WO2017069494A1 - 폴리부타디엔의 제조 장치 - Google Patents

폴리부타디엔의 제조 장치 Download PDF

Info

Publication number
WO2017069494A1
WO2017069494A1 PCT/KR2016/011702 KR2016011702W WO2017069494A1 WO 2017069494 A1 WO2017069494 A1 WO 2017069494A1 KR 2016011702 W KR2016011702 W KR 2016011702W WO 2017069494 A1 WO2017069494 A1 WO 2017069494A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
polymerization reactor
reactor
polybutadiene
supplied
Prior art date
Application number
PCT/KR2016/011702
Other languages
English (en)
French (fr)
Inventor
황우성
고준석
정회인
이종구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017546710A priority Critical patent/JP6472534B2/ja
Priority to US15/554,554 priority patent/US10246534B2/en
Publication of WO2017069494A1 publication Critical patent/WO2017069494A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1856Stationary reactors having moving elements inside placed in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00101Reflux columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00247Fouling of the reactor or the process equipment

Definitions

  • the present invention relates to an apparatus for producing polybutadiene, and more particularly, to an apparatus for producing polybutadiene, which can improve productivity by minimizing plugging phenomenon occurring during polybutadiene production and increasing conversion rate.
  • Polybutadiene is a polymer compound obtained by polymerizing a butadiene monomer, usually represented by 1,3-butadiene, and is not only light but also excellent in wear resistance and flexibility. It is used. About 70% of these polybutadienes are used in the manufacture of tires that emphasize wear resistance, and about 25% are additives for improving the mechanical strength of plastics such as polystyrene and acrylonitrile butadiene styrene (ABS). Used. In addition, polybutadiene has a high electrical resistance, and is also used as a coating material for electronic assemblies. The use of the polybutadiene is infinite in its use, for example, in the manufacture of golf balls (cores) or numerous elastic materials.
  • Ziegler-Natta metal catalysts are usually used for the polymerization of polybutadiene. Since such catalysts are sensitively deteriorated by moisture, suspension polymerization using water as a heat transfer medium is similar.
  • Emulsion polymerization which mainly uses water as an emulsified substrate, cannot be said to be an effective synthetic method in polymerizing polybutadiene. Therefore, in order to uniformly generate the polymer structure, it is required to secure a high conversion rate of a predetermined level or more in the first polymerization step, and for this purpose, inevitably, the heat of polymerization generated in the first polymerization reactor is inevitably high, thereby causing the plugging phenomenon. Is further accelerated.
  • polybutadiene is usually prepared by continuous polymerization using two or more reactors.
  • the residence time of the reaction raw material in the polymerization reactor is increased and the conversion rate is increased, but Since time is inversely proportional to the input of raw materials to the reactor, it is required to properly configure the overall environment such as the number and arrangement of the polymerization reactors.
  • Korean Patent Publication No. 10-2015-0028615 Manufacturing method and apparatus of butadiene rubber with reduced plugging discloses a content of reducing plugging phenomenon by continuous polymerization using two polymerization reactors.
  • 10-2013-0003125 Metal for producing 1,3-butadiene using a parallel reactor discloses the formation of two polymerization reactors in parallel such that the catalysts vary according to differently supplied raw materials.
  • Various apparatuses and methods are known for the production of these compounds, and studies to further improve them have been carried out at various angles.
  • An object of the present invention is to provide an apparatus for producing polybutadiene, which can improve productivity by minimizing the plugging phenomenon occurring during polybutadiene production and increasing the conversion rate.
  • the present invention is to provide a parallel arrangement so as to reduce the plugging phenomenon, butadiene (reaction raw material), two first polymerization reactors are each supplied and polymerized with a polymerization catalyst and a solvent; At least one second polymerization reactor which is disposed in series in the first polymerization reactor, and is supplied with a first polymerization liquid containing butadiene polymer discharged from the first polymerization reactor to perform a butadiene polymerization reaction; And at least one condenser for condensing the gas discharged from the first polymerization reactor and the second polymerization reactor, and then supplying the condensate to the first polymerization reactor and / or the second polymerization reactor. to provide.
  • productivity can be improved by minimizing the plugging phenomenon occurring during polybutadiene production and increasing the conversion rate.
  • 1 is a process chart showing an apparatus for producing polybutadiene according to an embodiment of the present invention.
  • Figure 3 A is a schematic diagram of the manufacturing process of polybutadiene according to an embodiment of the present invention
  • Figure 3 B is a schematic diagram of the manufacturing process of polybutadiene according to another embodiment of the present invention.
  • Figure 4 is a schematic view of the manufacturing process of polybutadiene according to a comparative example of the present invention.
  • FIG. 1 is a process diagram showing an apparatus for producing polybutadiene according to an embodiment of the present invention, the apparatus for producing polybutadiene according to the present invention, as shown in Figure 1, arranged in parallel to reduce the plugging phenomenon as , Butadiene (reaction raw material), a polymerization catalyst and a solvent are fed in series to the two first polymerization reactor (100, 200), the first polymerization reactor (100, 200), respectively, the first polymerization reactor At least one second polymerization reactor 300 and the first polymerization reactor (100, 200) and the second polymerization, the first polymerization liquid containing the butadiene polymer discharged from (100, 200) is supplied to perform a butadiene polymerization reaction One or more condensers 400, 500 for condensing the gas exiting the reactor 300 and then supplying the condensate to the first polymerization reactors 100, 200 and / or the second polymerization reactor 300. .
  • the structure or form of the first polymerization reactor (100, 200) and the second polymerization reactor (300) is not particularly limited, a conventional polymerization reactor can be used, preferably a continuous stirred tank reactor (Continuous stirred-tank) reactor (CSTR) or loop reactor can be used.
  • CSTR Continuous stirred-tank reactor
  • the feed such as raw materials can be divided and supplied to each reactor to perform the first polymerization reaction, where, By dividing water, it is meant that some, preferably about half, of the amount to be supplied to the process system consisting of one first polymerization reactor is fed to another first polymerization reactor.
  • the first polymerization reactor (100, 200) and the second polymerization reactor 300 is connected in series, the polymerization liquid discharged from each of the first polymerization reactor (100, 200) is the second polymerization It is supplied to the reactor 300, if a plurality of polymerization reactors are further connected in series to the first polymerization reactor (100, 200) and the second polymerization reactor 300, in the second polymerization reactor 300 again This means that the polymerized liquid to be discharged is fed to the polymerization reactor located next.
  • the total number of the polymerization reactors (100, 200, 300), which may vary depending on the conversion rate of the polymerization liquid containing the butadiene polymer discharged from the last polymerization reactor located at the end, for example, 90
  • As many polymerization reactors as necessary to achieve the desired conversion can be added, such as at least%, at least 95%, at least 98%, and add a polymerization reactor connected in series to the first polymerization reactors 100, 200.
  • the conversion rate can be further improved.
  • the total number of polymerization reactors is somewhat different depending on the target conversion rate, but is three to five, preferably three to four, more preferably, the first polymerization reactors 100 and 200 configured in parallel. ) Is two, the second polymerization reactor 300 is connected in series to one, a total of three.
  • the catalysts supplied to the first polymerization reactors 100 and 200 through the raw material supply pipes 10 and 12 and used for the polymerization reaction are Ziegler-Natta catalysts, which are transition metal compounds and lanthanum-based compounds. , An organoaluminum compound, or a mixture thereof can be illustrated.
  • the solvent used for the supply and the polymerization reaction to the first polymerization reactors 100 and 200 through the raw material supply pipes 10 and 12 is aliphatic, alicyclic, aromatic hydrocarbons having 4 to 6 carbon atoms or their
  • examples of the aliphatic hydrocarbons include butane, pentane, hexane, isopentane, heptane, octane and isooctane.
  • examples of the alicyclic hydrocarbons include cyclopentane, methylcyclopentane, cyclohexane and methylcyclo.
  • the first polymerization reactor in addition to the butadiene (reaction raw material), catalyst and solvent, if necessary, a conventional molecular weight regulator, reaction terminator, antioxidant, dispersant, lubricant, mixtures thereof, and the like. This may be further supplied.
  • the upper portion of the polymerization reactor (100, 200, 300), the gas discharge pipe (14, 16, 26, 28) for supplying the gas generated by the heat of polymerization to the condenser is connected, the polymerization reactor (100, 200, 300) ) Is connected to the polymer liquid discharge pipes 22 and 24 (the first polymer liquid discharge pipe and 30: the second polymer liquid discharge pipe) for discharging the polymer liquid containing butadiene polymer or supplying it to the next polymerization reactor. .
  • the polymerization reaction performed in the first polymerization reactor (100, 200) and the second polymerization reactor 300 is a temperature of 70 °C to 120 °C, preferably 80 °C to 110 °C and 0.1 kgf / cm 2 to 5 kgf / cm 2 , preferably 1.5 kgf / cm 2 To 3 kgf / cm 2 .
  • the polymerization reaction performed in the second polymerization reactor 300 may be performed at a temperature of about 5 ° C. to 10 ° C. higher than that of the polymerization reaction performed in the first polymerization reactors 100 and 200.
  • the temperature of the polymerization reaction usually performed in the second polymerization reactor 300 is about 5 ° C. to 10 ° C. higher than the temperature of the polymerization reaction performed in the first polymerization reactors 100 and 200.
  • the lower the polymerization temperature the narrower the molecular weight distribution (MWD), so that the polymer may have different physical properties.
  • the feedstock in order to control the temperature, the feedstock (reaction feedstock) may be heated in advance, but since the internal temperature of the polymerization reactor can be increased by the heat of polymerization generated during the polymerization reaction, the feedstock is separately The heating process is preferably carried out only as necessary.
  • the solvent and the unreacted monomer are discharged, and trace amounts of butadiene polymer can also be discharged.
  • the amount of polymer discharged together with the solvent and the unreacted monomer into the gas discharge pipes 14, 16, 26, 28 connected to the top of the polymerization reactor increases as the heat of polymerization and the amount of gas generated accordingly increase.
  • the occurrence frequency of plugging phenomenon which blocks the gas flow inside the discharge pipe 14, 16, 26, 28 and the condenser is increased, thereby reducing the yield of polybutadiene.
  • the first polymerization reactors 100 and 200 are configured in parallel, which reduces the amount of gas discharged, which is the cause of the plugging phenomenon. This is to reduce the flow rate of the feedstock to each of the first polymerization reactor (100, 200) so as to achieve a high conversion rate in the polymerization reactor (100, 200, the step of the polymerization is carried out) to ensure a long residence time of the polymerization liquid.
  • the conversion rate is less than 15% after the second polymerization step (step in which the polymerization is performed in the second polymerization reactor 300), the heat of polymerization is relatively small, and thus the amount of gas discharged is small. Only the second polymerization reactor 300 can sufficiently minimize the plugging phenomenon.
  • the condensate condensing the gas discharged from the second polymerization reactor 300 is supplied separately to the first polymerization reactor (100, 200) (see 26 and 28 of FIG. 1), the first polymerization reactor (100, 200) To reduce the amount of gas generated.
  • the conversion rate of the polymerization reaction can be controlled by the residence time of the polymerization liquid in the reactor, that is, to increase the conversion rate to the butadiene polymer, the first polymerization reactor (100, 200) arranged in parallel Longer residence times of the feedstock should be ensured (extended).
  • the residence time is determined by the volume of the polymerization liquid in the reactor (volume occupied by the polymerization liquid in the polymerization reactor) and the flow rate of the reaction raw material supplied to the reactor, can be represented by the following equation (1).
  • Retention time (hr) ⁇ volume volume (m 3 ) / raw material feed flow rate (kg / hr) ⁇ ⁇ density of the polymerization solution (kg / m 3 )
  • the residence time it is necessary to increase the volumetric volume of the reactor or to reduce the flow rate of the raw material supplied to the reactor. Increasing plugging can be accelerated. Therefore, it is stable and desirable to increase the residence time by reducing the flow rate of the raw material fed to the reactor.
  • the raw material flow rate is reduced because the raw materials are separately supplied to the first polymerization reactors 100 and 200 arranged in parallel.
  • the residence time is increased, so that in the present invention, the conversion rate to the butadiene polymer in the first polymerization stage (the stage in which the butadiene is polymerized in the first polymerization reactors 100 and 200) is 85% or more, preferably 90% or more.
  • two first polymerization reactors (100, 200) are arranged in parallel so as to reduce the amount of polymer discharged into the gas discharge pipes (14, 16, 26, 28) which causes the plugging phenomenon. For this reason, it is possible to disperse the heat of polymerization and to ensure a high conversion rate.
  • by reducing the amount of gas generated by the dispersion of the heat of polymerization it is possible to reduce the frequency of plugging, and also increase the washing cycle of the polybutadiene production apparatus.
