WO2017071027A1 - 一种多缸同步节能高效液压升降系统及方法 - Google Patents

一种多缸同步节能高效液压升降系统及方法 Download PDF

Info

Publication number
WO2017071027A1
WO2017071027A1 PCT/CN2015/098171 CN2015098171W WO2017071027A1 WO 2017071027 A1 WO2017071027 A1 WO 2017071027A1 CN 2015098171 W CN2015098171 W CN 2015098171W WO 2017071027 A1 WO2017071027 A1 WO 2017071027A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
valve
oil
circuit
lifting
Prior art date
Application number
PCT/CN2015/098171
Other languages
English (en)
French (fr)
Inventor
曹国华
黄宇宏
朱真才
彭维红
彭玉兴
刘善增
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2017106309A priority Critical patent/RU2657525C1/ru
Priority to CA2955713A priority patent/CA2955713C/en
Publication of WO2017071027A1 publication Critical patent/WO2017071027A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/04Kinds or types of lifts in, or associated with, buildings or other structures actuated pneumatically or hydraulically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/10Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported directly by jacks
    • B66F7/16Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported directly by jacks by one or more hydraulic or pneumatic jacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/22Synchronisation of the movement of two or more servomotors

Definitions

  • the invention relates to a lifting system and a method, in particular to a multi-cylinder synchronous energy-saving and high-efficiency hydraulic lifting system and method suitable for a hydraulic elevator and a construction lifting platform.
  • the driving method of the lifting system is mainly traction type and hydraulic type.
  • the hydraulic drive has the advantages of large output, stepless speed regulation, simple system and convenient control, but the efficiency of hydraulic drive is lower than that of traction drive. “Green energy saving” is the development goal of improving the system in the future.
  • most of the hydraulic elevator systems use electro-hydraulic proportional control and volumetric speed control. Although the energy loss of the elevator is reduced, when the elevator goes down, the oil in the cylinder passes the downward throttle valve under the pressure. Causes the temperature rise of the hydraulic system. The gravitational potential energy of the elevator descends not only is not utilized, but also converted into heat energy to cause oil temperature rise, which affects the stability of the system.
  • the hydraulic elevator supports mainly direct ascending and indirect jacking.
  • the direct jacking type is simpler and more compact than the indirect jacking type, and has high operating efficiency.
  • the direct jacking type mainly has a middle straight top type and a double cylinder straight top type. In the two modes, the hydraulic cylinder is subjected to lateral force under the eccentric load state of the car, and the parts such as the elevator guide shoe are worn out, which is not conducive to stable operation of the system.
  • the object of the present invention is to provide a multi-cylinder synchronous energy-saving and high-efficiency hydraulic lifting system and method which are simple, compact, energy-saving, stable in operation and high in reliability in view of the problems existing in the prior art.
  • the multi-cylinder synchronous energy-saving and high-efficiency hydraulic lifting system of the invention comprises an oil replenishing circuit, a volume speed regulation and an energy recovery circuit, a manual lifting circuit, a synchronous locking circuit, a plurality of hydraulic cylinders supported under the lifting platform, and is installed on An inclination sensor on the lifting platform;
  • the oil replenishing circuit is connected to the input end of the volume speed regulation and energy recovery circuit, and the output end of the volume speed regulation and energy recovery circuit is connected to the input end of the synchronous locking circuit
  • the volume A manual lifting circuit is connected to the pipeline connecting the speed regulating and energy recovery circuit and the synchronous locking circuit, and each of the hydraulic cylinders is connected with a locking circuit, and the locking circuit is respectively connected with a diverting collecting valve and an electro-hydraulic servo valve.
  • a synchronous locking circuit for a plurality of hydraulic cylinders formed by a locking circuit, a split collecting valve and an electro-hydraulic servo valve;
  • the oil replenishing circuit comprises an electric motor and a refueling pump connected to the electric motor.
  • the inlet of the refueling pump is connected to the fuel tank pipeline through a filter, and the outlet of the refueling pump is connected to the volume regulating speed and the energy recovery loop pipeline through the pump port one-way valve.
  • the outlet pipe of the check valve port is provided with a relief valve communicating with the oil tank;
  • the volume speed regulation and energy recovery circuit includes an accumulator, an oil return control check valve, an oil return solenoid valve, a safety valve, a frequency conversion motor, a hydraulic pump, a hydraulic motor, a generator, and a lift Electromagnetic reversing valve;
  • the accumulator and the inlet and outlet oil control check valve are connected with the outlet pipe of the pump port check valve, and the control oil port of the oil control check valve and the oil return of the oil return control Connected to the opening and closing port of the valve, the outlet of the oil control check valve is connected with the inlet of the anti-suction check valve, the oil suction port of the hydraulic pump and the oil outlet of the hydraulic motor, the frequency conversion motor and the hydraulic pressure Pump input shaft machinery Connected, the generator is mechanically connected with the output shaft of the hydraulic motor, the oil outlet of the hydraulic pump is connected to the inlet of the safety valve and the lifting electromagnetic reversing valve, and the oil inlet of the hydraulic motor is connected to the outlet of the lifting electromagnetic reversing valve
  • the manual lifting circuit comprises a manual hydraulic pump connected to the inlet and outlet pipelines of the lifting electromagnetic reversing valve, and a manual descending reversing valve connected to the outlet of the manual hydraulic pump;
  • the synchronous locking circuit comprises a diverting collecting valve connected to an inlet and outlet line of the lifting electromagnetic reversing valve; the diverting port of the diverting collecting valve is connected to the oil inlet of the electro-hydraulic servo valve, and the diverting collecting valve
  • the split port is connected to the oil inlet of the electro-hydraulic servo valve; the inlet of the lock circuit is connected to the split port of the split manifold, and the outlet of the lock circuit is connected to the rodless cavity of the corresponding hydraulic cylinder.
  • the hydraulic cylinders are two, three, four, six, eight or ten.
  • the locking circuit comprises a locking hydraulic control one-way valve, a locking electromagnetic reversing valve connected with a control oil port of the locking hydraulic control one-way valve, and an unlocking manual reversing in parallel with the locking hydraulic control one-way valve. valve.
  • the multi-cylinder synchronous energy-saving and high-efficiency hydraulic lifting method of the above system comprises the following steps:
  • the lifting platform runs upwards: control the oil inlet and outlet solenoid reversing valve to energize, open the oil return control check valve, and enter and return the inlet and outlet of the oil control check valve.
  • the hydraulic oil in the accumulator is in the oil. Pressing the hydraulic pump under pressure to generate driving torque; at the same time, controlling the variable frequency speed regulating motor to perform variable frequency volume regulation, so that the hydraulic pump outputs the set pressure and flow rate, and the hydraulic oil passes through the lifting electromagnetic reversing valve, the diverting collecting valve and the locking After the hydraulic control check valve enters the rodless cavity of the hydraulic cylinder, the lifting platform runs upwards;
  • the system is energy efficient and energy recovery: the hydraulic lifting system adopts the variable frequency volume control loop to achieve the uplink energy saving; the hydraulic lifting system uses the generator and the accumulator to convert the gravity potential energy of the platform down into electrical energy and hydraulic energy storage. The energy supplement for the next lift makes the hydraulic system form a closed system, achieving high efficiency and energy saving of the overall operation of the system;
  • the lifting platform has strong anti-offset capability: the hydraulic lifting system adopts the split-flow collecting valve to be roughly synchronized, and then detects the synchronization error through the inclination sensor on the platform.
  • the feedback inclination error is controlled by the control system to control the electro-hydraulic servo valve.
  • the oil on the oil inlet pipe of the advanced hydraulic cylinder is discharged from the electro-hydraulic servo valve back to the oil tank, thereby ensuring accurate synchronization and realizing horizontal and horizontal lifting of the platform.
  • Multi-cylinder support lifting is used to improve the anti-offset capability of the lifting platform.
  • the system is stable in operation and high in reliability: the hydraulic lifting system adopts volumetric speed regulation and energy recovery circuit, the system efficiency is high, the heat generation is small, the oil temperature rise is small, and the system runs stably.
  • the system adopts the split flow collecting valve to realize the rough synchronization of the oil cylinder, and the electro-hydraulic servo valve realizes the precise synchronization of the oil cylinder. Under the condition that the electro-hydraulic servo valve fails, the lifting platform can still realize the synchronous lifting.
  • the system has a simple structure, high modularity, and is safe and reliable.
  • Figure 1 is a hydraulic schematic diagram of the overall system of the present invention
  • FIG. 2 is a hydraulic schematic diagram of the oil replenishing circuit of the present invention.
  • Figure 3 is a hydraulic schematic diagram of the volumetric speed regulation and energy recovery circuit of the present invention.
  • Figure 4 is a hydraulic schematic diagram of the manual lifting circuit of the present invention.
  • Figure 5 is a hydraulic schematic diagram of a synchronous locking circuit for driving three hydraulic cylinders of the present invention
  • Figure 6 is a hydraulic schematic of the locking circuit of the present invention.
  • Figure 7 is a hydraulic schematic diagram of a synchronous locking circuit for driving two hydraulic cylinders of the present invention.
  • Figure 8 is a hydraulic schematic diagram of a synchronous locking circuit for driving four hydraulic cylinders of the present invention.
  • Figure 9 is a hydraulic schematic diagram of a synchronous locking circuit for driving six hydraulic cylinders of the present invention.
  • a multi-cylinder synchronous energy-saving and high-efficiency hydraulic lifting system mainly comprises an oil replenishing circuit 1, a volume speed regulation and an energy recovery circuit 2, a manual lifting circuit 3, a synchronous locking circuit 4, and a lifting platform.
  • the lower hydraulic cylinder 5 and the reclining sensor 6-1 mounted on the lifting platform 6 are formed.
