WO2021223298A1 - Oled像素排布结构、oled显示面板及显示面板的制作方法 - Google Patents

Oled像素排布结构、oled显示面板及显示面板的制作方法 Download PDF

Info

Publication number
WO2021223298A1
WO2021223298A1 PCT/CN2020/097498 CN2020097498W WO2021223298A1 WO 2021223298 A1 WO2021223298 A1 WO 2021223298A1 CN 2020097498 W CN2020097498 W CN 2020097498W WO 2021223298 A1 WO2021223298 A1 WO 2021223298A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
unit group
pixel unit
sub
oled
Prior art date
Application number
PCT/CN2020/097498
Other languages
English (en)
French (fr)
Inventor
任泓扬
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/051,181 priority Critical patent/US20210351246A1/en
Publication of WO2021223298A1 publication Critical patent/WO2021223298A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to the field of display, in particular to an OLED pixel arrangement structure, an OLED display panel and a manufacturing method of the display panel.
  • Organic light-emitting diodes (Organic light-emitting Diode, OLED) self-luminous display through the organic layer, because it does not require a backlight, it has faster response time, larger viewing angle, higher contrast and lighter components Quality, low power consumption and other characteristics are currently recognized as the most promising flat panel display technology.
  • organic light emitting diodes are composed of multilayer structures with different functions.
  • the stacking process of different layers of materials is completed by vacuum evaporation or inkjet printing (IJP) technology.
  • IJP inkjet printing
  • High-resolution mobile phone OLED displays can reach a resolution close to 600PPI through fine metal masks and evaporation technology, but the process has extremely low utilization of OLED organic materials; large-size OLED TVs are completed by inkjet printing technology, although the materials
  • the utilization rate is much higher than that of the evaporation process, but due to the size and accuracy of inkjet droplets, the resolution is low, generally around 230PPI.
  • CN106711173A proposes an OLED pixel arrangement design for making a high-resolution OLED display screen, but the design proposed in this patent is still limited by the accuracy of inkjet printing and evaporation processes, and cannot achieve ultra-high-resolution OLEDs.
  • the film thickness of the hole transport layer (HTL) can be adjusted by vacuum evaporation and FMM to adjust the microcavity effect of different colors (RGB) to achieve the purpose of color balance.
  • Corresponding hole transport layer (HTL) and light emitting layer (EML) need to be vapor-deposited separately, the production process is cumbersome and the production cost is high.
  • the prior art OLED pixel arrangement design is limited by the accuracy of inkjet printing and evaporation processes, and cannot achieve a high-resolution OLED display screen and the manufacturing method of a high-resolution OLED display screen with high production costs.
  • the purpose of the present invention is to provide an OLED pixel arrangement structure, an OLED display panel, and a method for manufacturing the display panel, so as to solve the problem that the OLED pixel arrangement design is limited by the precision of inkjet printing and evaporation processes and cannot achieve super-high resolution OLED display.
  • the present invention provides an OLED pixel arrangement structure, which includes odd-numbered rows of pixel units and even-numbered rows of pixel units that are mutually offset; both the odd-numbered rows of pixel units and the even-numbered rows of pixel units include a straight line.
  • the first pixel unit group, the second pixel unit group, and the third pixel unit group are arranged cyclically and spaced in sequence above, the first pixel unit group, the second pixel unit group, and the third pixel unit group all include Three sub-pixel units, and the arrangement of the three sub-pixel units of the first pixel unit group, the second pixel unit group, and the third pixel unit group is the same; wherein the even rows of the pixel units
  • the first pixel unit group is correspondingly arranged between the second pixel unit group and the third pixel unit group in the odd-numbered rows of the pixel unit, and the second pixel unit group in the even-numbered rows of the pixel unit is correspondingly arranged in Between the third pixel unit group in the odd row of the pixel unit and the first pixel unit group, the third pixel unit group in the even row of the pixel unit is correspondingly arranged in all the odd rows of the pixel unit Between the first pixel unit group and the second pixel unit group.