  • the residence time in the first polymerization reactor is 35 to 65 minutes, preferably 45 to 55 It is appropriate to be minutes. If the residence time is less than 35 minutes, the conversion rate is low in the first polymerization step, and there is a possibility that the uniformity of the polymer structure may be lowered, and the conversion rate in the second polymerization step is relatively increased so that the second polymerization reactor 300 As the gas emissions in the) rapidly increase, the plugging phenomenon due to the second polymerization reactor 300 may appear. In addition, when the residence time exceeds 65 minutes, it means that the total flow rate of the feedstock is reduced by that much, and there is a fear that the production efficiency is lowered.
  • the residence time exceeds 65 minutes, it means that the total flow rate of the feedstock is reduced by that much, and there is a fear that the production efficiency is lowered.
  • FIG. 2 is a graph showing the conversion rate of butadiene over residence time.
  • the conversion rate of butadiene rises very rapidly at the beginning of the reaction, but as time goes by, the rise decreases (for example, in order for the conversion rate to reach 90%, the conversion rate is 80%). It takes about twice as long as it takes to reach), because if the content of butadiene monomer in the reactor is large, the heat of polymerization is bound to increase explosively even if the residence time is short.
  • the volumetric volume in the first polymerization reactor (100, 200) to minimize the plugging phenomenon to be 30% to 70%, preferably 40% to 60%, when the volume volume is less than 30%, the production There is a concern that the efficiency is lowered, and when the volume volume exceeds 70%, there is a fear that the plugging phenomenon is accelerated.
  • the washing cycle of the polybutadiene production apparatus is three times or more, preferably 2.5 times or more, and more preferably two times or more than the conventional Increase.
  • FIG. 3A is a schematic view illustrating the manufacturing process of polybutadiene according to an embodiment of the present invention
  • FIG. 3B is a schematic view illustrating the manufacturing process of polybutadiene according to another embodiment of the present invention.
  • the condenser 400, 500 is discharged from the gas discharge pipes 14 and 16 connected to the first polymerization reactors 100 and 200 and the gas discharge pipes 26 and 28 connected to the second polymerization reactor 300.
  • Condenser may be used, as shown in Figure 1, it is preferable to configure a total of two, but may be made of only one, may be made of three or more, the number is not particularly limited. However, since the condenser has a limited capacity to process the condensed reflux liquid, it is preferable to determine the number of condensers in consideration of the amount of condensed reflux liquid.
  • the gas discharged from the first polymerization reactors 100 and 200 and the second polymerization reactor 300 is supplied to the same condenser 400 and 500, but is shown in FIG. 3B.
  • the gas discharged from the second polymerization reactor 300 may be supplied to the condenser 600 separately installed. That is, the gas discharged from the second polymerization reactor 300 is not a condenser 400, 500 connected to the first polymerization reactor 100, 200, but a separate condenser connected only to the second polymerization reactor 300. Condensation at 600, where the condensate is refluxed to the second polymerization reactor 300 through a circulation pipe.
  • the condensate condensed therefrom is the first polymerization reactor (100, 200)
  • the gas discharged from the first polymerization reactor (100, 200) and the second polymerization reactor 300 is condensed in a different condenser connected to each reactor, each condensate condensed therefrom is It is refluxed to the polymerization reactors 100 and 200 and the second polymerization reactor 300, respectively.
  • a stirring device is provided inside, and a gas discharge pipe through which a gas generated by polymerization heat is discharged is connected to the upper part, and a polymer liquid discharge pipe through which a polymer liquid containing butadiene polymer generated by a polymerization reaction is discharged from the lower part.
  • the first polymerization reactor having a capacity of 50 MT connected in parallel with each other, and a raw material supply pipe including butadiene, a catalyst, and a solvent is connected to the side wall, the same shape as that of the first polymerization reactor,
  • the second polymerization reactor in which the other end of the polymerization liquid discharge pipe of the first polymerization reactor is connected to the raw material supply pipe of the side wall, is connected in series with the first polymerization reactor, and is further connected to the gas discharge pipe of the first polymerization reactor.
  • each condenser While each condenser is connected, these two condensers are also connected to the gas discharge pipe of the second polymerization reactor, The gas generated in the summation reactor is divided into half and discharged to the two condensers, and the condensate cooled through heat exchange in the condenser is configured to return to each of the first polymerization reactors, thereby proceeding to continuous polymerization.
  • the manufacturing apparatus was prepared.
  • n-hexane (solvent) recovered through 1,3-butadiene (monomer) and a distillation purification column is passed through a dryer filled with a molecular sieve and silica gel. Moisture and oxygen were removed, and nickel octanoate as the main catalyst and triisobutyl aluminum as the cocatalyst were supplied. That is, the monomer premix prepared in advance to 60% by weight with 1,3-butadiene and n-hexane solvent is 10,800 kg per hour, and the main catalyst nickel octanoate is dissolved in n-hexane solvent in advance to 5.5% by weight.
  • the polymerization reaction was carried out at a temperature of 94 ° C. and a pressure condition of 2.2 kgf / cm 2 .
  • the gas generated by the heat of polymerization is discharged to the condenser through the gas discharge pipe at the top of the reactor to maintain the temperature and pressure, and the butadiene polymer-containing agent generated in the polymerization reaction is produced.
  • the first polymerization liquid was supplied to the second polymerization reactor through the first polymerization liquid discharge pipe.
  • the first polymerization liquid was supplied from two first polymerization reactors to one second polymerization reactor, and the flow rate to be supplied was doubled in the second polymerization reactor.
  • the volumetric volume of the second polymerization reactor was 50%, and the polymerization reaction was carried out at a temperature of 101 ° C. and a pressure condition of 2.0 kgf / cm 2 .
  • the gas generated by the heat of polymerization is discharged to the gas discharge pipe at the upper part of the reactor to maintain the temperature and pressure, wherein the discharged gas is divided into half to the two condensers.
  • Each discharged, and each condenser is cooled through heat exchange by the sum of the gas flow rates discharged from each of the first and second polymerization reactors to each condenser to liquefy the condensate, and the condensate is returned to the first polymerization reactor through the circulation pipe again. It became.
  • the butadiene polymer-containing second polymerization solution generated from the second polymerization reactor was transferred to the storage tank through the second polymerization liquid discharge pipe.
  • Example 2 Same as the manufacturing apparatus of Example 1, but by installing a separate condenser connected to the gas discharge pipe of the second polymerization reactor, by cooling the gas generated in the second polymerization reactor through heat exchange in the separately installed condenser, Polybutadiene was prepared using the same production apparatus and method as in Example 1, except that the manufacturing apparatus was configured to reflux the cooled condensate to the second polymerization reactor through a circulation pipe.
  • the gas discharged from two first polymerization reactors and one second polymerization reactor is discharged to each condenser (total three), and the condensate cooled through heat exchange in the condenser is refluxed to each reactor. Except that, it was performed in the same manner as in Example 1.
  • FIG. 4 is a schematic view illustrating a manufacturing process of polybutadiene according to a comparative example of the present invention.
  • the first polymerization reactor having a capacity of 50 MT used in Example 1 is composed of only one unit instead of two units.
  • the polymerization liquid discharge pipe of the second polymerization reactor is Example 1, except that one third polymerization reactor (1000 in FIG. 4) is connected to the condenser (600 in FIG. 4) to which the gas discharge pipe is separately connected to the second polymerization reactor. It was carried out by the same production apparatus as.
  • the monomer premix which was previously mixed with 1,3-butadiene and n-hexane solvent to make 60% by weight, was 21,600 kg per hour, and the main catalyst nickel octanoate was dissolved in n-hexane solvent in advance to 5.5% by weight.
  • the main catalyst nickel octanoate was dissolved in n-hexane solvent in advance to 5.5% by weight.
  • co-catalyst triisobutyl aluminum was dissolved in n-hexane solvent in advance to make a 35% by weight concentration, and 83.2 kg per hour, and n-hexane was added so that the total flow rate was 43,400 kg per hour. It supplied to the raw material supply piping of the 1st polymerization reactor.
  • the volume volume was 50%, and then the polymerization reaction was carried out at a temperature of 91 ° C. and a pressure condition of 2.6 kgf / cm 2 .
  • the gas generated by the heat of polymerization is discharged to the condenser through the gas discharge pipe at the top of the reactor to maintain the temperature and pressure, and the butadiene polymer-containing agent generated in the polymerization reaction is produced.
  • the first polymerization liquid was supplied to the second polymerization reactor through the first polymerization liquid discharge pipe.
  • the volumetric volume was 50%, and the polymerization reaction was carried out at a temperature of 100 ° C. and a pressure condition of 2.5 kgf / cm 2 .
  • the gas is discharged to the condenser through the gas discharge pipe at the top of the reactor in order to maintain the temperature and pressure, and the second polymerization liquid containing butadiene polymer generated in the polymerization reaction is the third polymerization through the second polymerization liquid discharge pipe Fed to the reactor.
  • the volumetric volume was 50% in the third polymerization reactor, and the polymerization reaction was carried out at a temperature of 105 ° C. and a pressure condition of 2.3 kgf / cm 2 .
  • the third polymerization liquid containing butadiene polymer produced in the polymerization reaction is transferred to the storage tank through the third polymerization liquid discharge pipe It became.
  • the monomer premix which was previously mixed with 1,3-butadiene and n-hexane solvent to make 60% by weight, was 14,100 kg per hour, and the main catalyst nickel octanoate was dissolved in n-hexane solvent in advance to make 5.5% by weight 12.8 kg, triisobutylaluminum, a cocatalyst, was previously dissolved in an n-hexane solvent to a concentration of 35% by weight to 54.4 kg per hour, and n-hexane was added such that the total flow rate was 28,400 kg per hour. Except that the feed to the raw material supply pipe of the polymerization reactor, it was carried out in the same manner as in Comparative Example 1.
  • Examples 1, 2 and Comparative Example 1 have the same total raw material supply amount, but in Examples 1 and 2 compared with Comparative Example 1, the gas discharged from the first polymerization reactor was significantly reduced. As a result, it can be seen that the occurrence frequency of the plugging phenomenon is greatly reduced (particularly, since the plugging phenomenon mainly occurs in the first polymerization reactor, the occurrence frequency of the plugging phenomenon is reduced in Example 1 than in Example 2). Moreover, it turns out that the gas discharge
  • Comparative Example 2 in which the total raw material supply amount was reduced by 35% may also confirm that the first polymerization reactor gas emissions were more than those in Examples 1 and 2. Since plugging takes about 48 to 96 hours to restart after washing, this leads to enormous disruption in productivity, and thus the results are very meaningful.
  • the first reactor residence time and conversion rate, total reactor residence time and final conversion rate and molecular weight distribution values obtained from Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 2 below.
  • the conversion rate was calculated from the heat of polymerization, and the molecular weight distribution was calculated by performing gel permeation chromatography analysis to determine the degree of physical properties of the finally obtained butadiene polymer, and then calculating the number average molecular weight (Mn) and the weight average molecular weight (Mw). It was.
  • the gel permeation chromatography (GPC) analysis performed briefly will be described.
  • the gel permeation chromatography (GPC) analysis may be performed at a temperature of 40 ° C. to determine the molecular weight and molecular weight distribution of the polymerized polymer.
  • the column was a combination of two Plgel Olexis columns from Polymer Laboratories and one Plgel mixed-C column, and all of the newly replaced columns were mixed. bed) type column was used.
  • polystyrene was used as the gel permeation chromatography standard material (GPC standard material), and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were confirmed by the analysis results, and the molecular weight distribution ( Mw / Mn) was calculated.
  • GPC standard material gel permeation chromatography standard material
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Example 1 1st reactor residence time (minutes) First reactor conversion rate (%) Total reactor residence time (minutes) % Of final conversion Molecular Weight Distribution (Mw / Mn)
  • Example 1 51.4 90 77.1 97 2.0
  • Example 2 51.4 90 77.1 97 2.0 Comparative Example 1 25.7 80 77.1 97 2.5 Comparative Example 2 39 87 117 98.8 2.2
  • the molecular weight distribution value of the butadiene polymer obtained in Examples 1 and 2 is lower than that of Comparative Examples 1 and 2, in which the first reactor conversion rate is low due to the short residence time in the first reactor. It can be seen that the polymer structures of 1 and 2 are more uniform. Although the final conversion rate in Examples 1 and 2 with a shorter reactor total residence time compared to Comparative Example 2 is relatively low, it can be seen that the difference is only less than about 2%.
  • Polybutadiene production per hour was obtained from Examples 1 and 2 and Comparative Examples 1 and 2, which are shown in Table 3 below.
  • Comparative Example 1 is the 'A.
  • the production efficiency may be lower than that of Examples 1 and 2 even if the amount of polybutadiene per hour is equivalent.
  • said 'B As confirmed in the evaluation of polymer physical properties, polymer physical properties are also relatively decreased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

