-13 2021-11-23 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US11731725B2 (en) 2014-06-13 2023-08-22 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US11312444B2 (en) 2014-06-13 2022-04-26 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US11459053B2 (en) 2014-06-13 2022-10-04 Hangzhou Chic Intelligent Technology Co., Ltd. Electric vehicle
US10414456B2 (en) 2015-05-28 2019-09-17 Ninebot (Beijing) Tech Co., Ltd. Two-wheel dynamic balance vehicle
CN104843117A (zh) * 2015-05-28 2015-08-19 纳恩博(北京)科技有限公司 一种两轮动平衡车
US10252724B2 (en) 2015-09-24 2019-04-09 P&N Phc, Llc Portable two-wheeled self-balancing personal transport vehicle
USD960043S1 (en) 2016-07-20 2022-08-09 Razor Usa Llc Two wheeled board
USD958278S1 (en) 2016-07-20 2022-07-19 Razor Usa Llc Two wheeled board
USD941948S1 (en) 2016-07-20 2022-01-25 Razor Usa Llc Two wheeled board
USD1002764S1 (en) 2016-07-20 2023-10-24 Razor Usa Llc Two wheeled board
USD1013080S1 (en) 2016-07-20 2024-01-30 Razor Usa Llc Two wheeled board
US11654995B2 (en) 2017-12-22 2023-05-23 Razor Usa Llc Electric balance vehicles
CN113771997A (zh) * 2021-06-25 2021-12-10 戴上 一种稳定性高的带杆滑板

Also Published As

Publication number Publication date
JP4442319B2 (ja) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4816058B2 (ja) 走行装置及びその制御方法
JP4556418B2 (ja) 走行装置及びその制御方法
EP1529556B1 (en) Travelling apparatus and method for controlling thereof
JP4956962B2 (ja) 走行装置及びその制御方法
US7703568B2 (en) Coaxial motorcycle
JP4442319B2 (ja) 走行装置
JP4296852B2 (ja) 同軸二輪車
JP5395157B2 (ja) 搬送車及びその制御方法
JP5208906B2 (ja) 倒立振子型車両
JP2005094858A (ja) 走行装置及びその制御方法
JP4600539B2 (ja) 走行装置、走行装置の制御方法
EP2093100B1 (en) Travel gear and its controlling method
JP5504272B2 (ja) 倒立振子型車両の制御装置
JP2008052362A (ja) 自律移動装置
JP4296853B2 (ja) 同軸二輪車
JP2005006436A (ja) 同軸二輪車
JP2007336785A (ja) 走行装置及びその制御方法
JP5404800B2 (ja) 倒立振子型車両
JP5414804B2 (ja) 倒立振子型車両の制御装置
JP2006160082A (ja) 走行装置及びその制御方法
JP2005138631A (ja) 走行装置及びその制御方法
JP5379235B2 (ja) 倒立振子型車両の制御装置
JP5386283B2 (ja) 倒立振子型移動体、制御装置、および、制御方法
JP5330199B2 (ja) 倒立振子型車両の制御装置
JP5330198B2 (ja) 倒立振子型車両の制御装置

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R151 Written notification of patent or utility model registration

Ref document number: 4442319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees