WO2017073003A1 - 熱交換器アルミニウム管ろう付け用ろう材、並びに、これを用いた熱交換器アルミニウム管の接合方法および熱交換器アルミニウム管の接合構造 - Google Patents

熱交換器アルミニウム管ろう付け用ろう材、並びに、これを用いた熱交換器アルミニウム管の接合方法および熱交換器アルミニウム管の接合構造 Download PDF

Info

Publication number
WO2017073003A1
WO2017073003A1 PCT/JP2016/004108 JP2016004108W WO2017073003A1 WO 2017073003 A1 WO2017073003 A1 WO 2017073003A1 JP 2016004108 W JP2016004108 W JP 2016004108W WO 2017073003 A1 WO2017073003 A1 WO 2017073003A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
aluminum
brazing material
heat exchanger
flux
Prior art date
Application number
PCT/JP2016/004108
Other languages
English (en)
French (fr)
Inventor
孝仁 中島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680002309.1A priority Critical patent/CN107073658B/zh
Publication of WO2017073003A1 publication Critical patent/WO2017073003A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/14Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams
    • B23K1/18Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams circumferential seams, e.g. of shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies

Definitions

  • the present invention relates to a brazing material for brazing a heat exchanger aluminum pipe, which is used for brazing an aluminum pipe made of aluminum or an aluminum alloy, which is included in a heat exchanger included in an outdoor unit of an air conditioner, and the brazing material.
  • the present invention relates to a heat exchanger aluminum tube joining method and a heat exchanger aluminum tube joining structure.
  • a heat exchanger provided in an outdoor unit of an air conditioner generally includes a heat transfer tube through which a refrigerant flows and fins attached to the heat transfer tube.
  • the heat transfer tube is made of copper (or an alloy thereof) (copper tube)
  • the fin is made of aluminum (or an alloy thereof) (aluminum fin).
  • a large number of fins are arranged and held in parallel, and a plurality of heat transfer tubes are attached so as to penetrate these fins.
  • the process of joining is mentioned.
  • joining by brazing is generally used (for example, JIS 4047 is common as a brazing material for aluminum tubes).
  • Patent Document 1 discloses a method of manufacturing a heat exchanger including a step of connecting heat exchange pipes by brazing.
  • the end of the first heat exchange pipe (copper) is flared (flaring process), and a ring-shaped brazing material (copper) is inserted into the outer periphery of the end of the second heat exchange pipe (copper).
  • the heat exchange pipe ends are held in contact with each other (holding process), and the contact holding part between the heat exchange pipes is heated by a heating device such as a burner torch to melt the ring-shaped brazing material. (Heating process).
  • a heating device such as a burner torch
  • Patent Document 2 discloses a method of brazing an aluminum material without using a flux in an inert gas atmosphere furnace.
  • a flux brazing method using a flux and heating in a vacuum are required.
  • a vacuum brazing method There is a vacuum brazing method.
  • heating is performed using a flux in an inert gas atmosphere furnace, but there is a concern about the influence of the flux residue generated after brazing.
  • the vacuum brazing method it is not necessary to use flux, but the vacuum furnace equipment is expensive and its maintenance cost is high.
  • the heat exchanger for automobiles is smaller than the heat exchanger for outdoor units of air conditioners, it can be brazed with a heating furnace.
  • a heating furnace is required to braze the aluminum pipe in the furnace. In order to realize such a large heating furnace, a huge capital investment is required.
  • Patent Document 2 when a vacuum furnace facility is used, the investment in the facility is further increased.
  • this through hole is in a state where the solidified flux is clogged, it is not detected as a leaked portion of the aluminum tube at the time of inspection.
  • the refrigerant is actually circulated after the inspection, the flux gradually oozes out, and the refrigerant leaks from the through hole. As a result, it is necessary to inspect all the manufactured heat exchangers for outdoor units, not sampling inspection, and productivity is greatly reduced.
  • the present invention has been made in order to solve such problems, and when the aluminum tubes included in the heat exchanger included in the outdoor unit of the air conditioner are joined together by brazing material, the residual flux is effectively used. It aims at suppressing and enabling efficient joining of aluminum tubes with good quality.
  • a heat exchanger aluminum pipe brazing material in an outdoor unit of an air conditioner, and includes a heat exchanger having an aluminum tube made of aluminum or an aluminum alloy. Used for brazing aluminum tubes.
  • the brazing material for heat exchanger aluminum pipe brazing contains an alloy base material containing aluminum and zinc, a flux having a melting point lower than that of the alloy base material, and the alloy base material is 100% by mass.
  • the zinc content in the alloy base material is in the range of 40 to 75% by mass, and the flux content is in the range of 10 to 25% by mass.
  • the brazing material for brazing the heat exchanger aluminum tube is configured as a wire rod including an alloy base material and flux.
  • the heat exchanger aluminum tube joining method includes a brazing material for brazing a heat exchanger aluminum tube, wherein one end of one aluminum tube is inserted into the end of the other aluminum tube. Then, the aluminum pipes are joined to each other by melting the brazing filler metal and supplying it to the end holding portion held in this manner.
  • the joining structure of the heat exchanger aluminum tubes according to the present invention is a joining structure formed by joining aluminum tubes with a brazing material, and is a brazing joint formed by a brazing material for brazing a heat exchanger aluminum tube.
  • the heating time at the time of joining should be made longer. Is possible. Therefore, during the joining work, the flux inside the wire melts first and spreads to the alloy base material, and then the alloy base material outside the wire material melts, so that the alloy base material can be easily melted and more The flux can be leaked first by heating for a long time. Thereby, since possibility that a flux will remain in the brazing connection part of a joining location is reduced, generation
  • the present invention when joining the aluminum tubes included in the heat exchanger provided in the outdoor unit of the air conditioner with the brazing material, the residual flux is effectively suppressed, and the aluminum tubes are excellent. There is an effect that it is possible to efficiently join with high quality.
  • FIG. 1 is a schematic side view showing an example of a heat exchanger aluminum tube including an expanded tube portion and an expanded frame portion used in the present invention.
  • FIG. 2 is a schematic side view for explaining an example of an end holding portion where the ends of the aluminum tube shown in FIG. 1 are held together, and a configuration for supplying the brazing material to the enlarged frame portion.
  • FIG. 3A is a schematic process diagram illustrating an example of a method for joining heat exchanger aluminum pipes according to the present invention, in which a brazing material for an aluminum pipe is supplied by soldering using a wire brazing material.
  • FIG. 1 is a schematic side view showing an example of a heat exchanger aluminum tube including an expanded tube portion and an expanded frame portion used in the present invention.
  • FIG. 2 is a schematic side view for explaining an example of an end holding portion where the ends of the aluminum tube shown in FIG. 1 are held together, and a configuration for supplying the brazing material to the enlarged frame portion.
  • FIG. 3A is a schematic process diagram illustrating
  • FIG. 3B is a schematic process diagram illustrating an example of a method for joining heat exchanger aluminum tubes according to the present invention, in which a brazing material for an aluminum tube is supplied by soldering using a wire brazing material.
  • FIG. 3C is a schematic process diagram illustrating an example of a method for joining heat exchanger aluminum tubes according to the present invention, in which a brazing material for an aluminum tube is supplied by soldering using a wire brazing material.
  • FIG. 3D is a schematic process diagram illustrating an example of a method for joining heat exchanger aluminum pipes according to the present invention, in which a brazing material for an aluminum pipe is supplied by soldering using a wire brazing material.
  • FIG. 4A is a schematic process diagram showing an example of a method for joining heat exchanger aluminum pipes according to the present invention, in which an brazing material for an aluminum pipe is supplied by brazing using a ring brazing material.
  • FIG. 4B is a schematic process diagram showing an example of supplying a brazing material for an aluminum pipe by placing brazing using a ring brazing material, which is an example of a method of joining heat exchanger aluminum pipes according to the present invention.
  • FIG. 4C is a schematic process diagram showing an example of a method for joining heat exchanger aluminum pipes according to the present invention, in which an aluminum pipe brazing material is supplied by brazing using a ring brazing material.
  • FIG. 4D is a schematic process diagram illustrating an example of supplying a brazing material for an aluminum pipe by placing brazing using a ring brazing material, which is an example of a method for joining heat exchanger aluminum pipes according to the present invention.
  • FIG. 5 is a view showing an X-ray transmission image of a joint structure of heat exchanger aluminum tubes, which is a result of Examples and Comparative Examples according to the present invention.
  • the brazing material for brazing a heat exchanger aluminum pipe is used for brazing an aluminum pipe in a heat exchanger having an aluminum pipe made of aluminum or aluminum alloy provided in an outdoor unit of an air conditioner.
  • the brazing material for heat exchanger aluminum pipe brazing contains an alloy base material containing aluminum and zinc, a flux having a melting point lower than that of the alloy base material, and the alloy base material is 100% by mass.
  • the zinc content in the alloy base material is in the range of 40 to 75% by mass, and the flux content is in the range of 10 to 25% by mass.
  • the brazing material for brazing the heat exchanger aluminum tube is configured as a wire material including a flux with an alloy base material.
  • the alloy base material contains zinc in the range of 40 to 75 mass% instead of silicon as in the prior art.
  • the melting point of the alloy base material can be made higher than the flux and lower than the melting point of the conventional aluminum-silicon brazing material.
  • the temperature difference between the melting point of the aluminum tube and the melting point of the brazing material can be increased, the heating time at the time of joining can be made longer.
  • the flux inside the wire melts first and spreads to the alloy base material, and then the alloy base material outside the wire material melts, so that the alloy base material can be easily melted and more
  • the flux can be sufficiently leaked by heating for a long time.
  • the brazing material for brazing a heat exchanger aluminum tube having the above-described configuration may have a configuration in which the zinc content in the alloy base material is in the range of 65 to 75 mass%.
  • the zinc content in the alloy base material is in the range of 65 to 75% by mass, the melting point can be further lowered. Therefore, since it becomes possible to make the heating time at the time of joining longer, the residue of a flux can be suppressed more effectively and aluminum tubes can be joined together efficiently with good quality.
  • the alloy base material may further include silicon.
  • the alloy base material further contains silicon
  • the fluidity of the brazing material can be improved, and the quality of the brazing material can be further improved.
  • the flux may be a metal salt having a melting point lower than that of the alloy base material.
  • the flux is a metal salt having a low melting point
  • the flux can flow well by heating at the time of joining.
  • the oxide film of aluminum can be removed favorably.
  • the flux may be an alkali metal salt of fluoroaluminic acid.
  • the flux is an alkali metal salt of fluoroaluminic acid, the possibility that the flux corrodes aluminum can be avoided.
  • the heat exchanger aluminum tube joining method includes a brazing material for brazing a heat exchanger aluminum tube, wherein one end of one aluminum tube is inserted into the end of the other aluminum tube. Then, the aluminum pipes are joined to each other by melting the brazing filler metal and supplying it to the end holding portion held in this manner.
  • the brazing material according to the present invention described above since the brazing material according to the present invention described above is used, the melting point thereof is lower than that of the prior art, and therefore the heating time at the time of joining can be made longer than that of the prior art. Thereby, since generation
  • the end holding portion is heated in advance and then supplied by soldering or the brazing material is placed on the end holding portion.
  • the brazing material is melted by heating, and the brazing joint formed by joining the end holding portions with the molten brazing material is heated to leak the flux from the brazing connection. May be.
  • aluminum pipes can be satisfactorily joined to each other using the brazing material for brazing a heat exchanger according to the present invention, whether manually or automatically by a machine.
  • maintenance part is the expanded part which expanded the pipe diameter so that the edge part of one aluminum tube can insert the edge part of the other aluminum tube, and
  • the peripheral edge portion of the end opening of the expanded pipe portion is an enlarged frame portion whose tube diameter is further enlarged.
  • an enlarged frame portion having a tube diameter larger than that of the expanded portion is provided at the end of one aluminum tube.
  • the installation property of the brazing material is improved, and it is difficult for the flux to overflow from the brazing connection portion whether it is placed or placed.
  • heat conduction from the enlarged frame portion can occur when the brazing material is heated, the brazing material can be melted more efficiently.
  • a heat exchanger aluminum tube having a joining structure formed by joining aluminum tubes with a brazing material and having a brazing joint formed by a brazing material for heat exchanger aluminum tube brazing.
  • the joining structure of is also included.
  • brazing material for brazing heat exchanger aluminum tubes The brazing material according to the present invention is used for brazing of an aluminum pipe included in a heat exchanger provided in an outdoor unit of an air conditioner.
  • the aluminum tube included in the heat exchanger is referred to as “heat exchanger aluminum tube”. Therefore, the brazing material according to the present invention is “a brazing material for brazing a heat exchanger aluminum tube”.
  • heat exchanger aluminum tube may be simply abbreviated as “aluminum tube”
  • heat exchanger aluminum tube brazing filler metal may be abbreviated as “aluminum tube brazing material”. There is.
  • the brazing material for an aluminum pipe includes an alloy base material and a flux, and is configured as a wire material including the flux by the alloy base material.
  • the alloy base material contained in the brazing material for aluminum pipe contains aluminum (Al) and zinc (Zn) as described above.
  • the zinc content in the alloy base material may be in the range of 40 to 75% by mass, and preferably in the range of 65 to 75% by mass.
  • the aluminum content is in the range of 25 to 60% by mass, and preferably in the range of 25 to 35% by mass.
  • the zinc content is in the range of 40 to 75% by mass
  • the melting point of the brazing material for aluminum pipes can be set in the temperature range of 520 to 580 ° C.
  • the melting point of the brazing material for an aluminum pipe to be realized by adjusting the zinc content is referred to as “target melting point” for convenience of explanation.
  • the target melting point of the aluminum pipe brazing material exceeds 580 ° C., and the melting point difference from aluminum cannot be widened.
  • the zinc content exceeds 75% by mass, the target melting point is lowered to approach the melting point of the flux, and the brazing material for the aluminum pipe may not be sufficiently rotated during the joining. In this case, as shown in the examples described later, there is a possibility that a brazing material for the aluminum pipe is damaged, and a good brazing connection portion cannot be formed.
  • the target melting point of the aluminum pipe brazing material can be adjusted to 540 ° C. or less. This is preferable because the temperature difference between the melting point of the aluminum tube and the target melting point of the brazing material for the aluminum tube can be further increased.
  • the alloy base material may contain components other than aluminum and zinc (other components).
  • the specific types of other components are not particularly limited, and various physical properties required for brazing materials for aluminum pipes, particularly metals that can be mixed with aluminum and zinc alloys are suitable as long as they do not prevent the melting point of the alloy base metal from being lowered.
  • a typical example is silicon (silicon, Si).
  • silicon silicon, Si
  • the silicon content is not particularly limited as long as it does not hinder the realization of a desired target melting point (the melting point becomes a target temperature range near the melting point) and can provide good fluidity.
  • an alloy base material does not contain copper (Cu), iron (Fe), and nickel (Ni) from a viewpoint which does not deteriorate the corrosion resistance of the brazing material for aluminum pipes.
  • the flux contained in the brazing material for the aluminum pipe can be appropriately selected from those having a melting point lower than that of the alloy base material.
  • the flux content in the brazing material for aluminum pipes may be in the range of 10 to 25% by mass.
  • the flux is an alkali metal salt of fluoroaluminic acid, it does not contain corrosive elements such as chlorine, so that it is not necessary to post-clean the formed joint.
  • a known chloride flux such as aluminum chloride (AlCl 3 ) can be suitably used as the flux.
  • the brazing material for aluminum pipes may be configured as a wire rod including a flux with an alloy base material, but the specific configuration as the wire rod is not particularly limited.
  • the outer diameter of the wire is generally 1.6 mm. However, when joining by soldering, from the viewpoint of improving workability, even if it is within a thicker range of 1.8 to 2.0 mm. Good. Conversely, depending on the joining conditions and the like, the outer diameter of the wire may be less than 1.6 mm.
  • the diameter of the flux portion in the wire or the thickness of the alloy base material is not particularly limited, and may be within a known range. Also, the method for forming the wire is not particularly limited, and a method known in the field of aluminum brazing material can be adopted as long as a double-structured wire in which a flux is included in the alloy base material can be manufactured. .
  • the aluminum pipe to be joined in the present invention is a pipe (heat exchanger aluminum pipe) of the heat exchanger as described above.
  • the heat exchanger aluminum tube may be made of aluminum or an aluminum alloy, and its use is not particularly limited, but is usually a heat transfer tube through which a refrigerant flows.
  • the specific structure of a heat exchanger is not specifically limited, What is necessary is just a well-known structure provided with a heat exchanger tube and a fin.
  • both the heat transfer tube and the fin are made of aluminum.
  • the heat exchanger may include members other than the heat transfer tubes and fins, and may include an aluminum tube other than the heat transfer tubes.
  • an end holding portion is formed by holding the end portions of the heat exchanger aluminum tubes together, and the brazing material is attached to the end holding portion.
  • the method for forming the end holding portion is not particularly limited as long as the end portions are held together.
  • the state in which the end portions are held together includes a state in which the end portions are brought into contact with each other and a state in which the end portions are brought into contact with each other without being brought into contact with each other. Further, a known jig or the like can be used for realizing the end holding portion.
  • the end holding portion As an example of a typical configuration of the end holding portion, as shown in FIG. 1, it is possible to insert the end of one aluminum tube 11 and the end of the other aluminum tube 12
  • the structure used as the large expanded part 11a is employ
  • This pipe expansion part 11a should just expand the pipe diameter so that the edge part of the other aluminum pipe 12 can be inserted, and the specific structure is not specifically limited.
  • the end holding portion 10 can be obtained simply by inserting the end of the other aluminum tube 12 into the expanded portion 11a. Can be formed.
  • one aluminum tube 11 may be erected and fixed on the end plate 13 so that the expanded portion 11a is on the upper side. Good.
  • the pipe expansion part 11a may be configured to have the same pipe diameter from the root of the pipe expansion part 11a (the part connected to the main body of the aluminum pipe 11) to the end opening. As shown, it is preferable that the peripheral edge portion of the end opening of the tube expansion portion 11a is an expansion frame portion 11b whose tube diameter is further expanded.
  • the tip of the wire brazing material 20A is placed on the enlarged frame portion 11b. Just place it.
  • a ring-shaped aluminum pipe brazing material ring brazing material 20B
  • the ring brazing material 20B can be easily placed on the enlarged frame portion 11b. Can be installed. The insertion and placement will be described later.
  • the tube diameter of the expanded frame portion 11b is not particularly limited as long as it is larger than the tube diameter of the expanded portion 11a.
  • the difference between the tube diameter R1 and the tube diameter R2 is 1.0 mm. It may be above, and is preferably 2.5 mm or more. That is, the external expansion width Rb of the expansion frame portion 11b viewed from the tube expansion portion 11a may be 0.5 mm or more, and is preferably 1.25 mm or more.
  • the end holding portion 10 may be heated using a heating device (heating means) such as a burner torch 30, for example.
  • a heating device such as a burner torch 30, for example.
  • the location is not particularly limited.
  • a typical heating location may be a supply location or installation location of the brazing material for aluminum pipe (wire brazing material 20A, ring brazing material 20B) in the end holding location 10 (see the burner torch 30 in the upper position in FIG. 2).
  • the lower part of the aluminum pipe brazing material may be heated below the place where the brazing filler metal is supplied (see the burner torch 30 in the lower position in FIG. 2).
  • the expanded portion 11a of the aluminum tube 11 is provided with an expanded frame portion 11b, and the brazing material for the aluminum tube is supplied or installed on the expanded frame portion 11b.
  • the aluminum pipe brazing material contains a flux as described above, but it is necessary to remove this flux from the molten aluminum pipe brazing material as much as possible.
  • the aluminum tube 11 (and the aluminum tube 12) is heated for a long time so as not to be thermally deformed. Since the brazing material for an aluminum tube is supplied or installed on the enlarged frame portion 11b, a method of melting the brazing material for the aluminum tube by heat transfer from the enlarged frame portion 11b may be adopted to realize more stable heating. it can. Therefore, in the present embodiment, as a preferable heating method, as shown in FIG. 2, there is a method of heating the lower part of the expanded frame part 11b in the expanded part 11a (near the lower part of the end holding part 10).
  • the above-described brazing material for an aluminum pipe is supplied to the above-described end holding place 10 (the place where the ends of the aluminum pipes 11 and 12 are held in contact with each other).
  • the aluminum tubes may be joined together by melting the brazing material for the aluminum tubes.
  • the method of supplying the brazing material for the aluminum pipe to the end holding portion 10 is not particularly limited, but typically, the end holding portion 10 is preheated (preheated) and then the brazing material for the aluminum pipe is inserted.
