WO2017067307A1 - 一种蒸镀用复合磁性掩模板的制作方法 - Google Patents

一种蒸镀用复合磁性掩模板的制作方法 Download PDF

Info

Publication number
WO2017067307A1
WO2017067307A1 PCT/CN2016/095614 CN2016095614W WO2017067307A1 WO 2017067307 A1 WO2017067307 A1 WO 2017067307A1 CN 2016095614 W CN2016095614 W CN 2016095614W WO 2017067307 A1 WO2017067307 A1 WO 2017067307A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mask
photoresist
film
composite magnetic
Prior art date
Application number
PCT/CN2016/095614
Other languages
English (en)
French (fr)
Inventor
魏志凌
Original Assignee
昆山允升吉光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山允升吉光电科技有限公司 filed Critical 昆山允升吉光电科技有限公司
Priority to KR1020187013768A priority Critical patent/KR20180067660A/ko
Priority to JP2018519854A priority patent/JP2018534422A/ja
Publication of WO2017067307A1 publication Critical patent/WO2017067307A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • G03F7/2063Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles

Definitions

  • the invention belongs to the display panel industry, and relates to a mask for vapor deposition used in the process of manufacturing an OLED display panel, and particularly relates to a method for fabricating a magnetic mask for vapor deposition.
  • OLED Organic Light-Emitting Diode
  • OLED has no backlight, high contrast, thin thickness, wide viewing angle, fast response, flexible panel, and wide temperature range.
  • the excellent characteristics of structure, process and process are considered to be the next generation of flat panel display emerging application technologies.
  • OLED is a solid material
  • VTE vacuum thermal evaporation
  • the organic molecules located in the vacuum chamber are slightly heated (evaporated), so that these molecules are condensed in the form of a thin film on a substrate having a lower temperature.
  • a high-precision mask suitable for the accuracy of the OLED light-emitting display unit is required as a medium.
  • FIG. 1 is a schematic view showing a structure of a mask for OLED evaporation, in which a mask 11 having a mask pattern 10 is fixed on the outer frame 12, wherein the mask 11 and the outer frame 12 are made of a metal material.
  • 2 is a schematic enlarged cross-sectional view of the AA direction of FIG. 1, 20 is a mask portion, and 21 is a mask opening for vapor deposition of an organic material, and the mask 11 is generally formed by an etching process to form a mask.
  • the size of the mask portion (20) and the opening (21) of the mold pattern (10) may be affected by To the thickness of the foil itself h (h is generally greater than 30 ⁇ m) and process limitations, thereby limiting the resolution of the final OLED product; in other words, the width dimension d1 of the opening (21) is difficult to further reduce (currently d1 is less than 30um) The opening is very difficult to make), even if it can be made small, the opening with a large aspect ratio cannot satisfy the high-quality evaporation process.
  • the metal-type mask body 11 will have a large mass, which may cause the mask body 11 to sag (ie, a concave phenomenon occurs in the middle of the board surface), which is accurate.
  • a higher mask evaporation process is disadvantageous. In view of this, there is a need in the industry for a solution that can solve this problem.
  • the present invention provides a method for fabricating a magnetic mask for vapor deposition, and the mask formed by the method can effectively overcome the above problems, and the specific technical solutions are as follows.
  • a method for manufacturing a composite magnetic mask for vapor deposition comprising the steps of:
  • a metal support layer is electroformed, and a metal support layer having a certain thickness is formed.
  • the metal support layer is provided with a specific window structure, and the metal support layer is formed by an electroforming process, and the electroforming process includes : S11, substrate preparation, selecting a clean and flat surface of the electroformed deposition substrate; S12, film, pressing or coating a photosensitive film on a surface of the deposition substrate to form a photosensitive film layer; S13, exposure, the photosensitive film in S12 The specific region of the layer is exposed, the exposed region of the photosensitive film layer is the region where the window structure is located, and the photosensitive film of other regions outside the window structure is not exposed; S14, development, and the photosensitive film after exposure treatment in step S13
  • the layer is subjected to a development process to remove the photosensitive film in the unexposed area to form a deposition area to be electroformed; S15, electroforming, and the electroformed deposition substrate after the development process is electroformed in an electroforming bath to form a window structure.
  • a surface of the metal support layer is coated, and a surface of the metal support layer having a window structure is coated with a photoresist having a certain thickness to form a photoresist film layer;
  • the metal supporting layer and the photoresist film layer having an opening structure constitute the composite magnetic mask, the opening structure formed on the mask layer and the photoresist non-exposed area in the step S3 Correspondingly, the opening structure formed on the mask layer is inside the window structure of the metal supporting layer, and each window structure on the metal supporting layer has at least one opening structure.
  • the method further comprises: a film removing step, the metal supporting layer is subjected to a film removing process, and the photosensitive film inside the metal supporting layer window structure is completely removed.
  • the method further comprises: a peeling step of peeling off the metal supporting layer from the electroformed deposition substrate.
  • the method further includes a peeling step of separating the mask layer of the composite magnetic mask for vapor deposition from the electroformed deposition substrate.
  • the method further comprises: a baking curing step of forming the composite magnetic mask plate in an oven after baking through the S4 photoresist film layer development step for baking Cured.
  • the thickness of the photoresist film layer is not greater than the thickness of the metal support layer.
  • the thickness of the metal supporting layer formed by the electroforming is greater than the thickness of the photosensitive dry film in the S12 filming step, and the formed metal supporting layer has a shrinkable window structure.
  • window structures on the metal supporting layer are arranged in an array manner.
  • the film is coated by a photoresist film or a photoresist film coating method.
  • the thickness of the metal supporting layer ranges from 20 to 60 ⁇ m; the thickness of the mask layer ranges from 2 to 20 ⁇ m; and the size of the opening structure formed on the mask layer ranges from 15 to 40 ⁇ m.
  • the material of the metal supporting layer in the present invention is a nickel-based alloy such as a nickel-iron alloy.
  • the constituent materials of the conventional mask are all metal alloys
  • the present invention provides a method for fabricating a mask completely different from the existing etching process, and the magnetic mask produced by the method
  • the utility model has the following advantages: the organic mask layer constituting the mask can be made thin due to the function of the metal mask supporting layer, so that the opening of the opening is further ensured under the premise that the opening of the mask layer has a small aspect ratio
  • the width dimension is made smaller, so that the final magnetic mask formed can be evaporated to form a higher resolution OLED product; and because of the high precision of electroforming, the metal mask support layer provided by the electroforming process has a higher High positional accuracy, which in turn ensures a high positional accuracy of the final reticle for better adaptation to evaporation applications.
  • FIG. 1 is a schematic structural view of a mask for OLED evaporation in the prior art
  • Figure 2 is a schematic enlarged cross-sectional view taken along line A-A of Figure 1;
  • FIG. 3 is a flow chart showing the manufacturing process of the composite magnetic mask for vapor deposition provided by the present invention.
  • FIG. 4 is a schematic view showing an embodiment of a mask plate produced by the method provided by the present invention.
  • FIG. 5 is a schematic view showing a second embodiment of a mask plate produced by the method provided by the present invention.
  • FIG. 6 is a schematic view showing a third embodiment of a mask plate produced by the method provided by the present invention.
  • FIG. 7 is a schematic view showing a fourth embodiment of a mask plate produced by the method provided by the present invention.
  • Figure 8 is a schematic overall view of a magnetic mask produced by the method of the present invention.
  • Figure 9 is a cross-sectional view taken along line B-B of Figure 8.
  • Figure 10 is a schematic overall view of a mask layer constituting a magnetic mask
  • Figure 11 is a schematic overall view of a metal support layer constituting a magnetic mask
  • Figure 12 is an enlarged schematic view showing a region I in Figure 9;
  • FIG. 13 is a schematic overall view of another magnetic mask produced by the method of the present invention.
  • Figure 14 is an enlarged schematic view of a portion I of Figure 13;
  • Figure 15 is a cross-sectional view taken along line B-B of Figure 14;
  • Figure 16 is a schematic view of the reverse side of Figure 14;
  • Figure 17 is a schematic view showing another structure different from the mask of the present invention.
  • Figure 18 is a schematic view showing the vapor deposition of an organic material using the magnetic mask of the present invention.
  • 40 is an electroformed substrate
  • 400 is a photosensitive film layer
  • 401 is an exposed area on the photosensitive film layer 400
  • 402 is an unexposed area
  • 403 is an electroformed deposition area
  • 41 is electroforming.
  • the metal supporting layer is formed, 410 is a window structure on the metal supporting layer, 42 is a photoresist film layer, 420 is an opening structure on the photoresist film layer 42, 421 is a photoresist exposure region, and 422 is a photoresist non-exposure region;
  • reference numeral 30 denotes a composite magnetic mask for vapor deposition according to the present invention
  • 311 is an opening unit formed by an array of openings 420 for vapor deposition provided on the composite magnetic mask sheet 30 for vapor deposition
  • BB - a section to be cross-sectioned
  • D2 is a gap width between adjacent two opening units 311;
  • I is an area to be enlarged
  • 411 is a support bar between two adjacent window structures 410.
  • 312 is a gap between two adjacent opening units 311 on the photoresist film layer 42;
  • 411 is a support strip between two adjacent window structures 410, and d4 is the width of the support strip 411;
  • h1 is the thickness of the mask layer (i.e., the thickness of the photoresist film layer)
  • h2 is the thickness of the metal supporting layer
  • d3 is the spacing between the adjacent two opening structures 420 in the same opening unit 311 on the mask layer.
  • B-B is a section to be cross-sectioned
  • Fig. 18 80 is a substrate, 81 is a fixing mechanism for fixing the mask assembly, and 82 is an organic vapor deposition source.
  • FIG. 3 is a flow chart of a magnetic mask provided by the present invention
  • FIG. 4 to FIG. 7 is a diagram of the present invention.
  • a schematic diagram of several different embodiments of mask fabrication. 4 to 7, 40 is an electroformed substrate, 400 is a photosensitive film layer, 401 is an exposed area on the photosensitive film layer 400, 402 is an unexposed area, 403 is an electroformed deposition area, and 41 is electroforming.
  • the formed metal supporting layer 410 is a window structure on the metal supporting layer
  • 42 is a photoresist film layer
  • 420 is an opening structure on the photoresist film layer 42
  • 421 is a photoresist exposure region
  • 422 is a photoresist non-exposed region.
  • the magnetic mask manufacturing process provided by the present invention comprises the steps of: S1, metal support layer electroforming; S2, metal support layer surface coating; S3, photoresist film exposure; S4, photoresist film Layer development.
  • the metal support layer is electroformed to produce a metal support layer 41 having a certain thickness.
  • the metal support layer 41 is provided with a specific window structure 410.
  • the metal support layer 41 is formed by an electroforming process.
  • the specific electroforming process includes: S11, preparing the substrate, selecting a surface of the electroformed deposition substrate 40 with a clean surface; S12, a film, pressing or coating a surface of the deposition substrate 40 to form a photosensitive film layer 400; S13, exposure, in S12
  • the photosensitive film layer 400 is exposed to a specific region, the exposed region 401 of the photosensitive film layer is the region where the window structure 410 is located, and the photosensitive film of the other region 402 outside the window structure 410 is not exposed; S14, development, after exposure processing through the S13 step
  • the photosensitive film layer 400 is subjected to a development process to remove the photosensitive film of the unexposed area 402 to form an electroformed deposition area 403; S15, electroforming, and the electroformed deposition substrate
  • the photoresist film layer is exposed, and the metal support layer 41 is exposed on one side of the photoresist film layer 42 to expose the predetermined region, and the photoresist exposed region 421 and the photoresist non-exposed region are formed on the photoresist film layer 42. 422;
  • the metal supporting layer 41 and the photoresist film layer 42 having the opening structure 420 constitute the composite magnetic mask of the present invention, and the opening structure 420 formed on the mask layer is opposite to the photoresist non-exposed region 422 in the step S3.
  • the opening structure 420 formed on the mask layer is inside the window structure 410 of the metal supporting layer 41 (the area of the opening structure 420 is smaller than the area of the corresponding window structure 410), and at least the inside of each window structure 410 on the metal supporting layer 41 is at least There is an opening structure 420.
  • each window structure 410 has an opening structure 420 inside.
  • the step of removing the film (not shown) is performed, and the metal supporting layer 41 is subjected to a film removing process to expose the photosensitive film inside the window structure 410 of the metal supporting layer 41 (ie, exposure).
  • the photosensitive film of the region 401 is completely removed.
  • a peeling step (not shown) is performed to peel off the metal supporting layer 41 from the electroformed deposition substrate 40.
  • the present invention further comprises, after the S4 photoresist film layer development step, a baking curing step (not shown), placing the composite magnetic mask formed after the S4 photoresist film layer development step Baking and curing in the oven makes the photoresist film layer 42 have more stable performance and has a better bonding force with the metal supporting layer 41.
  • the thickness of the photoresist film layer 42 in the present invention is not greater than the thickness of the metal support layer 41.
  • the mask plate produced by the present invention is used for vapor deposition, and the evaporation effect is directly determined by the mask.
  • the opening structure 420 of the mask layer ie, the photoresist film layer having an open structure
  • the thinner photoresist film layer 42 can greatly reduce the influence of the mask opening on the evaporation.
  • the window structure 410 on the metal support layer 41 of the magnetic mask obtained by the present invention is arranged in an array manner.
  • the opening structures 420 disposed on the mask layer are also arranged in an array (which will be further developed later).
  • the film in the step of coating the surface of the S2 metal support layer, the film is coated by a photoresist film or a photoresist film by a photoresist film.
  • the photoresist dry film is used for the overmolding method, that is, the photoresist is pre-formed into a dry film of a certain thickness, and then the photoresist dry film is attached to the surface of the metal support layer by pressing; the photoresist is coated with a photoresist
  • the overmolding method is to uniformly coat the emulsion-like wet film on the surface of the metal supporting layer by mechanical coating.
  • the thickness of the metal supporting layer 41 ranges from 20 to 60 ⁇ m; the thickness of the mask layer (ie, the thickness of the photoresist film layer 42) ranges from : 2-20 ⁇ m.
  • the thickness of the support layer 41 is 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, and the thickness of the photoresist film layer 42 is 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, and 18 ⁇ m.
  • the thickness range of the metal supporting layer 41 is not limited to 20-60 ⁇ m, and the thickness of the mask layer (ie, the thickness of the photoresist film layer 42) is not limited to 2. -20 ⁇ m.
  • the opening structure formed on the mask layer serves as a final definition of the evaporation quality of the organic material in the evaporation application process.
  • the opening formed on the mask layer The structure 420 has a size ranging from 15 to 40 ⁇ m, and specifically may be designed to be 18 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, and 35 ⁇ m.