  • each RGB pixel unit includes the first pixel unit group and the second pixel unit group And one sub-pixel unit of the third pixel unit group.
  • the three sub-pixel units of the first pixel unit group, the second pixel unit group, and the third pixel unit group are different from each other and respectively include a blue sub-pixel, a red sub-pixel, and a green sub-pixel.
  • a blue sub-pixel a red sub-pixel
  • a green sub-pixel a blue sub-pixel
  • the area of the blue sub-pixel is smaller than the area of the red sub-pixel, and the area of the red sub-pixel is smaller than the area of the green sub-pixel.
  • the three sub-pixel units of the first pixel unit group, the second pixel unit group, and the third pixel unit group are all arranged in a triangular manner.
  • cross-sections of the three sub-pixel units of the first pixel unit group, the second pixel unit group, and the third pixel unit group are in any one of a circle, a triangle, a rectangle, and a polygon.
  • the present invention also provides an OLED display panel, including the OLED pixel arrangement structure.
  • the OLED display panel further includes a first electrode layer, a hole injection layer (HIL), the OLED pixel arrangement structure, an electron transport layer (ETL), an electron injection layer (EIL), and a second Electrode layer; specifically, the hole injection layer is provided on the first electrode layer; the OLED pixel arrangement structure is provided on the hole injection layer, the OLED pixel arrangement structure
  • the first pixel unit group, the second pixel unit group, and the sub-pixel units of the third pixel unit group all include a hole transport layer (HTL) provided on the hole injection layer and a hole transport layer (HTL) provided on the hole.
  • the light-emitting layer (EML) on the hole transport layer; the electron transport layer is provided on the hole injection layer and covers the OLED pixel arrangement structure; the electron injection layer is provided on the electron transport layer;
  • the second electrode layer is provided on the electron injection layer.
  • the light-emitting layers of the three sub-pixel units of the first pixel unit group, the second pixel unit group, and the third pixel unit group are different from each other and respectively include blue sub-pixels and red sub-pixels And one of the green sub-pixels; the thickness of the hole transport layer corresponding to the blue sub-pixel is smaller than the thickness of the hole transport layer corresponding to the green sub-pixel, and the thickness of the hole transport layer corresponding to the green sub-pixel The thickness of the hole transport layer corresponding to the sub-pixel is smaller than the thickness of the hole transport layer corresponding to the red sub-pixel.
  • the present invention also provides a manufacturing method of an OLED display panel, which includes the following steps:
  • a negative photoresist is coated on the hole injection layer, a first mask is set above the negative photoresist, and ultraviolet light is used for exposure and development above the first mask, and a developer is used Cleaning the unexposed negative photoresist to form a first etching groove;
  • the first pixel unit group includes three sub-pixel units ;
  • a negative photoresist is coated on the hole injection layer and the first pixel unit group, a second mask is arranged above the negative photoresist, and used above the second mask UV light exposure and development, using a developer solution to clean the unexposed negative photoresist to form the second etching groove;
  • a hole transport layer and a light-emitting layer are sequentially fabricated in the second etching groove by inkjet printing, and the negative photoresist is stripped to form a second pixel unit group.
  • the second pixel unit group includes three sub-pixel units ;
  • a hole transport layer and a light-emitting layer are sequentially fabricated in the third etching groove by inkjet printing, and the negative photoresist is stripped to form a third pixel unit group.
  • the third pixel unit group includes three sub-pixel units ;
  • a second electrode layer is formed on the electron injection layer.
  • the technical effect of the present invention is to provide an OLED display panel and a manufacturing method thereof, and an OLED pixel arrangement structure.
  • a high-resolution OLED is produced by designing an OLED pixel arrangement structure and combining inkjet printing technology and photolithography technology.