폴리부타디엔 제조 중 발생하는 플러깅 현상을 최소화 하고, 전환율을 높임으로써, 생산성을 향상시킬 수 있는 폴리부타디엔의 제조 장치가 개시된다. 상기 폴리부타디엔의 제조 장치는, 플러깅 현상을 감소시키도록 병렬 배치되는 것으로서, 부타디엔(반응 원료), 중합 촉매 및 용매가 각각 공급 및 중합되는 2개의 제1 중합 반응기; 상기 제1 중합 반응기에 직렬 배치되는 것으로서, 상기 제1 중합 반응기에서 배출되는 부타디엔 중합체를 함유한 제1 중합액이 공급되어 부타디엔 중합 반응이 수행되는 하나 이상의 제2 중합 반응기; 및 상기 제1 중합 반응기 및 제2 중합 반응기에서 배출되는 기체를 응축시킨 후, 응축물을 상기 제1 중합 반응기 및/또는 제2 중합 반응기로 공급하는 하나 이상의 응축기를 포함한다.

Description

폴리부타디엔의 제조 장치
[관련출원과의 상호인용]
본 출원은 2015.10.22자 한국 특허 출원 제10-2015-0147418호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 폴리부타디엔의 제조 장치에 관한 것으로서, 더욱 상세하게는, 폴리부타디엔 제조 중 발생하는 플러깅 현상을 최소화하고, 전환율을 높임으로써, 생산성을 향상시킬 수 있는 폴리부타디엔의 제조 장치에 관한 것이다.
폴리부타디엔(Polybutadiene)은 통상 1,3-부타디엔으로 대변되는 부타디엔(Butadiene) 단량체(monomer)를 중합시켜 얻을 수 있는 고분자 화합물로서, 가벼울 뿐만 아니라, 내마모성 및 유연성 등이 우수하여, 다양한 제품의 소재로 이용되고 있다. 이와 같은 폴리부타디엔 중 약 70%는 내마모성을 중요시하는 타이어의 제조에 사용되며, 약 25%는 폴리스타이렌 및 아크릴로니트릴 부타디엔 스타이렌(ABS)과 같은 플라스틱의 기계적 강도를 향상시키기 위한 첨가제(additive)로 사용된다. 그밖에, 폴리부타디엔은 전기저항도가 높아, 전자 조립품의 코팅재로도 사용되며, 골프공(코어(core) 부분)이나 수많은 탄성물의 제조에 사용되는 등 그 용도는 무한하다고 할 수 있다.
이와 같은 폴리부타디엔을 제조하기 위한 장치나 방법은 이미 오래 전부터 공지 기술로서 자리 매김하고 있다. 하지만, 폴리부타디엔을 제조하는 중합 과정 중에는, 중합체 일부가 중합열에 의해 발생되어 반응기의 상부로 배출되는 기체 혼합물을 냉각시키는 응축기에 혼입(混入)되어, 중합 반응기와 응축기 사이에 위치하는 기체 배출배관 및 응축기 내부에 침착되는 현상, 즉, 플러깅(Plugging) 현상으로 인해, 열교환 효율이 저하되는 문제점이 있으며, 이러한 상기 플러깅 현상은 배출되는 기체 혼합물의 유량이 많아질수록 가속화 될 가능성이 더욱 높아진다.
또한, 폴리부타디엔의 중합에는 통상 지글러-나타(Ziegler-Natta) 금속 촉매가 사용되는데, 이와 같은 촉매는 수분에 의해 민감하게 활성이 저하되기 때문에, 열전달 매질로 물을 주로 사용하는 현탁 중합이나, 마찬가지로 유화 기질로서 물을 주로 사용하는 유화 중합은, 폴리부타디엔을 중합하는데 있어서 효과적인 합성 방법이라고 할 수 없다. 따라서, 고분자 구조가 균일하게 생성되기 위해서는 제1 중합 단계에서 일정 수준 이상의 높은 전환율을 확보하는 것이 요구되며, 이를 위해서는, 불가피하게 제1 중합 반응기에서 발생되는 중합열이 매우 높아질 수밖에 없어, 상기 플러깅 현상은 더욱 가속화 된다.
한편, 폴리부타디엔은 통상 2개 이상의 반응기를 이용하여 연속 중합시킴으로써 제조되는데, 이와 같은 방법에 의해 폴리부타디엔을 제조하게 되면, 반응 원료의 중합 반응기 내 체류 시간이 증가하게 되고 또한 전환율은 증가되지만, 체류 시간은 반응기로의 원료 투입량에 반비례하므로, 중합 반응기의 개수 및 배치 등 전반적인 환경을 적절하게 구성하는 것이 요구된다.
한편, 대한민국 특허공개 10-2015-0028615호(플러깅이 감소된 부타디엔 고무의 제조방법 및 장치)는, 2개의 중합 반응기를 이용하여 연속 중합함으로써 플러깅 현상을 저감하는 내용을 개시하고 있고, 대한민국 특허공개 10-2013-0003125호(병렬 반응기를 이용한 1,3-부타디엔의 제조방법)는, 서로 다르게 공급되는 원료에 따라 촉매가 달라지도록 2개의 중합 반응기를 병렬로 구성하는 것을 개시하고 있는 등, 폴리부타디엔을 제조하기 위한 다양한 장치 및 방법이 공지되어 있으며, 이를 보다 개선시키기 위한 연구가 다각도로 수행되고 있다.
본 발명의 목적은, 폴리부타디엔 제조 중 발생하는 플러깅 현상을 최소화 하고, 전환율을 높임으로써, 생산성을 향상시킬 수 있는 폴리부타디엔의 제조 장치를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 플러깅 현상을 감소시키도록 병렬 배치되는 것으로서, 부타디엔(반응 원료), 중합 촉매 및 용매가 각각 공급 및 중합되는 2개의 제1 중합 반응기; 상기 제1 중합 반응기에 직렬 배치되는 것으로서, 상기 제1 중합 반응기에서 배출되는 부타디엔 중합체를 함유한 제1 중합액이 공급되어 부타디엔 중합 반응이 수행되는 하나 이상의 제2 중합 반응기; 및 상기 제1 중합 반응기 및 제2 중합 반응기에서 배출되는 기체를 응축시킨 후, 응축물을 상기 제1 중합 반응기 및/또는 제2 중합 반응기로 공급하는 하나 이상의 응축기를 포함하는 폴리부타디엔의 제조 장치를 제공한다.
본 발명에 따른 폴리부타디엔의 제조 장치에 의하면, 폴리부타디엔 제조 중 발생하는 플러깅 현상을 최소화 하고, 전환율을 높임으로써, 생산성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 폴리부타디엔의 제조 장치를 보여주는 공정도.
도 2는 체류시간에 따른 부타디엔의 전환율을 보여주는 그래프.
도 3의 A는 본 발명의 일 실시예에 따른 폴리부타디엔의 제조 공정 모식도이고, 도 3의 B는 본 발명의 다른 실시예에 따른 폴리부타디엔의 제조 공정 모식도.
도 4는 본 발명의 비교예에 따른 폴리부타디엔의 제조 공정 모식도.
[부호의 설명]
100, 200: 제1 중합 반응기 300: 제2 중합 반응기
400, 500, 600: 응축기 1000: 제3 중합 반응기
10, 12: 원료 공급 배관 18, 20: 순환 배관
14, 16, 26, 28: 기체 배출 배관 22, 24: 제1 중합액 배출 배관
30: 제2 중합액 배출 배관
이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 폴리부타디엔의 제조 장치를 보여주는 공정도로서, 본 발명에 따른 폴리부타디엔의 제조 장치는, 도 1에 도시된 바와 같이, 플러깅 현상을 감소시키도록 병렬 배치되는 것으로서, 부타디엔(반응 원료), 중합 촉매 및 용매가 각각 공급 및 중합되는 2개의 제1 중합 반응기(100, 200), 상기 제1 중합 반응기(100, 200)에 직렬 배치되는 것으로서, 상기 제1 중합 반응기(100, 200)에서 배출되는 부타디엔 중합체를 함유한 제1 중합액이 공급되어 부타디엔 중합 반응이 수행되는 하나 이상의 제2 중합 반응기(300) 및 상기 제1 중합 반응기(100, 200) 및 제2 중합 반응기(300)에서 배출되는 기체를 응축시킨 후, 응축물을 상기 제1 중합 반응기(100, 200) 및/또는 제2 중합 반응기(300)로 공급하는 하나 이상의 응축기(400, 500)를 포함한다.
상기 제1 중합 반응기(100, 200) 및 제2 중합 반응기(300)의 구조나 형태는 특별한 제한이 없는 것으로서, 통상의 중합 반응기를 사용할 수 있으며, 바람직하게는 연속교반 탱크 반응기(Continuous stirred-tank reactor; CSTR)나 루프(Loop) 반응기를 사용할 수 있다. 한편, 상기와 같이, 제1 중합 반응기(100, 200)를 병렬로 나란히 구성하게 되면, 원료 등의 공급물을 나누어서 각 반응기에 공급하여, 제1 중합 반응을 각각 수행할 수 있는데, 여기서, 공급물을 나누어 공급한다는 것은, 하나의 제1 중합 반응기로 이루어진 공정 시스템에 공급할 양 중 일부, 바람직하게는 약 절반을 또 다른 제1 중합 반응기에 공급한다는 의미이다. 반면, 상기와 같이, 제1 중합 반응기(100, 200)와 제2 중합 반응기(300)가 직렬로 연결된다는 것은, 각각의 제1 중합 반응기(100, 200)에서 배출되는 중합액이 제2 중합 반응기(300)로 공급되는 것을 의미하고, 만약 다수의 중합 반응기가 상기 제1 중합 반응기(100, 200) 및 제2 중합 반응기(300)에 추가적으로 직렬 연결된다면, 다시 제2 중합 반응기(300)에서 배출되는 중합액이 그 다음에 위치한 중합 반응기로 공급되는 것을 의미한다.