  • the oil replenishing circuit 1 is connected to the volume speed regulation and energy recovery circuit 2 through a pipeline, and the volume speed regulation and energy recovery circuit 2, the manual lifting circuit 3 and the synchronous locking circuit 4 are connected to each other through a pipeline, and each The hydraulic cylinder 5 is connected with a locking circuit 4-3, and the locking circuit 4-3 is respectively connected with the diverting collecting valve 4-1 and the electro-hydraulic servo valve 4-2, by the locking circuit 4-3, the shunt current collecting The valve 4-1 and the electro-hydraulic servo valve 4-2 constitute a synchronous locking circuit 4 for the three hydraulic cylinders 5.
  • the function of the oil replenishing circuit 1 is to supplement the system's shortage of hydraulic oil in the closed-loop system due to the regulation of the synchronous locking circuit 4 and the leakage of the system, and to reduce the temperature rise of the oil in the system; the volumetric speed regulation and the energy recovery circuit 2 serve to provide the system.
  • Power, speed regulation and energy recovery functions; manual lifting circuit 3 function is the manual lifting platform when the system fails; synchronous locking circuit 4 functions to adjust the three hydraulic cylinders 5 synchronous lifting and platform 6 stationary locking cylinder; inclination sensor The 6-1 function detects the pose of the platform in real time and feeds it back to the control center for closed-loop control.
  • the synchronous locking circuit 4 for driving three hydraulic cylinders includes a split flow collecting valve with a split ratio of 1:2 connected to the inlet and outlet P of the lifting electromagnetic reversing valve 2-10 through a pipeline.
  • the A port of the diverter manifold 4-1 is connected to the A port of the electro-hydraulic servo valve 4-2 and the lock circuit 4-3, and the B port of the diverter valve 4-1 and the electro-hydraulic servo valve 4
  • the B port of -2 is connected to the P port of the diverter manifold II with a split ratio of 1:1, and the split port of the diverter manifold II is connected to the electrohydraulic servo valve II and the lock circuit II respectively, and the locking circuit 4 3 is connected to the rodless cavity of the corresponding hydraulic cylinder 5.
  • the oil is divided into three inlet and outlet locking circuits 4-3 and hydraulic cylinders 5 whose flow rates are approximately equal.
  • the electro-hydraulic servo valve is used to further adjust the flow rate of each cylinder to achieve high-precision synchronization. . Since the servo valve can correct the shunt error by releasing a small flow rate, a small-capacity servo valve can be used, which reduces the cost of the system and improves the rapid response of the synchronous adjustment.
  • the oil-replenishing circuit 1 includes a filter 1-1 connected to the oil tank, and the filter 1-1 is installed to ensure the cleaning of the hydraulic system into the hydraulic system to ensure the reliability of the system operation;
  • the suction port of -3 is connected to the filter 1-1 through a pipeline, and the motor 1-2 is mechanically connected with the input shaft of the charge pump 1-3, the A port of the pump port check valve 1-4 and the charge pump 1-3
  • the oil outlet is connected through the pipeline, and the pump port check valve 1-4 is installed to prevent the high pressure oil returning to the system from impacting the charge pump 1-3; the overflow valve 1-5 and the pump port check valve 1-4 are passed through the B port.
  • the lines are connected and the relief valve 1-5 is adjusted to control the pressure of the hydraulic system.
  • the volume speed regulation and energy recovery circuit 2 includes an accumulator 2-1 connected to the port B of the pump port check valve 1-4 through the pipeline, and an oil return control check valve. 2-2.
  • the accumulator 2-1 is configured to store hydraulic oil returning when the platform is descending, and realize energy recovery;
  • the control port K of the inlet and outlet oil control check valve 2-2 and the inlet and outlet oil electromagnetic reversing valve 2 -P port of -3 is connected, the oil in and out of the accumulator in the hydraulic system of the two controls;
  • the suction port of 2-7 is connected to the oil outlet of the hydraulic motor 2-8.
  • the anti-suction check valve 2-4 is installed to prevent the hydraulic pump 2-7 from sucking;
  • the variable frequency speed regulating motor 2-6 is mechanically connected with the input shaft of the hydraulic pump 2-7, and the generator 2-9 and the hydraulic motor 2
  • the output shaft of 8 is mechanically connected, the oil outlet of the hydraulic pump 2-7 is connected with the safety valve 2-5, the A port of the lifting electromagnetic reversing valve 2-10, the oil inlet of the hydraulic motor 2-8 and the lifting electromagnetic reversal Ports B of valves 2-10 are connected.
  • the safety valve 2-5 controls the maximum pressure of the hydraulic fluid entering the hydraulic cylinder to ensure the safety of the system;
  • the lifting electromagnetic reversing valve 2-10 is used to control the running direction of the lifting platform;
  • the manual lifting circuit 3 includes a manual hydraulic pump 3-1 and a manual descending reversing valve 3-2 connected to the P port of the lifting electromagnetic reversing valve 2-10 through a line.
  • the manual hydraulic pump 3-1 includes a filter, a manual pump and a check valve, and the manual lowering reversing valve 3-2 is a two-position two-way manual reversing valve.
  • the locking circuit 4-3 includes a locking hydraulic control check valve 4-32, and a locking electromagnetic reversing connection with the control port K of the locking hydraulic control check valve 4-32.
  • Valve 4-31 unlocking manual reversing valve 4-33 in parallel with locking pilot operated check valve 4-32.
  • the locking hydraulic control check valve 4-32 is used to lock the hydraulic cylinder 5 when the lifting platform is stationary;
  • the locking electromagnetic reversing valve 4-31 is used to unlock the locking hydraulic control check valve when the platform is descending. 4-32;
  • Embodiment 2 is basically the same as Embodiment 1, and is the same, except that the synchronous locking circuit of the two hydraulic cylinders 5 is driven.
  • the synchronous locking circuit 4 for driving three hydraulic cylinders includes a split flow collecting valve 4-1 having a split ratio of 1:1 connected to the inlet and outlet P of the lift electromagnetic reversing valve 2-10 through the pipeline.
  • the split ports of the split manifold 4-1 are respectively connected to the electro-hydraulic servo valve 4-2 and the lock circuit 4-3, and the lock circuit 4-3 is connected to the rodless chamber of the corresponding hydraulic cylinder 5.
  • the oil is equally divided into two inlet and outlet locking circuits 4-3 and a hydraulic cylinder 5 having substantially the same flow rate, and the electro-hydraulic servo valve is used for further Adjust the flow rate of each cylinder to achieve high-precision synchronization.
  • Embodiment 3 is basically the same as Embodiment 1, and is the same, except that it is a synchronous locking circuit that drives four hydraulic cylinders.
  • the synchronous locking circuit 4 for driving four hydraulic cylinders includes a diverting manifold 4-1 having a split ratio of 1:1 connected to the inlet and outlet P of the lifting electromagnetic reversing valve 2-10 through the pipeline.
  • the split flow outlet of the split flow collecting valve 4-1 is respectively connected with the electro-hydraulic servo valve 4-2 and two split flow collecting valves II with a split ratio of 1:1, and the split ports of the split collecting valve II and the electro-hydraulic servo respectively
  • the valve II is connected to the locking circuit 4-3.
  • the locking circuit 4-3 is connected to the rodless cavity of the corresponding hydraulic cylinder 5. Among them, after two diversions, the oil is divided into four inlet and outlet locking circuits 4-3 and hydraulic cylinders 5 whose flow rates are approximately equal.
  • the electro-hydraulic servo valve is used to further adjust the inflow and outflow of each cylinder to achieve high-precision synchronization. .
  • Embodiment 4 is basically the same as Embodiment 1, and is the same, except that it is a synchronous locking circuit that drives six hydraulic cylinders.
  • the synchronous locking circuit 4 for driving six hydraulic cylinders includes a diverting flow collecting valve 4-1 having a split ratio of 1:1 connected to the inlet and outlet P of the lifting electromagnetic reversing valve 2-10 through the pipeline.
  • the split flow outlet of the split flow collecting valve 4-1 is respectively connected with the electro-hydraulic servo valve 4-2 and the split flow collecting valve II with a split ratio of 1:2, and the A port of the diverting flow collecting valve II and the electro-hydraulic servo valve
  • the A port of II is connected to the locking circuit 4-3
  • the B port of the diverting flow collecting valve II is connected with the B port of the electro-hydraulic servo valve II and the P port of the diverting collecting valve III with a split ratio of 1:1, and the diversion set
  • the split ports of the flow valve III are connected to the electro-hydraulic servo valve III and the lock circuit II, respectively.
  • the locking circuit 4-3 is connected to the rodless cavity of the corresponding hydraulic cylinder 5.
  • the oil is divided into six inlet and outlet locking circuits 4-3 and a hydraulic cylinder 5 whose flow rates are substantially equal.
  • the electro-hydraulic servo valve is used to further adjust the flow rate of each cylinder to achieve high-precision synchronization.
  • the lifting platform runs upwards: After receiving the upstream command, the control system enters the oil electromagnetic reversing valve 2-3 to electrify, unlocks the oil return control check valve 2-2, and makes the oil return control check valve 2
  • the inlet B of the -2 is electrically connected to the outlet A, and the hydraulic oil in the accumulator 2-1 enters the hydraulic pump 2-7 under the action of oil pressure to generate a driving torque; meanwhile, the control system controls the variable frequency speed regulating motor 2-6, adopting The variable frequency volume regulation enables the hydraulic pump 2-7 to output the set pressure and flow rate to achieve high efficiency and energy saving; the hydraulic oil passes through the lifting electromagnetic reversing valve 2-10, the diverting collecting valve 4-1 and the locking hydraulic control check valve. After 4-32, enter the rodless cavity of the hydraulic cylinder 5, so that the lifting platform 6 runs upwards;
  • the control system After receiving the down command, the control system will lock the electromagnetic reversing valve 4-31 and unlock the locking hydraulic control check valve 4-32 to make the locking hydraulic control check valve 4-32
  • the outlet B is electrically connected to the inlet A; the lifting electromagnetic reversing valve 2-10 is energized, and the self-weight of the lifting platform 6 causes the hydraulic fluid of the hydraulic cylinder 5 to flow back through the lock, and the locking hydraulic control check valve 4-32,
  • the hydraulic motor 2-8 After the diverting collecting valve 4-1 and the lifting electromagnetic reversing valve 2-10, the hydraulic motor 2-8 is driven to rotate, so that the lifting platform 6 runs downward; the hydraulic motor 2-8 drives the generator 2-9 to generate electricity to realize energy.
  • One-time recovery the hydraulic oil outputted from the oil outlet of the hydraulic motor 2-8 is stored in the accumulator 2-1 through the inlet and outlet oil control check valve 2-2 to realize secondary recovery of energy;
  • the manual reset unlocks the manual reversing valve 4-33 and the manual descending reversing valve 3-2 to the right position to lock the lifting platform 6.

Abstract

一种多缸同步液压升降系统及方法,适用于液压电梯、施工升降平台等提升系统。系统包括补油回路(1)、容积调速及能量回收回路(2)、手动升降回路(3)、同步锁紧回路(4)、液压缸(5)和倾角传感器(6-1)。补油回路(1)用于补充由于同步锁紧回路(4)调节和系统泄漏引起的闭环系统内液压油的不足并降低油液的温升;容积调速及能量回收回路(2)为系统提供动力、速度调节和能量回收;手动升降回路(3)的功能为系统出现故障时手动升降平台;同步锁紧回路(4)的功能为调节多个液压缸同步升降及平台静止时锁紧油缸;倾角传感器(6-1)实时检测平台的位姿并反馈至控制中心,实现闭环控制。系统高效节能,实现能量回收及多缸精确同步,升降平台抗偏载能力强,运行稳定,可靠性高。

Description

一种多缸同步节能高效液压升降系统及方法 技术领域
本发明涉及一种升降系统及方法,尤其是一种适用于液压电梯、施工升降平台的多缸同步节能高效液压升降系统及方法。
背景技术
升降系统的驱动方式主要有曳引式和液压式。液压驱动具有出力大、无级调速、系统简洁、控制方便等优点,但液压驱动的效率相比于曳引驱动偏低。“绿色节能”是提升系统未来的发展目标。目前,液压电梯系统中大多采用电液比例控制和容积调速控制,虽然实现了电梯上行的能量损耗的减少,但电梯下行时,油缸中的油液在压力作用下经过下行节流阀,会引起液压系统的温升。电梯下行的重力势能不仅没有利用,还转化为热能引起油液温升,影响系统稳定。
液压电梯的支承方式主要有直接顶升式和间接顶升式。直接顶升式相比于间接顶升式结构简单紧凑,运行效率高。目前直接顶升式主要有中间直顶式和双缸直顶式。这两种方式对于轿厢偏载状态下,液压缸受到侧向力较大,对电梯导靴等零件磨损大,不利于系统稳定运行。
发明内容
技术问题:本发明的目的是针对现有技术中存在的问题,提供一种构简单紧凑、节能、运行稳定,可靠性高的多缸同步节能高效液压升降系统及方法。
技术方案:本发明的多缸同步节能高效液压升降系统,包括补油回路、容积调速及能量回收回路、手动升降回路、同步锁紧回路、支撑于升降平台下方的多个液压缸和安装于升降平台上的倾角传感器;所述的补油回路与容积调速及能量回收回路的输入端相连,所述容积调速及能量回收回路的输出端与同步锁紧回路输入端管路相连,容积调速及能量回收回路与同步锁紧回路相连的管路上连有手动升降回路,所述每个液压缸均连有一个锁紧回路,锁紧回路分别连有分流集流阀和电液伺服阀,由锁紧回路、分流集流阀和电液伺服阀构成对多个液压缸的同步锁紧回路;
所述的补油回路包括电动机、与电动机相连的补油泵,补油泵的入口经过滤器与油箱管路相连,补油泵的出口经泵口单向阀与容积调速及能量回收回路管路相连,单向阀泵口的出口管路上设有与油箱相通的溢流阀;
所述的容积调速及能量回收回路包括蓄能器、进回油液控单向阀、进回油电磁换向阀、安全阀、变频调速电机、液压泵、液压马达、发电机和升降电磁换向阀;所述的蓄能器和进回油液控单向阀与泵口单向阀的出口管路相连,进回油液控单向阀的控制油口与进回油电磁换向阀的通断口相连,进回油液控单向阀的出口与防吸空单向阀的入口、液压泵的吸油口和液压马达的出油口相连,所述的变频调速电机与液压泵的输入轴机械 连接,所述的发电机与液压马达的输出轴机械连接,液压泵的出油口与安全阀、升降电磁换向阀的入口相连,液压马达的进油口与升降电磁换向阀的出口相连;
所述的手动升降回路包括与升降电磁换向阀的进出口管路相连的手动液压泵、与手动液压泵出口相连的手动下降换向阀;
所述的同步锁紧回路包括与升降电磁换向阀的进出口管路相连的分流集流阀;所述分流集流阀的分流口与电液伺服阀的进油口相连,分流集流阀的分流口与电液伺服阀的进油口相连;所述锁紧回路的入口与分流集流阀的分流口相连,锁紧回路的出口与对应的液压缸的无杆腔相连。
所述的液压缸为二个、三个、四个、六个、八个或十个。
所述的锁紧回路包括锁紧液控单向阀、与锁紧液控单向阀的控制油口相连的锁紧电磁换向阀、与锁紧液控单向阀并联的解锁手动换向阀。
上述系统的多缸同步节能高效液压升降方法,包括如下步骤:
①升降平台向上运行:控制进回油电磁换向阀通电,打开进回油液控单向阀,进回油液控单向阀的入口与出口导通,蓄能器内的液压油在油压作用下进入液压泵产生驱动力矩;同时,控制变频调速电机进行变频容积调速,使液压泵输出设定的压力和流量,液压油经过升降电磁换向阀、分流集流阀和锁紧液控单向阀后进入液压缸的无杆腔,使升降平台向上运行;
②升降平台向下运行:控制锁紧电磁换向阀通过电,打开锁紧液控单向阀,使锁紧液控单向阀的出口与入口导通;升降电磁换向阀得电,升降平台的自重使液压缸的无杆腔液压油回流,经过锁紧液控单向阀、分流集流阀和升降电磁换向阀后驱动液压马达转动,使升降平台向下运行;液压马达带动发电机转动发电,实现能量的一次回收;从液压马达的出油口输出的液压油经过进回油液控单向阀储蓄在蓄能器中,实现能量的二次回收;
③多缸上下行同步:液压油经过分流集流阀分流后,进出各个液压缸的流量大致相等;根据升降平台上的倾角传感器反馈的实时角度信号,控制电液伺服阀将输入液压缸流量较大的进油路上的油液经电液伺服阀排放回油箱,实现多缸精确同步,从而保证升降平台实时水平;
④手动调节升降平台:当液压升降系统发生断电或故障时,手动调节升降平台,将解锁手动换向阀搬至左位解锁;
若需要提升升降平台,手动驱动手动液压泵将液压油送入系统,液压油经过分流集流阀和解锁手动换向阀进入液压缸无杆腔,使升降平台上升;
若需要下降升降平台,手动扳动手动下降换向阀至左位,液压缸无杆腔中的液压油经过解锁手动换向阀、分流集流阀和手动下降换向阀流回油箱,使升降平台下降;
调节升降平台至预期位置后,手动复位解锁手动换向阀和手动下降换向阀至右位,使升降平台锁紧。
有益效果:由于采用了上述技术方案,本发明与现有技术相比具有以下优点:
(1)系统高效节能,实现能量回收:液压升降系统采用变频容积调速回路,实现上行节能;液压升降系统采用发电机和蓄能器,将平台下行的重力势能转换为电能和液压能储存,用于下一次提升的能量补充,使液压系统形成闭式系统,实现了系统整体运行的高效节能;
(2)多缸精确同步,升降平台抗偏载能力强:液压升降系统采用分流集流阀粗略同步,再通过平台上的倾角传感器检测同步误差,反馈的倾角误差经过控制系统控制电液伺服阀,把超前的液压缸的进油路上的油液从电液伺服阀排放回油箱,从而保证精确同步,实现平台实时水平升降。采用多缸支承提升,提高升降平台的抗偏载能力。
(3)系统运行稳定,可靠性高:液压升降系统采用容积调速及能量回收回路,系统效率高,发热量少,油液温升小,系统运行稳定。系统采用分流集流阀实现油缸粗略同步,电液伺服阀实现油缸精确同步,在电液伺服阀失效的情况下,升降平台依然能实现同步升降。系统结构简单,模块化程度高,安全可靠。
附图说明
图1是本发明整体系统的液压原理图;
图2是本发明的补油回路的液压原理图;
图3是本发明的容积调速及能量回收回路的液压原理图;
图4是本发明的手动升降回路的液压原理图;
图5是本发明的驱动三个液压缸的同步锁紧回路的液压原理图;
图6是本发明的锁紧回路的液压原理图。
图7是本发明的驱动两个液压缸的同步锁紧回路的液压原理图;
图8是本发明的驱动四个液压缸的同步锁紧回路的液压原理图;
图9是本发明的驱动六个液压缸的同步锁紧回路的液压原理图;
图中:1-补油回路;2-容积调速及能量回收回路;3-手动升降回路;4-同步锁紧回路;5-液压缸;6-升降平台;6-1-倾角传感器;1-1-过滤器;1-2-电动机;1-3-补油泵;1-4-泵口单向阀;1-5-溢流阀;2-1-蓄能器;2-2-进回油液控单向阀;2-3-进回油电磁换向阀;2-4-防吸空单向阀;2-5-安全阀;2-6-变频调速电机;2-7-液压泵;2-8-液压马达;2-9-发电机;2-10-升降电磁换向阀;3-1-手动液压泵;3-2-手动下降换向阀;4-1-分流集流阀;4-2-电液伺服阀;4-3-锁紧回路;4-31-锁紧电磁换向阀;4-32-锁紧液控单向阀;4-33-解锁手动换向阀。
具体实施方式:
下面结合附图中的实施例对本发明作进一步的描述:
实施例1、如图1所示,多缸同步节能高效液压升降系统,主要由补油回路1、容积调速及能量回收回路2、手动升降回路3、同步锁紧回路4、支撑于升降平台6下方的液压缸5和安装于升降平台6上的倾角传感器6-1构成。所述的补油回路1通过管路与容积调速及能量回收回路2相接,容积调速及能量回收回路2、手动升降回路3和同步锁紧回路4通过管路互为相接,每个液压缸5连有一个锁紧回路4-3,锁紧回路4-3分别连有分流集流阀4-1和电液伺服阀4-2,由锁紧回路4-3、分流集流阀4-1和电液伺服阀4-2构成对三个液压缸5的同步锁紧回路4。补油回路1功能为系统补充由于同步锁紧回路4调节和系统泄漏引起的闭环系统内液压油的不足,并降低系统中油液的温升;容积调速及能量回收回路2起到为系统提供动力、速度调节和能量回收的功能;手动升降回路3功能为系统出现故障时手动升降平台;同步锁紧回路4功能为调节三个液压缸5同步升降及平台6静止时锁紧油缸;倾角传感器6-1功能为实时检测平台的位姿并反馈至控制中心,实现闭环控制。
如图5所示,所述的驱动三个液压缸的同步锁紧回路4包括与升降电磁换向阀2-10的进出口P通过管路相连的分流比为1:2的分流集流阀4-1,分流集流阀4-1的A口与电液伺服阀4-2的A口和锁紧回路4-3相连,分流集流阀4-1的B口与电液伺服阀4-2的B口和分流比为1:1的分流集流阀Ⅱ的P口相连,分流集流阀Ⅱ的分流口分别于电液伺服阀Ⅱ和锁紧回路Ⅱ相连,锁紧回路4-3与对应的液压缸5的无杆腔相连。其中,经过两次分流后,油液被均分为流量大致相等的三份进出锁紧回路4-3和液压缸5,电液伺服阀用于进一步调节各油缸的进出流量,实现高精度同步。由于伺服阀只要放掉很小的流量即可纠正分流误差,故可采用小容量的伺服阀,降低系统的成本,提高同步调节的快速响应性。
如图2所示,所述的补油回路1包括与油箱连接的过滤器1-1,安装过滤器1-1保证了进入液压系统油液的清洁,保证系统运行的可靠性;补油泵1-3的吸油口与过滤器1-1通过管路相连,电动机1-2与补油泵1-3的输入轴机械连接,泵口单向阀1-4的A口与补油泵1-3的出油口通过管路相连,安装泵口单向阀1-4防止进入系统的高压油回流冲击补油泵1-3;溢流阀1-5与泵口单向阀1-4的B口通过管路相连,调节溢流阀1-5控制进入液压系统油液的压力。
如图3所示,所述的容积调速及能量回收回路2包括与泵口单向阀1-4的B口通过管路相连的蓄能器2-1和进回油液控单向阀2-2。所述蓄能器2-1用于存储平台下行时回流的液压油,实现能量回收;所述进回油液控单向阀2-2的控制油口K与进回油电磁换向阀2-3的P口相连,两者控制中液压系统中油液进出蓄能器;进回油液控单向阀2-2的A口与防吸空单向阀2-4的B口、液压泵2-7的吸油口和液压马达2-8的出油口相连, 安装防吸空单向阀2-4防止液压泵2-7吸空;变频调速电机2-6与液压泵2-7的输入轴机械连接,所述发电机2-9与液压马达2-8的输出轴机械连接,液压泵2-7的出油口与安全阀2-5、升降电磁换向阀2-10的A口相连,液压马达2-8的进油口与升降电磁换向阀2-10的B口相连。其中,安全阀2-5控制进入液压缸油液的最高压力,保障系统的安全;升降电磁换向阀2-10用于控制升降平台的运行方向;
如图4所示,所述的手动升降回路3包括与升降电磁换向阀2-10的P口通过管路相连的手动液压泵3-1和手动下降换向阀3-2。手动液压泵3-1中包括过滤器、手动泵和单向阀,手动下降换向阀3-2为二位二通手动换向阀。
如图6所示,所述的锁紧回路4-3包括锁紧液控单向阀4-32,与锁紧液控单向阀4-32的控制油口K相连的锁紧电磁换向阀4-31,与锁紧液控单向阀4-32并联的解锁手动换向阀4-33。其中,锁紧液控单向阀4-32用于升降平台静止时,使液压缸5锁紧保压;锁紧电磁换向阀4-31用于平台下行时解锁锁紧液控单向阀4-32;解锁手动换向阀4-33用于系统发生故障时手动下降平台前解锁锁紧液控单向阀4-32。
实施例2、与实施例1基本相同,相同处略,不同之处为驱动两个液压缸5的同步锁紧回路。如图7所示,驱动三个液压缸的同步锁紧回路4包括与升降电磁换向阀2-10的进出口P通过管路相连的分流比为1:1的分流集流阀4-1,分流集流阀4-1的分流口分别与电液伺服阀4-2和锁紧回路4-3相连,锁紧回路4-3与对应的液压缸5的无杆腔相连。其中,经过分流比为1:1的分流集流阀4-1后,油液被均分为流量大致相等的两份进出锁紧回路4-3和液压缸5,电液伺服阀用于进一步调节各油缸的进出流量,实现高精度同步。
实施例3、与实施例1基本相同,相同处略,不同之处为驱动四个液压缸的同步锁紧回路。如图8所示,驱动四个液压缸的同步锁紧回路4包括与升降电磁换向阀2-10的进出口P通过管路相连的分流比为1:1的分流集流阀4-1,分流集流阀4-1的分流出口分别与电液伺服阀4-2和两个分流比为1:1的分流集流阀Ⅱ相连,分流集流阀Ⅱ的分流口分别与电液伺服阀Ⅱ和锁紧回路4-3相连。锁紧回路4-3与对应的液压缸5的无杆腔相连。其中,经过两次分流后,油液被均分为流量大致相等的四份进出锁紧回路4-3和液压缸5,电液伺服阀用于进一步调节各油缸的进出流量,实现高精度同步。
实施例4、与实施例1基本相同,相同处略,不同之处为驱动六个液压缸的同步锁紧回路。如图9所示,驱动六个液压缸的同步锁紧回路4包括与升降电磁换向阀2-10的进出口P通过管路相连的分流比为1:1的分流集流阀4-1,分流集流阀4-1的分流出口分别与电液伺服阀4-2和两个分流比为1:2的分流集流阀Ⅱ相连,分流集流阀Ⅱ的A口与电液伺服阀Ⅱ的A口和锁紧回路4-3相连,分流集流阀Ⅱ的B口与电液伺服阀Ⅱ的B口和分流比为1:1的分流集流阀Ⅲ的P口相连,分流集流阀Ⅲ的分流口分别于电液伺服阀Ⅲ和锁紧回路Ⅱ相连。锁紧回路4-3与对应的液压缸5的无杆腔相连。其中,经过分流 后,油液被均分为流量大致相等的六份进出锁紧回路4-3和液压缸5,电液伺服阀用于进一步调节各油缸的进出流量,实现高精度同步。
本发明的多缸同步节能高效液压升降系统的升降方法,具体步骤如下:
①升降平台向上运行:控制系统接收到上行指令后,进回油电磁换向阀2-3得电,解锁进回油液控单向阀2-2,使进回油液控单向阀2-2的入口B与出口A导通,蓄能器2-1内的液压油在油压作用下进入液压泵2-7产生驱动力矩;同时,控制系统控制变频调速电机2-6,采用变频容积调速,使液压泵2-7输出设定的压力和流量,实现高效节能;液压油经过升降电磁换向阀2-10、分流集流阀4-1和锁紧液控单向阀4-32后进入液压缸5的无杆腔,使升降平台6向上运行;
②升降平台向下运行:控制系统接收到下行指令后,锁紧电磁换向阀4-31得电,解锁锁紧液控单向阀4-32,使锁紧液控单向阀4-32的出口B与入口A口导通;升降电磁换向阀2-10得电,升降平台6的自重使液压缸5的无杆腔液压油回流,经过锁紧液控单向阀4-32、分流集流阀4-1、和升降电磁换向阀2-10后驱动液压马达2-8转动,使升降平台6向下运行;液压马达2-8带动发电机2-9转动发电,实现能量的一次回收;从液压马达2-8的出油口输出的液压油经过进回油液控单向阀2-2储蓄在蓄能器2-1中,实现能量的二次回收;
③多缸上下行同步:液压油经过分流集流阀4-1分流后,进出各个液压缸5的流量大致相等;根据升降平台6上的倾角传感器6-1反馈的实时角度信号,控制系统控制电液伺服阀4-2,将输入流量大的液压缸5的进油路上的油液从电液伺服阀4-2排放回油箱,实现多缸精确同步,从而保证升降平台6实时水平;
④手动调节升降平台:当液压升降系统发生断电或故障时,手动调节升降平台6。首先手动扳动解锁手动换向阀4-33至左位解锁;
若需要提升升降平台6,手动驱动手动液压泵3-1将液压油送入系统,液压油经过分流集流阀4-1和解锁手动换向阀4-33进入液压缸5无杆腔,使升降平台6上升;
若需要下降升降平台6,手动扳动手动下降换向阀3-2至左位,液压缸5无杆腔中的液压油经过解锁手动换向阀4-33、分流集流阀4-1和手动下降换向阀3-2流回油箱,使升降平台6下降;
调节升降平台6至预期位置后,手动复位解锁手动换向阀4-33和手动下降换向阀3-2至右位,使升降平台6锁紧。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明的内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的保护范围内。