  • Each layer of organic material of the display panel can be sprayed on the whole surface through inkjet printing technology, without considering the printing accuracy of inkjet printing.
  • the method is simple and the production cost is low. The way to produce 1800PPI ultra-high resolution OLED display.
  • FIG. 1 is a schematic structural diagram of an OLED pixel arrangement structure in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of an OLED display panel in the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the first mask, the second mask, and the third mask in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the second mask in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the third mask in the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of the ultraviolet light exposure and development process in the steps of a method for manufacturing a display panel in an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a process of manufacturing a hole transport layer and a light-emitting layer in steps of a method for manufacturing a display panel in an embodiment of the present invention.
  • the first pixel unit group 2. The second pixel unit group, 3. The third pixel unit group,
  • RGB pixel unit 11, odd row of pixel unit, 12, even row of pixel unit,
  • an OLED pixel arrangement structure 30 is provided in an embodiment of the present invention, which includes an odd row 11 of pixel units and an even row 12 of pixel units that are mutually offset;
  • the even-numbered rows 12 of pixel units each include a first pixel unit group 1, a second pixel unit group 2, and a third pixel unit group 3 that are arranged in a cyclical interval on a straight line.
  • the two pixel unit groups 2 and the third pixel unit group 3 each include three sub-pixel units, and three of the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3
  • the arrangement of the sub-pixel units is the same; wherein the first pixel unit group 1 of the even-numbered row 12 of the pixel unit corresponds to the second pixel unit group 2 and the third pixel-unit group 2 and the third pixel unit arranged in the odd-numbered row 11 of the pixel unit.
  • the second pixel unit group 2 of the even-numbered row 12 of the pixel unit corresponds to the third pixel unit group 3 and the first pixel unit group disposed in the odd-numbered row 11 of the pixel unit 1
  • the third pixel unit group 3 of the even-numbered row 12 of the pixel unit is correspondingly disposed between the first pixel unit group 1 and the second pixel unit group 2 of the odd-numbered row 11 of the pixel unit .
  • a plurality of RGB pixel units 4 are formed at the junction of the even-numbered rows 12 of the pixel units and the odd-numbered rows 11 of the pixel units, and the circular (with letters) solid line frame represents the OLED pixel arrangement structure 30 Divided into a plurality of RGB pixel units 4, which are RGB pixels defined by the pixel definition layer (PDL) on the OLED substrate; each RGB pixel unit 4 includes the first pixel unit group 1, the second pixel One sub-pixel unit in the unit group 2 and the third pixel unit group 3 includes three sub-pixels of R, G, and B.
  • the "Y"-shaped dashed line only indicates that the three sub-pixel units in a pixel unit group are distinguished.
  • the actual entity; the circular frame containing the three sub-pixels of R, G, and B only represents one display pixel, and there is no actual entity, that is, the area where the light-emitting layer is located.
  • the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 all include three sub-pixel units, and their arrangement is 3 IN 1
  • each A sub-pixel unit is produced by a photolithography mask to achieve a resolution of 600PPI, avoiding the inkjet printing method to limit its resolution to about 230PPI, so that each of the first pixel unit group 1 and the second pixel unit
  • Both the group 2 and the third pixel unit group 3 can reach a resolution of 1800 PPI, so that the resolution of the display panel with the OLED pixel arrangement structure 30 can be further increased to 1800 PPI.
  • the three sub-pixel units of the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 are different from each other and respectively include blue sub-pixels (B), One of the red sub-pixel (R) and the green sub-pixel (G).
  • the blue sub-pixel (B), the red sub-pixel (R), and the green sub-pixel (G) are represented by a circular frame containing three sub-pixels of B, R, and G.
  • the area of the blue sub-pixel is smaller than the area of the red sub-pixel, and the area of the red sub-pixel is smaller than the area of the green sub-pixel.
  • This arrangement can make the light-emitting colors of the blue sub-pixel (B), the red sub-pixel (R), and the green sub-pixel (G) uniform.