  • the metal supporting layer is formed by electroforming, and the material thereof is a nickel-based alloy such as a nickel-iron alloy.
  • each window structure 410 on the metal supporting layer 41 has only one opening structure 420 therein;
  • Each window structure 410 in the example has a plurality of open structures 420 therein.
  • the "peeling step” in the first embodiment and the second embodiment is performed after the electroforming process is completed (that is, the surface of the metal supporting layer).
  • the film coating step S2 is completed before; in the present embodiment, the "peeling step” (as step S5) is after the S4 photoresist film layer development step.
  • Such a design can prevent better avoidance of damage such as creases in the metal support layer 41 having a thin thickness during the fabrication of the mask.
  • the present embodiment is different from the previous three embodiments, as shown in FIG. 7.
  • the thickness of the electroformed deposition is greater than the thickness of the photosensitive dry film in the S12 filming step, and the formed The metal support layer has a shrinkable window structure.
  • the thickness of the electroformed deposition is larger than the thickness of the photosensitive film 40, a certain shrinkage occurs at the upper end of the window structure 410 when the metal supporting layer 41 is formed.
  • Such a design can increase the adhesion area between the metal supporting layer 41 and the photoresist film layer 42 while reducing the influence of the metal supporting layer 41 on the vapor deposition, thereby effectively improving the life of the mask.
  • FIG. 8 is a schematic overall view of a magnetic mask produced by the method of the present invention
  • FIG. 9 is a cross-sectional view taken along line BB of FIG. 8
  • FIG. 10 is an overall schematic view of a mask layer constituting a magnetic mask.
  • FIG. 11 is a schematic overall view of a metal supporting layer constituting a magnetic mask;
  • FIG. 12 is an enlarged schematic view showing a region I of FIG.
  • FIG. 8 is a schematic overall view of a magnetic mask produced by the method of the present invention.
  • a schematic cross-sectional view is shown in FIG. 9.
  • the magnetic mask 30 is composed of a two-layer structure of a photoresist film layer 42 and a metal support layer 41.
  • the resist layer 42 is provided with a plurality of opening units 311 formed by an array of opening structures 420. As shown in FIG.
  • the width d2 of the gap 312 between the adjacent two opening units 311 is larger than the spacing d3 between the adjacent two opening structures 420 in the same opening unit 311;
  • the metal supporting layer 41 serves as a carrier of the photoresist film layer 42,
  • the metal support layer 41 is provided with a plurality of hollowed window structures 410, which are distinguished by a plurality of internally staggered support bars 411, as shown in FIG.
  • the photoresist film layer 42 of the magnetic mask 30 is closely adhered to the metal supporting layer 41, and the opening unit 311 of the photoresist film layer 42 corresponds to the window structure 410 of the metal supporting layer 41, that is, as shown in FIG.
  • the opening unit 311 composed of the opening structure 420 corresponds to the position of the corresponding window structure 410.
  • the support bars 411 of the metal supporting layer 41 are disposed on the gap 312 formed between the adjacent two opening units 311 on the photoresist film layer 42. As shown in FIGS. 9 and 12, the position of the support bar 411 is between the opening unit 311 and the opening unit 311. The gap 312 position corresponds.
  • the width of the support bar 411 is adapted to the width of the gap 312 formed between the adjacent two opening units 311 on the photoresist film layer 42, and gold
  • the support layer 41 does not block the opening structure 420 of the photoresist film layer 42. As shown in FIG. 12, the width d4 of the support bar 411 is not greater than the width d2 of the gap 312 between the corresponding adjacent two opening cells 311.
  • the open area 311 of the mask layer of the magnetic mask and the hollow window of the metal supporting layer 41 form an array of 4*3, as shown in FIG. 10 and FIG. 11, the positions of the opening unit 311 are one by one. Corresponds to the position of the window structure 410.
  • FIG. 13 to 17 are schematic views showing an embodiment of another different magnetic mask produced by the technical solution provided by the present invention.
  • 13 is an overall schematic view of a magnetic mask
  • FIG. 14 is an enlarged schematic view of a portion I of FIG. 13
  • FIG. 15 is a schematic cross-sectional view of the BB direction of FIG. 14; Another structurally similar schematic.
  • the window structure 410 of the magnetic mask metal support layer 41 and the opening structure 420 of the photoresist film layer 42 are in a one-to-one correspondence, that is, each window structure 410 is internally provided with a
  • the opening structure 420 is integrally formed in an array.
  • each of the window structures 410 in the embodiment shown in FIG. 17 is internally provided with two opening structures 420.
  • the mask structure fabricated by the technical solution provided by the present invention may also have one window structure corresponding to three opening structures 420, and even one window structure corresponds to more opening structures 420.
  • Figure 18 is a schematic view showing the vapor deposition of an organic material using the magnetic mask of the present invention.
  • the mask 30 mounted on the outer frame 12 is fixed to the fixing mechanism by the outer frame 12.
  • the upper portion of the mask 30 is provided with a substrate 80 to be vapor-deposited, and the lower portion is provided with an organic evaporation source 82.
  • the organic material in the organic evaporation source 82 is diffused into the chamber by evaporation, and the diffused organic material passes through the mask 30.
  • the hollow opening is deposited on the substrate 80 to form an organic light-emitting layer.
  • a magnetic adsorption device is generally disposed behind the substrate.
  • the mask plate according to the present invention retains a metal layer structure, which has the magnetic properties of the conventional mask plate, and can be adsorbed by the magnetic adsorption device behind the substrate in the later application process, thereby further reducing the amount of sag of the mask.
  • the constituent materials of the conventional mask are all metal alloys
  • the present invention provides a method for fabricating a mask completely different from the existing etching process, and the magnetic method produced by the method.
  • the reticle has the following advantages: due to the role of the metal mask supporting layer, the organic mask layer constituting the reticle can be made thin, so that the mask layer opening has a small aspect ratio, further The width dimension of the opening is made smaller so that the resulting final magnetic mask can be evaporated to form a higher resolution OLED product.
  • the mask plate produced by the present invention finally determines the deposition effect of the organic material as the opening structure 420 of the photoresist film layer 42. Since the photoresist has the characteristics of an organic material, it is relatively easy to achieve "light and thin”. Due to the "light” nature, the metal support layer 41 underneath it is easy to support it; and the "thin” feature allows the open structure 42 disposed thereon to more easily achieve a small size opening design.
  • the "magnetic mask for vapor deposition", the “magnetic mask”, and the “mask” are the same concept; in the present invention, it should be noted that the photoresist and the photosensitive film are two different concepts. Although they are all materials with photosensitive properties, in comparison, the photoresist after exposure has more stable performance than the exposed photosensitive film, and the photoresist is used as a permanent material after exposure. It is not easily damaged by the outside, and the photosensitive film is only an etching aid.
  • any reference to "an embodiment”, “an embodiment”, “an exemplary embodiment” or the like means that a particular component, structure or feature described in connection with the embodiment is included in at least one embodiment of the invention. This schematic representation throughout the specification does not necessarily refer to the same embodiment. Further, when a specific component, structure or feature is described in connection with any embodiment, it is claimed that such a component, structure or feature in combination with other embodiments is within the scope of those skilled in the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种蒸镀用复合磁性掩模板(30)的制作方法,包括:S1、金属支撑层(41)电铸制作,S2、金属支撑层(41)表面覆膜,S3、光阻膜层(42)曝光,S4、光阻膜层(42)显影。

Description

一种蒸镀用复合磁性掩模板的制作方法 技术领域
本发明属于显示面板行业,涉及一种应用于OLED显示面板制作过程中的蒸镀用掩模板,具体涉及一种蒸镀用磁性掩模板的制作方法。
背景技术
由于有机电致发光二极管(Organic Light-Emitting Diode,OLED)由于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器新兴应用技术。
OLED生产过程中最重要的一环节是将有机层按照驱动矩阵的要求沉积到基板上,形成关键的发光显示单元。OLED是一种固体材料,其高精度涂覆技术的发展是制约OLED产品化的关键。目前完成这一工作,主要采用真空沉积或真空热蒸发(VTE)的方法,其是将位于真空腔体内的有机物分子轻微加热(蒸发),使得这些分子以薄膜的形式凝聚在温度较低的基板上。在这一过程中需要与OLED发光显示单元精度相适应的高精密掩模板作为媒介。
图1所示是一种用于OLED蒸镀用掩模板的结构示意图,具有掩模图案10的掩模板11固定在外框12上,其中掩模板11、外框12均为金属材料。图2所示为图1中A-A方向的截面放大示意图,20为掩模部,21为有机材料蒸镀时的掩模开口,由于掩模板11一般是金属薄片通过蚀刻工艺制得,构成其掩模图案(10)的掩模部(20)、开口(21)的尺寸会受 到金属薄片本身厚度h(h一般大于30μm)和工艺的限制,从而限制最终OLED产品的分辨率;换而言之,开口(21)的宽度尺寸d1很难进一步做小(目前d1小于30um的开口非常难以制作),即使能够做到很小,较大高宽比的开口亦不能满足高质量蒸镀过程。另外,若制作大尺寸掩模板,其金属型的掩模主体11会具有较大的质量,从而会导致掩模主体11板面产生下垂(即板面中间会出现下凹现象),这对精度要求较高的掩模蒸镀过程是不利的。鉴于此,业内亟需一种能够解决此问题的方案。
发明内容
有鉴于此,本发明提供了一种蒸镀用磁性掩模板的制作方法,通过该方法制作的掩模板能够有效克服以上问题,具体技术方案如下。
一种蒸镀用复合磁性掩模板的制作方法,其包括以下步骤:
S1、金属支撑层电铸制作,制作具有一定厚度的金属支撑层,所述金属支撑层上设置有特定的窗口结构,所述金属支撑层是采用电铸工艺制作的,所述电铸工艺包括:S11、基板准备,选取表面洁净平整的电铸沉积基板;S12、贴膜,在沉积基板的一表面压贴或涂覆一层感光膜形成感光膜层;S13、曝光,对S12中的感光膜层特定区域进行曝光,其感光膜层曝光的区域为所述窗口结构所在区域,所述窗口结构外的其它区域的感光膜未被曝光;S14、显影,对经过S13步骤曝光处理后的感光膜层进行显影处理,将未被曝光区域的感光膜去除,形成待电铸沉积区域;S15、电铸,将显影处理后的电铸沉积基板置于电铸槽中电铸成型,形成具有窗口结构的金属支撑层;
S2、金属支撑层表面覆膜,在具有窗口结构的所述金属支撑层一表面覆上一层具有一定厚度的光阻形成光阻膜层;
S3、光阻膜层曝光,在所述金属支撑层具有光阻膜层的一面进行曝光处理,对预设区域进行曝光,在所述光阻膜层上形成光阻曝光区域和光阻非曝光区域;
S4、光阻膜层显影,通过显影将S3步骤中光阻非曝光区域内的光阻去除,保留光阻曝光区域的光阻,显影后形成具有开口结构的光阻膜层构成所述蒸镀用复合磁性掩模板的掩模层;
本发明中,所述金属支撑层及所述具有开口结构的光阻膜层构成所述复合磁性掩模板,所述掩模层上形成的开口结构与所述S3步骤中的光阻非曝光区域相对应,所述掩模层上形成的开口结构处于所述金属支撑层的窗口结构内部,所述金属支撑层上的每个窗口结构内部至少具有一个所述开口结构。
进一步,所述S1金属支撑层电铸制作中S15电铸步骤之后还包括:褪膜步骤,将所述金属支撑层进行褪膜处理,将所述金属支撑层窗口结构内部的感光膜全部去除。
进一步,所述褪膜步骤之前或之后还包括:剥离步骤,将所述金属支撑层从所述电铸沉积基板上剥离开来。
进一步,所述S4光阻膜层显影步骤之后还包括:剥离步骤,将所述蒸镀用复合磁性掩模板的掩模层从所述电铸沉积基板上剥离开来。
进一步,所述S4光阻膜层显影步骤之后还包括:烘烤固化步骤,将经过S4光阻膜层显影步骤后形成所述复合磁性掩模板置于烤箱中进行烘烤 固化。
进一步,所述光阻膜层的厚度不大于所述金属支撑层的厚度。
进一步,所述S15电铸步骤中,所述电铸形成的金属支撑层厚度大于所述S12贴膜步骤中的感光干膜厚度,形成的所述金属支撑层具有收缩型的窗口结构。
进一步,所述金属支撑层上的所述窗口结构为阵列方式排布。
进一步,所述S2金属支撑层表面覆膜步骤中是采用光阻干膜进行压覆成型方式或光阻湿膜涂覆成型方式进行覆膜的。
进一步,所述金属支撑层的厚度范围为:20-60μm;所述掩模层的厚度范围为:2-20μm;所述掩模层上形成的所述开口结构的尺寸范围为15-40μm。
作为优选,本发明中所述金属支撑层的材料为镍基合金,例如为镍铁合金。
根据本专利背景技术中对现有技术所述,传统掩模板的构成材质全部为金属合金,本发明提供了一个完全不同于现有蚀刻工艺制作掩模板的方法,通过该方法制作的磁性掩模板具有以下优势:由于有金属掩模支撑层的作用,可以将构成掩模板的有机掩模层做的很薄,如此在保证掩模层开口具有较小高宽比的前提下,进一步将开口的宽度尺寸做的更小,从而使得形成的最终磁性掩模板能够蒸镀形成分辨率更高的OLED产品;而且由于电铸具有高精度的特性,通过电铸工艺提供的金属掩模支撑层具有较高的位置精度,进而保障最终掩模板具有较高的位置精度,以更好的适应蒸镀应用。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1所示为现有技术一种用于OLED蒸镀用掩模板的结构示意图;
图2所示为图1中A-A方向的截面放大示意图;
图3所示为本发明所提供的蒸镀用复合磁性掩模板制作流程;
图4所示为采用本发明所提供方法进行掩模板制作的实施例一示意图;
图5所示为采用本发明所提供方法进行掩模板制作的实施例二示意图;
图6所示为采用本发明所提供方法进行掩模板制作的实施例三示意图;
图7所示为采用本发明所提供方法进行掩模板制作的实施例四示意图;
图8所示为采用本发明所涉及方法制作的磁性掩模板的整体示意图;
图9所示为图8中沿B-B方向的截面示意图;
图10所示为构成磁性掩模板的掩模层整体示意图;