Claims (4)

  1. 一种多缸同步节能高效液压升降系统,其特征在于:它包括补油回路(1)、容积调速及能量回收回路(2)、手动升降回路(3)、同步锁紧回路(4)、支撑于升降平台(6)下方的多个液压缸(5)和安装于升降平台(6)上的倾角传感器(6-1);所述的补油回路(1)与容积调速及能量回收回路(2)的输入端相连,所述容积调速及能量回收回路(2)的输出端与同步锁紧回路(4)输入端管路相连,容积调速及能量回收回路(2)与同步锁紧回路(4)相连的管路上连有手动升降回路(3),所述每个液压缸(5)均连有一个锁紧回路(4-3),锁紧回路(4-3)分别连有分流集流阀(4-1)和电液伺服阀(4-2),由锁紧回路(4-3)、分流集流阀(4-1)和电液伺服阀(4-2)构成对多个液压缸(5)的同步锁紧回路(4);
    所述的补油回路(1)包括电动机(1-2)、与电动机(1-2)相连的补油泵(1-3),补油泵(1-3)的入口经过滤器(1-1)与油箱管路相连,补油泵(1-3)的出口(A)经泵口单向阀(1-4)与容积调速及能量回收回路(2)管路相连,单向阀泵口(1-4)的出口(B)管路上设有与油箱相通的溢流阀(1-5);
    所述的容积调速及能量回收回路(2)包括蓄能器(2-1)、进回油液控单向阀(2-2)、进回油电磁换向阀(2-3)、安全阀(2-5)、变频调速电机(2-6)、液压泵(2-7)、液压马达(2-8)、发电机(2-9)和升降电磁换向阀(2-10);所述的蓄能器(2-1)和进回油液控单向阀(2-2)与泵口单向阀(1-4)的出口(B)管路相连,进回油液控单向阀(2-2)的控制油口(K)与进回油电磁换向阀(2-3)的通断口(P)相连,进回油液控单向阀(2-2)的出口(A)与防吸空单向阀(2-4)的入口(B)、液压泵(2-7)的吸油口和液压马达(2-8)的出油口相连,所述的变频调速电机(2-6)与液压泵(2-7)的输入轴机械连接,所述的发电机(2-9)与液压马达(2-8)的输出轴机械连接,液压泵(2-7)的出油口与安全阀(2-5)、升降电磁换向阀(2-10)的入口(A)相连,液压马达(2-8)的进油口与升降电磁换向阀(2-10)的出口(B)相连;
    所述的手动升降回路(3)包括与升降电磁换向阀(2-10)的进出口(P)管路相连的手动液压泵(3-1)、与手动液压泵(3-1)出口相连的手动下降换向阀(3-2);
    所述的同步锁紧回路(4)包括与升降电磁换向阀(2-10)的进出口(P)管路相连的分流集流阀(4-1);所述分流集流阀(4-1)的分流口(A)与电液伺服阀(4-2)的进油口(A)相连,分流集流阀(4-1)的分流口(B)与电液伺服阀(4-3)的进油口(B)相连;所述锁紧回路(4-3)的入口与分流集流阀(4-1)的分流口相连,锁紧回路(4-3)的出口与对应的液压缸(5)的无杆腔相连。
  2. 根据权利要求1所述的多缸同步节能高效液压升降系统,其特征在于:所述的液压缸(5)为二个、三个、四个、六个、八个或十个。
  3. 根据权利要求1所述的多缸同步节能高效液压升降系统,其特征在于:所述的锁紧回路(4-3)包括锁紧液控单向阀(4-32)、与锁紧液控单向阀(4-32)的控制油口(K)相连的锁紧电磁换向阀(4-31)、与锁紧液控单向阀(4-32)并联的解锁手动换向阀(4-33)。
  4. 根据权利要求1~3任一项所述系统的多缸同步节能高效液压升降方法,其特征在于包括如下步骤:
    ①升降平台向上运行:控制进回油电磁换向阀(2-3)通电,打开进回油液控单向阀(2-2),进回油液控单向阀(2-2)的入口(B)与出口(A)导通,蓄能器(2-1)内的液压油在油压作用下进入液压泵(2-7)产生驱动力矩;同时,控制变频调速电机(2-6)进行变频容积调速,使液压泵(2-7)输出设定的压力和流量,液压油经过升降电磁换向阀(2-10)、分流集流阀(4-1)和锁紧液控单向阀(4-32)后进入液压缸(5)的无杆腔,使升降平台(6)向上运行;
    ②升降平台向下运行:控制锁紧电磁换向阀(4-31)通过电,打开锁紧液控单向阀(4-32),使锁紧液控单向阀(4-32)的出口(B)与入口(A)导通;升降电磁换向阀(2-10)得电,升降平台(6)的自重使液压缸(5)的无杆腔液压油回流,经过锁紧液控单向阀(4-32)、分流集流阀(4-1)和升降电磁换向阀(2-10)后驱动液压马达(2-8)转动,使升降平台(6)向下运行;液压马达(2-8)带动发电机(2-9)转动发电,实现能量的一次回收;从液压马达(2-8)的出油口输出的液压油经过进回油液控单向阀(2-2)储蓄在蓄能器(2-1)中,实现能量的二次回收;
    ③多缸上下行同步:液压油经过分流集流阀(4-1)分流后,进出各个液压缸(5)的流量大致相等;根据升降平台(6)上的倾角传感器(6-1)反馈的实时角度信号,控制电液伺服阀(4-2)将输入液压缸(5)流量较大的进油路上的油液经电液伺服阀(4-2)排放回油箱,实现多缸精确同步,从而保证升降平台(6)实时水平;
    ④手动调节升降平台:当液压升降系统发生断电或故障时,手动调节升降平台(6),将解锁手动换向阀(4-33)搬至左位解锁;
    若需要提升升降平台(6),手动驱动手动液压泵(3-1)将液压油送入系统,液压油经过分流集流阀(4-1)和解锁手动换向阀(4-33)进入液压缸(5)无杆腔,使升降平台(6)上升;
    若需要下降升降平台(6),手动扳动手动下降换向阀(3-2)至左位,液压缸(5)无杆腔中的液压油经过解锁手动换向阀(4-33)、分流集流阀(4-1)和手动下降换向阀(3-2)流回油箱,使升降平台(6)下降;
    调节升降平台(6)至预期位置后,手动复位解锁手动换向阀(4-33)和手动下降换向阀(3-2)至右位,使升降平台(6)锁紧。
PCT/CN2015/098171 2015-10-27 2015-12-22 一种多缸同步节能高效液压升降系统及方法 WO2017071027A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2017106309A RU2657525C1 (ru) 2015-10-27 2015-12-22 Многоцилиндровая синхронная энергоэффективная высокопроизводительная гидравлическая подъемная система и способ ее работы
CA2955713A CA2955713C (en) 2015-10-27 2015-12-22 A multi-cylinder synchronous energy-saving and efficient hydraulic lift system and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510706232.3 2015-10-27
CN201510706232.3A CN105179343B (zh) 2015-10-27 2015-10-27 一种多缸同步节能高效液压升降系统及方法

Publications (1)

Publication Number Publication Date
WO2017071027A1 true WO2017071027A1 (zh) 2017-05-04

Family

ID=54901673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098171 WO2017071027A1 (zh) 2015-10-27 2015-12-22 一种多缸同步节能高效液压升降系统及方法

Country Status (4)