  • the three sub-pixel units of the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 are all arranged in a triangular manner, but the shape of the three sub-pixel units It is not limited to a triangle, as long as the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 include three sub-pixel units of the same color.
  • the three sub-pixel units of the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 are all columnar.
  • the cross-sections of the three sub-pixel units of the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 all present any one of a circle, a triangle, a rectangle, and a polygon.
  • the present invention also provides an OLED display panel 100 including the OLED pixel arrangement structure 30.
  • the OLED display panel 100 of the present invention can be applied to various occasions and can be combined with various devices and structures.
  • the OLED display panel 100 can be either a mobile terminal (mobile phone, smart wearable) or a fixed terminal (PC), It can also be other devices with display functions, such as tablet computers, televisions, display windows, and so on. It should be understood that, in order to realize functions, the OLED display panel 100 of the present invention has other devices, structures, etc. that are not shown in this specification.
  • the OLED display panel 100 further includes a first electrode layer 10, a hole injection layer (HIL) 20, the OLED pixel arrangement structure 30, and an electron transport layer that are stacked. (ETL) 40, electron injection layer (EIL) 50, and second electrode layer 60.
  • HIL hole injection layer
  • ETL electron transport layer
  • the material of the first electrode layer 10 is indium tin oxide (ITO) as an anode;
  • the hole injection layer 20 is provided on the first electrode layer 10;
  • the OLED pixel arrangement structure 30 Set on the hole injection layer 20, the sub-pixel units of the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 in the OLED pixel arrangement structure 30
  • Each includes a hole transport layer (HTL) 31 provided on the hole injection layer 20 and a light emitting layer (EML) 32 provided on the hole transport layer 31; specifically, the hole transport layer 31 Including odd-numbered rows of hole transport units and even-numbered rows of hole transport units that are mutually staggered, the odd-numbered rows of hole transport units and the even-numbered rows of hole transport units both include first rows arranged in a cyclical interval on a straight line.
  • the light-emitting layer 32 includes a first light-emitting unit group and a first light-emitting unit group respectively corresponding to the first hole transport unit group, the second hole transport unit group, and the third hole transport unit group.
  • Two light-emitting unit groups and a third light-emitting unit group, the first light-emitting unit group, the second light-emitting unit group, and the third light-emitting unit group each include three sub-light-emitting units, and the first light-emitting unit group,
  • the three sub-light-emitting units of the second light-emitting unit group and the third light-emitting unit group are respectively connected to the first hole transport unit group, the second hole transport unit group, and the third hole transport unit
  • the three sub-hole transport units of the group are correspondingly arranged;
  • the electron transport layer 40 is arranged on the hole injection layer 20 and covers the OLED pixel arrangement structure 30;
  • the electron injection layer 50 is arranged on the electron transport Layer 40;
  • the second electrode layer 60 is provided on the electron injection layer 50, and the second electrode layer 60 serves as a cathode.
  • the light-emitting layers 32 of the three sub-pixel units of the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 are different from each other and respectively include blue One of sub-pixels, red sub-pixels, and green sub-pixels; among the three sub-pixel units of the first pixel unit group 1, the second pixel unit group 2, and the third pixel unit group 3, so
  • the thickness of the light-emitting layer 32 is the same, and the thickness of the hole transport layer 31 is different. Specifically, the thickness of the hole transport layer 31 corresponding to the blue sub-pixel is smaller than that of the green sub-pixel.
  • the thickness of the hole transport layer 31 is smaller than the thickness of the hole transport layer 31 corresponding to the red sub-pixel.
  • the present invention also provides a manufacturing method of the OLED display panel 100, which includes steps S1-S10.
  • Step S1 a first electrode layer 10 is fabricated.
  • the material of the first electrode layer 10 is indium tin oxide (ITO) as an anode, and a hole injection layer is fabricated on the first electrode layer 10 by inkjet printing. 20.