  • a method of supplying or a method of heating after placing a brazing material for an aluminum pipe in the end holding portion 10 may be mentioned.
  • the feeding method using the insertion solder can be suitably used for manual soldering, and the placing method using the placing solder can be preferably used for automatic soldering using a machine.
  • the brazing material for aluminum pipe is supplied and melted by heating.
  • the molten aluminum tube brazing material flows into the aluminum tube 11 and 12 at the end holding portion 10 to form a brazing connection.
  • a through hole may be formed at the joint. Therefore, the flux is leaked from the brazing connection portion by heating the end holding portion 10 as long as possible. Thereby, generation
  • FIG. 3A to 3D schematically show an example in which the aluminum tubes 11 and 12 are joined manually by inserting them.
  • the end holding portion 10 is formed by inserting the aluminum tube 12 into the expanded portion 11 a of the aluminum tube 11, and the expanded portion 11 a of the aluminum tube 11 is preheated by the burner torch 30.
  • the lower part of the pipe expansion part 11a below the enlarged frame part 11b (in the vicinity of the lower part of the end holding part 10) is heated (see FIG. 2).
  • the end holding portion 10 is preheated so as to efficiently melt the brazing material for the aluminum pipe.
  • the tip of the wire brazing material 20A is positioned on the enlarged frame portion 11b of the end holding portion 10, and the brazing material for the aluminum pipe is supplied by soldering.
  • the wire brazing material 20 ⁇ / b> A has a configuration in which the flux 22 is included in the alloy base material 21.
  • the wire brazing material 20A is melted. Since the melting point of the flux 22 is lower than that of the alloy base material 21 as described above, the inner flux 22 is melted before the surrounding alloy base material 21.
  • the alloy base material 21 is an aluminum-zinc alloy, and an oxide film derived from aluminum is formed on the surface thereof. Since the melted flux 22 is spread and spread, the oxide film on the surface of the alloy base material 21 is removed, so that the alloy base material 21 melts well and melts and spreads to the end holding portion 10.
  • the alloy base material 21 that has melted and spread to the end holding portion 10 flows into the gap formed between the aluminum tubes 11 and 12, but in this state, the flux 22 may remain in the alloy base material 21. is there. Therefore, the flux 22 in the alloy base material 21 is leaked by continuing the heating by the burner torch 30 as described above. Thereby, the flux 22 can be substantially removed from the alloy base material 21.
  • a brazing connection portion 23 that does not substantially contain the flux 22 is formed in the gap between the aluminum tubes 11 and 12 in the end holding portion 10.
  • FIG. 4A to 4D schematically show an example in which the aluminum pipes 11 and 12 are joined automatically by a machine (robot or the like) by placing them.
  • the end holding portion 10 is formed by inserting the aluminum tube 12 into the expanded portion 11a of the aluminum tube 11, but the ring brazing material is formed on the expanded frame portion 11b without preheating. 20B is placed.
  • the ring brazing material 20B is also a wire having a configuration in which the flux 22 is included in the alloy base material 21.
  • the burner torch 30 heats the lower part of the expanded part 11 a below the enlarged frame part 11 b (near the lower part of the end holding part 10). At this time, the burner flame by the burner torch 30 is strengthened or weakened so that the ring brazing material 20B can be melted and can be preheated to a temperature at which the expanded portion 11a of the aluminum tube 11 is not deformed.
  • the change in the intensity of the burner flame may be controlled by a program stored in a controller (not shown).
  • the main heating by the burner torch 30 is performed, whereby the ring brazing material 20B on the enlarged frame portion 11b is melted.
  • the flux 22 is first melted and spread, and the oxide film on the surface of the alloy base material 21 is removed. Melt and spread.
  • the heating by the burner torch 30 is continued to leak the flux 22 in the alloy base material 21.
  • the flux 22 can be substantially removed from the alloy base material 21.
  • a brazing connection portion 23 that does not substantially contain the flux 22 is formed in the gap between the aluminum tubes 11 and 12 in the end holding portion 10.
  • an aluminum-zinc alloy base material containing zinc in the range of 40 to 75% by mass is used as the brazing material for aluminum pipes, and the flux of the aluminum-zinc system is used as the flux.
  • a material having a melting point lower than that of the alloy base material is used in the range of 10 to 25% by mass. Therefore, the obtained heat exchanger aluminum tube joining structure has the brazing joint formed by the brazing material for an aluminum tube described above. Thereby, since possibility that a flux will remain in the brazing connection part of joining structure has decreased, generation
  • the brazing material for an aluminum pipe can be melted at a temperature sufficiently lower than the melting point of the aluminum pipe to be joined. Therefore, the degree of difficulty in brazing is lower than that of conventional aluminum-silicon brazing materials, which improves workability and is suitable for automation. This will be described by taking as an example the brazing of a copper tube, which is less difficult to braze.
  • a copper pipe is used as a pipe material of a heat transfer pipe or the like.
  • a chemically very stable oxide film such as aluminum does not form on copper, so that it is not necessary to use a flux for the copper brazing material.
  • the melting point of a phosphor copper brazing material (Cu—P) which is a typical copper brazing material, is 300 ° C. or more lower than the melting point of the copper tube.
  • the temperature difference between the melting point of a general aluminum brazing material (Al-Si alloy with silicon added) and the melting point of an aluminum tube is larger than the temperature difference between the melting point of a copper brazing material and the melting point of a copper tube. small.
  • the aluminum tube may be heated to a temperature near the melting point of the aluminum tube and the aluminum tube may be deformed. Therefore, if the heating time is shortened in order to avoid deformation of the aluminum tube, the flux may remain without flowing out from the brazing connection portion. The residual flux will cause a through hole in the brazed connection.
  • ⁇ Through holes due to residual flux are difficult to find by inspection of the joint of the aluminum tube.
  • a helium leak inspection or a submersion inspection is used as an inspection method of the joining quality of the aluminum pipe.
  • the inside of the joint is evacuated and then filled with helium gas from the outside, and it is detected whether there is a leak of helium gas outside. Since the flux does not melt at the time of inspection, the through hole is filled with the flux. Therefore, no leak of helium gas is detected, and it is determined that the joint location has a sealing property.
  • the brazing material for an aluminum pipe according to the present invention is an aluminum-zinc alloy containing zinc in the range of 40 to 75% by mass instead of silicon as a conventional alloy base material. Is used.
  • the melting point of the alloy base material can be made higher than the flux and lower than the melting point of the conventional aluminum-silicon brazing material.
  • the temperature difference between the melting point of the aluminum tube and the melting point of the brazing material can be increased, the heating time at the time of joining can be made longer.
  • the flux inside the wire melts first and spreads to the alloy base material, and then the alloy base material outside the wire material melts, so that the alloy base material can be easily melted and more
  • the flux can be leaked first by heating for a long time.
  • the aluminum tube 11 was fixed.
  • the wire brazing material 20A formed as a wire with a wire diameter of 1.6 mm was prepared by including the flux 22 in the alloy base material 21 as the brazing material for the aluminum pipe.
  • the alloy base material 21 in the wire brazing material 20A has a composition of 35% by mass of aluminum (Al) and 65% by mass of zinc (Zn), and its target melting point is 540 ° C.
  • the weight ratio of the wire brazing material 20A is 82% by mass for the alloy base material 21 and 18% by mass for the flux 22.
  • the end holding portion 10 was preheated by heating the lower portion of the enlarged frame portion 11 b in the end holding portion 10 with a burner torch 30.
  • the tip of the wire brazing material 20A was positioned on the enlarged frame portion 11b, and heating by the burner torch 30 was continued.
  • the wire brazing material 20 ⁇ / b> A melts, so that the aluminum pipe brazing material was poured between the aluminum pipes 11 and 12 in the end holding portion 10.
  • the flux 22 was caused to flow out from the alloy base material 21 as described above.
  • Example 1 Thereafter, heating was stopped and naturally cooled to obtain a heat exchanger aluminum tube joining structure of Example 1 in which a brazing joint portion 23 made of a brazing material for an aluminum tube was formed.
  • An X-ray transmission image of this bonded structure is shown in FIG. In FIG. 5, the content of aluminum and zinc (or silicon) in the alloy base material is simply described as “%”, which means “mass%”.
  • Example 2 is the same as Example 1 except that the alloy base material 21 is composed of 25% by mass of aluminum (Al) and 75% by mass of zinc (Zn) as the wire brazing material 20A.
  • the junction structure of heat exchanger aluminum tube was obtained.
  • the target melting point of the alloy base material 21 is 520 ° C.
  • An X-ray transmission image of this bonded structure is shown in FIG.
  • the wire brazing material 20A is the same as that of Example 1 except that the alloy base material 21 has a conventional composition of 88% by mass of aluminum (Al) and 12% by mass of silicon (Si).
  • the junction structure of heat exchanger aluminum tube was obtained.
  • the target melting point of the alloy base material 21 is 580 ° C.
  • a plurality of bonded structures were manufactured, and among them, a good bonded structure and a defective bonded structure were included.
  • An X-ray transmission image is shown in FIG.
  • Comparative Example 2 is the same as Example 1 except that the wire brazing material 20A is one in which the alloy base material 21 has a comparative composition of aluminum (Al) 12 mass% and zinc (Zn) 88 mass%. The junction structure of heat exchanger aluminum tube was obtained. The target melting point of the alloy base material 21 is 450 ° C. An X-ray transmission image of this bonded structure is shown in FIG.
  • the X-ray transmission image of the obtained joining structure has a black color derived from the flux 22.
  • An image or a black image derived from the alloy base material 21 that has not been melted is not reflected. Therefore, the through hole due to the remaining flux 22 is not formed at the joining portion, and neither the alloy base material 21 nor the like is formed.
  • the joining structures of Examples 1 and 2 can realize good brazing as with the joining structure of the conventional non-defective product (good product of Comparative Example 1).
  • the conventional aluminum-silicon based brazing material when used, good brazing is possible as in the case of the non-defective bonding structure of Comparative Example 1, but the flux as in the defective product of Comparative Example 1 is possible.
  • a black image due to the residue of 22 is reflected, and that the black image exists over and under the joint structure (expanded portion 11a). Therefore, it can be seen that through-holes are formed in the bonded structure of the defective product of Comparative Example 1, and sufficient brazing is not achieved.
  • the present invention can be used widely and suitably in the field of heat exchangers provided in outdoor units of air conditioners, particularly in the field of manufacturing heat exchangers having aluminum tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本発明に係る熱交換器アルミニウム管ろう付け用ろう材は、アルミニウムおよび亜鉛を含有する合金母材と、当該合金母材よりも融点の低いフラックスとを含有し、合金母材を100質量%としたときに当該合金母材における亜鉛の含有量が40~75質量%の範囲内であり、フラックスの含有量が10~25質量%の範囲内であり、合金母材でフラックスを包含した線材として構成されている。これにより、アルミニウム管同士を良好な品質で効率的に接合することが可能になる。