Country Link
CN (1) CN105179343B (zh)
CA (1) CA2955713C (zh)
RU (1) RU2657525C1 (zh)
WO (1) WO2017071027A1 (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161909A (zh) * 2017-07-04 2017-09-15 上海振华重工(集团)股份有限公司 带互锁保护的液压抬升系统
CN107745020A (zh) * 2017-11-16 2018-03-02 安徽德系重工科技有限公司 一种四辊波纹卷板机的液压系统
CN107806454A (zh) * 2017-12-06 2018-03-16 内蒙动力机械研究所 一种复合材料浸渍罐举升缸液压同步调节装置
CN107893784A (zh) * 2017-12-13 2018-04-10 安徽天水液压机床科技有限公司 一种多缸联动液压机液压系统
CN108184353A (zh) * 2018-01-12 2018-06-22 农业部南京农业机械化研究所 一种静液压驱动的水田工作装置通用底盘
CN108223467A (zh) * 2018-01-15 2018-06-29 河北工程大学 用于全液压履带式反循环工程钻机的液压系统
CN109249848A (zh) * 2018-09-05 2019-01-22 上海中荷环保有限公司 运输车液压系统和运输车
CN109437031A (zh) * 2018-12-07 2019-03-08 沈阳建筑大学 一种塔机回转制动能量回收及再利用液压系统
CN109458384A (zh) * 2018-12-11 2019-03-12 山东交通学院 盾构掘进机串联连接双活塞杆对称液压油缸推进系统
CN109488257A (zh) * 2018-12-26 2019-03-19 沈阳人和机电工程设备有限公司 一种压力互补的液压抽油机
CN109513146A (zh) * 2018-12-29 2019-03-26 徐工集团工程机械有限公司 物料输送装置和抛沙灭火车
CN109611385A (zh) * 2019-01-03 2019-04-12 德阳元亨机械制造有限公司 一种稳压式夹紧飞机蒙皮系统及方法
CN109707673A (zh) * 2019-02-26 2019-05-03 江苏力源液压机械有限公司 一种手动/自动一体的双路旋转轴制动液压系统
CN109916753A (zh) * 2019-04-17 2019-06-21 中国船舶重工集团公司第七0四研究所 调距桨长油管道电液伺服加载及疲劳试验装置及方法
CN109989955A (zh) * 2019-04-30 2019-07-09 广东联城住工装备信息科技有限公司 侧立机的液压系统、侧立机及其控制方法
CN110758094A (zh) * 2019-10-30 2020-02-07 南通威而多专用汽车制造有限公司 用于工程机械行走的液压系统及其工作方法
CN111822093A (zh) * 2020-08-12 2020-10-27 中山德马克环保科技有限公司 一种咬合间距自适应的咬合辊
CN112196848A (zh) * 2020-10-23 2021-01-08 中铁工程装备集团有限公司 盾构机主驱动防扭转装置的液压控制系统
CN113357225A (zh) * 2021-04-29 2021-09-07 河南科技大学 一种液压油缸加载试验台液压控制系统
CN113819096A (zh) * 2021-09-08 2021-12-21 西安重装澄合煤矿机械有限公司 一种自移机尾用智能液压系统及控制方法
CN114223498A (zh) * 2021-11-08 2022-03-25 徐州徐工挖掘机械有限公司 一种夹紧传送液压系统
CN114233700A (zh) * 2021-12-22 2022-03-25 合肥合锻智能制造股份有限公司 一种大流量多功能操作方式切换的液压控制系统
CN114955918A (zh) * 2022-05-24 2022-08-30 江南造船(集团)有限责任公司 一种多级液压顶升系统
CN115434981A (zh) * 2022-08-29 2022-12-06 中煤科工能源科技发展有限公司 模拟移架装置
CN115467750A (zh) * 2022-10-14 2022-12-13 中船动力研究院有限公司 一种用于柴油发动机的调速系统及调速方法
CN117645254A (zh) * 2024-01-30 2024-03-05 杭叉集团股份有限公司 一种叉车正向能量回收液压控制系统及其控制方法
CN110758094B (zh) * 2019-10-30 2024-04-26 南通威而多专用汽车制造有限公司 用于工程机械行走的液压系统及其工作方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384125B (zh) * 2015-12-25 2017-10-10 安徽唐兴机械装备有限公司 一种爬升机构液压系统及其布置方法
CN105545831B (zh) * 2016-03-19 2017-05-31 青岛大学 一种装袋机双扒土机构节能联动控制系统
CN106151127B (zh) * 2016-08-10 2018-09-11 武汉钢铁有限公司 去毛刺机双油缸同步升降控制方法及装置
CN106144855B (zh) * 2016-08-19 2018-10-23 湖南电气职业技术学院 一种曳引驱动设备负载平衡及能量回收利用的方法与装置
CN107191421B (zh) * 2017-07-05 2018-10-30 江苏常发农业装备股份有限公司 一种提升器控制装置
CN107816464B (zh) * 2017-11-29 2023-10-20 农业部南京农业机械化研究所 一种气力式水稻直播机液压驱动系统
CN108286540A (zh) * 2018-03-09 2018-07-17 上海外高桥造船有限公司 一种船用多功能液压工作平台的液压系统
CN108194435B (zh) * 2018-03-29 2023-09-12 大连华锐重工集团股份有限公司 一种插销式海洋升降平台同步液压系统及其控制方法
CN108687283B (zh) * 2018-03-30 2024-04-12 天津市天锻压力机有限公司 一种热挤压成型液压机的电液控制系统与工艺成型方法
CN108317117B (zh) * 2018-04-02 2024-01-05 中国船舶重工集团公司第七一九研究所 一种低节流噪声的双裕度伺服控制阀组
CN108343757B (zh) * 2018-04-03 2023-09-12 浙江精嘉阀门有限公司 液控带旁通联动球阀
CN108502816B (zh) * 2018-05-08 2023-07-14 安徽合力股份有限公司 旁通式能量再生叉车液压系统
CN108533578A (zh) * 2018-06-14 2018-09-14 长安大学 一种液压动臂势能回收系统及方法
CN108571028A (zh) * 2018-06-14 2018-09-25 长安大学 一种液压挖掘机回转能量回收系统及方法
CN108635921B (zh) * 2018-07-18 2024-03-19 上海同臣环保有限公司 一种压榨力均衡、滤板框密封力恒定的超高压弹性压榨机
CN108843630B (zh) * 2018-07-23 2024-02-02 中国重型机械研究院股份公司 一种位置及压力连续可调的驱动辊压下液压控制系统
CN108672667A (zh) * 2018-07-24 2018-10-19 中国重型机械研究院股份公司 带有在线标定功能的低功耗液压位置保持系统及控制方法
CN108757624B (zh) * 2018-08-01 2023-11-28 本钢板材股份有限公司 一种油缸溢流阀差动增速回路
CN109114055B (zh) * 2018-09-25 2020-06-16 北京工业大学 一种用于船用螺旋桨叶片加工的液压组合支撑系统
CN109334759B (zh) * 2018-11-02 2024-04-05 山东蓬翔汽车有限公司 一种宽体自卸车的液压系统
CN109268325B (zh) * 2018-11-20 2023-09-26 燕山大学 面向超越负载可精确保位控制的电液驱动单元