  • ITO indium tin oxide
  • Step S2 Coat a negative photoresist 70 on the hole injection layer 20, and set a first mask 21 above the negative photoresist 70.
  • the structure of the first mask 21 is as follows As shown in FIG. 3, ultraviolet light (UV) is used for exposure and development above the first mask 21, and the unexposed negative photoresist 70 is cleaned by a developer to form a first etching groove.
  • UV ultraviolet light
  • Step S3 In the first etching groove, the hole transport layer 31 and the light-emitting layer 32 are sequentially formed by inkjet printing, and the negative photoresist 70 is stripped to form the first pixel unit group 1.
  • the first pixel The unit group 1 includes three sub-pixel units.
  • Step S4 Coat a negative photoresist 70 on the hole injection layer 20 and the first pixel unit group 1, and set a second mask 22 on the negative photoresist 70, the The structure of the second mask 22 is shown in FIG. 4.
  • the second mask 22 is exposed and developed with ultraviolet light, and the unexposed negative photoresist 70 is cleaned by a developer to form a second etching groove.
  • Step S5. In the second etching groove, the hole transport layer 31 and the light-emitting layer 32 are sequentially formed by inkjet printing, and the negative photoresist 70 is stripped to form the second pixel unit group 2, and the second pixel
  • the unit group 2 includes three sub-pixel units.
  • Step S6 coating a negative photoresist 70 on the hole injection layer 20, the first pixel unit group 1 and the second pixel unit group 2, and on the negative photoresist 70
  • a third mask plate 23 is provided above. The structure of the third mask plate 23 is shown in FIG.
  • the flexible photoresist 70 forms a third etching groove.
  • the negative photoresist 70 used in steps S2-S6 and the matching developer and stripping solution are compatible with organic materials and will not damage the properties of the organic materials.
  • the negative photoresist 70 has photosensitive components.
  • the photosensitive component contains a halogen solvent, a photoacid generator compound, a copolymer of a monomer containing at least one fluorine-containing group and a monomer containing at least one acid-decomposable ester-containing group.
  • each etching groove can easily achieve a resolution of 600PPI.
  • the sub-pixel units are made by inkjet printing in the etching groove, so that each layer of organic material of the OLED display panel 100 can be sprayed on the whole surface by inkjet printing technology, without considering the printing accuracy of inkjet printing.
  • an ultra-high resolution OLED display screen of 1800 PPI is realized.
  • the corresponding photolithography masks are designed to correspond to the blue sub-pixel, the green sub-pixel and the red sub-pixel.
  • the photolithography masks are the first mask 21, the second mask 22, and the third mask 23 as shown in FIGS. 3, 4, and 5 respectively. Since the area and shape of the unexposed regions of the three color sub-pixels can be designed to be the same, that is, the area and shape of the first etching groove, the second etching groove and the third etching groove are the same, It only needs to change the arrangement of the corresponding unexposed areas, so the design and production cost of the photolithography mask can be effectively reduced.
  • Step S7 In the third etching groove, the hole transport layer 31 and the light emitting layer 32 are sequentially formed by inkjet printing, and the negative photoresist 70 is stripped to form a third pixel unit group 3, and the third pixel
  • the unit group 3 includes three sub-pixel units.
  • the process of forming the hole transport layer 31 and the light emitting layer 32 in steps S3, S5, and S7 to form the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 Refer to Figure 7.
  • the three sub-pixel units of the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 formed in steps S3, S5, and S7 are arranged in the same manner.
  • the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 are arranged in a cyclical interval on a straight line to form odd rows of pixel units 11 and even rows of pixel units that are mutually offset. 12.