Description

熱交換器アルミニウム管ろう付け用ろう材、並びに、これを用いた熱交換器アルミニウム管の接合方法および熱交換器アルミニウム管の接合構造
 本発明は、空気調和装置の室外機が備える熱交換器が有する、アルミニウム製またはアルミニウム合金製のアルミニウム管のろう付けに用いられる、熱交換器アルミニウム管ろう付け用ろう材と、当該ろう材を用いた熱交換器アルミニウム管の接合方法および熱交換器アルミニウム管の接合構造に関する。
 空気調和装置の室外機が備える熱交換器は、一般的には、冷媒を流通させる伝熱管と、この伝熱管に取り付けられるフィンとを備えている。伝熱管としては銅製(またはその合金製)のもの(銅管)が用いられ、フィンとしてはアルミニウム製(またはその合金製)のもの(アルミニウムフィン)が用いられている。
 このような熱交換器の代表的な製造過程としては、例えば、多数のフィンを並列配置して保持し、これらフィンを貫通させるように複数の伝熱管を取り付け、さらに、複数の伝熱管同士を接合する工程が挙げられる。伝熱管同士を接合する方法としては、一般的にはろう付けによる接合(ろう接)が用いられている(例えば、アルミニウム管用ろう材としては、JIS4047が一般的である)。
 例えば、特許文献1には、ろう接により熱交換パイプを接続する工程を含む、熱交換器の製造方法が開示されている。この製造方法では、第1の熱交換パイプ(銅製)の端部をフレア加工し(フレア加工工程)、第2の熱交換パイプ(銅製)の端部外周にリング状ろう材(銅製)を挿入し(ろう材挿入工程)、これら熱交換パイプ端部同士を接触保持し(保持工程)、これら熱交換パイプ相互の接触保持部をバーナートーチ等の加熱装置により加熱してリング状ろう材を融解させる(加熱工程)。これにより、熱交換パイプ同士を接続(接合)している。
 ところで、熱交換器の分野では、近年、フィンだけでなく伝熱管についてもアルミニウム製のもの(アルミニウム管)が用いられている。例えば、空気調和装置の分野ではないが、自動車の分野では、熱交換器として、伝熱管およびフィンのいずれもアルミニウム製のもの(オールアルミ製熱交換器)が既に広く用いられている。このような自動車用熱交換器の製造では、アルミニウム管同士のろう接は、ブレージングシート(アルミニウム合金とろう材とのサンドイッチ構造体)を用いて、加熱炉中で行われる。
 例えば特許文献2には、不活性ガス雰囲気炉中でフラックスを用いずにアルミニウム材をろう付けする方法が開示されている。同文献にも記載されているように、アルミニウムのろう付けを行うためには、アルミニウム表面の酸化皮膜を破壊する必要があり、そのためにはフラックスを用いるフラックスろう付け法と、真空中で加熱する真空ろう付け法とがある。フラックスろう付け法では、不活性ガス雰囲気炉中でフラックスを用いて加熱しているが、ろう付け後に生じるフラックス残渣による影響が懸念されている。また、真空ろう付け法ではフラックスを用いなくてよいが、真空炉設備が高価でありそのメンテナンス費用も高くなる。
 自動車用熱交換器は、空気調和装置の室外機用熱交換器に比べて小さいため、加熱炉によりろう接を行うことができる。しかしながら、室外機用熱交換器は、自動車用熱交換器よりも大きいため、アルミニウム管を炉中でろう接するためには、大型の加熱炉が必要になる。このような大型の加熱炉を実現するためには、巨額の設備投資が必要となる。特に、特許文献2にも記載されているように、真空炉設備を用いる場合には、その設備投資はさらに高額となる。
 室外機用熱交換器がアルミニウム管を備えている場合には、コスト増大を回避する観点から、銅管を備えている場合と同様に、接合予定箇所を直接加熱する方法が採用される(特許文献1参照)。ところが、アルミニウム管同士のろう接ではフラックスの残留により接合箇所に貫通孔が生じるおそれがある。
 この貫通孔は、固化したフラックスが詰まった状態にあるため、検査時にはアルミニウム管の漏洩箇所として検出されない。しかしながら、検査後に実際に冷媒を流通させると、フラックスが徐々に浸み出してくるため、貫通孔から冷媒が漏洩してしまう。これにより、製造した室外機用熱交換器は、抜き取り検査ではなく全数検査する必要があり、生産性が大きく低下する。
特開平10-292992号公報 特開2013-123749号公報
 本発明はこのような課題を解決するためになされたものであって、空気調和装置の室外機が備える熱交換器が有するアルミニウム管同士をろう材により接合する際に、フラックスの残留を有効に抑制し、アルミニウム管同士を良好な品質で効率的に接合可能とすることを目的とする。
 本発明に係る熱交換器アルミニウム管ろう付け用ろう材は、上記の課題を解決するために、空気調和装置の室外機が備える、アルミニウム製またはアルミニウム合金製のアルミニウム管を有する熱交換器において、アルミニウム管のろう付けに用いられる。熱交換器アルミニウム管ろう付け用ろう材は、アルミニウムおよび亜鉛を含有する合金母材と、当該合金母材よりも融点の低いフラックスとを含有し、合金母材を100質量%としたときに当該合金母材における亜鉛の含有量が40~75質量%の範囲内であり、フラックスの含有量が10~25質量%の範囲内である。また、熱交換器アルミニウム管ろう付け用ろう材は合金母材でフラックスを包含した線材として構成されている。
 また、本発明に係る熱交換器アルミニウム管の接合方法は、熱交換器アルミニウム管ろう付け用ろう材を、アルミニウム管うち、一方のアルミニウム管の端部を他方のアルミニウム管の端部に挿入して保持した端部保持箇所に供給し、当該ろう材を融解させることにより、アルミニウム管同士を接合する。
 さらに、本発明に係る熱交換器アルミニウム管の接合構造は、アルミニウム管同士をろう材により接合してなる接合構造であって、熱交換器アルミニウム管ろう付け用ろう材により形成されるろう接続部を有する。
 上記構成によれば、熱交換器アルミニウム管ろう付け用ろう材においては、その融点が、アルミニウム管の融点との間で温度差が大きくなっているので、接合時の加熱時間をより長くすることが可能になる。それゆえ、接合作業時には、線材内部のフラックスが先に融解して合金母材に広がり、その後に線材外部の合金母材が融解することになるので、合金母材を融解しやすくできるとともに、より長時間の加熱によりフラックスを先に漏出させることができる。これにより、接合箇所のろう接続部にフラックスが残留する可能性が低減されるので、フラックスの残留による貫通孔等の欠陥の発生を抑制することができる。その結果、アルミニウム管同士を良好な品質で効率的に接合することができる。
 本発明では、以上の構成により、空気調和装置の室外機に備えられた熱交換器が有するアルミニウム管同士をろう材により接合する際に、フラックスの残留を有効に抑制し、アルミニウム管同士を良好な品質で効率的に接合することが可能になる、という効果を奏する。
図1は、本発明で用いられる拡管部および拡大枠部を備える熱交換器アルミニウム管の一例を示す模式的側面図である。 図2は、図1に示すアルミニウム管の端部同士を合わせて保持した端部保持箇所の一例、並びに、拡大枠部にろう材を供給する構成を説明する模式的側面図である。 図3Aは、本発明に係る熱交換器アルミニウム管の接合方法の一例であって、線ろう材を用いた差しろうによりアルミニウム管用ろう材を供給する例を示す模式的工程図である。 図3Bは、本発明に係る熱交換器アルミニウム管の接合方法の一例であって、線ろう材を用いた差しろうによりアルミニウム管用ろう材を供給する例を示す模式的工程図である。 図3Cは、本発明に係る熱交換器アルミニウム管の接合方法の一例であって、線ろう材を用いた差しろうによりアルミニウム管用ろう材を供給する例を示す模式的工程図である。 図3Dは、本発明に係る熱交換器アルミニウム管の接合方法の一例であって、線ろう材を用いた差しろうによりアルミニウム管用ろう材を供給する例を示す模式的工程図である。 図4Aは、本発明に係る熱交換器アルミニウム管の接合方法の一例であって、リングろう材を用いた置きろうによりアルミニウム管用ろう材を供給する例を示す模式的工程図である。 図4Bは、本発明に係る熱交換器アルミニウム管の接合方法の一例であって、リングろう材を用いた置きろうによりアルミニウム管用ろう材を供給する例を示す模式的工程図である。 図4Cは、本発明に係る熱交換器アルミニウム管の接合方法の一例であって、リングろう材を用いた置きろうによりアルミニウム管用ろう材を供給する例を示す模式的工程図である。 図4Dは、本発明に係る熱交換器アルミニウム管の接合方法の一例であって、リングろう材を用いた置きろうによりアルミニウム管用ろう材を供給する例を示す模式的工程図である。 図5は、本発明に係る実施例および比較例の結果である、熱交換器アルミニウム管の接合構造のX線透過像を示す図である。
 本発明に係る熱交換器アルミニウム管ろう付け用ろう材は、空気調和装置の室外機が備える、アルミニウム製またはアルミニウム合金製のアルミニウム管を有する熱交換器において、アルミニウム管のろう付けに用いられる。熱交換器アルミニウム管ろう付け用ろう材は、アルミニウムおよび亜鉛を含有する合金母材と、当該合金母材よりも融点の低いフラックスとを含有し、合金母材を100質量%としたときに当該合金母材における亜鉛の含有量が40~75質量%の範囲内であり、フラックスの含有量が10~25質量%の範囲内である。熱交換器アルミニウム管ろう付け用ろう材は、合金母材でフラックスを包含した線材として構成されている。
 構成によれば、フラックスを包含する線材として形成されたアルミニウムろう材において、合金母材には、従来のようなケイ素ではなく亜鉛が40~75質量%の範囲内で含有されている。これにより、合金母材の融点は、フラックスより高く、かつ、従来のアルミニウム-ケイ素系のろう材の融点よりも低くすることが可能となる。その結果、アルミニウム管の融点とろう材の融点との温度差を大きくすることができるので、接合時の加熱時間をより長くすることが可能になる。
