WO2020181849A1 - 微型精密掩膜板及其制作方法和amoled显示器件 - Google Patents

微型精密掩膜板及其制作方法和amoled显示器件 Download PDF

Info

Publication number
WO2020181849A1
WO2020181849A1 PCT/CN2019/123381 CN2019123381W WO2020181849A1 WO 2020181849 A1 WO2020181849 A1 WO 2020181849A1 CN 2019123381 W CN2019123381 W CN 2019123381W WO 2020181849 A1 WO2020181849 A1 WO 2020181849A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
mask
manufacturing
precision
metal coating
Prior art date
Application number
PCT/CN2019/123381
Other languages
English (en)
French (fr)
Inventor
陈鼎国
Original Assignee
陈鼎国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈鼎国 filed Critical 陈鼎国
Priority to CN201980083882.3A priority Critical patent/CN113286916B/zh
Priority to US17/310,789 priority patent/US20220131076A1/en
Publication of WO2020181849A1 publication Critical patent/WO2020181849A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • This application relates to the technical field of ultra-high-precision manufacturing of organic electroluminescent devices, and in particular to a micro-precision mask and a manufacturing method thereof, and an AMOLED display device.
  • OLED is an organic light-emitting diode. Compared with liquid crystal displays, OLED has the advantages of compact weight, wide viewing angle, fast response time, low temperature resistance and high luminous efficiency, and is regarded as the next generation of new display technology.
  • the organic electroluminescent film is prepared by vacuum evaporation technology, that is, the organic semiconductor material is heated in a vacuum environment, the material is sublimated by heat, and the organic film stack with the designed shape is formed on the surface of the substrate through a metal mask with a special pattern. After the continuous deposition of multiple materials to form a film, plus the anode and the cathode are plated on the upper and lower sides, an OLED light-emitting device structure with a multilayer film can be formed.
  • CMM Common Metal Mask
  • FMM precision metal mask
  • Etching precision metal mask (Fine Metal Mask, FMM) is currently the most widely used.
  • Etching metal mask is an ultra-thin metal sheet made by traditional rolling, usually an iron-nickel alloy, with a thickness of 20-100 ⁇ m .
  • the metal foil is etched by chemical liquids, forming a pattern of tens of micrometers ( ⁇ m) on the surface of the ultra-thin metal foil. This method is limited by plate thickness and etching accuracy, and currently can reach a resolution of about 400 to 500 ppi.
  • the large-size metal mask used in production is a strip-shaped etched mask.
  • the screen After the screen is stretched, it is welded on the screen frame; the required large-size mask is assembled from multiple strips, and then heated
  • the inside of the vapor deposition machine is laminated with the driving substrate to be vapor deposited, aligned, and used after being fixed.
  • the largest mass production splicing etching mask can reach 1500mm x 925mm.
  • Electroforming precision metal mask After the metal sheet is energized in the electroplating bath containing chemical solution, the surface of the metal substrate (stainless steel sheet) is gradually grown on the surface of the metal substrate (stainless steel sheet) with the required tens of micrometers ( ⁇ m) microporous pattern structure A kind of metal plating technology, the grown metal flakes are made of nickel-cobalt alloy.
  • the electroforming method can only produce small size, then after opening the net, welding the frame, and then splicing the large-size precision metal mask. At present, the maximum can reach about 730mm x 920mm.
  • the electroforming method can be used as a mask plate with a precision of 700-800ppi for AMOLED patterned thermal evaporation.
  • the hybrid precision mask is formed by forming a polyimide polymer film (6-20 ⁇ m thick) on a glass substrate, and then electroplating a metal foil.
  • This mask can be used to make high-resolution OLED products that do not require a screen.
  • the advantage of this method is that there is no need to spread the net, and because the PI layer is thinner, it can reduce the shadow effect of vapor deposition and obtain a larger light-emitting area, which may be used to make a brighter and long-life OLED display. But this technology is still in the research and development stage. Mass production has not yet been introduced.
  • the vacuum evaporation method is used to manufacture OLED screens.
  • high-precision masks In order to manufacture high-resolution screen products, high-precision masks must be introduced. At present, the etching-precision masks can only achieve 400 ⁇ 500PPI OLED screen products, and higher resolution products (400 ⁇ 800ppi OLED screen) requires the use of electroforming precision mask or hybrid mask. However, due to the lack of maturity of the latter two, AMOLED products are still limited to less than 500ppi. In addition, the high-resolution AMOLED display is limited because of the process of driving the backplane.
  • the high-precision mask production technology in the related technology cannot produce products with a resolution higher than 2000ppi, so the current production method can only produce the entire surface of white light. OLED, and then use yellow light process to make red, green and blue color film to form sub-pixels.
  • New ultra-high-precision mask technology that can directly pattern red-green-blue (RGB) OLED sub-pixels is in great need of development.
  • traditional etching masks, electroforming masks, and hybrid masks use different materials, and different positioning requirements and methods during use, resulting in a complex positioning process for the mask and low work efficiency.
  • the breakthrough in the production technology of the new high-precision mask will help the production and mass production of silicon-based micro AMOLED and glass-based (including flexible AMOLED) high-resolution AMOLED displays.
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, this application proposes a precision micro-mask (PMM) and a manufacturing method.
  • the micro-precision mask can be vapor-deposited with organic light-emitting devices to produce light emitting in red, green, blue or other colors.
  • the device is an ultra-high-resolution full-color organic light-emitting diode (OLED) display device composed of sub-pixel designs.
  • a method for manufacturing a micro-precision mask which specifically includes: S1, selecting a substrate and cleaning; S2, fabricating a mask body on the substrate, the mask body including sequentially The release layer, the first metal plating film and the second metal plating film are set, or the organic polymer layer, the first metal plating film and the second metal plating film are arranged in sequence; S3, the mask plate frame is welded on the second metal plating film and fabricated Multiple micro-holes penetrating through the mask body; or manufacturing multiple micro-holes penetrating the mask body and welding the mask frame on the second metal plating film; obtaining a micro-precision mask.
  • the step S2 includes: S21, coating and fabricating a release layer or an organic polymer layer on the substrate; S22, plating a first metal coating on the release layer or the organic polymer layer S23, plating a second metal plating film on the first metal plating film.
  • the step S3 includes: S31, welding a mask frame on the second metal coating; S32, separating the substrate from the release layer or the organic polymer layer; S33, using laser and light
  • the engraving mask is matched with laser ablation to make micro holes on the mask body to obtain a micro precision mask.
  • the first metal coating film and the second metal coating film are both grid-shaped.
  • the step S3 includes: S31, forming a photoresist layer on the second metal coating; S32, forming a micro-shaped etching hole on the photoresist layer by exposure and development technology; S33, using etching The process makes micro-holes at the positions corresponding to the etching holes on the mask body; S34, welding the mask frame on the second metal coating; S35, separating the substrate from the release layer or the organic polymer layer to obtain a micro precision mask Diaphragm.
  • the thickness of the organic polymer layer ranges from 0.5 ⁇ m to 20 ⁇ m
  • the thickness of the release layer is d1, 0.001 ⁇ m ⁇ d1 ⁇ 5 ⁇ m
  • the thickness of the first metal coating is d2 , 0.01 ⁇ m ⁇ d2 ⁇ 0.5 ⁇ m
  • the thickness of the second metal coating is d3, 0.1 ⁇ m ⁇ d3 ⁇ 100 ⁇ m
  • the material of the first metal coating is nickel, copper, titanium, silver, chromium, cobalt, gold or Any one of its alloys
  • the material of the second metal coating is any one of nickel-cobalt alloy, iron-nickel alloy or iron-nickel-carbon alloy.
  • a microporous region is defined between adjacent grids, and the micropores are provided on the organic polymer layer at a position corresponding to the microporous region;
  • the width of the grid is a, 10 ⁇ m ⁇ a ⁇ 300 ⁇ m, the size range of the microporous area is b, 1mm ⁇ b ⁇ 320mm;
  • the size range of the micropore is c, 1 ⁇ m ⁇ c ⁇ 50 ⁇ m, one of the adjacent micropores in the same micropore area The distance between them is e, 0.2 ⁇ m ⁇ e ⁇ 20 ⁇ m.
  • all the micropores on the mask body are divided into a plurality of micropore regions, each of the micropore regions includes a plurality of the micropores, and the size of the micropore region
  • the range is b, 1mm ⁇ b ⁇ 320mm, the distance between adjacent microporous areas is a, 10 ⁇ m ⁇ a ⁇ 300 ⁇ m; the size range of the micropores is c, 1 ⁇ m ⁇ c ⁇ 50 ⁇ m, the same microporous area
  • the distance between the inner adjacent micropores is e, 0.2 ⁇ m ⁇ e ⁇ 20 ⁇ m.
  • the step S21 further includes performing modification treatment on the surface of the substrate; and/or, the step S22 further includes performing surface treatment on the surface of the release layer.
  • PMM precision metal mask
  • an ultra-high resolution AMOLED display device (>1000ppi) made of the above-mentioned micro precision mask is also proposed.
  • Figure 1 is a flow chart of a method for manufacturing a micro precision mask provided by the present invention
  • FIG. 2 is a flowchart of a method for manufacturing a micro precision mask according to the first embodiment of the present application
  • Figure 2-1 is a schematic structural diagram corresponding to step S101 in Embodiment 1 of the present application.
  • Figure 2-2 is a schematic structural diagram corresponding to step S102 in the first embodiment of the present application.
  • Figure 2-3 is a schematic structural diagram corresponding to step S103 in Embodiment 1 of the present application.
  • Figure 2-4 is a schematic structural diagram corresponding to step S104 in Embodiment 1 of the present application.
  • step S105 in the first embodiment of the present application
  • FIG. 2-6 is a schematic structural diagram corresponding to step S106 in Embodiment 1 of the present application.
  • Fig. 3 is a flowchart of a method for manufacturing a micro precision mask according to a second embodiment of the present application
  • Figure 3-1 is a schematic structural diagram corresponding to step S201 in the second embodiment of the present application.
  • Figure 3-2 is a schematic structural diagram corresponding to step S202 in the second embodiment of the present application.
  • Fig. 3-3 is a schematic structural diagram corresponding to step S203 in the second embodiment of the present application.
  • Figure 3-4 is a schematic structural diagram corresponding to step S204 in the second embodiment of the present application.
  • Figure 3-5 is a schematic structural diagram corresponding to step S205 in the second embodiment of the present application.
  • 3-6 is a schematic structural diagram corresponding to step S206 in the second embodiment of the present application.
  • step S207 in the second embodiment of the present application is a schematic structural diagram corresponding to step S207 in the second embodiment of the present application.
  • FIG. 4 is a flowchart of a method for manufacturing a micro precision mask according to a third embodiment of the present application.
  • Figure 4-1 is a schematic structural diagram corresponding to step S301 in the third embodiment of the present application.
  • Figure 4-2 is a schematic structural diagram corresponding to step S302 in the third embodiment of the present application.
  • Figure 4-3 is a schematic structural diagram corresponding to step S303 in the third embodiment of the present application.
  • Fig. 4-4 is a schematic structural diagram corresponding to step S304 in the third embodiment of the present application.
  • Figure 4-5 is a schematic structural diagram corresponding to step S305 in the third embodiment of the present application.
  • 4-6 are schematic structural diagrams corresponding to step S306 in the third embodiment of the present application.
  • 4-9 are schematic structural diagrams corresponding to step S309 in the third embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of a micro precision mask according to an embodiment of the present application.
  • Fig. 6 is an enlarged schematic diagram of A in the microporous area in Fig. 1;
  • 10 substrate; 20: release layer or organic polymer layer; 30: first metal coating; 40: second metal coating; 50: mask frame; 60: photoresist layer; 70: photolithography mask;
  • 1 The laser welding area between the mask frame and the photolithographic micro-mask; 2: the alignment structure; 3: the device area in the micro-precision mask.
  • micro-precision mask and the manufacturing method thereof according to the embodiments of the present application are described below with reference to FIGS. 1-6.
  • the present invention proposes a method for manufacturing a precision metal mask (PMM), which includes the following steps:
  • the mask body includes a release layer, a first metal plating film and a second metal plating film arranged in sequence, or an organic polymer layer, a first metal plating film and a second metal plating film arranged in sequence.
  • the manufacturing method of the micro-precision mask provided by the present invention can be used to manufacture the ultra-high-precision mask, and then the ultra-high-resolution full-color AMOLED display (>1000ppi) that cannot be achieved by the traditional FMM.
  • the material of the organic polymer layer is not particularly limited, and is mainly for high material stability; low thermal expansion coefficient (below 20ppm/°C), and low water absorption ( ⁇ 1.5wt.%) are preferred. It can contain polyimide, polyamideimide, polyamide, polyethylene, polypropylene, polycarbonate, polyvinyl chloride, polystyrene, and other copolymer resins, ionic polymer resins and other polymer materials.
  • the material of the release layer includes, but is not limited to, organic film, such as polyimide coating, inorganic oxide or nitride film or other interface modifying compounds, such as silane coupling agent, which can adjust the interface between the first metal coating and the substrate Bonding material to facilitate the removal of the final micro-precision mask.
  • organic film such as polyimide coating, inorganic oxide or nitride film or other interface modifying compounds, such as silane coupling agent, which can adjust the interface between the first metal coating and the substrate Bonding material to facilitate the removal of the final micro-precision mask.
  • this embodiment provides a method for manufacturing a micro-precision mask.
  • the manufacturing method and use of the micro-precision mask according to this embodiment are described in detail below with reference to Figures 2-1 to 2-7.
  • the micro precision mask produced by this method is described in detail below with reference to Figures 2-1 to 2-7.
  • step S101 select any one of semiconductor wafers, silicon-based wafers, metal substrates, glass or other transparent substrates as the substrate 10 (that is, the substrate can be either opaque or Glass or other transparent), the surface of the selected substrate 10 is cleaned, and the surface foreign matter can be removed by a cleaning solution that can remove organic matter on the surface, ultraviolet light, or plasma plasma.
  • an organic polymer layer 20 such as a polyimide layer (ie, the organic polymer layer represented by 20 in the figure at this time) is coated on the substrate 10, and dried,
  • the thickness of the organic polymer layer 20 ranges from 0.5 to 20 ⁇ m.
  • the substrate 10 can also be subjected to surface modification treatment or coated with an organic or inorganic material interface bonding force control layer to control the organic polymer layer 20 and the substrate 10 Interfacial bonding force, then do the coating of polyimide film.
  • a first metal plating film 30 is plated on the organic polymer layer 20.
  • the surface of the organic polymer layer 20 is modified: a selective surface treatment technique is used to modify the surface of a specific area on the substrate 10 coated with the organic polymer layer 20, for example, a glass photomask is used to perform surface modification of a specific area Laser treatment, area coating, or use printing or screen coating to modify the surface of a specific area for subsequent production.
  • a first metal plating film 30 is formed on the organic polymer layer 20, and a thin first metal plating film 30 is plated on the selected area by electroplating or vacuum plating process.
  • the material of the first metal plating film 30 may contain nickel or Other metals, such as copper, titanium, silver, chromium, cobalt, gold, or alloys of these metals.
  • the thickness of the first metal coating film 30 is d2, 0.01 ⁇ m ⁇ d2 ⁇ 0.5 ⁇ m, wherein the first metal coating film 30 is grid-like on the substrate 10, and the grid of the first metal coating film 30 defines a plurality of micro In the hole area, the grid width is a, 10 ⁇ m ⁇ a ⁇ 300 ⁇ m.
  • the size range of the microporous area, that is, the distance between adjacent grids is b, 10mm ⁇ b ⁇ 320mm (but not limited to this size, but depends on the size of the AMOLED display device to be manufactured).
  • the second metal plating film 40 is plated on the first metal plating film 30, specifically: the second metal plating film 40 is formed on the first metal plating film 30 by electroplating or other vacuum plating processes.
  • the structure of the second metal coating film 40 is the same as that of the first metal coating film 30, and is also grid-shaped, and the grid size is the same.
  • the material of the second metal plating film 40 contains iron, nickel or cobalt.
  • the thickness of the second metal plating film 40 is d3, 0.1 ⁇ m ⁇ d3 ⁇ 100 ⁇ m. If the size of the PMM mask is large, or the size of the AMOLED display to be manufactured is large. You can add another yellow light process to increase the thickness of the metal in the non-microporous area to make the mask strong enough, and then perform the following steps.
  • step S105 welding the mask frame 50 on the second metal coating 40, specifically: welding the mask frame 50 adjacent to the second metal coating 40 by laser welding or other bonding methods On the peripheral edge portion of the substrate 10.
  • the mask frame 50 may be formed in a ring shape, and the part of the lower surface of the mask frame 50 adjacent to the inner periphery is welded to the part of the upper surface of the second metal plating film 40 adjacent to the outer periphery; the mask frame 50 may also be Other shapes.
  • the substrate 10 is separated from the organic polymer layer 20. Specifically, the mask is removed, and the substrate 10 and the organic polymer layer 20 on it are separated and removed from the mask structure by laser or mechanical separation technology.
  • a laser is used in cooperation with the photolithography mask 70 to open microholes at the positions of the organic polymer layer 20 corresponding to the microporous area to obtain a micro precision mask.
  • a photolithography mask 70 is set above the organic polymer layer 20, and the photolithography mask 70 is formed with micro-transmissive perforations.
  • the laser is irradiated on the photolithography mask 70, and part of the laser passes through the photolithography mask.
  • the micro-openings on the membrane plate 70 are irradiated on the organic polymer layer 20.
  • the micro-hole area of the organic polymer layer 20 irradiated by the laser will be penetrated by the laser to form micro-holes.
  • micro-holes on the micro precision mask can be used to vapor-deposit the sub-pixels in the AMOLED display device on the micro precision mask. Drive backplane with fixed position.
  • this embodiment provides another method for manufacturing a micro-precision mask.
  • the manufacturing method and method of the micro-precision mask according to this embodiment are described in detail below with reference to FIGS. 3-1 to 3-7.
  • the micro-precision mask made by this method.
  • the main body of the mask in this embodiment is a release layer 20 (a release layer represented by 20 in this embodiment), a first metal plating film 30 and a second metal plating film 40 that are sequentially arranged.
  • a substrate 10 is selected.
  • the substrate can be any of semiconductor wafers, silicon-based wafers, metal substrates, glass or other transparent substrates (that is, it can be either an opaque substrate, It may also be glass or other transparent substrates).
  • an opaque substrate is taken as an example to clean the surface of the selected substrate 10.
  • a release layer 20 (ie, the release layer represented by 20 in this embodiment) is coated on the substrate 10, and the material of the release layer 20 includes, but is not limited to, an organic film.
  • an organic film such as polyimide coating film, inorganic oxide or nitride film or other interface modifying compounds, such as silane coupling agent, can adjust the interface bonding force of the first metal coating 30 and the substrate 10 to facilitate the final micro Remove the precision mask.
  • the thickness of the release layer 20 is d1, 0.001 ⁇ m ⁇ d1 ⁇ 5 ⁇ m.
  • the first metal plating film 30 is plated on the release layer 20 by electroplating.
  • the first metal plating film 30 is a complete film on the entire surface, and the thickness of the first metal plating film 30 is d2, 0.01 ⁇ m ⁇ d2 ⁇ 0.5 ⁇ m.
  • a second metal coating film 40 is plated on the first metal coating film 30 by electroplating or other vacuum coating processes.
  • the plating film 40 of the second metal is also a thin film completed on the entire surface.
  • the thickness of the second metal plating film 40 is d3, and 0.1 ⁇ m ⁇ d3 ⁇ 100 ⁇ m. If the characteristics of the micro-precision mask require, a yellow light process can also be added to this layer to partially thicken the non-microporous area of the second metal coating 40, and then perform the following steps.
  • step S205 the mask frame 50 is welded on the second metal plating film 40.
  • the substrate 10 is separated from the release layer 20 by using laser or mechanical separation technology.
  • the first metal coating film 30, the second metal coating film 40 and the release layer 20 are formed on the first metal coating film 30, the second metal coating film 40 and the release layer 20 by using a laser and a photolithography mask 70 with a microhole pattern in the microhole area Micro-holes obtain micro-precision masks. As shown in the figure, the laser passing through the photolithography mask 70 penetrates the second metal coating film 40, the first metal coating film 30, and the release layer 20 by laser ablation to form a pattern corresponding to the photolithography mask plate. Multiple microwell arrays. The shape and size of the micro-holes are designed according to the sub-pixels of the AMOLED display device, which can be arranged in multiple rows and multiple columns.
  • the micro-hole pattern is made on the micro-precision mask by laser ablation.
  • the size of the micro-holes is in the range of c, 1 ⁇ m ⁇ c ⁇ 50 ⁇ m, where, as shown in Figures 5 and 6, the micro-precision mask forms several micro-hole areas, and the laser opens micro-holes in the micro-hole area.
  • the distance is e, 0.2 ⁇ m ⁇ e ⁇ 20 ⁇ m.
  • the micro-hole evaporation on the micro-precision mask can be used to make the sub-pixels of the display.
  • the general size range of the micro-hole area is b , 1mm ⁇ b ⁇ 320mm, corresponding to the size of the OLED display to be made; when making large-size displays, the size range b of the micro-hole area can be greater than 320mm.
  • the distance between adjacent microporous regions is a, 10 ⁇ m ⁇ a ⁇ 300 ⁇ m.
  • the difference between this embodiment 2-2 and the embodiment 2-1 lies in the different substrates and the mask body.
  • the substrate 10 selected in this embodiment is a transparent substrate, such as a glass substrate or other transparent substrates.
  • the main body of the mask in this embodiment is an organic polymer layer 20, such as a polyimide layer, (the organic polymer layer represented by 20 in this embodiment), a first metal plating film 30 and a second metal plating film 40 arranged in sequence. And the thickness of the organic polymer layer 20 ranges from 0.5 to 20 ⁇ m.
  • the production method is: S201, select the substrate 10 (transparent substrate) and clean; S202, coat the organic polymer layer 20 on the substrate 10 and dry; S203, deposit the first metal coating 30 on the organic polymer layer 20 S204, plating a second metal plating film 40 on the first metal plating film 30; S205, welding a mask frame 50 on the second metal plating film 40; S206, separating the substrate 10 from the organic polymer layer 20; S207, A micro-hole array is formed on the second metal coating film 40, the first metal coating film 30 and the organic polymer layer 20 by using a laser and a photoetching mask in cooperation with a laser ablation process, as shown in FIG. 6, to obtain a micro precision mask .
  • this embodiment provides another method for manufacturing a micro precision mask.
  • the method for manufacturing a micro precision mask according to this embodiment will be described in detail below with reference to FIGS. 4-1 to 4-9.
  • the micro precision mask (PMM) made by this method.
  • the main body of the mask in this embodiment is a release layer 20 (a release layer represented by 20 in this embodiment), a first metal plating film 30 and a second metal plating film 40 that are sequentially arranged.
  • the substrate 10 is selected.
  • the substrate can be a semiconductor wafer, a silicon-based wafer, a metal substrate, glass or other transparent substrates (that is, it can be an opaque substrate, or a glass or Any one of other transparent substrates).
  • an opaque substrate is taken as an example to clean the surface of the selected substrate 10.
  • a release layer 20 (ie, the release layer represented by 20 in this embodiment) is coated on the substrate 10, and the material of the release layer 20 includes, but is not limited to, an organic film.
  • an organic film such as polyimide coating film, inorganic oxide or oxide film or other interface modifying compounds, such as silane coupling agent, can adjust the interface bonding force between the first metal film and the substrate to facilitate the final micro-precision mask Remove the diaphragm.
  • the thickness of the release layer 20 is d1, 0.001 ⁇ m ⁇ d1 ⁇ 20 ⁇ m.
  • the first metal coating 30 is plated on the release layer 20 by electroplating or other true control coating processes.
  • the first metal plating film 30 is a complete film on the entire surface, and the thickness of the first metal plating film 30 is d2, 0.01 ⁇ m ⁇ d2 ⁇ 0.5 ⁇ m.
  • the second metal coating film 40 is plated on the first metal coating film 30 by electroplating or other vacuum coating processes.
  • the plating film 40 of the second metal is also a thin film completed on the entire surface.
  • the thickness of the second metal plating film 40 is d3, and 0.1 ⁇ m ⁇ d3 ⁇ 100 ⁇ m. If the characteristics of the micro-precision mask are required, a yellow light process can also be added to this layer, and then the non-microporous area of the second metal coating 40 is partially thickened to strengthen the structural strength of the micro-precision mask .
  • a photoresist layer 60 is coated on the second metal plating film 40, and the thickness of the photoresist layer 60 is d4, 0.5 ⁇ m ⁇ d4 ⁇ 30 ⁇ m.
  • a micro-shaped etching hole is formed on the photoresist layer 60 by using the exposure and development technology. Specifically: the use of a yellow light process glass photomask (or also known as a photolithography mask) to expose a portion of the photoresist layer 60, using development technology to make etching holes on the photoresist layer 60.
  • a yellow light process glass photomask or also known as a photolithography mask
  • the second metal plating film 40, the first metal plating film 30, and the release layer 20 exposed in the etching hole area of the photoresist layer 60 are etched into microholes using an etching process.
  • a wet etching solution process can be used first, for example, FeCl 3 or other etching solutions can be used for Invar-based materials to open holes in the first metal plating film 30 and the second metal plating film 40, and then use other etching processes to correspond to the release layer 20 A micro-hole is opened at the position of the opening. After the etching is completed, the photoresist layer 60 is removed.
  • the micro-holes are determined according to the required shape and size of the micro-precision mask.
  • the size range of the micro-holes is c, 1 ⁇ m ⁇ c ⁇ 50 ⁇ m.
  • the micro-precision mask forms a number of micro-hole areas, using etching technology and photolithography
  • the etched holes on the glue are matched in the micropore area to make micropores.
  • the distance between adjacent micropores in each micropore area is e, 0.2 ⁇ m ⁇ e ⁇ 20 ⁇ m.
  • the size range of the micro-hole area depends on the size of the AMOLED display device.
  • the general size range of the micro-hole area is b, 1 mm ⁇ b ⁇ 320 mm, and the distance between adjacent micro-hole areas is a, 10 ⁇ m ⁇ a ⁇ 300 ⁇ m, the final structure of the mask is shown in Figure 5 and Figure 6. If the structure of the micro-precision mask is required, the non-microporous area between adjacent microporous areas can be locally thickened by yellow light and metal coating processes to strengthen the PMM structure, and then perform the following steps.
  • the mask frame 50 is welded to the portion of the second metal plating film 40 adjacent to the outer periphery of the substrate 10.
  • step S309 the substrate 10 is separated from the release layer 20 to complete the fabrication of the ultra-precision micro-precision mask.
  • the difference between this embodiment 3-2 and embodiment 3-1 lies in the different substrates selected and the mask body.
  • the substrate 10 selected in this embodiment is a transparent substrate, such as a glass substrate or other transparent substrates.
  • the main body of the mask in this embodiment is an organic polymer layer 20 arranged in sequence, such as a polyimide layer (organic polymer layer represented by 20 in this embodiment), a first metal plating film 30 and a second metal plating film 40,
  • the thickness of the organic polymer layer 20 ranges from 0.5 to 20 ⁇ m.
  • the thickness d3 of the second metal plating film 40 is: 0.1 ⁇ m ⁇ d3 ⁇ 100 ⁇ m.
  • the manufacturing method is as follows: S301, selecting the substrate 10 (transparent substrate) and cleaning; S302, coating the organic polymer layer 20 on the substrate 10 and drying; S303, plating the first metal coating 30 on the organic polymer layer 20 S304, plating a second metal plating film 40 on the first metal plating film 30; S305, making a photoresist layer 60 on the second metal plating film 40; S306, using exposure and development technology to make a micro-shape on the photoresist layer 60 Etching holes; S307, using an etching process to open micro holes on the second metal plating film 40, the first metal plating film 30 and the organic polymer layer 20; S308, welding the mask frame 50 to the second metal plating film 40 adjacent to the outer periphery of the substrate 10 S309, the substrate 10 is separated from the organic polymer layer 20 to obtain a micro precision mask.
  • FIG. 6 a schematic diagram of the structure of a micro precision mask (PMM) according to an embodiment of the present application.
  • 1 represents the laser welding area outside the micro-hole area on the edge of the mask frame and the micro precision mask
  • 2 is the precision alignment structure of the mask, that is, the alignment on the micro precision mask in the figure
  • Position holes are used to make precision alignment marks (such as + fonts) on the micro precision mask (PMM) and the array backplane substrate of the OLED display device underneath in the vapor deposition machine before evaporation For precise alignment; after the alignment is confirmed, fix the two together so that the organic light-emitting device can be vapor-deposited in the sub-pixel area on the corresponding array backplane substrate through the micro holes on the PMM; micro precision mask
  • the alignment structure on the board (PMM) (such as the alignment space in the figure) will be changed and adjusted due to the difference in the alignment method of the vapor deposition machine and the precise alignment marks on the underlying array backplane substrate
  • 3 represents the micro-hole
  • the micro-precision mask (PMM) and the driving backplane substrate (which may include but not limited to silicon-based-CMOS driving backplanes, low-temperature polysilicon thin film transistors (LTPS-TFT) driving backplanes) produced by the manufacturing method of the above embodiments
  • PMM micro-precision mask
  • the driving backplane substrate which may include but not limited to silicon-based-CMOS driving backplanes, low-temperature polysilicon thin film transistors (LTPS-TFT) driving backplanes
  • LTPS-TFT low-temperature polysilicon thin film transistors
  • this micro-precision mask production method can be used to produce other organic light-emitting materials and devices that are sensitive to chemicals, moisture or oxygen, and can also be used to produce large-size glass substrates. Large-size and ultra-high-precision organic light-emitting devices or masks for displays.
  • the micro-precision mask produced in this application can produce ultra-high-resolution OLED display devices, suitable for parallel light emitting devices, suitable for active array drive OLED (AMOLED), passive dynamic array drive OLED (PMOLED), flexible and Glass-based OLED display, silicon-based micro AMOLED, can be used in the production of wearable devices, such as VR, MR/AR smart glasses, electronic skin and vehicle display equipment, can be used in mobile phones, e-books, e-newspaper, TV OLED display technologies such as computers, personal laptops, foldable and rollable OLEDs.
  • the embodiments of this patent include round wafer substrates, but the manufacturing method is also applicable to other large-scale substrates, and an ultra-high-precision mask suitable for manufacturing large-area production lines of smart phones is manufactured.
  • the display obtained according to the micro-precision mask and its manufacturing method protected by this patent is not limited to the size, shape, material, etc. disclosed in this patent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种微型精密掩膜板及其制作方法和AMOLED显示器件,制作方法包括如下步骤:S1、选取基板(10)并进行清洗;S2、在基板(10)上制作掩膜板本体,所述掩膜板本体包括依次设置的离形层(20)、第一金属镀膜(30)与第二金属镀膜(40),或依次设置的有机高分子层(20)、第一金属镀膜(30)与第二金属镀膜(40);S3、在第二金属镀膜(40)上焊接掩膜板框架(50),并制作贯穿掩膜板本体的多个微孔,或制作贯穿掩膜板本体的多个微孔并在第二金属镀膜(40)上焊接掩膜板框架(50);获得微型精密掩膜板。微型精密掩膜板可蒸镀有机发光器件,制作出以红绿蓝或其它颜色发光器件为子画素设计组合而成的超高分辨率全彩有机发光二极体(OLED)显示器件。

Description

微型精密掩膜板及其制作方法和AMOLED显示器件 技术领域
本申请涉及有机电致发光器超高精细度制作技术领域,尤其涉及一种微型精密掩膜板及其制作方法和AMOLED显示器件。
背景技术
OLED为有机发光二极管,相对于液晶显示器具有重量巧、视角广、响应时间快、耐低温和发光效率高等优点,被视为下一代新型显示技术。一般采用真空蒸镀技术制备有机电致发光薄膜,即在真空环境中加热有机半导体材料,材料受热升华,通过具有特殊图案的金属掩膜板在基板表面形成具有所设计形状的有机薄膜叠构,经历多种材料的连续沉积成膜,加上在上下各镀上阳极及阴极,即可形成具有多层薄膜的OLED发光器件结构。
蒸镀过程中,需要使用共通型金属掩模板(Clear Metal Mask,CMM)和精密型金属掩膜板,使用精密型金属掩膜板(FMM)沉积OLED的发光层,目前精密型掩膜板有三种制作方法:1.蚀刻法精密掩膜板;2.电铸法精密掩膜板;3.不需张网的混合型精密掩膜板。
蚀刻法精密金属掩膜板(Fine Metal Mask,FMM)目前使用最为广泛,蚀刻法金属掩膜板是采用传统轧延制成的超薄金属薄片,通常为铁镍合金,厚度在20~100μm间,金属薄片经历化学药液蚀刻,在超薄金属薄片表面形成数十微米(μm)的微孔图案。此方法受限于板厚与蚀刻精度,目前可达到解析度400~500ppi左右。生产用的大尺寸金属掩膜板是以条状的蚀刻后的掩膜板,张网后,焊接在网框上;由多条拼成所需要的大尺寸的掩膜板,然后置入热蒸镀机內与要被蒸镀的驱动基板叠合,对位,固定后使用。目前最大的量产用拼接的蚀刻法掩膜板可达1500mm x 925mm。
电铸法精密金属掩膜板,在含化学药液的电镀槽中利用金属片通电后,在金属基片(不锈钢薄片)表面上逐渐生长出来具有所需数十微米(μm)微孔图形结构的金属镀层的一种技术,生长成的金属薄片材质为镍钴合金为主。目前电铸法只可以制作小尺寸,然后张网后,焊接框上,再以拼接的方式做成大尺寸精密金属掩膜板。目前最大可达730mm x 920mm左右。电铸法可做精密度达700~800ppi的掩膜板供AMOLED图型化热蒸镀用。
混合型精密掩膜板,是在玻璃基板上形成聚酰亚胺聚合物薄膜(6~20μm厚)后,再电镀上金属薄片。此掩膜版可用于制作不需张网的高分辨率OLED产品。此法的优点是不需张网,且因PI层较薄,可以降低蒸镀遮蔽效应(Shadow effect)而得到较大的发光区面积,可能用以制作较亮及高寿命的OLED显示器。但这技术尚在研发阶段。还未导入量产。
真空蒸镀法制造OLED屏幕,为了制造高分辨率屏幕产品,必须导入高精密掩模板,目前蚀刻法精密掩模板只能实现400~500PPI OLED屏幕产品,需要制作更高分辨率的产 品(400~800ppi OLED屏幕)需要使用电铸法精密掩膜版、或混合型掩膜版。但因后两者的成熟度还不足,所以AMOLED产品还限制在500ppi以下为主。另外限制高分辨率的AMOLED显示器是因为驱动背板的工艺。
对于用硅基半导体晶元来制作微型AMOLED显示时,相关技术中的高精度掩膜板制作技术均无法制作出分辨率高于2000ppi的产品,所以现在的生产方式只能先制作整面的白光OLED,再用黄光制程来制作红绿蓝彩膜而形成子画素。新的可直接图型化红绿蓝(RGB)OLED子画素的超高精密度的掩膜板技术很有需要开发。而且传统的蚀刻法掩膜板、电铸法掩膜板、混合型掩膜板使用材质不同,使用过程中的定位要求和方法不同,导致掩膜板的定位过程复杂,工作效率较低。新的高精密掩膜板的制作技术的突破有助于硅基微型AMOLED及玻璃基(含柔性AMOLED)高分辨率AMOLED显示器的制作与量产。
申请内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出了一种微型精密掩膜板(Precision Micro-Mask,PMM)以及制作方法,所述微型精密掩膜板可蒸镀有机发光器件,制作出以红绿蓝或其它颜色发光器件为子画素设计组合而成的超高分辨率全彩有机发光二极体(OLED)显示器件。
按照本发明的一方面,提供了一种微型精密掩膜板的制作方法,具体包括:S1、选取基板并进行清洗;S2、在基板上制作掩膜板本体,所述掩膜板本体包括依次设置的离形层、第一金属镀膜与第二金属镀膜,或依次设置的有机高分子层、第一金属镀膜与第二金属镀膜;S3、在第二金属镀膜上焊接掩膜板框架并制作贯穿掩膜板本体的多个微孔;或制作贯穿掩膜板本体的多个微孔并在第二金属镀膜上焊接掩膜板框架;获得微型精密掩膜板。
根据本发明的一些实施例,所述步骤S2包括:S21、在基板上涂布并制作离形层或有机高分子层;S22、在离形层或有机高分子层上镀设第一金属镀膜;S23、在第一金属镀膜上镀设第二金属镀膜。
根据本发明的一些实施例,所述步骤S3包括:S31、在第二金属镀膜上焊接掩膜板框架;S32、将基板从离形层或有机高分子层上分离;S33、利用激光与光刻掩膜板配合以激光烧蚀在掩膜板本体上制作微孔,获得微型精密掩膜板。
根据本发明的一些实施例,所述第一金属镀膜和所述第二金属镀膜均为网格状。
根据本发明的一些实施例,所述步骤S3包括:S31、在第二金属镀膜上制作光阻层;S32、利用曝光显影技术在光阻层上制成微形的蚀刻孔;S33、利用蚀刻工艺在掩膜板本体上对应蚀刻孔的位置制作微孔;S34、在第二金属镀膜上焊接掩膜板框架;S35、将基板从离形层或有机高分子层上分离,获得微型精密掩膜板。
根据本发明的一些实施例,所述有机高分子层的厚度范围为0.5μm~20μm,所述离形层的厚度为d1,0.001μm≤d1≤5μm;所述第一金属镀膜的厚度为d2,0.01μm≤d2≤0.5μm;所述第二金属镀膜的厚度为d3,0.1μm≤d3≤100μm;所述第一金属镀膜的材质为镍、铜、钛、银、铬、钴、金或及其合金中的任意一种;所述第二金属镀膜的材质为镍钴合金、铁镍合金或铁镍碳合金中的任意一种。
根据本发明的一些实施例,相邻网格之间限定有微孔区,所述微孔设在所述有机高分子层上对应所述微孔区的位置;网格的宽度为a,10μm≤a≤300μm,微孔区的尺寸范围为b,1㎜≤b≤320㎜;所述微孔的尺寸范围为c,1μm≤c≤50μm,同一微孔区内相邻所述微孔之间的距离为e,0.2μm≤e≤20μm。
根据本发明的一些实施例,所述掩膜板本体上的所有微孔被分成若干个微孔区,每个所述微孔区内包括许多个所述微孔,所述微孔区的尺寸范围为b,1㎜≤b≤320㎜,相邻微孔区之间的距离为a,10μm≤a≤300μm;所述微孔的尺寸范围为c,1μm≤c≤50μm,同一微孔区内相邻所述微孔之间的距离为e,0.2μm≤e≤20μm。
根据本发明的一些实施例,所述步骤S21还包括对基板的表面进行改质处理;和/或,所述步骤S22还包括在所述离形层表面进行表面处理。
按照本发明的另一方面,还提出了由上述微型精密掩膜板的制作方法制作获得的微型精密掩膜板(Precision Metal Mask,PMM)。
按照本发明的另一方面,还提出了由上述微型精密掩膜板制作的超高分辨率AMOLED显示器件(>1000ppi)。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明提出的一种微型精密掩膜板制作方法的流程图;
图2是根据本申请实施例一的微型精密掩膜板制作方法的流程图;
图2-1是对应本申请实施例一中步骤S101的结构示意图;
图2-2是对应本申请实施例一中步骤S102的结构示意图;
图2-3是对应本申请实施例一中步骤S103的结构示意图;
图2-4是对应本申请实施例一中步骤S104的结构示意图;
图2-5是对应本申请实施例一中步骤S105的结构示意图;
图2-6是对应本申请实施例一中步骤S106的结构示意图;
图2-7是对应本申请实施例一中步骤S107的结构示意图;
图3是根据本申请实施例二的微型精密掩膜板制作方法的流程图;
图3-1是对应本申请实施例二中步骤S201的结构示意图;
图3-2是对应本申请实施例二中步骤S202的结构示意图;
图3-3是对应本申请实施例二中步骤S203的结构示意图;
图3-4是对应本申请实施例二中步骤S204的结构示意图;
图3-5是对应本申请实施例二中步骤S205的结构示意图;
图3-6是对应本申请实施例二中步骤S206的结构示意图;
图3-7是对应本申请实施例二中步骤S207的结构示意图;
图4是根据本申请实施例三的微型精密掩膜板制作方法的流程图;
图4-1是对应本申请实施例三中步骤S301的结构示意图;
图4-2是对应本申请实施例三中步骤S302的结构示意图;
图4-3是对应本申请实施例三中步骤S303的结构示意图;
图4-4是对应本申请实施例三中步骤S304的结构示意图;
图4-5是对应本申请实施例三中步骤S305的结构示意图;
图4-6是对应本申请实施例三中步骤S306的结构示意图;
图4-7是对应本申请实施例三中步骤S307的结构示意图;
图4-8是对应本申请实施例三中步骤S308的结构示意图;
图4-9是对应本申请实施例三中步骤S309的结构示意图。
图5是根据本申请实施例的微型精密掩膜板的结构示意图;
图6为图1中微孔区内的A处放大的示意图;
附图标记:
10:基板;20:离形层或有机高分子层;30:第一金属镀膜;40:第二金属镀膜;50:掩膜板框架;60:光阻层;70:光刻掩膜板;
1:掩膜板框架和光刻微掩膜之间的激光焊接区域;2:对位结构;3:微型精密掩膜板中的器件区域。
具体实施方式
下面详细描述本申请的实施例,参考附图描述的实施例是示例性的,下面详细描述本申请的实施例。
下面参照附图1-6描述根据本申请实施例的微型精密掩膜板及其制作方法。
如图1所示,本发明提出了一种微型精密掩膜板(Precision Metal Mask,PMM)的制作方法,包括如下步骤:
S1、选取基板并进行清洗;
S2、在基板上制作掩膜板本体,所述掩膜板本体包括依次设置的离形层、第一金属镀膜与第二金属镀膜,或依次设置的有机高分子层、第一金属镀膜与第二金属镀膜;
S3、在第二金属镀膜上焊接掩膜板框架并制作贯穿掩膜板本体的多个微孔;或制作贯穿掩膜板本体的多个微孔并在第二金属镀膜上焊接掩膜板框架;获得微型精密掩膜板。
本发明提出的微型精密掩膜板的制作方法可用于制作超高精密度的掩膜板,进而制作传统的FMM无法达到的超高分辨率的全彩AMOLED显示器(>1000ppi)。
有机高分子层的材料无特别限定,以高材料稳定度为主;低热膨胀系数(20ppm/℃以下),及低吸水率(<1.5wt.%)的优先选用。它可含聚酰亚胺,聚酰胺酰亚胺,聚酰胺,聚乙烯,聚丙烯,聚碳酸酯,聚氯乙烯,聚苯乙烯,及其它共聚物树脂,离子聚合物树脂等高分子材料。
离形层的材质包括但不限于有机薄膜,如聚酰亚胺涂膜,无机氧化物或氮化物薄膜或其他介面改质化合物,如硅烷偶联剂等可调整第一金属镀膜与基板的界面结合力的材料,以便于最后的微型精密掩膜板的取下。
实施例1
如图2所示,本实施例提供了一种微型精密掩膜板的制作方法,下面参考图2-1到图2-7具体描述根据本实施例的微型精密掩膜板的制作方法和采用该方法制作而成的微型精密掩膜板。
如图2-1所示,按照步骤S101,选取半导体晶圆、硅基晶圆、金属基板、玻璃或其它透明基板中的任一种作为基板10(即基板既可以是不透明的、也可以是玻璃或其它透明的),对所选取的基板10进行表面清洗,可以使用可清除表面有机物的清洗液、紫外光或等离子电浆等方法将表面异物除去。
如图2-2所示,按照步骤S102,在基板10上涂布有机高分子层20,例如聚酰亚胺层(即此时图中的20代表的有机高分子层),并烘干,其中,有机高分子层20的厚度范围为0.5~20μm。为便于最后的微型精密掩膜板的取下,也可在基板10上先做表面改质处理或是涂布有机或无机材料的界面结合力控制层以控制有机高分子层20与基板10的界面结合力,再做聚酰亚胺膜的涂布。
如图2-3所示,按照步骤S103,在有机高分子层20上镀设第一金属镀膜30。首先 对有机高分子层20的表面进行改质处理:在涂布有机高分子层20的基板10上方用选择性表面处理技术对于特定区域进行表面改质处理,例如使用玻璃光罩进行特定区域表面激光处理,区域凃布,或是使用打印或网板涂布方式在特定区域进行表面改质处理,以便后续的制作。接着,在有机高分子层20上制作第一金属镀膜30,利用电镀或真空镀膜工艺在选定的区域镀上一层薄的第一金属镀膜30,第一金属镀膜30的材料可含镍或其它的金属,如铜、钛、银、铬、钴、金或这些金属的合金。第一金属镀膜30的厚度为d2,0.01μm≤d2≤0.5μm,其中第一金属镀膜30在基板10上为网格状,第一金属镀膜30的网格与网格间界定出多个微孔区,网格的宽度为a,10μm≤a≤300μm。微孔区的尺寸范围即相邻网格之间的距离为b,10mm≤b≤320mm(但不限于这尺寸,而依要制作的AMOLED显示器件的尺寸而定)。
如图2-4所示,按照步骤S104,在第一金属镀膜30上镀设第二金属镀膜40,具体为:利用电镀或其它真空镀膜工艺在第一金属镀膜30上制作第二金属镀膜40,第二金属镀膜40的结构与第一金属镀膜30相同,也为网格状,且网格的尺寸相同。第二金属镀膜40的材料含铁,镍或钴,也可为镍钴系合金,铁镍系或铁镍碳系合金,如invar36(包含36%镍、64%铁)或Super Invar(包含32%镍、5%钴和63%铁)或Kovar(54%铁、29%镍、17%钴),第二金属镀膜40的厚度为d3,0.1μm≤d3≤100μm。若PMM掩膜板的尺寸大,或所要制作的AMOLED显示器尺寸大。可再增加一道黄光制程,在非微孔区局部的增加金属的厚度,使掩膜板有足够的强度,然后再执行下面的步骤。
如图2-5所示,按照步骤S105,在第二金属镀膜40上焊接掩膜板框架50,具体为:利用激光焊接或其它结合方式将掩膜板框架50焊接在第二金属镀膜40邻近基板10外周沿的部分上。其中,掩膜板框架50可以形成为环形,掩膜板框架50的下表面邻近内周沿的部分与第二金属镀膜40的上表面邻近外周沿的部分焊接;掩膜板框架50也可以是其它形状。
如图2-6所示,按照步骤S106,将基板10从有机高分子层20上分离。具体为:取下掩膜板,将基板10与其上的有机高分子层20利用激光或机械分离技术将其从掩膜板结构体分离取下。
如图2-7所示,按照步骤S107,利用激光与光刻掩膜板70配合在有机高分子层20对应微孔区的位置开设微孔,获得微型精密掩膜板。具体为:在有机高分子层20上方设置光刻掩膜板70,光刻掩膜板70上形成有微型透光穿孔,激光照射在光刻掩膜板70上,部分激光穿过光刻掩膜板70上的微型开口照射在有机高分子层20上,激光照射的有机高分子层20的微孔区域会被激光贯穿有机高分子层而形成微孔,微孔根据微型精密掩膜板所需形状及大小而定,微孔的尺寸范围为c,1μm≤c≤50μm,相邻微孔之 间的距离为e,0.2μm≤e≤20μm,,最终获得掩膜板的结构图如5、图6所示。在使用真空蒸镀机来制作有机发光显示器件的过程时,可以使用微型精密掩膜板(PMM)上的微孔来将AMOLED显示器件中的子画素蒸镀制作在与微型精密掩膜板对位固定后的驱动背板上。
实施例2-1
如图3所示,本实施例提供了另一种微型精密掩膜板的制作方法,下面参考图3-1到图3-7具体描述根据本实施例的微型精密掩膜板的制作方法和采用该方法制作而成的微型精密掩膜板。
本实施例的掩膜板主体为依次设置的离形层20(本实施例中20代表的离形层)、第一金属镀膜30与第二金属镀膜40。
如图3-1所示,按照步骤S201,选取基板10,该基板可以为半导体晶圆、硅基晶圆、金属基板、玻璃或其它透明基板中的任一种(即既可以是不透明基板、也可以是玻璃或其它的透明基板),本实施例以不透明基板为例,对所选取的基板10进行表面清洗。
如图3-2所示,按照步骤S202,在基板10上涂布制作离形层20(即本实施例中20代表的离形层),离形层20的材质包括但不限于有机薄膜,如聚酰亚胺涂膜,无机氧化物或氮化物薄膜或其他介面改质化合物,如硅烷偶联剂等可调整第一金属镀膜30与基板10的界面结合力的材料,以便于最后的微型精密掩膜板的取下。离形层20的厚度为d1,0.001μm≤d1≤5μm。
如图3-3所示,按照步骤S203,利用电镀在离形层20上镀设第一金属镀膜30。其中,第一金属镀膜30为整面完整的薄膜,第一金属镀膜30的厚度为d2,0.01μm≤d2≤0.5μm。
如图3-4所示,按照步骤S204,利用电镀或其它真空镀膜工艺在第一金属镀膜30上镀设第二金属镀膜40。其中,第二金属的镀膜40同样为整面完成的薄膜。第二金属镀膜40的厚度为d3,0.1μm≤d3≤100μm。若微型精密掩膜板特性需要,也可在此层添加一道黄光工艺,对第二金属镀膜40的非微孔区局部进行加厚处理,然后再执行下面的步骤。
如图3-5所示,按照步骤S205,在第二金属镀膜40上焊接掩膜板框架50。
如图3-6所示,按照步骤S206,利用激光或机械分离技术将基板10从离形层20上分离。
如图3-7所示,按照步骤S207,利用激光与制有微孔区微孔图案的光刻掩膜板70 配合在第一金属镀膜30、第二金属镀膜40和离形层20上开设微孔获得微型精密掩膜板。如图所示,透过光刻掩膜板70的激光以激光烧蚀(Laser abalation)贯穿第二金属镀膜40、第一金属镀膜30和离形层20形成与光刻掩膜板图案相应的多个微孔阵列。微孔的形状与大小依AMOLED显示器件的子像素设计,可呈多排多列状排布,经由激光烧蚀将微孔图案制作在微型精密掩膜板上,微孔的尺寸范围为c,1μm≤c≤50μm,其中,如图5和6所示,微型精密掩膜板形成若干个微孔区,激光在微孔区内开设微孔,每个微孔区内相邻微孔之间的距离为e,0.2μm≤e≤20μm,在有机发光显示器件制作过程中,可以利用微型精密掩膜板上的微孔蒸镀制作显示器的子画素,一般的微孔区的尺寸范围为b,1㎜≤b≤320㎜,与所要制作的OLED显示器大小相应;当制作大尺吋显示器时,微孔区的尺寸范围b可以大于320mm。相邻微孔区之间的距离为a,10μm≤a≤300μm。
实施例2-2
本实施例2-2与实施例2-1的区别在于,选取的基板不同及掩膜板本体不同。本实施例选取的基板10为透明基板,如玻璃基板或其它透明基板。本实施例的掩膜板主体为依次设置的有机高分子层20,例如聚酰亚胺层,(本实施例中20代表的有机高分子层)、第一金属镀膜30与第二金属镀膜40,且有机高分子层20的厚度范围为0.5~20μm。
制作方法为:S201、选取基板10(透明基板)并进行清洗;S202、在基板10上涂布有机高分子层20并烘干;S203、在有机高分子层20上镀设第一金属镀膜30;S204、在第一金属镀膜30上镀设第二金属镀膜40;S205、在第二金属镀膜40上焊接掩膜板框架50;S206、将基板10从有机高分子层20上分离;S207、利用激光与光刻掩膜板配合以激光烧蚀工艺在第二金属镀膜40、第一金属镀膜30和有机高分子层20上开设微孔阵列,如图6所示,获得微型精密掩膜板。
实施例3-1
如图4所示,本实施例提供了另一种微型精密掩膜板的制作方法,下面参考图4-1到图4-9具体描述根据本实施例的微型精密掩膜板的制作方法和采用该方法制作而成的微型精密掩膜板(PMM)。
本实施例的掩膜板主体为依次设置的离形层20(本实施例中20代表的离形层)、第一金属镀膜30与第二金属镀膜40。
如图4-1所示,按照步骤S301,选取基板10,该基板可以为半导体晶圆、硅基晶圆、金属基板、玻璃或其它透明基板(即既可以是不透明基板、也可以是玻璃或其它的透明基板)中的任一种,本实施例以不透明基板为例,对所选取的基板10进行表面 清洗。
如图4-2所示,按照步骤S302,在基板10上涂布制作离形层20(即本实施例中20代表的离形层),离形层20的材质包括但不限于有机薄膜,如聚酰亚胺涂膜,无机氧化物或氧化物薄膜或其他介面改质化合物,如硅烷偶联剂等可调整第一金属膜与基板的界面结合力的材料,以便于最后的微型精密掩膜板的取下。离形层20的厚度为d1,0.001μm≤d1≤20μm。
如图4-3所示,按照步骤S303,利用电镀或其它真控镀膜工艺在离形层20上镀设第一金属镀膜30。其中,第一金属镀膜30为整面完整的薄膜,第一金属镀膜30的厚度为d2,0.01μm≤d2≤0.5μm。
如图4-4所示,按照步骤S304,利用电镀或其它真空镀膜工艺在第一金属镀膜30上镀设第二金属镀膜40。其中,第二金属的镀膜40同样为整面完成的薄膜。第二金属镀膜40的厚度为d3,0.1μm≤d3≤100μm。若微型精密掩膜板特性需要,也可在此层之上添加一道黄光工艺,再对第二金属镀膜40的非微孔区局部进行加厚处理,以强化微型精密掩膜板的结构强度。
如图4-5所示,按照步骤S305,在第二金属镀膜40上涂布光阻层60,光阻层60的厚度为d4,0.5μm≤d4≤30μm。
如图4-6所示,按照步骤S306,利用曝光显影技术在光阻层60上制成微形的蚀刻孔。具体为:利用黄光制程的玻璃光罩(或又称光刻掩膜板)对光阻层60的部分区域进行曝光,利用显影技术在光阻层60上制成蚀刻孔.
如图4-7所示,按照步骤S307,利用蚀刻工艺将暴露在光阻层60的蚀刻孔区域内的第二金属镀膜40、第一金属镀膜30和离形层20、蚀刻制成微孔。具体为:可以先采用湿蚀刻液工艺,如Invar系材料可用FeCl 3或其它蚀刻液,在第一金属镀膜30和第二金属镀膜40开孔,然后利用其它的蚀刻工艺将离形层20对应开孔的位置开设微孔。蚀刻完成后,去除光阻层60。微孔根据微型精密掩膜板所需形状及大小而定,微孔的尺寸范围为c,1μm≤c≤50μm,其中,微型精密掩膜板形成若干个微孔区,利用蚀刻工艺与光刻胶上的蚀刻孔配合在微孔区内制成微孔,每个微孔区内相邻微孔之间的距离为e,0.2μm≤e≤20μm,在有机发光显示器件制作过程中,可以利用微孔制作子画素,微孔区尺寸范围依AMOLED显示器件的尺寸而定,一般的微孔区尺寸范围b,1㎜≤b≤320㎜,相邻微孔区之间的距离为a,10μm≤a≤300μm,最终获得掩膜板的结构图如5、图6所示。若微型精密掩膜板的结构需要,相邻微孔区之间的非微孔区的区域可以利用黄光及金属镀膜工艺进行局部加厚来强化PMM的结构,然后再执行下面的步骤。
如图4-8所示,按照步骤S308,将掩膜板框架50焊接在第二金属镀膜40邻近基 板10外周沿的部分上。
如图4-9所示,按照步骤S309,将基板10从离形层20上分离,完成超精密微型精密掩膜板的制作。
实施例3-2
本实施例3-2与实施例3-1的区别在于,选取的基板不同及掩膜板本体不同。本实施例选取的基板10为透明基板,如玻璃基板或其它透明基板。本实施例的掩膜板主体为依次设置的有机高分子层20,例如聚酰亚胺层(本实施例中20代表的有机高分子层)、第一金属镀膜30与第二金属镀膜40,且有机高分子层20的厚度范围为0.5~20μm。第二金属镀膜40的厚度d3为:0.1μm≤d3≤100μm。
制作方法为:S301、选取基板10(透明基板)并进行清洗;S302、在基板10上涂布有机高分子层20并烘干;S303、在有机高分子层20上镀设第一金属镀膜30;S304、在第一金属镀膜30上镀设第二金属镀膜40;S305、在第二金属镀膜40上制作光阻层60;S306、利用曝光显影技术在光阻层60上制成微形的蚀刻孔;S307、利用蚀刻工艺在第二金属镀膜40、第一金属镀膜30和有机高分子层20上开设微孔;S308、将掩膜板框架50焊接在第二金属镀膜40邻近基板10外周沿的部分上;S309、将基板10从有机高分子层20上分离,获得微型精密掩膜板。
如图6所示,本申请实施例的微型精密掩膜板(PMM)的结构示意图。其中,1表示掩膜板框架和微型精密掩膜板边缘的微孔区域范围外的激光焊接区域;2为掩膜板的精密对位结构,即图示中的微型精密掩膜板上的对位孔,用于在蒸镀前,在蒸镀机内,将微型精密掩膜板(PMM)与位于其下方的OLED显示器件的阵列背板基板上的精密对位标记(例如+字形)做精密对位用;对位确认后,将两者一起固定,以便将有机发光器件,透过PMM上的微孔,蒸镀在相应的阵列背板基板上的子像素区域中;微型精密掩膜板(PMM)上的对位结构(例如图示中的对位空)会因蒸镀机的对位方式及下面的阵列背板基板上的精密对位标记不同而做相应的改变与调整;3表示微型精密掩膜板中的微孔区,它与制作OLED显示器的趋动阵列背板基板上的显示器件区域相应。
将通过上述实施例的制作方法制作获得的微型精密掩膜板(PMM)与驱动背板基板(它可包含但不限于硅基-CMOS驱动背板,低温多晶硅薄膜晶体管(LTPS-TFT)驱动背板,或氧化物半导体薄膜晶体管(Oxide-TFT)驱动背板)在有机发光器件蒸镀制程用的蒸镀机中做精密对位后,将两者固定,便可蒸镀有机红绿蓝三原色(或其它发光颜色)材料及器件,有效率的制作出以红蓝绿(或其它颜色)发光器件为子画素设计的超高分辨率(>1000ppi,Pixel Per Inch)AMOLED显示器。另外,若制作的子像素形 状及尺寸一样时,不同色的发光器件蒸镀可用同一个微型精密掩膜板,制作过程中不用更换,可以提升工作效率。
除了用于OLED发光器件的制作,此微型精密掩膜板制作方法可用于制作对化学品、水气或氧气敏感的其他有机发光材料及器件,也可以应用于制作能够在大尺寸玻璃基板上制作大尺寸超高精密度的有机发光器件或显示器的掩膜板。
本申请制作获得的微型精密掩膜板可制作超高分辨率OLED显示器件,适用于发光器件並列型、适用于主动式阵列驱动OLED(AMOLED),被动式动式阵列驱动OLED(PMOLED),柔性及玻璃基的OLED显示,硅基微型AMOLED,可用于可穿戴设备的生产,如VR、MR/AR智能眼镜、电子皮肤和车载显示等设备,可以用于移动电话机、电子书、电子报纸、电视机、个人便携电脑、可折叠以及可卷曲OLED等OLED显示技术。本专利的实施例包括圆型晶圆基板,但制作方法也适用于其它大型的基板,制作出适用于制作智能手机大面积产线的超高精度掩膜板。
需要说明的是,根据本专利所保护的微型精密掩膜板及其制作方法所获得的显示器,不限于本专利所揭露的尺寸,形状,材料等。