CN109322882A (zh) * 2018-12-04 2019-02-12 大连华锐重工集团股份有限公司 一种插销式海洋升降平台的液压泵站及其控制方法
CN109538559A (zh) * 2018-12-11 2019-03-29 山东交通学院 单活塞杆对称液压油缸串联连接的盾构掘进机推进系统
CN109443823A (zh) * 2018-12-25 2019-03-08 上海电气液压气动有限公司 一种深隧整环试验装置
DE102019110917A1 (de) * 2019-04-26 2020-10-29 Kautex Maschinenbau Gmbh Hydrostatisches Linear-Antriebssystem
CN110115139B (zh) * 2019-05-08 2023-11-14 广西大学 一种用于双行甘蔗横向种植机的液压系统及控制方法
CN110328782A (zh) * 2019-07-29 2019-10-15 杭州方圆塑机股份有限公司 泡沫塑料自动成型机快换模架自适应锁紧机构
CN110359745B (zh) * 2019-08-09 2024-04-12 桂林航天工业学院 一种液压驱动的双层车库升降装置及方法
CN110500330B (zh) * 2019-08-30 2020-06-05 中国矿业大学 一种抗偏载可调速同步阀、同步控制系统及工作方法
CN110510540B (zh) * 2019-09-19 2024-02-13 成都立航科技股份有限公司 一种飞机顶升液压系统
CN111421871A (zh) * 2020-05-21 2020-07-17 南通锻压设备如皋有限公司 一种液压马达驱动式压力机的闭式电液控制系统
CN114506690A (zh) * 2020-11-16 2022-05-17 南京宝地梅山产城发展有限公司 一种料机重心位置自动调节的装置及其控制方法
CN113048104B (zh) * 2021-04-22 2022-07-15 贵州大学 一种液压负载作业平台能量回收系统
CN113250728A (zh) * 2021-05-08 2021-08-13 中煤科工开采研究院有限公司 一种液压支架增压增流供液系统
CN113353843B (zh) * 2021-05-28 2022-08-19 中车长江运输设备集团有限公司 液压升降装置、具有其的液压升降系统和升降载货平台
CN113864260B (zh) * 2021-08-24 2024-02-02 宣化钢铁集团有限责任公司 步进加热炉升降油缸的液压控制装置
CN113803310B (zh) * 2021-09-10 2023-07-21 武汉船用机械有限责任公司 一种双液压缸同步控制系统及其控制方法
CN113915177A (zh) * 2021-09-16 2022-01-11 利穗科技(苏州)有限公司 一种电液伺服驱动装置及层析设备
CN113955653A (zh) * 2021-10-11 2022-01-21 中联重科建筑机械(江苏)有限责任公司 自爬升式塔机及其多缸顶升系统
CN113983039A (zh) * 2021-11-18 2022-01-28 中冶赛迪工程技术股份有限公司 液压升降机构集群控制系统
CN114436164B (zh) * 2021-11-24 2023-09-08 广西电网有限责任公司北海供电局 一种电动抢修塔顶升调平装置及方法
CN114087245B (zh) * 2021-11-30 2023-06-20 福建南方路面机械股份有限公司 圆锥破碎机的液压控制系统及其控制方法
CN114109943B (zh) * 2021-12-08 2023-05-26 中冶南方工程技术有限公司 转炉二文喉口液压伺服系统
CN114427551B (zh) * 2022-03-14 2023-06-30 合肥工业大学 一种基于蓄能器的锚绞机液压系统能量回收系统
CN115388060A (zh) * 2022-09-30 2022-11-25 西安兰石重工机械有限公司 铁钻工全液压夹紧控制集成阀组及控制方法
CN116221207B (zh) * 2023-03-30 2024-02-06 华东交通大学 多电磁阀控制的离散四腔液压缸系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754394A (en) * 1971-12-02 1973-08-28 Hyster Co Hydraulic control system for electric lift truck
CA2237945C (en) * 1998-05-04 2001-01-30 Deere & Company Lift control for implement frame
CN201882875U (zh) * 2010-10-25 2011-06-29 北京市三一重机有限公司 载人升降平台液压驱动系统
CN205136183U (zh) * 2015-10-27 2016-04-06 中国矿业大学 一种多缸同步节能高效液压升降系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1312068A1 (ru) * 1985-09-04 1987-05-23 Предприятие П/Я А-1944 Гидроподъемник
RU2115030C1 (ru) * 1996-07-17 1998-07-10 Конструкторское бюро специального машиностроения Гидравлический привод вывешивания и горизонтирования грузовой платформы
JPH11108181A (ja) * 1997-09-30 1999-04-20 Sumitomo Eaton Hydraulics Co Ltd 走行用油圧モータを有する車両の駆動制御システム及び分流機能付き流体制御装置
US6189432B1 (en) * 1999-03-12 2001-02-20 Hunter Engineering Company Automotive lift hydraulic fluid control circuit
RU94220U1 (ru) * 2009-12-21 2010-05-20 Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная автомобильно-дорожная академия (СибАДИ)" Устройство автоматического выравнивания опорной платформы в горизонтальной плоскости
CN202100559U (zh) * 2011-05-21 2012-01-04 山河智能装备股份有限公司 一种势能回收的液压系统
JP6084972B2 (ja) * 2011-08-12 2017-02-22 イートン コーポレーションEaton Corporation エネルギを回収し、油圧システムにかかる負荷を平準化するためのシステム及び方法
CN203796641U (zh) * 2014-02-19 2014-08-27 华中科技大学 一种无级调速的液压机液压系统
CN104925694A (zh) * 2015-07-08 2015-09-23 安徽合力股份有限公司 一种油缸同步升降的液压升降平台系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754394A (en) * 1971-12-02 1973-08-28 Hyster Co Hydraulic control system for electric lift truck
CA2237945C (en) * 1998-05-04 2001-01-30 Deere & Company Lift control for implement frame
CN201882875U (zh) * 2010-10-25 2011-06-29 北京市三一重机有限公司 载人升降平台液压驱动系统
CN205136183U (zh) * 2015-10-27 2016-04-06 中国矿业大学 一种多缸同步节能高效液压升降系统