 それゆえ、接合作業時には、線材内部のフラックスが先に融解して合金母材に広がり、その後に線材外部の合金母材が融解することになるので、合金母材を融解しやすくできるとともに、より長時間の加熱によりフラックスを十分に漏出させることができる。これにより、接合箇所のろう接続部にフラックスが残留する可能性が低減されるので、フラックスの残留による貫通孔等の欠陥の発生を抑制することができる。その結果、アルミニウム管同士を良好な品質で効率的に接合することができる。
 上記構成の熱交換器アルミニウム管ろう付け用ろう材においては、合金母材における亜鉛の含有量が65~75質量%の範囲内である構成であってもよい。
 上記構成によれば、合金母材中の亜鉛の含有量が65~75質量%の範囲内となるので、その融点をより低くすることができる。それゆえ、接合時の加熱時間をより長くすることが可能になるので、フラックスの残留をより有効に抑制し、アルミニウム管同士を良好な品質で効率的に接合することができる。
 また、上記構成の熱交換器アルミニウム管ろう付け用ろう材においては、合金母材は、さらにケイ素を含有する構成であってもよい。
 上記構成によれば、合金母材中にさらにケイ素が含まれるので、ろう材の流動性を向上することが可能となり、ろう材の品質をより良好なものとすることができる。
 また、上記構成の熱交換器アルミニウム管ろう付け用ろう材においては、フラックスは、合金母材よりも融点が低い金属塩である構成であってもよい。
 上記構成によれば、フラックスが低融点の金属塩であるので、接合時の加熱によりフラックスが良好に流動することができる。これにより、アルミニウムの酸化皮膜を良好に除去することができる。
 また、上記構成の熱交換器アルミニウム管ろう付け用ろう材においては、フラックスは、フルオロアルミン酸のアルカリ金属塩である構成であってもよい。
 上記構成によれば、フラックスがフルオロアルミン酸のアルカリ金属塩であるので、フラックスがアルミニウムを腐食する可能性を回避することができる。
 また、本発明に係る熱交換器アルミニウム管の接合方法は、熱交換器アルミニウム管ろう付け用ろう材を、アルミニウム管うち、一方のアルミニウム管の端部を他方のアルミニウム管の端部に挿入して保持した端部保持箇所に供給し、当該ろう材を融解させることにより、アルミニウム管同士を接合する。
 上記構成によれば、前述した本発明に係るろう材を用いるので、その融点が従来よりも低いことから、接合時の加熱時間を従来よりも長くすることが可能になる。これにより、フラックスの残留による貫通孔等の欠陥の発生を抑制することができるので、アルミニウム管同士の接合箇所の品質をより良好にできるとともに、接合の効率も良好なものとすることができる。
 上記構成の熱交換器アルミニウム管の接合方法においては、端部保持箇所を予め加熱してからろう材を差しろうにより供給するか、または、端部保持箇所にろう材を置きろうとして設置してから加熱することにより、当該ろう材を融解させるとともに、端部保持箇所が融解したろう材により接合されて形成されるろう接続部を加熱して、当該ろう接続部からフラックスを漏出させる構成であってもよい。
 上記構成によれば、手作業であっても機械による自動作業であっても、本発明に係る熱交換器アルミニウム管ろう付け用ろう材を用いてアルミニウム管同士を良好に接合することができる。
 また、上記構成の熱交換器アルミニウム管の接合方法においては、端部保持箇所は、一方のアルミニウム管の端部が、他方のアルミニウム管の端部を挿入可能に管径を拡大した拡管部となっており、当該拡管部の端部開口の周縁部は、その管径がさらに拡大された拡大枠部となっている。
 上記構成によれば、一方のアルミニウム管の端部には、拡管部よりも管径が拡大した拡大枠部が設けられている。これにより、例えば、置きろうの場合には、ろう材の設置性が向上するとともに、置きろうまたは差しろうのいずれであっても、フラックスがろう接続部から溢れにくくなる。さらに、ろう材を加熱するときに拡大枠部からの熱伝導が生じ得るので、より効率的にろう材を融解することも可能となる。
 さらに、本発明には、アルミニウム管同士をろう材により接合してなる接合構造であって、熱交換器アルミニウム管ろう付け用ろう材により形成されるろう接続部を有する構成の熱交換器アルミニウム管の接合構造も含まれる。
 上記構成によれば、接合構造のろう接続部にフラックスが残留する可能性が低減しているので、フラックスの残留による貫通孔等の欠陥の発生を抑制することができる。これにより、より良好な品質で効率的に接合されたアルミニウム管の接合構造を実現することができる。
 以下、本発明の代表的な実施の形態について具体的に説明するが、本発明は本実施の形態に限定されるものでない。
 [熱交換器アルミニウム管ろう付け用ろう材]
 本発明に係るろう材は、空気調和装置の室外機が備える熱交換器が有する、アルミニウム管のろう付けに用いられる。本実施の形態では、説明の便宜上、熱交換器が有するアルミニウム管を「熱交換器アルミニウム管」と称する。それゆえ、本発明に係るろう材は「熱交換器アルミニウム管ろう付け用ろう材」である。なお、以下の説明では、便宜上、「熱交換器アルミニウム管」を単に「アルミニウム管」と略す場合があり、また、熱交換器アルミニウム管ろう付け用ろう材を「アルミニウム管用ろう材」と略す場合がある。
 本発明に係るアルミニウム管用ろう材は、上記の通り、合金母材およびフラックスを含有し、合金母材によりフラックスを包含した線材として構成されている。
 アルミニウム管用ろう材が含有する合金母材は、上記の通りアルミニウム(Al)および亜鉛(Zn)を含有する。合金母材を100質量%としたときに、当該合金母材における亜鉛の含有量は40~75質量%の範囲内であればよく、65~75質量%の範囲内であることが好ましい。合金母材がアルミニウムおよび亜鉛のみで構成されていれば、アルミニウムの含有量は、25~60質量%の範囲内になり、25~35質量%の範囲内が好ましい。亜鉛の含有量が40~75質量%の範囲内であれば、アルミニウム管用ろう材の融点を、520~580℃の温度範囲内に設定することができる。なお、亜鉛の含有量を調整することで実現しようとするアルミニウム管用ろう材の融点を、説明の便宜上「狙い融点」と称する。
 合金母材における亜鉛の含有量が40質量%を下回ると、アルミニウム管用ろう材の狙い融点が580℃を超えてしまい、アルミニウムとの融点差を広げることができなくなる。一方、亜鉛の含有量が75質量%を超えると、狙い融点が低下してフラックスの融点に近づくだけでなく、接合時にアルミニウム管用ろう材が十分にまわらないおそれがある。この場合、後述する実施例に示すように、アルミニウム管用ろう材にダマが生じて、良好なろう接続部が形成できなくなる可能性がある。また、亜鉛の含有量が65質量%以上であれば、アルミニウム管用ろう材の狙い融点を540℃以下に調整することが可能となる。これにより、アルミニウム管の融点とアルミニウム管用ろう材の狙い融点との温度差をより大きくすることができるので好ましい。
 合金母材には、アルミニウムおよび亜鉛以外の成分(他の成分)が含まれていてもよい。他の成分の具体的な種類は特に限定されず、アルミニウム管用ろう材に求められる各種物性、特に合金母材の融点の下降を妨げない限り、アルミニウムおよび亜鉛の合金に混合可能な金属等を好適に用いることができる。代表的にはケイ素(シリコン、Si)を挙げることができる。ケイ素を含有することによりアルミニウム管用ろう材の流動性を向上させることが可能となる。ケイ素の含有量は特に限定されず、所望の狙い融点の実現(融点が狙い融点近傍の温度範囲になること)を妨げず、かつ、良好な流動性を付与できる範囲内であればよい。また、アルミニウム管用ろう材の耐食性を悪化させない観点から、合金母材は、銅(Cu)、鉄(Fe)、およびニッケル(Ni)を含有しないことが好ましい。
 アルミニウム管用ろう材が含有するフラックスは、合金母材の融点より低いものを適宜選択して用いることができる。アルミニウム管用ろう材中のフラックスの含有量は、10~25質量%の範囲内であればよい。具体的なフラックスの種類は特に限定されないが、合金母材よりも融点が低い金属塩を挙げることができる。より具体的には、例えば、フルオロアルミン酸セシウム(CsAlF3+X)、フルオロアルミン酸カリウム(KAlF3+X)等のフルオロアルミン酸のアルカリ金属塩を挙げることができる(X=1~2)。これらは1種類のみ用いてもよいし、2種類以上を混合して用いてもよい。
 フラックスがフルオロアルミン酸のアルカリ金属塩であれば、塩素等の腐食性元素を含まないため、形成された接合部分を後洗浄する必要がない。なお、後洗浄を行うことに差支えがなければ、フラックスとしては、塩化アルミニウム(AlCl)等の公知の塩化物系フラックスも好適に用いることができる。
 アルミニウム管用ろう材は、合金母材でフラックスを包含した線材として構成されていればよいが、線材としての具体的な構成は特に限定されない。線材の外径は、一般的には1.6mmであるが、差しろうにより接合を行う場合には、作業性向上の観点から、より太い1.8~2.0mmの範囲内であってもよい。逆に、接合条件等によっては、線材の外径は1.6mm未満であってもよい。
 線材中のフラックス部分の直径、あるいは合金母材の厚み(線材の外径およびフラックス部分の直径の差分)についても特に限定されず、公知の範囲内であればよい。また、線材の形成方法も特に限定されず、合金母材中にフラックスが包含された二重構造の線材を製造可能であれば、アルミニウム系ろう材の分野で公知の手法を採用することができる。
 [熱交換器アルミニウム管]
 次に、本発明において、前述したアルミニウム管用ろう材を用いて接合されるアルミニウム管の構成の一例について、図1および図2を参照して具体的に説明する。なお、以下の説明では、全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 本発明で接合対象となるアルミニウム管は、上記の通り熱交換器が有する配管(熱交換器アルミニウム管)である。この熱交換器アルミニウム管は、アルミニウム製またはアルミニウム合金製であればよく、その用途は特に限定されないが、通常は、内部に冷媒を流通させる伝熱管である。熱交換器の具体的な構成は特に限定されず、伝熱管およびフィンを備える公知の構成であればよい。本発明における熱交換器は、伝熱管およびフィンのいずれもアルミニウム製である。また、熱交換器は、伝熱管およびフィン以外の部材を含んでもよいし、伝熱管以外のアルミニウム管を含んでもよい。