또한, 상기 중합 반응기(100, 200, 300)의 총 개수는, 가장 마지막에 위치하는 최종 중합 반응기에서 배출되는 부타디엔 중합체를 함유한 중합액의 전환율에 따라 상이해질 수 있는 것으로서, 예를 들어, 90% 이상, 95% 이상, 98% 이상과 같이, 목표로 하는 전환율을 달성하는데 필요한 만큼의 중합 반응기를 추가 배치할 수 있으며, 제1 중합 반응기(100, 200)에 직렬로 연결되는 중합 반응기를 추가 연결함으로써 전환율을 보다 향상시킬 수 있다. 이와 같이, 중합 반응기의 총 개수는, 목표 전환율에 따라 다소간의 차이는 있지만, 3 내지 5개, 바람직하게는 3 내지 4개, 더욱 바람직하게는, 병렬로 구성되는 제1 중합 반응기(100, 200)는 2개, 이에 직렬로 연결되는 제2 중합 반응기(300)는 하나, 총 3개로 구성하는 것이다.
원료 공급 배관(10, 12)을 통해, 상기 제1 중합 반응기(100, 200)로 공급되어 중합 반응에 사용되는 촉매는 지글러-나타(Ziegler-Natta) 촉매로서, 전이 금속 화합물, 란타늄 계열의 화합물, 유기알루미늄 화합물 또는 이들의 혼합물을 예시할 수 있다. 또한, 마찬가지로 원료 공급 배관(10, 12)을 통해, 상기 제1 중합 반응기(100, 200)로 공급 및 중합 반응에 사용되는 용매는, 탄소수 4 내지 6의 지방족, 지환족, 방향족 탄화수소 또는 이들의 혼합물로서, 상기 지방족 탄화수소의 예를 들면, 부탄, 펜탄, 헥산, 이소펜탄, 헵탄, 옥탄 및 이소옥탄 등이 있고, 상기 지환족 탄화수소의 예를 들면, 시클로펜탄, 메틸시클로펜탄, 시클로헥산, 메틸시클로헥산 및 에틸시클로헥산 등이 있으며, 상기 방향족 탄화수소의 예를 들면, 벤젠, 톨루엔, 에틸 벤젠 및 자일렌 등이 있다. 이 중, 펜탄, 헥산, 헵탄, 시클로헥산, 메틸시클로헥산, 벤젠 및 톨루엔을 사용하는 것이 바람직하고, 이를 물 및 산소가 제거된 상태에서 사용하는 것이 더욱 바람직하며, 이를 위해서는, 증류 및 건조하여 사용해야 한다. 한편, 상기 제1 중합 반응기(100, 200)에는, 상기 부타디엔(반응 원료), 촉매 및 용매 이외에, 필요에 따라, 통상의 분자량 조절제, 반응 정지제, 산화 방지제, 분산제, 윤활제 및 이들의 혼합물 등이 추가로 공급될 수 있다.
상기 중합 반응기(100, 200, 300)의 상부에는, 중합열에 의해 생성된 기체를 응축기로 공급하는 기체 배출 배관(14, 16, 26, 28)이 연결되며, 상기 중합 반응기(100, 200, 300)의 하부에는, 부타디엔 중합체를 함유한 중합액을 배출하거나, 다음 중합 반응기로 공급하는 중합액 배출 배관(22 및 24: 제1 중합액 배출 배관, 30: 제2 중합액 배출 배관)이 연결된다.
상기 제1 중합 반응기(100, 200) 및 제2 중합 반응기(300) 내에서 수행되는 중합 반응은 70℃ 내지 120℃, 바람직하게는 80℃ 내지 110℃의 온도 및 0.1 kgf/cm2 내지 5 kgf/cm2, 바람직하게는 1.5 kgf/cm2 내지 3 kgf/cm2의 압력 하에서 수행될 수 있다. 또한, 상기 제2 중합 반응기(300)에서 수행되는 중합 반응은, 상기 제1 중합 반응기(100, 200)에서 수행되는 중합 반응에 비해, 약 5℃ 내지 10℃ 높은 온도에서 이루어질 수 있는데, 이때의 온도 상승은 외부 열 공급 없이 중합열 만으로도 가능할 뿐만 아니라, 어차피 후공정인 스트리핑(Stripping) 공정에서 열 공급 과정이 필요하므로, 에너지 절약 측면에서 유리하다. 다만, 상기한 바와 같이, 보통 상기 제2 중합 반응기(300)에서 수행되는 중합 반응의 온도가, 상기 제1 중합 반응기(100, 200)에서 수행되는 중합 반응의 온도보다 약 5℃ 내지 10℃ 높은 온도에서 이루어지지만, 일반적으로 중합 온도가 낮을수록 분자량 분포(MWD)가 좁은 고분자를 얻을 수 있는 등, 물성적인 요구 조건에 따라 달라질 수도 있는 것이다. 한편, 상기 중합 반응에 있어서, 온도를 조절하기 위하여, 공급 원료(반응 원료)를 미리 가열시킬 수도 있지만, 중합 반응 시 발생하는 중합열에 의해 중합 반응기의 내부 온도를 상승시킬 수 있기 때문에, 원료를 별도로 가열하는 공정은 필요에 의해서만 수행되는 것이 바람직하다.
한편, 이와 같은 온도 및 압력 하에서, 용매와 미반응 단량체는 배출되며, 미량의 부타디엔 중합체도 배출될 수 있다. 상기 중합 반응기의 상부와 연결된 기체 배출 배관(14, 16, 26, 28)으로 용매 및 미반응 단량체와 함께 배출되는 중합체의 양은, 중합열 및 이에 따른 기체 발생량이 증가할수록 많아지게 되며, 이는 결국 기체 배출 배관(14, 16, 26, 28) 및 응축기 내부의 기체 흐름을 막는 플러깅 현상의 발생 빈도를 높여, 폴리부타디엔의 생산 수율을 감소시킨다.
이를 방지 또는 최소화하기 위하여, 본 발명에서는 제1 중합 반응기(100, 200)를 병렬로 구성하는데, 이는 플러깅(plugging) 현상의 원인인 배출되는 기체의 양을 감소시키면서도, 제1 중합 단계(제1 중합 반응기(100, 200)에서 중합이 수행되는 단계)에서 높은 전환율이 달성되도록, 각 제1 중합 반응기(100, 200)로의 공급 원료 유량을 줄여서 중합액의 체류시간을 길게 확보하기 위함이다.
한편, 제2 중합 단계(제2 중합 반응기(300)에서 중합이 수행되는 단계) 이후로는 전환율이 15% 미만이기 때문에, 중합열이 상대적으로 적고, 따라서 배출되는 기체의 양도 적으므로, 하나의 제2 중합 반응기(300) 만으로도 충분히 플러깅 현상을 최소화할 수 있다. 또한, 제2 중합 반응기(300)에서 배출되는 기체를 응축한 응축물이 제1 중합 반응기(100, 200)로 분리 공급됨으로써(도 1의 26 및 28 참조), 제1 중합 반응기(100, 200)의 기체 발생량을 감소시키는데 기여하게 된다.
본 발명에 있어서, 중합 반응의 전환율은 중합액의 반응기 내 체류시간에 의해 조절이 가능한 것으로서, 즉, 부타디엔 중합체로의 전환율을 상승시키려면, 상기 병렬 배치된 제1 중합 반응기(100, 200) 내 공급 원료의 체류시간을 보다 길게 확보해야 한다(늘려야 한다). 이와 같은, 체류시간은 중합액의 반응기 내 체적부피(중합 반응기 내에서 중합액이 차지하는 부피)와 반응기로 공급되는 반응 원료의 유량에 의해 결정되며, 하기 수학식 1과 같은 관계로 나타낼 수 있다.
[수학식 1]
체류시간(hr) = {체적부피(m3) / 원료 공급 유량(kg/hr)} × 중합 용액의 밀도(kg/m3)
따라서, 체류시간을 늘려주기 위해서는, 반응기 내 체적부피를 증가시키거나 반응기로 공급되는 원료의 유량을 감소시켜야 하는데, 반응기 내 체적부피를 증가시킬 경우 중합열 또한 증가하기 때문에, 결국 배출되는 기체의 양도 증가하여 플러깅 현상이 가속화 될 수 있다. 그러므로, 반응기로 공급되는 원료의 유량을 줄여서 체류시간을 늘리는 것이 안정적이며 바람직하다. 여기서, 상기 원료 유량은, 상기 원료가 상기 병렬 배치된 제1 중합 반응기(100, 200)로 분리 공급되는 것이기 때문에 감소되는 것이다.
이와 같이 체류시간을 늘려, 본 발명에서는 제1 중합 단계(제1 중합 반응기(100, 200)에서 부타디엔이 중합되는 단계)에서 부타디엔 중합체로의 전환율이 85% 이상, 바람직하게는 90% 이상이 되도록 유도하면서, 플러깅 현상의 원인이 되는 기체 배출 배관(14, 16, 26, 28)으로 배출되는 중합체의 양을 감소시킬 수 있도록, 2개의 제1 중합 반응기(100, 200)를 병렬로 배치하는 것이며, 이로 인해, 중합열을 분산시킴과 동시에 높은 전환율을 확보할 수 있다. 뿐만 아니라, 상기 중합열의 분산에 의해 발생하는 기체의 양을 감소시킴으로서, 플러깅의 발생 빈도를 감소시키고, 또한, 폴리부타디엔 제조장치의 세척 주기를 증가시킬 수 있다.
따라서, 본 발명에서는 부타디엔 단량체(반응 원료), 촉매 및 용매 등의 공급원료 유량을 조절하여, 상기 제1 중합 반응기(100, 200)에서의 체류시간을 35 내지 65분, 바람직하게는 45 내지 55분이 되도록 하는 것이 적절하다. 체류시간이 35분 미만일 경우에는, 제1 중합 단계에서 전환율이 낮아 고분자 구조의 균일함이 저하될 우려가 있을 뿐만 아니라, 상대적으로 제2 중합 단계에서의 전환율이 증가하게 되어 제2 중합 반응기(300)에서의 기체 배출량이 급격히 증가되면서, 오히려 제2 중합 반응기(300)로 인한 플러깅 현상이 나타날 수 있다. 또한, 체류시간이 65분을 초과할 경우에는, 그만큼 총 공급원료의 유량을 많이 줄였다는 것을 의미하기 때문에, 생산 효율이 낮아질 우려가 있다.