Claims (10)

  1. 一种微型精密掩膜板的制作方法,其特征在于,包括如下步骤:
    S1、选取基板并进行清洗;
    S2、在基板上制作掩膜板本体,所述掩膜板本体包括依次设置的离形层、第一金属镀膜与第二金属镀膜,或依次设置的有机高分子层、第一金属镀膜与第二金属镀膜;
    S3、在第二金属镀膜上焊接掩膜板框架并制作贯穿掩膜板本体的多个微孔;或制作贯穿掩膜板本体的多个微孔并在第二金属镀膜上焊接掩膜板框架;
    获得微型精密掩膜板。
  2. 根据权利要求1所述的微型精密掩膜板的制作方法,其特征在于,所述步骤S2包括:
    S21、在基板上涂布并制作离形层或有机高分子层;
    S22、在离形层或有机高分子层上镀设第一金属镀膜;
    S23、在第一金属镀膜上镀设第二金属镀膜。
  3. 根据权利要求2所述的微型精密掩膜板的制作方法,其特征在于,所述步骤S3包括:
    S31、在第二金属镀膜上焊接掩膜板框架;
    S32、将基板从离形层或有机高分子层上分离;
    S33、利用激光与光刻掩膜板配合在掩膜板本体上制作微孔,获得微型精密掩膜板。
  4. 根据权利要求3所述的微型精密掩膜板的制作方法,其特征在于,所述第一金属镀膜和所述第二金属镀膜均为网格状。
  5. 根据权利要求2所述的微型精密掩膜板的制作方法,其特征在于,所述步骤S3包括:
    S31、在第二金属镀膜上制作光阻层;
    S32、利用曝光显影技术在光阻层上制成蚀刻孔;
    S33、利用蚀刻工艺在掩膜板本体上对应蚀刻孔的位置制作微孔;
    S34、在第二金属镀膜上焊接掩膜板框架;
    S35、将基板从离形层或有机高分子层上分离,获得微型精密掩膜板。
  6. 根据权利要求2所述的微型精密掩膜板的制作方法,其特征在于,所述有机高分子层的厚度范围为0.5μm~20μm,所述离形层的厚度为d1,0.001μm≤d1≤5μm;所述第一金属镀膜的厚度为d2,0.01μm≤d2≤0.5μm;所述第二金属镀膜的厚度为d3,0.1μm≤d3≤100μm;
    所述第一金属镀膜的材质为镍、铜、钛、银、铬、钴、金或及其合金中的任意一种;所述第二金属镀膜的材质为镍钴合金、铁镍合金或铁镍碳合金中的任意一种。
  7. 根据权利要求4所述的微型精密掩膜板的制作方法,其特征在于,相邻网格之间限定有微孔区,所述微孔设在所述有机高分子层上对应所述微孔区的位置;网格的宽度为a,10μm≤a≤300μm,微孔区的尺寸范围为b,1㎜≤b≤320㎜;所述微孔的尺寸范围为c,1μm≤c≤50μm,同一微孔区内相邻所述微孔之间的距离为e,0.2μm≤e≤20μm。
  8. 根据权利要求2所述的微型精密掩膜板的制作方法,其特征在于,所述掩膜板本体上的所有微孔被分成若干个微孔区,每个所述微孔区内包括许多个所述微孔,所述微孔区的尺寸范围为b,1㎜≤b≤320㎜,相邻微孔区之间的距离为a,10μm≤a≤300μm;所述微孔的尺寸范围为c,1μm≤c≤50μm,同一微孔区内相邻所述微孔之间的距离为e,0.2μm≤e≤20μm。
  9. 一种微型精密掩膜板,其特征在于,采用根据权利要求1-8中任一项所述的微型精密掩膜板的制作方法制作而成。
  10. 一种AMOLED显示器件,其特征在于,采用根据权利要求9所述的微型精密掩膜板制作而成。
PCT/CN2019/123381 2019-03-11 2019-12-05 微型精密掩膜板及其制作方法和amoled显示器件 WO2020181849A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980083882.3A CN113286916B (zh) 2019-03-11 2019-12-05 微型精密掩膜板及其制作方法和amoled显示器件
US17/310,789 US20220131076A1 (en) 2019-03-11 2019-12-05 Production of Precision Micro-Mask and the AMOLED Display Manufactured Therefrom

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962816876P 2019-03-11 2019-03-11
US201962816878P 2019-03-11 2019-03-11
US201962816872P 2019-03-11 2019-03-11
US62/816,878 2019-03-11
US62/816,872 2019-03-11
US62/816,876 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020181849A1 true WO2020181849A1 (zh) 2020-09-17

Family

ID=72427167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123381 WO2020181849A1 (zh) 2019-03-11 2019-12-05 微型精密掩膜板及其制作方法和amoled显示器件

Country Status (3)

Country Link
US (1) US20220131076A1 (zh)
CN (1) CN113286916B (zh)
WO (1) WO2020181849A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926703A (zh) * 2021-11-17 2022-01-14 陈波 一种电成型筛网的制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220091647A (ko) * 2020-12-23 2022-07-01 삼성디스플레이 주식회사 마스크 어셈블리의 제작 방법
CN115305439A (zh) * 2022-07-21 2022-11-08 浙江众凌科技有限公司 一种高强度金属遮罩
CN115747712A (zh) * 2022-08-25 2023-03-07 京东方科技集团股份有限公司 掩膜板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177496A (zh) * 2015-09-25 2015-12-23 信利(惠州)智能显示有限公司 掩膜板的制作方法
CN105807557A (zh) * 2016-05-23 2016-07-27 中国科学院光电技术研究所 一种用于光学曝光的高分辨率柔性复合掩模板及其制备方法
CN106591776A (zh) * 2016-12-28 2017-04-26 武汉华星光电技术有限公司 精细掩膜板及其制作方法
US20170247788A1 (en) * 2016-02-29 2017-08-31 Japan Display Inc. Shadow mask, film forming system using shadow mask and method of manufacturing a display device
CN107354426A (zh) * 2017-07-21 2017-11-17 京东方科技集团股份有限公司 掩膜版及掩膜版的制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108914056A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种掩膜板及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177496A (zh) * 2015-09-25 2015-12-23 信利(惠州)智能显示有限公司 掩膜板的制作方法
US20170247788A1 (en) * 2016-02-29 2017-08-31 Japan Display Inc. Shadow mask, film forming system using shadow mask and method of manufacturing a display device
CN105807557A (zh) * 2016-05-23 2016-07-27 中国科学院光电技术研究所 一种用于光学曝光的高分辨率柔性复合掩模板及其制备方法
CN106591776A (zh) * 2016-12-28 2017-04-26 武汉华星光电技术有限公司 精细掩膜板及其制作方法
CN107354426A (zh) * 2017-07-21 2017-11-17 京东方科技集团股份有限公司 掩膜版及掩膜版的制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926703A (zh) * 2021-11-17 2022-01-14 陈波 一种电成型筛网的制作方法

Also Published As

Publication number Publication date
CN113286916B (zh) 2023-05-30
US20220131076A1 (en) 2022-04-28
CN113286916A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2020181849A1 (zh) 微型精密掩膜板及其制作方法和amoled显示器件
US8701592B2 (en) Mask frame assembly, method of manufacturing the same, and method of manufacturing organic light-emitting display device using the mask frame assembly
WO2016101396A1 (zh) 掩膜板的制作方法
TWI623632B (zh) 蒸鍍用磁性掩模板的製作方法
CN108699670B (zh) 蒸镀掩模、蒸镀掩模的制造方法及有机el显示设备的制造方法
CN104532183B (zh) 高精度掩膜板的制作方法
CN109487206B (zh) 掩膜版及采用该掩膜版的掩膜装置
CN103572206B (zh) 一种复合掩模板组件的制作方法
WO2019019236A1 (zh) Oled背板的制作方法与oled面板的制作方法
WO2015100880A1 (zh) 掩膜板及其制作方法
US20150040826A1 (en) Method for manufacturing metal mask
WO2019033481A1 (zh) 一种高分子掩膜版及其制作方法和应用
WO2020224010A1 (zh) Oled 显示面板及其制备方法
CN105220110A (zh) 一种蒸镀用复合磁性掩模板的制作方法
US7253533B2 (en) Divided shadow mask for fabricating organic light emitting diode displays
WO2021147705A1 (zh) 掩模板及其制备方法、掩模板组件
JP6869253B2 (ja) マスクパターン、マスク、およびマスクの製造方法
KR20170066766A (ko) 마스크 조립체의 제조방법 및 표시 장치의 제조방법
US20170107605A1 (en) Mask and method of manufacturing the mask
US11411207B2 (en) Display panel and method of manufacturing same
TWI706046B (zh) 精細金屬遮罩的製法
WO2023108735A1 (zh) 显示面板和显示装置
WO2021223298A1 (zh) Oled像素排布结构、oled显示面板及显示面板的制作方法
TWM583556U (zh) 精細金屬遮罩
TWI486470B (zh) 蒸鍍設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918992

Country of ref document: EP

Kind code of ref document: A1