 熱交換器アルミニウム管同士をアルミニウム管用ろう材で接合するためには、熱交換器アルミニウム管のそれぞれの端部を合わせて保持した端部保持箇所を形成し、この端部保持箇所にろう材を設置または供給することになる。端部保持箇所の形成方法は特に限定されず、端部同士を合わせた状態を保持できればよい。端部を合わせて保持する状態には、端部同士を接触させた上で合わせた状態も、端部同士を接触させずに合わせた状態も含まれる。また、端部保持箇所を実現する上では、公知の治具等を用いることもできる。
 本実施の形態では、端部保持箇所の代表的な構成の一例として、図1に示すように、一方のアルミニウム管11の端部を、他方のアルミニウム管12の端部を挿入することが可能な拡管部11aとする構成を採用している。つまり、本実施の形態では、端部保持箇所は、一方のアルミニウム管11の端部を他方のアルミニウム管12の端部に挿入した構成となっている。この拡管部11aは、他方のアルミニウム管12の端部を挿入可能に管径を拡大したものであればよく、その具体的な構成は特に限定されない。
 このように一方のアルミニウム管11の端部が拡管部11aとなっていれば、図2に示すように、この拡管部11aに他方のアルミニウム管12の端部を差し込むだけで端部保持箇所10を形成することができる。なお、図1および図2に示すように、アルミニウム管11および12の接合時には、一方のアルミニウム管11は、拡管部11aが上側となるようにエンドプレート13上に立設して固定してもよい。
 ここで、拡管部11aは、当該拡管部11aの付け根(アルミニウム管11の本体につながった部位)からの端部開口まで同じ管径を有する構成であってもよいが、図1および図2に示すように、拡管部11aの端部開口の周縁部は、その管径がさらに拡大された拡大枠部11bとなっていると好ましい。
 例えば、図2に示すように、差しろうにより線材のアルミニウム管用ろう材(線ろう材20A)を端部保持箇所10に供給する場合には、線ろう材20Aの先端を拡大枠部11b上に位置させればよい。また、図2に示すように、置きろうによりリング状のアルミニウム管用ろう材(リングろう材20B)を端部保持箇所10に設置するのであれば、拡大枠部11b上にリングろう材20Bを容易に設置することができる。なお、差しろうおよび置きろうに関しては後述する。
 拡大枠部11bの管径は特に限定されず、拡管部11aの管径よりも大きければよい。アルミニウム管11の本体の管径にもよるが、拡管部11aの管径をR1とし、拡大枠部11bの管径をR2とすれば、管径R1と管径R2との差分は1.0mm以上であればよく、2.5mm以上であると好ましい。つまり、拡管部11aから見た拡大枠部11bの外部拡大幅Rbは、0.5mm以上であればよく、1.25mm以上であると好ましい。アルミニウム管11の本体の管径をR0とすれば、代表的には、本体の管径としてはR0=6.35mmを挙げることができるが、このとき拡管部11aの管径としてはR1=6.5mmを挙げることができ、拡大枠部11bの管径R2としてはR2=7.5mm以上であればよく、9.0mm以上であることが好ましい。
 アルミニウム管11および12を接合する際には、図2に示すように、例えばバーナートーチ30等の加熱装置(加熱手段)を用いて端部保持箇所10を加熱すればよいが、具体的な加熱箇所は特に限定されない。代表的な加熱箇所は、端部保持箇所10におけるアルミニウム管用ろう材(線ろう材20A、リングろう材20B)の供給箇所または設置箇所であればよい(図2上位置のバーナートーチ30参照)が、アルミニウム管用ろう材の供給箇所または設置個所よりも下方を加熱してもよい(図2下位置のバーナートーチ30参照)。
 本実施の形態では、アルミニウム管11の拡管部11aには拡大枠部11bが設けられており、アルミニウム管用ろう材は、拡大枠部11b上に供給または設置される。アルミニウム管用ろう材には、前述したようにフラックスが含まれているが、このフラックスは融解したアルミニウム管用ろう材からできるだけ除去する必要がある。フラックスを十分に除去するためには、アルミニウム管11(およびアルミニウム管12)が熱変形しない程度に長時間加熱することになる。アルミニウム管用ろう材は拡大枠部11b上に供給または設置されるので、より安定した加熱を実現する上では、拡大枠部11bからの伝熱によりアルミニウム管用ろう材を融解させる手法を採用することができる。そこで、本実施の形態において、好ましい加熱方法としては、図2に示すように拡管部11aにおける拡大枠部11bの下方(端部保持箇所10の下部近傍)を加熱する方法が挙げられる。
 [熱交換器アルミニウム管の接合方法]
 次に、前述したアルミニウム管用ろう材を用いて熱交換器アルミニウム管同士をろう接する方法、すなわち、本発明に係る熱交換器アルミニウム管の接合方法について、図3A~図3Dおよび図4A~図4Dを参照して具体的に説明する。
 本発明に係る熱交換器アルミニウム管の接合方法では、前述したアルミニウム管用ろう材を、前述した端部保持箇所10(アルミニウム管11および12の端部同士を接触させて保持した箇所)に供給し、当該アルミニウム管用ろう材を融解させることにより、アルミニウム管同士を接合すればよい。
 ここで、端部保持箇所10にアルミニウム管用ろう材を供給する方法は特に限定されないが、代表的には、端部保持箇所10を予め加熱(予熱)してからアルミニウム管用ろう材を差しろうにより供給する方法、または、端部保持箇所10にアルミニウム管用ろう材を置きろうとして設置してから加熱する方法を挙げることができる。差しろうによる供給方法は、手作業によるろう接に好適に用いることができ、置きろうによる供給方法は、機械による自動ろう接に好適に用いることができる。
 このようにしてアルミニウム管用ろう材を供給し、加熱により融解させる。融解したアルミニウム管用ろう材は、端部保持箇所10におけるアルミニウム管11および12の間に流れ込みろう接続部を形成する。ここで、ろう接続部中にフラックスが残留していると接合箇所に貫通孔が生じるおそれがある。そこで、端部保持箇所10をできるだけ長時間加熱することによりろう接続部からフラックスを漏出させる。これにより貫通孔等の欠陥の発生を十分に抑制することができる。
 図3A~図3Dには、差しろうにより手作業でアルミニウム管11および12を接合する例を模式的に示している。まず、図3Aに示すように、アルミニウム管11の拡管部11aにアルミニウム管12を差し込むことで、端部保持箇所10を形成し、アルミニウム管11の拡管部11aをバーナートーチ30により予め加熱する。この例では、前述したように、拡管部11aにおける拡大枠部11bの下方(端部保持箇所10の下部近傍)を加熱している(図2参照)。これにより、アルミニウム管用ろう材を効率的に融解するように、端部保持箇所10を予熱することになる。
 その後、図3Bに示すように、端部保持箇所10の拡大枠部11b上に、線ろう材20Aの先端を位置させて、差しろうによりアルミニウム管用ろう材を供給する。線ろう材20Aは、フラックス22を合金母材21で包含した構成となっている。さらにその後、図3Cに示すように、線ろう材20Aが融解する。フラックス22は前述したように合金母材21よりも融点が低いため、周囲の合金母材21よりも内部のフラックス22が先に融解する。合金母材21は、前述したようにアルミニウム-亜鉛系の合金であって、その表面にはアルミニウム由来の酸化皮膜が生じている。融解したフラックス22が塗れ広がることにより、合金母材21の表面の酸化皮膜が除去されるので、合金母材21が良好に融解して端部保持箇所10に融け広がる。
 端部保持箇所10に融け広がった合金母材21は、アルミニウム管11および12の間に形成される隙間に流れ込むが、この状態では、合金母材21中にフラックス22が残留しているおそれがある。それゆえ、前述したようにバーナートーチ30による加熱を継続することで、合金母材21中のフラックス22を漏出させる。これにより、合金母材21からフラックス22を実質的に除去することが可能となる。その後の自然冷却により、図3Dに示すように、端部保持箇所10におけるアルミニウム管11および12の隙間には、フラックス22を実質的に含まないろう接続部23が形成される。
 図4A~図4Dには、置きろうにより機械(ロボット等)による自動作業でアルミニウム管11および12を接合する例を模式的に示している。まず、図4Aに示すように、アルミニウム管11の拡管部11aにアルミニウム管12を差し込むことで、端部保持箇所10を形成するが、予熱せずに、拡大枠部11bの上にリングろう材20Bを載置する。このリングろう材20Bも、線ろう材20Aと同様に、フラックス22を合金母材21で包含した構成の線材となっている。
 その後、図4Bに示すように、拡管部11aにおける拡大枠部11bの下方(端部保持箇所10の下部近傍)をバーナートーチ30で加熱する。このとき、リングろう材20Bが融解可能で、かつ、アルミニウム管11の拡管部11aが変形しない温度まで予熱できるように、バーナートーチ30によるバーナー炎を強めたり弱めたりする。このバーナー炎の強弱の変化は、図示しない制御器に記憶されるプログラムにより制御すればよい。
 その後、図4Cに示すように、バーナートーチ30による本加熱が行われ、これにより拡大枠部11b上のリングろう材20Bが融解する。このとき、前述したように、先にフラックス22が融解して塗れ広がり、合金母材21の表面の酸化皮膜が除去されるので、合金母材21が良好に融解して端部保持箇所10に融け広がる。さらにその後、バーナートーチ30による加熱を継続して合金母材21中のフラックス22を漏出させる。これにより、合金母材21からフラックス22を実質的に除去することが可能となる。その後の自然冷却により、図4Dに示すように、端部保持箇所10におけるアルミニウム管11および12の隙間には、フラックス22を実質的に含まないろう接続部23が形成される。