도 2는 체류시간에 따른 부타디엔의 전환율을 보여주는 그래프이다. 한편, 도 2에 도시된 바와 같이, 반응 초기에는 부타디엔의 전환율이 매우 급격하게 상승하지만, 시간이 경과할 수록 상승폭이 작아지는데(예를 들어, 전환율이 90%에 도달하기 위해서는, 전환율이 80%에 도달하는데 걸리는 시간의 약 2배가 소요), 이는 반응기 내 부타디엔 단량체의 함량이 많으면, 체류시간이 짧더라도 중합열은 폭발적으로 증가될 수밖에 없기 때문이다.
아울러, 플러깅 현상을 최소화하기 위한 제1 중합 반응기(100, 200) 내 체적부피는 30% 내지 70%, 바람직하게는 40% 내지 60%가 되도록 하며, 체적부피가 30% 이하일 경우에는, 그만큼 생산 효율이 더 낮아질 우려가 있고, 체적부피가 70%를 초과할 경우에는, 플러깅 현상이 가속화될 우려가 있다.
이상 살펴본 바와 같이, 본 발명에 따른 폴리부타디엔의 제조 장치를 이용하여 폴리부타디엔을 제조하게 되면, 모든 중합 반응기를 직렬로 구성한 후, 제1 중합 반응기에 부타디엔(반응 원료), 촉매 및 용매 등의 원료를 공급하는 방법과 비교하여, 상기 제1 중합 단계의 기체 생성량(다시 말해, 상기 제1 중합 반응기(100, 200)에서 생성되는 기체 생성량)을 30 중량% 내지 50 중량% 감소시킬 수 있다. 아울러, 상기 제1 중합 단계에서의 기체 생성량을 감소시킴으로써, 플러깅 현상이 억제되어, 폴리부타디엔 제조 장치의 세척주기를 기존에 비해 3배 이상, 바람직하게는 2.5배 이상, 더욱 바람직하게는 2배 이상 증가시킨다.
도 3의 A는 본 발명의 일 실시예에 따른 폴리부타디엔의 제조 공정 모식도이고, 도 3의 B는 본 발명의 다른 실시예에 따른 폴리부타디엔의 제조 공정 모식도이다. 상기 응축기(400, 500)는, 상기 제1 중합 반응기(100, 200)와 연결된 기체 배출 배관(14, 16) 및 제2 중합 반응기(300)와 연결된 기체 배출 배관(26, 28)에서 배출되는 기체를 응축시킨 후, 순환 배관(18, 20)을 통하여, 응축물을 상기 제1 중합 반응기(100, 200)로 공급하는(또는, 환류시키는) 역할을 하는 것으로서, 중합 반응에 사용되는 통상의 응축기를 사용할 수 있으며, 도 1에 도시된 바와 같이, 총 2개로 구성하는 것이 바람직하나, 하나만으로도 이루어질 수 있고, 셋 이상으로 이루어질 수도 있는 등, 그 개수에는 특별한 제한이 없다. 다만, 응축기는 응축시킨 환류액을 처리할 수 있는 한계 용량이 존재하기 때문에, 응축된 환류액의 양을 고려하여 응축기의 개수를 결정하는 것이 바람직하다.
한편, 도 1 및 상기 설명에 있어서는, 제1 중합 반응기(100, 200) 및 제2 중합 반응기(300)에서 배출되는 기체가 동일한 응축기(400, 500)로 공급되는 것이나, 도 3의 B에 도시된 바와 같이, 상기 제2 중합 반응기(300)에서 배출되는 기체는 별도로 설치된 응축기(600)로 공급될 수도 있다. 즉, 상기 제2 중합 반응기(300)에서 배출되는 기체는, 상기 제1 중합 반응기(100, 200)와 연결된 응축기(400, 500)가 아닌, 상기 제2 중합 반응기(300)만이 연결된 별도의 응축기(600)에서 응축되며, 여기서 응축된 응축물은 순환 배관을 통하여 상기 제2 중합 반응기(300)로 환류되는 것이다.
이를 정리하면, 상기 제1 중합 반응기(100, 200) 및 제2 중합 반응기(300)에서 배출되는 기체가 동일한 응축기에서 응축되면, 이로부터 응축된 응축물은 상기 제1 중합 반응기(100, 200)로 공급되고, 상기 제1 중합 반응기(100, 200) 및 제2 중합 반응기(300)에서 배출되는 기체가 각 반응기에 연결된 서로 다른 응축기에서 응축되면, 이로부터 응축된 각각의 응축물은 상기 제1 중합 반응기(100, 200) 및 제2 중합 반응기(300)로 각각 환류된다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예 1] 폴리부타디엔의 제조
내부에는 교반 장치가 구비되어 있고, 상부에는 중합열에 의해 생성된 기체가 배출되는 기체 배출 배관이 연결되어 있고, 하부에는 중합 반응에 의해 생성된 부타디엔 중합체를 포함하는 중합액이 배출되는 중합액 배출 배관이 연결되어 있으며, 측벽에는 부타디엔, 촉매 및 용매를 포함하는 원료 공급 배관이 연결되어 있는 50 MT 용량의 제1 중합 반응기 2대를 병렬로 구성하고, 상기 제1 중합 반응기와 동일한 형태이면서, 상기 2대의 제1 중합 반응기의 중합액 배출 배관 타단이 측벽의 원료 공급 배관에 연결되어 있는 제2 중합 반응기가 상기 제1 중합 반응기와 직렬로 연결되어 있으며, 또한, 상기 제1 중합 반응기의 기체 배출 배관에 각각 응축기가 연결되어 있으면서, 이 2대의 응축기가 상기 제2 중합 반응기의 기체 배출 배관과도 연결되어, 상기 제2 중합 반응기에서 생성된 기체가 절반으로 나뉘어 상기 2대의 응축기로 배출되도록 구성하고, 응축기에서 열교환을 통해 냉각된 응축물이 각각의 제1 중합 반응기로 환류되는 순환 배관을 구성하여, 연속 중합으로 진행되는 제조 장치를 준비하였다.
제1 중합 반응기의 원료 공급 배관에는, 1,3-부타디엔(단량체) 및 증류 정제 컬럼을 거쳐 회수된 n-헥산(용매)을, 분자 여과기(Molecular Sieve) 및 실리카 겔이 충진되어 있는 드라이어를 거치도록 하여 수분 및 산소가 제거된 것을 공급하였으며, 이와 함께, 주촉매인 니켈 옥타노에이트 및 조촉매인 트리이소부틸 알루미늄을 공급하였다. 즉, 미리 1,3-부타디엔과 n-헥산 용매와 혼합하여 60 중량%가 되도록 만든 단량체 프리믹스를 시간당 10,800 kg으로, 주촉매인 니켈 옥타노에이트를 미리 n-헥산 용매에 녹여 5.5 중량% 농도로 만들어서 시간당 9.8 kg으로, 조촉매인 트리이소부틸 알루미늄을 미리 n-헥산 용매에 녹여 35 중량% 농도로 만들어서 시간당 41.6 kg으로, 이와 함께, 전체 유량이 시간당 21,700 kg이 되도록 n-헥산을 투입하여 상기 제1 중합 반응기의 원료 공급 배관에 공급하였고, 병렬로 구성된 나머지 1대의 제1 중합 반응기에도 동일한 양 만큼 공급하여 2대의 상기 제1 중합 반응기에 공급되는 원료 혼합물의 총 유량이 시간당 43,400 kg이 되도록 하였다.
이어서, 제1 중합 반응기의 체적부피는 50%로 한 후, 94℃의 온도 및 2.2 kgf/cm2의 압력 조건으로 중합 반응을 실시하였다. 제1 중합 반응기에서 중합 반응이 진행되면서 중합열에 의하여 생성된 기체는, 상기 온도와 압력을 유지하기 위하여, 반응기 상부의 기체 배출 배관을 통해 응축기로 배출되고, 상기 중합 반응에서 생성된 부타디엔 중합체 함유 제1 중합액은 제1 중합액 배출 배관을 통해 제2 중합 반응기로 공급되었다. 이때, 2대의 제1 중합 반응기에서 1대의 제2 증합 반응기로 제1 중합액이 공급되어, 제2 중합 반응기에서는 공급 받는 유량이 2배가 되게 하였다. 또한, 제2 중합 반응기의 체적부피는 50%로 하여, 101℃의 온도 및 2.0 kgf/cm2의 압력 조건으로 중합 반응을 실시하였다.
제2 중합 반응기에서 중합 반응이 진행되면서 중합열에 의하여 생성된 기체는 상기 온도와 압력을 유지하기 위해, 반응기 상부의 기체 배출 배관으로 배출되는데, 이때, 배출된 기체가 절반으로 나뉘어 상기 2대의 응축기로 각각 배출되고, 각 응축기마다 제1 및 제2 중합 반응기에서 각 응축기로 배출된 기체 유량의 합만큼 열교환을 통해 냉각되어 응축물로 액화되고 상기 응축물은 다시 순환 배관을 통해 제1 중합 반응기로 환류되었다. 상기 제2 중합 반응기로부터 생성된 부타디엔 중합체 함유 제2 중합 용액은, 제2 중합액 배출 배관을 통해 보관 탱크로 이송하였다.
[실시예 2] 폴리부타디엔의 제조
상기 실시예 1의 제조 장치와 동일하되, 제2 중합 반응기의 기체 배출 배관이 연결되는 별도의 응축기를 설치하여, 상기 제2 중합 반응기에서 생성된 기체를 상기 별도로 설치된 응축기에서 열교환을 통해 냉각시킴으로써, 냉각된 응축물이 순환 배관을 통해 상기 제2 중합 반응기로 환류되도록 제조 장치를 구성한 것을 제외하고는, 상기 실시예 1과 동일한 제조 장치 및 방법을 이용하여 폴리부타디엔을 제조하였다. 즉 다시 말해, 2대의 제1 중합 반응기와 1대의 제2 중합 반응기에서 배출된 기체를 각각의 응축기(총 3대)로 배출시키고, 응축기에서 열교환을 통해 냉각된 응축물을 각각의 반응기로 환류시킨 것을 제외하고는, 실시예 1과 동일하게 수행하였다.
[비교예 1] 폴리부타디엔의 제조