图11所示为构成磁性掩模板的金属支撑层整体示意图;
图12所示为图9中I区域的放大示意图;
图13所示为另一种采用本发明所涉及方法制作的磁性掩模板的整体示意图;
图14为图13中I部分的放大示意图;
图15为图14中B-B方向的截面示意图;
图16为图14反面的示意图;
图17为与本发明所涉及掩模板另一种不同结构的示意图;
图18所示为采用本发明磁性掩模板进行蒸镀有机材料的示意图。
其中,图1中,10——掩模图案,11——掩模板,12——外框,A-A——待剖截面;
图2中,20——掩模部,21——有机材料蒸镀时的掩模开口,d1——开口21的宽度尺寸,h——掩模板厚度;
图4-图7中,40为电铸沉积的基板,400为感光膜层,401为感光膜层400上曝光区域,402为未曝光的区域,403为待电铸沉积区域,41为电铸形成的金属支撑层,410为金属支撑层上窗口结构,42为光阻膜层,420为光阻膜层42上的开口结构,421为光阻曝光区域,422为光阻非曝光区域;
图8中,30为本发明蒸镀用复合磁性掩模板,311为设置在蒸镀用复合磁性掩模板30上用于蒸镀的开口结构420阵列形成的开口单元,B-B——待剖截面,d2为相邻两开口单元311之间的间隙宽度;
图9中,I为待放大的区域,411为两相邻窗口结构410之间的支撑条,
图10中,312为光阻膜层42上相邻两开口单元311之间的间隙;
图11中,411为两相邻窗口结构410之间的支撑条,d4为支撑条411的宽度;
图12中,h1为掩模层的厚度(即光阻膜层的厚度),h2为金属支撑层的厚度,d3为掩模层上同一开口单元311内相邻两开口结构420之间的间距;
图13中,II为待放大区域;
图14中,B-B为待剖截面;
图18中,80为基板,81为固定掩模板组件的固定机构,82为有机蒸镀源。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“底”、“顶”、“前”、“后”、“内”、“外”、“横”、“竖”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
下面将参照附图来描述本发明磁性掩模板的制作方法,图3所示为本发明所提供的磁性掩模板制作流程;图4-图7所示为采用本发明所提供方 法进行掩模板制作的几种不同实施例示意图。图4-图7中,40为电铸沉积的基板,400为感光膜层,401为感光膜层400上曝光区域,402为未曝光的区域,403为待电铸沉积区域,41为电铸形成的金属支撑层,410为金属支撑层上窗口结构,42为光阻膜层,420为光阻膜层42上的开口结构,421为光阻曝光区域,422为光阻非曝光区域。
如图3所示,本发明所提供的磁性掩模板制作流程包括步骤:S1、金属支撑层电铸制作;S2、金属支撑层表面覆膜;S3、光阻膜层曝光;S4、光阻膜层显影。
实施例一
结合图4,本发明的实施例一展开如下:
S1、金属支撑层电铸制作,制作具有一定厚度的金属支撑层41,金属支撑层41上设置有特定的窗口结构410,金属支撑层41是采用电铸工艺制作的,具体电铸工艺包括:S11、基板准备,选取表面洁净平整的电铸沉积基板40;S12、贴膜,在沉积基板40的一表面压贴或涂覆一层感光膜形成感光膜层400;S13、曝光,对S12中的感光膜层400特定区域进行曝光,其感光膜层曝光的区域401为窗口结构410所在区域,窗口结构410外的其它区域402的感光膜未被曝光;S14、显影,对经过S13步骤曝光处理后的感光膜层400进行显影处理,将未被曝光区域402的感光膜去除,形成待电铸沉积区域403;S15、电铸,将显影处理后的电铸沉积基板40置于电铸槽中电铸成型,在待电铸沉积区域403上形成具有窗口结构410的金属支撑层41;
S2、金属支撑层表面覆膜,在具有窗口结构410的金属支撑层41一表 面覆上一层具有一定厚度的光阻形成光阻膜层42;
S3、光阻膜层曝光,在金属支撑层41具有光阻膜层42的一面进行曝光处理,对预设区域进行曝光,在光阻膜层42上形成光阻曝光区域421和光阻非曝光区域422;
S4、光阻膜层显影,通过显影将S3步骤中光阻非曝光区域422内的光阻去除,保留光阻曝光区域421的光阻,显影后形成具有开口结构420的光阻膜层42构成本发明蒸镀用复合磁性掩模板的掩模层;
本发明中,金属支撑层41及具有开口结构420的光阻膜层42构成本发明中的复合磁性掩模板,掩模层上形成的开口结构420与S3步骤中的光阻非曝光区域422相对应,掩模层上形成的开口结构420处于金属支撑层41的窗口结构410内部(开口结构420的面积小于相应的窗口结构410的面积),金属支撑层41上的每个窗口结构410内部至少具有一个开口结构420。具体在实施例一中,每个窗口结构410内部具有一个开口结构420。
在实施例一中,S15电铸步骤之后还包括:褪膜步骤(图中未示出),将金属支撑层41进行褪膜处理,将金属支撑层41窗口结构410内部的感光膜(即曝光区域401的感光膜)全部去除。
在实施例一中,褪膜步骤之前或之后还包括:剥离步骤(图中未示出),将金属支撑层41从电铸沉积基板40上剥离开来。
在一些实施例中,本发明在S4光阻膜层显影步骤之后还包括:烘烤固化步骤(图中未示出),将经过S4光阻膜层显影步骤后形成的复合磁性掩模板置于烤箱中进行烘烤固化,使得光阻膜层42具有更为稳定的性能,且与金属支撑层41之间具有较好的结合力。
为了更好的体现本发明的优势,本发明中光阻膜层42的厚度不大于金属支撑层41的厚度,通过本发明制作的掩模板用于蒸镀,其蒸镀效果直接决定于掩模板的掩模层(即具有开口结构的光阻膜层)的开口结构420,较薄的光阻膜层42能够较大程度上减小掩模板开口对蒸镀的影响。
本实施例中,作为对本发明其它技术细节的公开,为适应后期OLED显示屏上像素的排布方式,采用本发明制得磁性掩模板的金属支撑层41上窗口结构410为阵列方式排布,相应的,设置在掩模层上的开口结构420亦为阵列方式排布(后续将作进一步展开)。
本发明中,S2金属支撑层表面覆膜步骤中是采用光阻干膜进行压覆成型方式或光阻湿膜涂覆成型方式进行覆膜的。其中,采用光阻干膜进行压覆成型方式,即是将光阻预先形成一定厚度的干膜,然后通过压贴的方式使得光阻干膜附着在金属支撑层表面;采用光阻湿膜涂覆成型方式,即是将乳剂状湿膜通过机械涂覆的方式均匀涂布在金属支撑层表面。