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161909A (zh) * 2017-07-04 2017-09-15 上海振华重工(集团)股份有限公司 带互锁保护的液压抬升系统
CN107161909B (zh) * 2017-07-04 2023-04-07 上海振华重工(集团)股份有限公司 带互锁保护的液压抬升系统
CN107745020B (zh) * 2017-11-16 2023-08-01 安徽德系重工科技有限公司 一种四辊波纹卷板机的液压系统
CN107745020A (zh) * 2017-11-16 2018-03-02 安徽德系重工科技有限公司 一种四辊波纹卷板机的液压系统
CN107806454A (zh) * 2017-12-06 2018-03-16 内蒙动力机械研究所 一种复合材料浸渍罐举升缸液压同步调节装置
CN107893784A (zh) * 2017-12-13 2018-04-10 安徽天水液压机床科技有限公司 一种多缸联动液压机液压系统
CN107893784B (zh) * 2017-12-13 2023-12-05 安徽天水液压机床科技有限公司 一种多缸联动液压机液压系统
CN108184353A (zh) * 2018-01-12 2018-06-22 农业部南京农业机械化研究所 一种静液压驱动的水田工作装置通用底盘
CN108223467A (zh) * 2018-01-15 2018-06-29 河北工程大学 用于全液压履带式反循环工程钻机的液压系统
CN108223467B (zh) * 2018-01-15 2023-05-30 河北工程大学 用于全液压履带式反循环工程钻机的液压系统
CN109249848B (zh) * 2018-09-05 2024-02-27 上海中荷环保有限公司 运输车液压系统和运输车
CN109249848A (zh) * 2018-09-05 2019-01-22 上海中荷环保有限公司 运输车液压系统和运输车
CN109437031A (zh) * 2018-12-07 2019-03-08 沈阳建筑大学 一种塔机回转制动能量回收及再利用液压系统
CN109437031B (zh) * 2018-12-07 2023-08-18 沈阳建筑大学 一种塔机回转制动能量回收及再利用液压系统
CN109458384A (zh) * 2018-12-11 2019-03-12 山东交通学院 盾构掘进机串联连接双活塞杆对称液压油缸推进系统
CN109458384B (zh) * 2018-12-11 2024-01-23 山东交通学院 盾构掘进机串联连接双活塞杆对称液压油缸推进系统
CN109488257A (zh) * 2018-12-26 2019-03-19 沈阳人和机电工程设备有限公司 一种压力互补的液压抽油机
CN109488257B (zh) * 2018-12-26 2024-01-05 沈阳人和机电工程设备有限公司 一种压力互补的液压抽油机
CN109513146A (zh) * 2018-12-29 2019-03-26 徐工集团工程机械有限公司 物料输送装置和抛沙灭火车
CN109513146B (zh) * 2018-12-29 2024-03-01 江苏徐工工程机械研究院有限公司 物料输送装置和抛沙灭火车
CN109611385A (zh) * 2019-01-03 2019-04-12 德阳元亨机械制造有限公司 一种稳压式夹紧飞机蒙皮系统及方法
CN109611385B (zh) * 2019-01-03 2023-11-24 德阳元亨机械制造有限公司 一种稳压式夹紧飞机蒙皮系统及方法
CN109707673A (zh) * 2019-02-26 2019-05-03 江苏力源液压机械有限公司 一种手动/自动一体的双路旋转轴制动液压系统
CN109916753B (zh) * 2019-04-17 2024-04-30 中国船舶集团有限公司第七〇四研究所 调距桨长油管道电液伺服加载及疲劳试验装置及方法
CN109916753A (zh) * 2019-04-17 2019-06-21 中国船舶重工集团公司第七0四研究所 调距桨长油管道电液伺服加载及疲劳试验装置及方法
CN109989955A (zh) * 2019-04-30 2019-07-09 广东联城住工装备信息科技有限公司 侧立机的液压系统、侧立机及其控制方法
CN110758094B (zh) * 2019-10-30 2024-04-26 南通威而多专用汽车制造有限公司 用于工程机械行走的液压系统及其工作方法
CN110758094A (zh) * 2019-10-30 2020-02-07 南通威而多专用汽车制造有限公司 用于工程机械行走的液压系统及其工作方法
CN111822093A (zh) * 2020-08-12 2020-10-27 中山德马克环保科技有限公司 一种咬合间距自适应的咬合辊
CN112196848A (zh) * 2020-10-23 2021-01-08 中铁工程装备集团有限公司 盾构机主驱动防扭转装置的液压控制系统
CN112196848B (zh) * 2020-10-23 2023-08-11 中铁工程装备集团有限公司 盾构机主驱动防扭转装置的液压控制系统
CN113357225A (zh) * 2021-04-29 2021-09-07 河南科技大学 一种液压油缸加载试验台液压控制系统
CN113357225B (zh) * 2021-04-29 2024-01-19 河南科技大学 一种液压油缸加载试验台液压控制系统
CN113819096B (zh) * 2021-09-08 2024-04-02 西安重装澄合煤矿机械有限公司 一种自移机尾用智能液压系统及控制方法
CN113819096A (zh) * 2021-09-08 2021-12-21 西安重装澄合煤矿机械有限公司 一种自移机尾用智能液压系统及控制方法
CN114223498B (zh) * 2021-11-08 2023-06-06 徐州徐工挖掘机械有限公司 一种夹紧传送液压系统
CN114223498A (zh) * 2021-11-08 2022-03-25 徐州徐工挖掘机械有限公司 一种夹紧传送液压系统
CN114233700B (zh) * 2021-12-22 2023-12-26 合肥合锻智能制造股份有限公司 一种液压控制系统
CN114233700A (zh) * 2021-12-22 2022-03-25 合肥合锻智能制造股份有限公司 一种大流量多功能操作方式切换的液压控制系统
CN114955918A (zh) * 2022-05-24 2022-08-30 江南造船(集团)有限责任公司 一种多级液压顶升系统
CN115434981A (zh) * 2022-08-29 2022-12-06 中煤科工能源科技发展有限公司 模拟移架装置
CN115467750A (zh) * 2022-10-14 2022-12-13 中船动力研究院有限公司 一种用于柴油发动机的调速系统及调速方法
CN115467750B (zh) * 2022-10-14 2024-03-26 中船动力研究院有限公司 一种用于柴油发动机的调速系统及调速方法
CN117645254A (zh) * 2024-01-30 2024-03-05 杭叉集团股份有限公司 一种叉车正向能量回收液压控制系统及其控制方法
CN117645254B (zh) * 2024-01-30 2024-04-26 杭叉集团股份有限公司 一种叉车正向能量回收液压控制系统及其控制方法

Also Published As

Publication number Publication date
RU2657525C1 (ru) 2018-06-14
CN105179343B (zh) 2017-03-22
CN105179343A (zh) 2015-12-23
CA2955713A1 (en) 2017-04-27
CA2955713C (en) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2017071027A1 (zh) 一种多缸同步节能高效液压升降系统及方法
WO2021004397A1 (zh) 一种大流量阀-泵联合控制乳化液泵站及其控制方法
CN106402060B (zh) 直驱式容积控制电液伺服液压机液压系统
CN201581382U (zh) 一种电液比例控制活塞式双吊点液压启闭机
CN103115028A (zh) 一种电液伺服执行器
CN105502234B (zh) 可调速大推力液压升降台
CN106088208B (zh) 挖掘机回转液压控制系统
CN104632794A (zh) 直驱式液压启闭机电液伺服系统
WO2021031639A1 (zh) 一种卷扬势能实时回收利用系统及其控制方法
CN205370659U (zh) 一种汽轮机用的液压调节系统
WO2020248406A1 (zh) 一种提升机安全转换制动恒减速液压系统及制动方法
CN205136183U (zh) 一种多缸同步节能高效液压升降系统
CN201620891U (zh) 采煤机变频闭式液压牵引系统
CN203583549U (zh) 地下连续墙液压抓斗
CN209469639U (zh) 一种经济型伺服泵控制折弯机液压系统
CN205190393U (zh) 超大重型设备的液压驱动装置
CN210565392U (zh) 一种提升机安全转换制动恒减速液压系统
CN205190395U (zh) 超大重型设备的液压油缸高精度同步控制成套装置
CN205349892U (zh) 驱动超大重型设备的电控系统
CN206723172U (zh) 折弯机双向泵液压控制系统
CN202144808U (zh) 高度集成化比例流量分配阀
CN108792890A (zh) 一种液压变压器式液压电梯同步回路
CN105545845B (zh) 一种超大重型设备的液压驱动装置
CN108589823A (zh) 电控正流量主控阀总成
CN208251213U (zh) 电控正流量主控阀总成

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2955713

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017106309

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2955713

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907088

Country of ref document: EP

Kind code of ref document: A1