도 4는 본 발명의 비교예에 따른 폴리부타디엔의 제조 공정 모식도로서, 도 4에 도시된 바와 같이, 상기 실시예 1에서 사용된 50 MT 용량의 제1 중합 반응기를 2대가 아닌 1대만으로 구성하고(따라서, 제1 중합 반응기에 연결되는 기체 배출 배관, 중합액 배출 배관, 원료 공급 배관 및 순환 배관도 하나씩만 존재), 제2 중합 반응기와 직렬로 연결(제2 중합 반응기의 중합액 배출 배관이 연결)되는 것으로서, 기체 배출 배관이 제2 중합 반응기와 별도로 연결된 응축기(도 4의 600)와 연결되는 1대의 제3 중합 반응기(도 4의 1000)가 추가된 것을 제외하고는, 상기 실시예 1과 동일한 제조 장치에 의해 수행하였다.
그밖에, 미리 1,3-부타디엔과 n-헥산 용매와 혼합하여 60 중량%가 되도록 만든 단량체 프리믹스를 시간당 21,600 kg으로, 주촉매인 니켈 옥타노에이트를 미리 n-헥산 용매에 녹여 5.5 중량% 농도로 만들어서 시간당 19.6 kg으로, 조촉매인 트리이소부틸 알루미늄을 미리 n-헥산 용매에 녹여 35 중량% 농도로 만들어서 시간당 83.2 kg으로, 이와 함께, 전체 유량이 시간당 43,400 kg이 되도록 n-헥산을 투입하여 상기 제1 중합 반응기의 원료 공급 배관에 공급하였다.
이어서, 제1 중합 반응기에서 체적부피는 50%로 한 후, 91℃의 온도 및 2.6 kgf/cm2의 압력 조건으로 중합 반응을 실시하였다. 제1 중합 반응기에서 중합 반응이 진행되면서 중합열에 의하여 생성된 기체는, 상기 온도와 압력을 유지하기 위하여, 반응기 상부의 기체 배출 배관을 통해 응축기로 배출되고, 상기 중합 반응에서 생성된 부타디엔 중합체 함유 제1 중합액은 제1 중합액 배출 배관을 통해 제2 중합 반응기로 공급되었다. 계속해서, 제2 중합 반응기에서 체적 부피는 50%로 하여 100℃의 온도 및 2.5 kgf/cm2의 압력 조건으로 중합 반응을 실시하였으며, 제2 중합 반응기에서 중합 반응이 진행되면서 중합열에 의하여 생성된 기체는, 상기 온도와 압력을 유지하기 위하여, 반응기 상부의 기체 배출 배관을 통해 응축기로 배출되고, 상기 중합 반응에서 생성된 부타디엔 중합체 함유 제2 중합액은 제2 중합액 배출 배관을 통해 제3 중합 반응기로 공급되었다. 또한, 제3 중합 반응기에서 체적부피는 50%로 하여 105℃의 온도 및 2.3 kgf/cm2의 압력 조건으로 중합 반응을 실시하였으며, 제3 중합 반응기에서 중합 반응이 진행되면서 중합열에 의하여 생성된 기체는, 상기 온도와 압력을 유지하기 위하여, 반응기 상부의 기체 배출 배관을 통해 응축기로 배출되고, 상기 중합 반응에서 생성된 부타디엔 중합체 함유 제3 중합액은 제3 중합액 배출 배관을 통해 보관 탱크로 이송되었다.
[비교예 2] 폴리부타디엔의 제조
미리 1,3-부타디엔과 n-헥산 용매와 혼합하여 60 중량%가 되도록 만든 단량체 프리믹스를 시간당 14,100 kg으로, 주촉매인 니켈 옥타노에이트를 미리 n-헥산 용매에 녹여 5.5 중량% 농도로 만들어서 시간당 12.8 kg으로, 조촉매인 트리이소부틸 알루미늄을 미리 n-헥산 용매에 녹여 35 중량% 농도로 만들어서 시간당 54.4 kg으로, 이와 함께, 전체 유량이 시간당 28,400 kg이 되도록 n-헥산을 투입하여 상기 제1 중합 반응기의 원료 공급 배관에 공급한 것을 제외하고는, 상기 비교예 1과 동일하게 수행하였다.
[실시예 1 및 2, 비교예 1 및 2] 제조된 폴리부타디엔의 물성 평가 - A. 러깅 발생주기 평가
상기 실시예 1, 2 및 비교예 1, 2로부터 제1 중합 반응기의 기체 배출 배관으로 배출되는 기체의 유량, 제2 중합 반응기의 기체 배출 배관으로 배출되는 기체의 유량, 플러깅 현상 발생까지의 시간 및 비교예 1, 2로부터 제3 중합 반응기의 기체 배출 배관으로 배출되는 기체의 유량을 하기 표 1에 나타내었다. 플러깅은 반응기의 압력이 반응 시작의 초기 압력에 비해 0.5 kgf/cm2 이상 증가한 시점까지의 시간으로 결정하였다.
제1 반응기의 기체 배출량(kg/hr) 제2 반응기의 기체 배출량(kg/hr) 제3 반응기의 기체 배출량(kg/hr) 플러깅 발생 시간(hr)
실시예 1 5,825 1,232 - 1,880
실시예 2 6,650 816 - 1,590
비교예 1 11,500 1,989 295 480
비교예 2 6,860 512 101 1,520
상기 표 1에 나타낸 바와 같이, 실시예 1, 2 및 비교예 1은 총 원료 공급량이 동일하지만, 비교예 1에 비하여 실시예 1 및 2에서는 제1 중합 반응기에서 배출되는 기체 배출량이 대폭 감소한 것을 알 수 있으며, 이에 따라, 플러깅 현상의 발생 빈도가 대폭 감소됨을 확인할 수 있다(특히, 플러깅 현상은 주로 제1 중합 반응기에서 나타나기 때문에, 플러깅 현상의 발생 빈도는 실시예 2보다 실시예 1에서 보다 감소되었다). 또한, 제2 및 제3 중합 반응기에서 배출되는 기체 배출량은, 제1 중합 반응기에 비해서 기체 배출량이 매우 적음을 알 수 있다. 뿐만 아니라, 총 원료 공급량을 35% 감소시킨 비교예 2 또한, 제1 중합 반응기 기체 배출량이 실시예 1 및 2보다 더욱 많음을 확인할 수 있다. 플러깅이 발생되면 세척 후 재가동하는 시간이 적어도 48 내지 96 시간 소요되는 점에서, 생산성에 막대한 지장을 초래하게 되므로, 상기 결과는 매우 의미 있는 것이라 할 수 있다.
[실시예 1 및 2, 비교예 1 및 2] 제조된 폴리부타디엔의 물성 평가 - B. 고분자 물성 평가(분자량 분포)
상기 실시예 1, 2 및 비교예 1, 2로부터 얻은 제1 반응기 체류시간 및 전환율, 반응기 총 체류시간 및 최종 전환율 및 분자량 분포값을 하기 표 2에 나타내었다. 상기 전환율은 중합열로부터 계산하였으며, 분자량 분포는 최종적으로 얻은 부타디엔 중합체의 물성 정도를 확인하기 위해 겔투과크로마토그래피 분석을 수행하여, 수 평균 분자량(Mn)과 중량 평균 분자량(Mw)을 구한 후 계산하였다.
여기서 잠시 상기 수행된 겔투과크로마토그래피(GPC, gel permeation chromatography) 분석에 대하여 설명하면, 상기 겔투과크로마토그래피(GPC) 분석은 중합된 고분자의 분자량 및 분자량 분포를 알기 위하여 40 ℃의 온도 하에서 수행된 것으로서, 칼럼(column)은 폴리머 라보레토리즈사(Polymer Laboratories)의 Plgel Olexis 칼럼(품명) 두 자루와 Plgel mixed-C 칼럼(품명) 한 자루를 조합하였으며, 새로 교체한 칼럼은 모두 혼합상(mixed bed) 타입의 칼럼을 사용하였다. 분자량 계산 시, 겔투과크로마토그래피 표준 물질(GPC Standard material)로는 폴리스티렌(Polystyrene)을 사용하였으며, 분석 결과 수 평균 분자량(Mn) 및 중량 평균 분자량(Mw)을 확인하였고, 분석 결과를 통해 분자량 분포(Mw/Mn)를 계산하였다.
제1 반응기 체류시간(분) 제1 반응기 전환율(%) 총 반응기 체류시간(분) 최종 전환율(%) 분자량 분포(Mw/Mn)
실시예 1 51.4 90 77.1 97 2.0
실시예 2 51.4 90 77.1 97 2.0
비교예 1 25.7 80 77.1 97 2.5
비교예 2 39 87 117 98.8 2.2
상기 표 2에 나타낸 바와 같이, 제1 반응기에서의 짧은 체류시간으로 인해 제1 반응기 전환율이 낮은 비교예 1 및 2에 비해, 실시예 1 및 2에서 얻은 부타디엔 중합체의 분자량 분포값이 낮아, 실시예 1 및 2의 고분자 구조가 더 균일함을 알 수 있다. 비교예 2에 비해 반응기 총 체류시간이 짧은 실시예 1 및 2에서의 최종 전환율이 상대적으로 낮지만, 그 차이는 불과 약 2% 이내로 적음을 확인할 수 있다.
[실시예 1 및 2, 비교예 1 및 2] 제조된 폴리부타디엔의 물성 평가 - C. 생산 효율 평가
상기 실시예 1, 2 및 비교예 1, 2로부터 시간당 폴리부타디엔 생산량을 구하였으며, 이를 하기 표 3에 나타내었다.
총 원료 공급량(kg/hr) 시간당 폴리부타디엔 생산량(kg/hr)
실시예 1 13,000 12,600
실시예 2 13,000 12,600
비교예 1 13,000 12,600
비교예 2 8,500 8,400
실시예 1 및 2는 비교예 1 및 2에 비해, 동등 수준 이상의 원료 공급량을 투입하면서도, 상대적으로 플러깅을 저감시키고, 고분자 구조가 더욱 균일한 중합체가 제조되었으며, 그에 따라, 시간당 폴리부타디엔 생산량도 우수함을 알 수 있다. 또한, 비교예 1은 상기 'A. 플러깅 발생주기 평가'에서 확인한 바와 같이, 플러깅 발생이 빈번하여 세척을 자주 실시해야 하기 때문에, 시간당 폴리부타디엔 생산량이 동등하더라도 생산 효율은 실시예 1 및 2에 비하여 낮다고 할 수 있다. 뿐만 아니라, 상기 'B. 고분자 물성 평가'에서 확인한 바와 같이, 고분자 물성도 상대적으로 저하된다.