另外,作为对本发明中构成所述磁性掩模板各层厚度的限定,所述金属支撑层41的厚度范围为:20-60μm;掩模层的厚度(即光阻膜层42的厚度)范围为:2-20μm。作为其中优选实施例,支撑层41的厚度为25μm、30μm、35μm、40μm、45μm、50μm、55μm,光阻膜层42的厚度为5μm、8μm、10μm、12μm、15μm、18μm。当然,可以理解的是,本发明在实际应用过程中,金属支撑层41的厚度范围并不局限于20-60μm,掩模层的厚度(即光阻膜层42的厚度)亦不局限于2-20μm。
在本发明中,掩模层上形成的开口结构作为最终限定蒸镀应用过程中有机材料的蒸镀质量,作为优选方案,本实施例中,掩模层上形成的开口 结构420的尺寸范围为15-40μm,具体可以设计为18μm、20μm、25μm、30μm、35μm。
本发明中金属支撑层是通过电铸成型的,其材质为镍基合金,例如为镍铁合金。
实施例二
作为本发明的实施例二,如图5所示,其与实施例一不同的是:实施例一中,金属支撑层41上的每个窗口结构410内部仅具有一个开口结构420;而本实施例中每个窗口结构410内部具有多个开口结构420。
实施例三
作为本发明的实施例三,如图6所示,其与实施例一、二不同的是:实施例一、二中“剥离步骤”是在电铸工艺完成后进行的(即金属支撑层表面覆膜步骤S2之前即完成);而在本实施例中,“剥离步骤”(作为步骤S5)是在S4光阻膜层显影步骤之后。如此设计方式能够防止较好的避免具有较薄厚度的金属支撑层41在掩模板制作过程中出现折痕等损伤。
实施例四
本实施例如图7所示,与前面三个实施例不同的是:本实施例中电铸形成金属支撑层时,电铸沉积的厚度大于S12贴膜步骤中的感光干膜厚度,形成的所述金属支撑层具有收缩型的窗口结构。如图7所示,由于电铸沉积厚度大于感光膜40的厚度,在形成金属支撑层41时,窗口结构410上端会出现一定的收缩。如此设计能够在减少金属支撑层41对蒸镀影响的同时增大金属支撑层41与光阻膜层42之间的附着面积,从而有效的提高掩模板的寿命。
为了更好的了解本发明,以下是对本发明形成的一些产品结构的具体展示。
图8至图12所展示的为采用本发明所提供技术方案制作的一种磁性掩模板的相关实施例,其具体作以下展开:
图8所示为采用本发明所涉及方法制作的磁性掩模板的整体示意图;图9所示为图8中沿B-B方向的截面示意图;图10所示为构成磁性掩模板的掩模层整体示意图;图11所示为构成磁性掩模板的金属支撑层整体示意图;图12所示为图4中I区域的放大示意图。
图8所示为采用本发明所涉及方法制作的磁性掩模板的整体示意图,其截面示意图如图9所示,磁性掩模板30由光阻膜层42和金属支撑层41两层结构构成,光阻膜层42上设置有若干由开口结构420阵列形成的开口单元311。如图12所示,相邻两开口单元311之间间隙312的宽度d2大于同一开口单元311内相邻两开口结构420之间的间距d3;金属支撑层41作为光阻膜层42的载体,金属支撑层41设置有若干镂空的窗口结构410,窗口结构410之间通过内部若干交错的支撑条411区分,如图11所示。磁性掩模板30的光阻膜层42与金属支撑层41之间紧密贴合,光阻膜层42的开口单元311与金属支撑层41的窗口结构410相对应,即如图12所示,每个由开口结构420构成的开口单元311与相应窗口结构410的位置相对应。金属支撑层41的支撑条411均设置在光阻膜层42上相邻两开口单元311之间形成的间隙312上,如图9、12所示,支撑条411的位置与开口单元311之间的间隙312位置相对应。支撑条411的宽度与光阻膜层42上相邻两开口单元311之间形成的间隙312宽度相适应,且金 属支撑层41不会对光阻膜层42的开口结构420形成遮挡,如图12所示,支撑条411的宽度d4不大于相对应的相邻两开口单元311之间间隙312的宽度d2。
作为一具体实施例,磁性掩模板的掩模层上开口单元311与金属支撑层41的镂空窗口均形成4*3的阵列,具体如图10、图11所示,开口单元311的位置一一与窗口结构410的位置相对应。
图13至图17所展示的为采用本发明所提供技术方案制作的另一种不同磁性掩模板的实施例示意图。其中,图13所示为磁性掩模板的整体示意图;图14为图13中I部分的放大示意图;图15为图14中B-B方向的截面示意图;图16为图14反面的示意图;图17为另一种结构相似的示意图。
如图14-图16所展示,本实施例中磁性掩模板金属支撑层41的窗口结构410与光阻膜层42的开口结构420为一一对应关系,即每个窗口结构410内部设置有一个开口结构420,且整体构成呈阵列排布。
不同于图14-图16所示,图17所示实施例中的每个窗口结构410内部设置有两个个开口结构420。
基于以上,采用本发明所提供的技术方案制作的掩模板结构亦可以为一个窗口结构对应3个开口结构420,甚至一个窗口结构对应更多的开口结构420。
图18所示为采用本发明磁性掩模板进行蒸镀有机材料的示意图,在密封腔室中,装配在外框12上的掩模板30通过外框12固定在固定机构 81上,掩模板30上部设置有待蒸镀的基板80,下部设置有有机蒸镀源82,有机蒸镀源82中的有机材料通过蒸发扩散到腔室内部,扩散的有机材料在经过掩模板30的镂空开口沉积到基板80上形成有机发光层。一般基板背后设置有磁性吸附装置。
本发明所涉及的掩模板保留有金属层结构,其具备传统掩模板的磁性,在后期应用过程中,可被基板背后的磁性吸附设备吸附,可进一步减小掩模板的下垂量。
另外,根据本专利背景技术中对现有技术所述,传统掩模板的构成材质全部为金属合金,本发明提供了一个完全不同于现有蚀刻工艺制作掩模板的方法,通过该方法制作的磁性掩模板具有以下优势:由于有金属掩模支撑层的作用,可以将构成掩模板的有机掩模层做的很薄,如此在保证掩模层开口具有较小高宽比的前提下,进一步将开口的宽度尺寸做的更小,从而使得形成的最终磁性掩模板能够蒸镀形成分辨率更高的OLED产品。
具体而言,通过本发明制作的掩模板最终决定有机材料沉积效果为光阻膜层42的开口结构420,由于光阻具有有机材质的特性,其比较容易实现“轻薄”化。由于具有“轻”的特性,处于其下方的金属支撑层41易于实现对其支撑;而“薄”的特征,使得设置于其上的开口结构42能够较为容易实现小尺寸开口设计。