 このように、本発明では、アルミニウム管用ろう材として、亜鉛を40~75質量%の範囲内で含有するアルミニウム-亜鉛系の合金母材を用いており、フラックスとしては、このアルミニウム-亜鉛系の合金母材よりも融点の低いものを10~25質量%の範囲内で用いている。それゆえ、得られる熱交換器アルミニウム管の接合構造は、前述したアルミニウム管用ろう材により形成されるろう接続部を有することになる。これにより、接合構造のろう接続部にフラックスが残留する可能性が低減しているので、フラックスの残留による貫通孔等の欠陥の発生を抑制することができる。その結果、より良好な品質で効率的に接合されたアルミニウム管の接合構造を実現することができる。
 特に本発明では、アルミニウム管用ろう材が、接合対象であるアルミニウム管の融点よりも十分に低い温度で融解可能となっている。それゆえ、従来のアルミニウム-ケイ素系のろう材に比べてろう接の難易度が低くなり、作業性が向上するとともに自動化にも好適なものとなっている。この点について、ろう接の難易度がより低い、銅管のろう接を例に挙げて説明する。
 従来から、空気調和装置の室外機が備える熱交換器では、伝熱管等の管材としては銅管が用いられている。これら銅管同士をろう接する場合、銅にはアルミニウムのような化学的に非常に安定な酸化皮膜が生じないので、銅ろう材にはフラックスを用いる必要がない。また、代表的な銅ろう材であるリン銅ろう材(Cu-P)の融点は、銅管の融点よりも300℃以上低い。さらに、銅管をろう材が融解する温度まで加熱すると、熱輻射により銅管が赤くなる。それゆえ、例えば手作業でろう接を行う場合には、作業者の目視により銅管が赤くなるまで加熱すれば、銅管が変形することなくろう材を融解させることができる。
 これに対して、アルミニウム管同士のろう接では、酸化皮膜を破壊するためにフラックスを用いる必要がある。また、一般的なアルミニウムろう材(ケイ素が添加されたAl-Si系合金)の融点とアルミニウム管の融点との温度差は、銅ろう材の融点と銅管の融点との温度差に比べて小さい。さらに、アルミニウム管をろう材が融解する温度まで加熱しても熱輻射による変色は見られず、外観上の変化は特に見られない。それゆえ、ろう接の際には、フラックスの残留を回避するために長時間加熱すると、アルミニウム管の融点付近まで高温となりアルミニウム管が変形するおそれがある。そこで、アルミニウム管の変形を回避するために加熱時間を短くすると、ろう接続部からフラックスが流れ出さずに残留するおそれがある。フラックスの残留は、ろう接続部に貫通孔を生じさせることになる。
 フラックスの残留による貫通孔は、アルミニウム管の接合箇所の検査によって発見し難い。アルミニウム管の接合品質の検査方法としては、一般的にはヘリウムリーク検査あるいは水没検査が用いられる。例えばヘリウムリーク検査では、接合箇所の内部を真空状態にしてから外部からヘリウムガスを充填し、外部にヘリウムガスのリークがあるか否かを検知する。検査時にフラックスは融解しないので、貫通孔はフラックスで充填されていることになる。そのため、ヘリウムガスのリークは検知されず、接合箇所に密閉性があると判断される。しかしながら、その後、アルミニウム管に冷媒を流通させると、フラックスが少しずつ貫通孔から浸み出すので、貫通孔が開放されて冷媒の漏れが発生する。これにより、製造した室外機用熱交換器は、抜き取り検査ではなく全数検査する必要があり、生産性が大きく低下してしまう。
 これに対して、本発明に係るアルミニウム管用ろう材は、前述したように、合金母材として、従来のようなケイ素ではなく亜鉛を40~75質量%の範囲内で含有するアルミニウム-亜鉛系合金を用いている。これにより、合金母材の融点は、フラックスより高く、かつ、従来のアルミニウム-ケイ素系のろう材の融点よりも低くすることが可能となる。その結果、アルミニウム管の融点とろう材の融点との温度差を大きくすることができるので、接合時の加熱時間をより長くすることが可能になる。
 それゆえ、接合作業時には、線材内部のフラックスが先に融解して合金母材に広がり、その後に線材外部の合金母材が融解することになるので、合金母材を融解しやすくできるとともに、より長時間の加熱によりフラックスを先に漏出させることができる。これにより、接合箇所のろう接続部にフラックスが残留する可能性が低減されるので、フラックスの残留による貫通孔等の欠陥の発生を抑制することができる。その結果、アルミニウム管同士を良好な品質で効率的に接合することができる。
 (実施例)
 本発明について、実施例および比較例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。
 (実施例1)
 図1に示すように、エンドプレート13に、長さ15.5mm、管径R0=6.35mm、拡管部11aの管径R1=6.5mm、拡大枠部11bの管径R2=7.5mmであるアルミニウム管11を固定した。このアルミニウム管11の拡管部11aに対して、管径R0=6.35mmのアルミニウム管12の端部を挿入した。これにより、図2に示すように、アルミニウム管11および12の端部保持箇所10を構成した。
 また、アルミニウム管用ろう材として、フラックス22を合金母材21で包含することにより、線径1.6mmの線材として形成された線ろう材20Aを準備した。この線ろう材20Aにおける合金母材21は、アルミニウム(Al)35質量%および亜鉛(Zn)65質量%の組成であり、その狙い融点は540℃である。また、この線ろう材20Aのフラックス22はフルオロアルミン酸セシウム(CsAlF3+X,X=1または2)であり、その活性温度は520℃である。また、線ろう材20Aの重量比は、合金母材21が82質量%、フラックス22が18質量%となっている。
 次に、図3Aに示すように、端部保持箇所10における拡大枠部11bの下部をバーナートーチ30で加熱することにより、端部保持箇所10の予熱を行った。その後、図3Bに示すように、線ろう材20Aの先端を拡大枠部11b上に位置させ、バーナートーチ30による加熱を継続した。これにより、図3Cに示すように、線ろう材20Aが融解するので、端部保持箇所10におけるアルミニウム管11および12の間にアルミニウム管用ろう材を流し込んだ。加熱の継続により、前述したように、合金母材21からフラックス22を流出させた。
 その後、加熱を停止して自然冷却することにより、アルミニウム管用ろう材によるろう接続部23が形成された、実施例1の熱交換器アルミニウム管の接合構造を得た。この接合構造のX線透過像を図5に示す。なお、図5では、合金母材におけるアルミニウムおよび亜鉛(またはケイ素)の含有量を単に「%」と記載しているが、これは「質量%」を意味する。
 (実施例2)
 線ろう材20Aとして、合金母材21が、アルミニウム(Al)25質量%および亜鉛(Zn)75質量%の組成であるものを用いた以外は、実施例1と同様にして、実施例2の熱交換器アルミニウム管の接合構造を得た。なお、合金母材21の狙い融点は520℃である。この接合構造のX線透過像を図5に示す。
 (比較例1)
 線ろう材20Aとして、合金母材21が、アルミニウム(Al)88質量%およびケイ素(Si)12質量%の従来組成であるものを用いた以外は、実施例1と同様にして比較例1の熱交換器アルミニウム管の接合構造を得た。なお、合金母材21の狙い融点は580℃である。本比較例1では、複数の接合構造を製造したが、そのうち良品の接合構造と不良品の接合構造とを含んでいた。良品および不良品の接合構造それぞれについて、X線透過像を図5に示す。
 (比較例2)
 線ろう材20Aとして、合金母材21が、アルミニウム(Al)12質量%および亜鉛(Zn)88質量%の比較組成であるものを用いた以外は、実施例1と同様にして比較例2の熱交換器アルミニウム管の接合構造を得た。なお、合金母材21の狙い融点は450℃である。この接合構造のX線透過像を図5に示す。
 (実施例および比較例の対比)
 図5に示す接合構造のX線透過像では、原子番号の大きい物質または膜厚が大きい物質についてはX線の透過率が小さいため黒く映る。フラックス22由来のセシウム、あるいは、合金母材21由来の亜鉛は、アルミニウムに比べて黒く映ることになる。
 図5に示す実施例1および2の接合構造の結果から明らかなように、本発明に係るアルミニウム管用ろう材を用いれば、得られる接合構造のX線透過像には、フラックス22に由来する黒い像または融解しきっていない合金母材21由来の黒い像等が映っていない。それゆえ、接合箇所には、フラックス22の残留による貫通孔が形成されておらず、また、合金母材21のダマ等も形成されていない。
 そのため、実施例1および2の接合構造は、従来の良品(比較例1の良品)の接合構造と同様に良好なろう接を実現できることがわかる。一方、従来のアルミニウム-ケイ素系のろう材を用いた場合には、比較例1の良品の接合構造のように良好なろう接が可能であるものの、比較例1の不良品のように、フラックス22の残留による黒い像が映っており、しかも、黒い像は接合構造(拡管部11a)の上下に渡って存在していることがわかる。それゆえ、比較例1の不良品の接合構造には貫通孔が形成されおり、十分なろう接ができていないことがわかる。
 また、比較例2の接合構造の結果から明らかなように、アルミニウム-亜鉛系のろう材であっても、亜鉛の含有比が75質量%を超えた場合には、合金母材21の狙い融点が520℃を下回るため、接合箇所に良好なろう接続部23が形成されずに、ダマの残存が確認されている(右上の黒い像)。また、図5の結果には含まれないが、アルミニウム-亜鉛系のろう材であっても亜鉛の含有比が40質量%未満の場合には、狙い融点が比較例1の580℃と同等かそれ以上になってしまうため、比較例1と同様に、貫通孔が形成される不良品が発生するおそれがある。
 なお、本発明は実施の形態の記載に限定されるものではなく、請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、空気調和装置の室外機が備える熱交換器の分野、特に、アルミニウム管を有する熱交換器を製造する分野に広く好適に用いることができる。
 10 端部保持箇所
 11 アルミニウム管
 11a 拡管部
 11b 拡大枠部
 12 アルミニウム管
 13 エンドプレート
 20A 線ろう材
 20B リングろう材
 21 合金母材
 22 フラックス
 23 ろう接続部
 30 バーナートーチ