Claims (20)

  1. 플러깅 현상을 감소시키도록 병렬 배치되는 것으로서, 부타디엔(반응 원료), 중합 촉매 및 용매가 각각 공급 및 중합되는 2개의 제1 중합 반응기;
    상기 제1 중합 반응기에 직렬 배치되는 것으로서, 상기 제1 중합 반응기에서 배출되는 부타디엔 중합체를 함유한 제1 중합액이 공급되어 부타디엔 중합 반응이 수행되는 하나 이상의 제2 중합 반응기; 및
    상기 제1 중합 반응기 및 제2 중합 반응기에서 배출되는 기체를 응축시킨 후, 응축물을 상기 제1 중합 반응기 및/또는 제2 중합 반응기로 공급하는 하나 이상의 응축기를 포함하는 폴리부타디엔의 제조 장치.
  2. 청구항 1에 있어서, 상기 병렬 배치된 제1 중합 반응기 내 공급 원료의 체류 시간을 늘리면 부타디엔 중합체로의 전환율이 상승하는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  3. 청구항 2에 있어서, 상기 체류시간은 35 내지 65 분인 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  4. 청구항 2에 있어서, 상기 부타디엔 중합체로의 전환율은 85% 이상인 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  5. 청구항 1에 있어서, 상기 제1 중합 반응기 및 제2 중합 반응기에서 배출되는 기체가 동일한 응축기에서 응축되면, 이로부터 응축된 응축물은 상기 제1 중합 반응기로 공급되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  6. 청구항 1에 있어서, 상기 제1 중합 반응기 및 제2 중합 반응기에서 배출되는 기체가 각 반응기에 연결된 서로 다른 응축기에서 응축되면, 이로부터 응축된 각각의 응축물은 상기 제1 중합 반응기 및 제2 중합 반응기로 각각 환류되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  7. 청구항 2에 있어서, 상기 제1 중합 반응기 내 공급 원료의 체류 시간은, 상기 제1 중합 반응기 내 체적부피를 증가시키거나, 상기 병렬 배치된 제1 중합 반응기로 공급되는 원료 유량을 감소시켜 늘리는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  8. 청구항 7에 있어서, 상기 제1 중합 반응기 내 체적부피는 30 내지 70 %인 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  9. 청구항 7에 있어서, 상기 원료 유량은 상기 원료가 상기 병렬 배치된 제1 중합 반응기로 분리 공급되어 감소되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  10. 청구항 1에 있어서, 상기 병렬 배치된 제1 중합 반응기는 중합열을 분산시켜, 중합 시 발생되는 기체의 양이 감소되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  11. 청구항 1에 있어서, 상기 폴리부타디엔의 제조 장치는, 상기 제1 및 제2 중합 반응기에 직렬로 연결되는 중합 반응기를 더욱 포함하는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  12. 청구항 1에 있어서, 상기 중합 반응기의 총 개수는 3 내지 5개인 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  13. 청구항 1에 있어서, 상기 촉매는 전이 금속 화합물, 란타늄 계열의 화합물, 유기알루미늄 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택되는 지글러-나타 촉매인 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  14. 청구항 1에 있어서, 상기 용매는 탄소수 4 내지 6의 지방족 탄화수소, 지환족 탄화수소, 방향족 탄화수소 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  15. 청구항 14에 있어서, 상기 지방족 탄화수소는 부탄, 펜탄, 헥산, 이소펜탄, 헵탄, 옥탄 및 이소옥탄으로 이루어진 군으로부터 선택되고, 상기 지환족 탄화수소는 시클로펜탄, 메틸시클로펜탄, 시클로헥산, 메틸시클로헥산 및 에틸시클로헥산으로 이루어진 군으로부터 선택되며, 상기 방향족 탄화수소는 벤젠, 톨루엔, 에틸 벤젠 및 자일렌으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  16. 청구항 1에 있어서, 상기 제1 중합 반응기에는 분자량 조절제, 반응 정지제, 산화 방지제, 분산제, 윤활제 및 이들의 혼합물이 더욱 공급되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  17. 청구항 1에 있어서, 상기 제1 및 제2 중합 반응기의 상부에는, 중합열에 의해 생성된 기체를 상기 응축기로 공급하는 기체 배출 배관이 연결되고, 하부에는 부타디엔 중합체를 함유한 중합액을 배출하거나 다음 중합 반응기로 공급하는 중합액 배출 배관이 연결되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  18. 청구항 1에 있어서, 상기 부타디엔, 중합 촉매 및 용매는 원료 공급 배관을 통하여 상기 제1 중합 반응기로 공급되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  19. 청구항 1에 있어서, 상기 응축물은 순환 배관을 통하여 상기 제1 중합 반응기 및/또는 제2 중합 반응기로 공급되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
  20. 청구항 1에 있어서, 상기 중합 반응은 70℃ 내지 120℃의 온도 및 0.1 kgf/cm2 내지 5 kgf/cm2의 압력 하에서 수행되는 것을 특징으로 하는, 폴리부타디엔의 제조 장치.
PCT/KR2016/011702 2015-10-22 2016-10-18 폴리부타디엔의 제조 장치 WO2017069494A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017546710A JP6472534B2 (ja) 2015-10-22 2016-10-18 ポリブタジエンの製造装置
US15/554,554 US10246534B2 (en) 2015-10-22 2016-10-18 Apparatus for preparing polybutadiene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0147418 2015-10-22
KR1020150147418A KR101946482B1 (ko) 2015-10-22 2015-10-22 폴리부타디엔의 제조 장치