本发明发明内容中“蒸镀用磁性掩模板”、“磁性掩模板”、“掩模板”系为同一概念;本发明中,需要注意的是,光阻、感光膜为两个不同的概念,虽然其均为具有感光特性的材质,但相比较而言,曝光后的光阻比曝光后的感光膜具有更为稳定的性能,光阻在曝光后是作为永久性材料使用 的,其不容易被外界损坏,而感光膜仅为蚀刻辅助材料。
另外,任何提及“一个实施例”、“实施例”、“示意性实施例”等意指结合该实施例描述的具体构件、结构或者特点包含于本发明的至少一个实施例中。在本说明书各处的该示意性表述不一定指的是相同的实施例。而且,当结合任何实施例描述具体构件、结构或者特点时,所主张的是,结合其他的实施例实现这样的构件、结构或者特点均落在本领域技术人员的范围之内。
尽管参照本发明的多个示意性实施例对本发明的具体实施方式进行了详细的描述,但是必须理解,本领域技术人员可以设计出多种其他的改进和实施例,这些改进和实施例将落在本发明原理的精神和范围之内。具体而言,在前述公开、附图以及权利要求的范围之内,可以在零部件和/或者从属组合布局的布置方面作出合理的变型和改进,而不会脱离本发明的精神。除了零部件和/或布局方面的变型和改进,其范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种蒸镀用复合磁性掩模板的制作方法,其包括以下步骤:
    S1、金属支撑层电铸制作,制作具有一定厚度的金属支撑层,所述金属支撑层上设置有特定的窗口结构,所述金属支撑层是采用电铸工艺制作的,所述电铸工艺包括:S11、基板准备,选取表面洁净平整的电铸沉积基板;S12、贴膜,在沉积基板的一表面压贴或涂覆一层感光膜形成感光膜层;S13、曝光,对S12中的感光膜层特定区域进行曝光,其感光膜层曝光的区域为所述窗口结构所在区域,所述窗口结构外的其它区域的感光膜未被曝光;S14、显影,对经过S13步骤曝光处理后的感光膜层进行显影处理,将未被曝光区域的感光膜去除,形成待电铸沉积区域;S15、电铸,将显影处理后的电铸沉积基板置于电铸槽中电铸成型,形成具有窗口结构的金属支撑层;
    S2、金属支撑层表面覆膜,在具有窗口结构的所述金属支撑层一表面覆上一层具有一定厚度的光阻形成光阻膜层;
    S3、光阻膜层曝光,在所述金属支撑层具有光阻膜层的一面进行曝光处理,对预设区域进行曝光,在所述光阻膜层上形成光阻曝光区域和光阻非曝光区域;
    S4、光阻膜层显影,通过显影将S3步骤中光阻非曝光区域内的光阻去除,保留光阻曝光区域的光阻,显影后形成具有开口结构的光阻膜层构成所述蒸镀用复合磁性掩模板的掩模层;
    其特征在于,所述金属支撑层及所述具有开口结构的光阻膜层构成所述复合磁性掩模板,所述掩模层上形成的开口结构与所述S3步骤中的光 阻非曝光区域相对应,所述掩模层上形成的开口结构处于所述金属支撑层的窗口结构内部,所述金属支撑层上的每个窗口结构内部至少具有一个所述开口结构。
  2. 根据权利要求1所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述S1金属支撑层电铸制作中S15电铸步骤之后还包括:褪膜步骤,将所述金属支撑层进行褪膜处理,将所述金属支撑层窗口结构内部的感光膜全部去除。
  3. 根据权利要求2所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述褪膜步骤之前或之后还包括:剥离步骤,将所述金属支撑层从所述电铸沉积基板上剥离开来。
  4. 根据权利要求2所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述S4光阻膜层显影步骤之后还包括:剥离步骤,将所述蒸镀用复合磁性掩模板的掩模层从所述电铸沉积基板上剥离开来。
  5. 根据权利要求1、2、3或4所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述S4光阻膜层显影步骤之后还包括:烘烤固化步骤,将经过S4光阻膜层显影步骤后形成所述复合磁性掩模板置于烤箱中进行烘烤固化。
  6. 根据权利要求1、2、3或4所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述光阻膜层的厚度不大于所述金属支撑层的厚度。
  7. 根据权利要求1、2、3或4所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述S15电铸步骤中,所述电铸形成的金属支撑层厚度大于所述S12贴膜步骤中的感光干膜厚度,形成的所述金属支撑层具有收 缩型的窗口结构。
  8. 根据权利要求1、2、3或4所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述金属支撑层上的所述窗口结构为阵列方式排布。
  9. 根据权利要求1、2、3或4所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述S2金属支撑层表面覆膜步骤中是采用光阻干膜进行压覆成型方式或光阻湿膜涂覆成型方式进行覆膜的。
  10. 根据权利要求6所述的蒸镀用复合磁性掩模板的制作方法,其特征在于,所述金属支撑层的厚度范围为:20-60μm;所述掩模层的厚度范围为:2-20μm;所述掩模层上形成的所述开口结构的尺寸范围为15-40μm。
PCT/CN2016/095614 2015-10-20 2016-08-17 一种蒸镀用复合磁性掩模板的制作方法 WO2017067307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187013768A KR20180067660A (ko) 2015-10-20 2016-08-17 증착용 복합 자성 마스크 플레이트 제작방법
JP2018519854A JP2018534422A (ja) 2015-10-20 2016-08-17 蒸着用複合磁性マスキングプレートの作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510678505.8 2015-10-20
CN201510678505.8A CN105220110A (zh) 2015-10-20 2015-10-20 一种蒸镀用复合磁性掩模板的制作方法