Claims (9)

  1.  空気調和装置の室外機が備える、アルミニウム製またはアルミニウム合金製のアルミニウム管を有する熱交換器において前記アルミニウム管のろう付けに用いられ、
     アルミニウムおよび亜鉛を含有する合金母材と、当該合金母材よりも融点の低いフラックスとを含有し、
     前記合金母材を100質量%としたときに当該合金母材における前記亜鉛の含有量が40~75質量%の範囲内であり、
     前記フラックスの含有量が10~25質量%の範囲内であり、
     前記合金母材で前記フラックスを包含した線材として構成されている、
     熱交換器アルミニウム管ろう付け用ろう材。
  2.  前記合金母材における前記亜鉛の含有量が65~75質量%の範囲内である、
     請求項1に記載の熱交換器アルミニウム管ろう付け用ろう材。
  3.  前記合金母材は、さらにケイ素を含有する、
     請求項1に記載の熱交換器アルミニウム管ろう付け用ろう材。
  4.  前記フラックスは、前記合金母材よりも融点が低い金属塩である、
     請求項1に記載の熱交換器アルミニウム管ろう付け用ろう材。
  5.  前記フラックスは、フルオロアルミン酸のアルカリ金属塩である、
     請求項4に記載の熱交換器アルミニウム管ろう付け用ろう材。
  6.  請求項1に記載の熱交換器アルミニウム管ろう付け用ろう材を、前記アルミニウム管のうち、一方のアルミニウム管の端部を他方のアルミニウム管の端部に挿入して保持した端部保持箇所に供給し、当該ろう材を融解させることにより、前記アルミニウム管同士を接合する、
     熱交換器アルミニウム管の接合方法。
  7.  前記端部保持箇所を予め加熱してから前記ろう材を差しろうにより供給するか、または、前記端部保持箇所にろう材を置きろうとして設置してから加熱することにより、当該ろう材を融解させるとともに、
     前記端部保持箇所が融解した前記ろう材により接合されて形成されるろう接続部を加熱して、当該ろう接続部から前記フラックスを漏出させる、
     請求項6に記載の熱交換器アルミニウム管の接合方法。
  8.  前記端部保持箇所は、一方の前記アルミニウム管の端部が、他方の前記アルミニウム管の端部を挿入可能に管径を拡大した拡管部となっており、
     当該拡管部の端部開口の周縁部は、その管径がさらに拡大された拡大枠部となっている、
     請求項6に記載の熱交換器アルミニウム管の接合方法。
  9.  前記アルミニウム管同士をろう材により接合してなる接合構造であって、
     請求項1に記載の熱交換器アルミニウム管ろう付け用ろう材により形成されるろう接続部を有する、
     熱交換器アルミニウム管の接合構造。
PCT/JP2016/004108 2015-10-29 2016-09-09 熱交換器アルミニウム管ろう付け用ろう材、並びに、これを用いた熱交換器アルミニウム管の接合方法および熱交換器アルミニウム管の接合構造 WO2017073003A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680002309.1A CN107073658B (zh) 2015-10-29 2016-09-09 热交换器铝管焊接用焊料、以及使用它的热交换器铝管的接合方法和接合构造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-212438 2015-10-29
JP2015212438A JP6587098B2 (ja) 2015-10-29 2015-10-29 熱交換器アルミニウム管ろう付け用ろう材、並びに、これを用いた熱交換器アルミニウム管の接合方法および熱交換器アルミニウム管の接合構造

Publications (1)

Publication Number Publication Date
WO2017073003A1 true WO2017073003A1 (ja) 2017-05-04

Family

ID=58631455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004108 WO2017073003A1 (ja) 2015-10-29 2016-09-09 熱交換器アルミニウム管ろう付け用ろう材、並びに、これを用いた熱交換器アルミニウム管の接合方法および熱交換器アルミニウム管の接合構造

Country Status (3)

Country Link
JP (1) JP6587098B2 (ja)
CN (1) CN107073658B (ja)
WO (1) WO2017073003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114029576A (zh) * 2020-09-08 2022-02-11 青岛海信日立空调系统有限公司 膨胀阀管口的焊接方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338002B1 (ja) * 2017-09-20 2018-06-06 千住金属工業株式会社 配管の接合方法
JP7182070B2 (ja) * 2018-09-27 2022-12-02 株式会社ノーリツ 熱交換器およびその製造方法
JP2020085288A (ja) * 2018-11-20 2020-06-04 株式会社デンソー 熱交換器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071177A (ja) * 1993-06-15 1995-01-06 Showa Alum Corp フラックス含有Al合金ろう材
JP2001138038A (ja) * 1999-11-17 2001-05-22 Yuichiro Asano アルミニウム部材と銅又はステンレス部材とのろう付け方法
JP2003334689A (ja) * 2002-05-22 2003-11-25 Showa Denko Kk ろう材箔、ろう材箔付熱交換チューブ、それを用いた熱交換器及びその製造方法
JP2007181857A (ja) * 2006-01-06 2007-07-19 Nippon Light Metal Co Ltd アルミニウム合金ろう付け用ろう材ワイヤ
JP2008500182A (ja) * 2004-06-15 2008-01-10 サンクァンブレイジングフィルターメタルカンパニーリミテッド フラックスが含まれた低温接合用ブレージング材
US20110123824A1 (en) * 2007-05-25 2011-05-26 Alan Belohlav Brazing material
JP2011245516A (ja) * 2010-05-27 2011-12-08 Furukawa-Sky Aluminum Corp ろう付接合済Al部材の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274014B2 (en) * 2006-05-25 2012-09-25 Bellman-Melcor Development, Llc Filler metal with flux for brazing and soldering and method of making and using same
CN102886617A (zh) * 2010-11-25 2013-01-23 卢卡斯米尔霍特公司 钎焊材料
CN102581508A (zh) * 2012-03-01 2012-07-18 江苏科技大学 一种中温锌铝钎焊焊丝
CN102658439A (zh) * 2012-05-15 2012-09-12 力创(台山)电子科技有限公司 用于焊接铝或铝合金产品的钎焊铝焊环及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071177A (ja) * 1993-06-15 1995-01-06 Showa Alum Corp フラックス含有Al合金ろう材
JP2001138038A (ja) * 1999-11-17 2001-05-22 Yuichiro Asano アルミニウム部材と銅又はステンレス部材とのろう付け方法
JP2003334689A (ja) * 2002-05-22 2003-11-25 Showa Denko Kk ろう材箔、ろう材箔付熱交換チューブ、それを用いた熱交換器及びその製造方法
JP2008500182A (ja) * 2004-06-15 2008-01-10 サンクァンブレイジングフィルターメタルカンパニーリミテッド フラックスが含まれた低温接合用ブレージング材
JP2007181857A (ja) * 2006-01-06 2007-07-19 Nippon Light Metal Co Ltd アルミニウム合金ろう付け用ろう材ワイヤ
US20110123824A1 (en) * 2007-05-25 2011-05-26 Alan Belohlav Brazing material
JP2011245516A (ja) * 2010-05-27 2011-12-08 Furukawa-Sky Aluminum Corp ろう付接合済Al部材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114029576A (zh) * 2020-09-08 2022-02-11 青岛海信日立空调系统有限公司 膨胀阀管口的焊接方法

Also Published As

Publication number Publication date
JP6587098B2 (ja) 2019-10-09
CN107073658A (zh) 2017-08-18
JP2017080783A (ja) 2017-05-18
CN107073658B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2017073003A1 (ja) 熱交換器アルミニウム管ろう付け用ろう材、並びに、これを用いた熱交換器アルミニウム管の接合方法および熱交換器アルミニウム管の接合構造
CN103343847B (zh) 铜铝管及其焊接工艺
CN104395028A (zh) 用于在受控气氛中无助焊剂钎焊的多层铝钎焊板
CA3094905C (en) Flux cored brazing preforms
JP2021518813A (ja) 低温ろう付けおよび高強度材料用の複合ろう付けライナー
JP5511778B2 (ja) 熱交換器の製造方法、ならびに、当該製造方法により製造された熱交換器
WO2017018438A1 (ja) 熱交換器およびその製造方法
EP2780135A1 (en) Method for manufacturing tube plate fin heat exchangers
WO2019058650A1 (ja) Cu管及び/又はFe管接合用はんだ合金、プリフォームはんだ、やに入りはんだおよびはんだ継手
JP2018153834A (ja) アルミニウム部材同士またはアルミニウム部材と銅部材とをトーチハンダ付けする方法
CN110227869B (zh) 一种钎焊方法、换热器结构、板式换热器以及空调
JP2012000643A (ja) アルミニウム管と銅管の接合方法および接合構造ならびにこの接合構造を有する熱交換器
JP2010017721A (ja) 熱交換器のろう付け方法
CN103406627A (zh) 一种铝水箱沙漏管氮气保护的钎焊方法
JP5633206B2 (ja) アルミニウム管と銅管の接合方法および接合構造ならびにこの接合構造を有する熱交換器
CN1997484A (zh) 包括通过焊接搭接头连接的金属管的冷却设备
CN207494818U (zh) 一种钎焊环及钎焊系统
CN106956113A (zh) 一种不锈钢板翅式散热器的加工方法
JP2005028412A (ja) ろう付け方法
JP2010240696A (ja) 管材の接合方法、ならびに、当該接合方法により接合した管材とフィン材とを接合した熱交換器
CN104668686A (zh) 一种低温钎焊刀具的方法
CN105750697A (zh) 钛合金换热器氩弧焊工艺
CN109048118B (zh) 铜钎料、工件、换热器、空调与制冷设备
RU2443521C1 (ru) Способ низкотемпературной пайки тонкостенных цилиндрических деталей из титана и стали
KR20160031833A (ko) 알루미늄 소재 및 구리 소재의 관을 접합하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859244

Country of ref document: EP

Kind code of ref document: A1