Publications (1)

Publication Number Publication Date
WO2017069494A1 true WO2017069494A1 (ko) 2017-04-27

Family

ID=58557373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011702 WO2017069494A1 (ko) 2015-10-22 2016-10-18 폴리부타디엔의 제조 장치

Country Status (4)

Country Link
US (1) US10246534B2 (ko)
JP (1) JP6472534B2 (ko)
KR (1) KR101946482B1 (ko)
WO (1) WO2017069494A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785444A (zh) * 2017-10-26 2020-02-11 株式会社Lg化学 通过连续聚合制备共轭二烯类聚合物的方法
CN110869398A (zh) * 2018-02-05 2020-03-06 株式会社Lg化学 制备共轭二烯类聚合物的方法及制备共轭二烯类聚合物的设备
EP3699203A4 (en) * 2017-11-13 2020-09-16 LG Chem, Ltd. PROCESS FOR THE PREPARATION OF A CONJUGATED DIENE POLYMER BY CONTINUOUS POLYMERIZATION
CN113750943A (zh) * 2021-09-10 2021-12-07 河北化工医药职业技术学院 一种用于生产手性药物的专用系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946482B1 (ko) 2015-10-22 2019-02-11 주식회사 엘지화학 폴리부타디엔의 제조 장치
KR101960726B1 (ko) * 2015-10-22 2019-03-22 주식회사 엘지화학 폴리부타디엔의 제조 방법
KR102106806B1 (ko) 2018-02-09 2020-05-06 주식회사 엘지화학 공액디엔계 중합체 제조방법 및 공액디엔계 중합체 제조장치
KR102435545B1 (ko) 2018-12-18 2022-08-24 주식회사 엘지화학 방향족 비닐 화합물-비닐시안 화합물 중합체의 제조방법 및 제조장치
WO2020130264A1 (ko) * 2018-12-18 2020-06-25 (주) 엘지화학 방향족 비닐 화합물-비닐시안 화합물 중합체의 제조방법 및 제조장치
KR102421977B1 (ko) * 2018-12-19 2022-07-18 주식회사 엘지화학 방향족 비닐 화합물-비닐시안 화합물 중합체의 제조방법 및 제조장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326855A (en) * 1983-10-06 1994-07-05 Henry Kahn Process for the manufacture of elastomers in particulate form
KR20030072620A (ko) * 2001-02-07 2003-09-15 바이엘 악티엔게젤샤프트 엘라스토머의 연속 제조 방법
KR100625135B1 (ko) * 2000-07-27 2006-09-20 제이에스알 가부시끼가이샤 1,2-폴리부타디엔, 열가소성 엘라스토머 조성물 및 중합체조성물
KR20130003125A (ko) * 2011-06-30 2013-01-09 주식회사 엘지화학 병렬 반응기를 이용한 1,3-부타디엔의 제조방법
KR20150028615A (ko) * 2013-09-06 2015-03-16 주식회사 엘지화학 플러깅이 감소된 부타디엔 고무의 제조방법 및 제조장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965327A (en) 1989-10-23 1990-10-23 The Goodyear Tire & Rubber Company Synthesis of polydiene rubber by high solids solution polymerization
US5414045A (en) 1993-12-10 1995-05-09 General Electric Company Grafting, phase-inversion and cross-linking controlled multi-stage bulk process for making ABS graft copolymers
US7351776B2 (en) 2004-03-02 2008-04-01 Bridgestone Corporation Bulk polymerization process
KR101946482B1 (ko) 2015-10-22 2019-02-11 주식회사 엘지화학 폴리부타디엔의 제조 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326855A (en) * 1983-10-06 1994-07-05 Henry Kahn Process for the manufacture of elastomers in particulate form
KR100625135B1 (ko) * 2000-07-27 2006-09-20 제이에스알 가부시끼가이샤 1,2-폴리부타디엔, 열가소성 엘라스토머 조성물 및 중합체조성물
KR20030072620A (ko) * 2001-02-07 2003-09-15 바이엘 악티엔게젤샤프트 엘라스토머의 연속 제조 방법
KR20130003125A (ko) * 2011-06-30 2013-01-09 주식회사 엘지화학 병렬 반응기를 이용한 1,3-부타디엔의 제조방법
KR20150028615A (ko) * 2013-09-06 2015-03-16 주식회사 엘지화학 플러깅이 감소된 부타디엔 고무의 제조방법 및 제조장치

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785444A (zh) * 2017-10-26 2020-02-11 株式会社Lg化学 通过连续聚合制备共轭二烯类聚合物的方法
JP2020536999A (ja) * 2017-10-26 2020-12-17 エルジー・ケム・リミテッド 連続式重合による共役ジエン系重合体の製造方法
JP7015386B2 (ja) 2017-10-26 2022-02-02 エルジー・ケム・リミテッド 連続式重合による共役ジエン系重合体の製造方法
CN110785444B (zh) * 2017-10-26 2022-09-06 株式会社Lg化学 通过连续聚合制备共轭二烯类聚合物的方法
EP3699203A4 (en) * 2017-11-13 2020-09-16 LG Chem, Ltd. PROCESS FOR THE PREPARATION OF A CONJUGATED DIENE POLYMER BY CONTINUOUS POLYMERIZATION
US11312798B2 (en) 2017-11-13 2022-04-26 Lg Chem, Ltd. Method of preparing conjugated diene-based polymer by continuous polymerization
CN110869398A (zh) * 2018-02-05 2020-03-06 株式会社Lg化学 制备共轭二烯类聚合物的方法及制备共轭二烯类聚合物的设备
JP2020526625A (ja) * 2018-02-05 2020-08-31 エルジー・ケム・リミテッド 共役ジエン系重合体の製造方法及び共役ジエン系重合体の製造装置
US11370858B2 (en) 2018-02-05 2022-06-28 Lg Chem, Ltd. Method of preparing conjugated diene-based polymer and apparatus for preparing conjugated diene-based polymer
CN113750943A (zh) * 2021-09-10 2021-12-07 河北化工医药职业技术学院 一种用于生产手性药物的专用系统

Also Published As

Publication number Publication date
KR101946482B1 (ko) 2019-02-11
JP2018511675A (ja) 2018-04-26
US20180037683A1 (en) 2018-02-08
KR20170047031A (ko) 2017-05-04
JP6472534B2 (ja) 2019-02-20
US10246534B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2017069494A1 (ko) 폴리부타디엔의 제조 장치
WO2017069495A1 (ko) 폴리부타디엔의 제조 방법
KR101683332B1 (ko) 플러깅이 감소된 부타디엔 고무의 제조방법 및 제조장치
WO2016099021A1 (ko) 신규 음이온 중합 개시제 및 이를 이용한 공역디엔계 공중합체의 제조방법
WO2016085134A1 (ko) 신규 음이온 중합 개시제 및 이를 이용한 공역디엔계 공중합체의 제조방법
CN102532379B (zh) 制备稀土异戊橡胶的聚合方法
CN103483482A (zh) 功能性等规聚丙烯及其制备方法
CN114507311B (zh) 乙烯聚合物及其制备方法
WO2011081404A2 (ko) 폴리올레핀 중합용 촉매 및 이의 제조방법
CN1128827C (zh) 热塑性模塑组合物的连续制备
CN113637105B (zh) 一种低晶点低黄色指数san树脂的制备方法
CN102399333B (zh) 一种环管反应器丙烯聚合生产工艺
CN102040679A (zh) 用于烯烃聚合反应的催化剂组分及其催化剂
US2999083A (en) Polymerization of unsaturated hydrocarbons
WO2020101247A1 (ko) 폴리올레핀 제조 공정에서의 파울링 예측 방법
CN107663248A (zh) 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN113750912B (zh) 超高顺式稀土顺丁橡胶的连续聚合装置及方法
CA1087792A (en) Continuous mass polymerization process for polybends
CN105754024A (zh) 一种高异戊二烯含量丁基橡胶的合成方法
WO2019103182A1 (ko) 기능화 가능한 폴리에틸렌 왁스의 제조방법
CN105732869A (zh) 一种制备稀土异戊橡胶的方法
CN117487078B (zh) 一种无卤素改性溶聚丁苯橡胶及其制备方法
CN115010837B (zh) 一种高分子量功能化聚烯烃及其制备方法
CN104558411B (zh) 一种共轭二烯烃‑单乙烯基芳烃共聚物及其制备方法
WO2022014910A1 (ko) 중합체 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15554554

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017546710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857752

Country of ref document: EP

Kind code of ref document: A1