Publications (1)

Publication Number Publication Date
WO2017067307A1 true WO2017067307A1 (zh) 2017-04-27

Family

ID=54989373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095614 WO2017067307A1 (zh) 2015-10-20 2016-08-17 一种蒸镀用复合磁性掩模板的制作方法

Country Status (5)

Country Link
JP (1) JP2018534422A (zh)
KR (1) KR20180067660A (zh)
CN (1) CN105220110A (zh)
TW (1) TWI591424B (zh)
WO (1) WO2017067307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276536A (zh) * 2021-05-14 2021-08-20 常州天禄显示科技有限公司 一种巨量微结构孔金属印刷模板及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063553A (zh) * 2015-08-22 2015-11-18 昆山允升吉光电科技有限公司 一种蒸镀用磁性掩模板的制作方法
CN105220110A (zh) * 2015-10-20 2016-01-06 昆山允升吉光电科技有限公司 一种蒸镀用复合磁性掩模板的制作方法
CN110158025B (zh) * 2018-05-31 2021-01-26 京东方科技集团股份有限公司 掩膜板的制作方法及掩膜板
CN108914056A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种掩膜板及其制作方法
US11137675B2 (en) * 2018-08-14 2021-10-05 Taiwan Semiconductor Manufacturing Co., Ltd. Mask and method for forming the same
CN110857461A (zh) * 2018-08-22 2020-03-03 鋆洤科技股份有限公司 精细金属掩模的制法及其制造系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589995A (zh) * 2013-10-09 2014-02-19 昆山允升吉光电科技有限公司 一种掩模板的制作方法
CN103668048A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板组件的制作方法
CN105063552A (zh) * 2015-08-22 2015-11-18 昆山允升吉光电科技有限公司 一种蒸镀用磁性掩模板
CN105063553A (zh) * 2015-08-22 2015-11-18 昆山允升吉光电科技有限公司 一种蒸镀用磁性掩模板的制作方法
CN105220110A (zh) * 2015-10-20 2016-01-06 昆山允升吉光电科技有限公司 一种蒸镀用复合磁性掩模板的制作方法
CN105714246A (zh) * 2016-04-01 2016-06-29 昆山允升吉光电科技有限公司 一种oled蒸镀用掩模板组件制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376859A (ja) * 1986-09-19 1988-04-07 Matsushita Electric Ind Co Ltd 蒸着用マスクとその製造法
JP3480617B2 (ja) * 1995-02-16 2003-12-22 株式会社リコー インクジェットプリンタヘッド用ノズル板の製作方法
JP4369199B2 (ja) * 2003-06-05 2009-11-18 九州日立マクセル株式会社 蒸着マスクとその製造方法
JP5958804B2 (ja) * 2012-03-30 2016-08-02 株式会社ブイ・テクノロジー 蒸着マスク、蒸着マスクの製造方法及び有機el表示装置の製造方法
CN103682171A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板
JP6142196B2 (ja) * 2013-03-15 2017-06-07 株式会社ブイ・テクノロジー 蒸着マスクの製造方法
KR20140130913A (ko) * 2013-05-02 2014-11-12 주식회사 티지오테크 마스크 및 마스크 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668048A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板组件的制作方法
CN103589995A (zh) * 2013-10-09 2014-02-19 昆山允升吉光电科技有限公司 一种掩模板的制作方法
CN105063552A (zh) * 2015-08-22 2015-11-18 昆山允升吉光电科技有限公司 一种蒸镀用磁性掩模板
CN105063553A (zh) * 2015-08-22 2015-11-18 昆山允升吉光电科技有限公司 一种蒸镀用磁性掩模板的制作方法
CN105220110A (zh) * 2015-10-20 2016-01-06 昆山允升吉光电科技有限公司 一种蒸镀用复合磁性掩模板的制作方法
CN105714246A (zh) * 2016-04-01 2016-06-29 昆山允升吉光电科技有限公司 一种oled蒸镀用掩模板组件制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276536A (zh) * 2021-05-14 2021-08-20 常州天禄显示科技有限公司 一种巨量微结构孔金属印刷模板及其制造方法

Also Published As

Publication number Publication date
TWI591424B (zh) 2017-07-11
TW201715292A (zh) 2017-05-01
JP2018534422A (ja) 2018-11-22
KR20180067660A (ko) 2018-06-20
CN105220110A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2017032247A1 (zh) 一种蒸镀用磁性掩模板的制作方法
TWI591424B (zh) 蒸鍍用複合磁性掩模板的製作方法
TWI591425B (zh) 小開口蒸鍍用掩模板
JP4104964B2 (ja) パターニングされたマスク被膜と支持体からなる積層構造の薄膜パターン形成用マスク及びその製造方法
CN103572206B (zh) 一种复合掩模板组件的制作方法
CN108642441A (zh) 掩膜板、掩膜组件及掩膜板制作方法
WO2019228006A1 (zh) 蒸镀用掩模板的制作方法及蒸镀用掩模板
JP2008255449A (ja) 蒸着マスクとその製造方法
WO2020009088A1 (ja) マスク及びその製造方法
WO2014036893A1 (zh) 一种复合掩模板组件
JP2020122216A (ja) 蒸着マスク及びその製造方法、蒸着マスク装置及びその製造方法、中間体、蒸着方法、並びに有機el表示装置の製造方法
WO2020181849A1 (zh) 微型精密掩膜板及其制作方法和amoled显示器件
JP2004349086A (ja) 有機el素子用の蒸着マスクとその製造方法
JP2015052985A (ja) タッチパネルの製造方法
WO2016104207A1 (ja) 蒸着マスク及びその製造方法
CN108866478B (zh) 掩膜版制作方法以及掩膜版
JP7421617B2 (ja) 蒸着マスク
JP4782548B2 (ja) 蒸着方法
JP7340160B2 (ja) 蒸着マスクの製造方法および蒸着マスク
JP2023006792A (ja) 蒸着マスク
KR101583821B1 (ko) 쉐도우 마스크의 제작방법, 금속 쉐도우 마스크 및 컬러필터 제조방법
JP2009018594A (ja) スクリーン印刷用メタルマスク及びその製造方法
CN117687265A (zh) 一种在异型结构上制备薄膜微器件的方法
JP2021123777A (ja) 蒸着マスクの製造方法および製造装置
CN105579610A (zh) 复合掩膜板及其制造方法、复合掩膜板组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018519854

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013768

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16856741

Country of ref document: EP

Kind code of ref document: A1