  • the first pixel unit group 1 of the even-numbered row 12 of the pixel unit is correspondingly disposed between the second pixel unit group 2 and the third pixel unit group 3 of the odd-numbered row 11 of the pixel unit, and the pixel
  • the second pixel unit group 2 of the even-numbered row 12 is correspondingly arranged between the third pixel unit group 3 of the odd-numbered row 11 and the first pixel unit group 1, and the even-numbered row of pixel units
  • the third pixel unit group 3 of 12 is correspondingly arranged between the first pixel unit group 1 and the second pixel unit group 2 of the odd row 11 of pixel units.
  • Step S8 forming an electron transport layer 40 on the hole injection layer 20 and the OLED pixel arrangement structure 30 by inkjet printing.
  • Step S9 forming an electron injection layer 50 on the electron transport layer 40 by inkjet printing.
  • Step S10 forming a second electrode layer 60 on the electron injection layer 50 by evaporation.
  • the second electrode layer 60 serves as a cathode.
  • the completed OLED display panel 100 is shown in FIG. 2, so that a plurality of RGB pixel units 4 are formed at the junction position of the even-numbered rows 12 of the pixel units and the odd-numbered rows 11 of the pixel units, with a circular (with letters) solid line
  • the box indicates that the OLED pixel arrangement structure 30 is divided into a plurality of RGB pixel units 4, which are RGB pixels defined by the pixel definition layer (PDL) on the OLED substrate; each RGB pixel unit 4 includes the first pixel unit One sub-pixel unit in the group 1, the second pixel unit group 2 and the third pixel unit group 3, that is, contains three sub-pixels of R, G, and B.
  • the "Y"-shaped dashed line only indicates that one pixel unit group is distinguished
  • the three sub-pixel units within have no actual entity; the circular frame containing the three sub-pixels of R, G, and B only represents one display pixel without actual entity, that is, it represents the area where the light-emitting layer 32 is located.
  • the first pixel unit group 1, the second pixel unit group 2 and the third pixel unit group 3 all include three sub-pixel units, all of which are arranged in 3 IN 1.
  • Each sub-pixel unit can reach a resolution of 600PPI through a photolithography mask, avoiding the inkjet printing method to limit its resolution to about 230PPI, so that each of the first pixel unit group 1, the first pixel unit group Both the two pixel unit groups 2 and the third pixel unit group 3 can reach a resolution of 1800 PPI, so that the resolution of the display panel with the OLED pixel arrangement structure 30 can be further increased to 1800 PPI.
  • the negative photoresist 70 is etched to form etching grooves by photolithography technology, and each etching groove is made by a photolithography mask, so each The etching groove can easily achieve a resolution of 600PPI.
  • the sub-pixel units are made by inkjet printing in the etching groove, so that each layer of organic material of the OLED display panel 100 can be sprayed on the whole surface by inkjet printing technology, without considering the printing accuracy of inkjet printing.
  • an ultra-high resolution OLED display screen of 1800 PPI is realized. Since inkjet printing is sprayed on the entire surface, the printing accuracy does not need to be considered, so the production method is simple and low in cost.
  • the technical effect of the present invention is to provide an OLED display panel and a manufacturing method thereof, and an OLED pixel arrangement structure.
  • a high-resolution OLED is produced by designing an OLED pixel arrangement structure and combining inkjet printing technology and photolithography technology.
  • Each layer of organic material of the OLED display panel can be sprayed on the whole surface by inkjet printing technology, without considering the printing accuracy of inkjet printing, combined with the OLED pixel arrangement structure of the present invention, a simple method and low production are realized. Cost-effective production of 1800PPI ultra-high resolution OLED display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种OLED像素排布结构、OLED显示面板及显示面板的制作方法。OLED显示面板包括OLED像素排布结构,OLED像素排布结构包括相互错位设置的像素单元奇数行和像素单元偶数行。

Description

OLED像素排布结构、OLED显示面板及显示面板的制作方法 技术领域
本发明涉及显示领域,尤其涉及一种OLED像素排布结构、OLED显示面板及显示面板的制作方法。
背景技术
有机发光二极管 (Organic light-emitting Diode,OLED) 通过有机层自主发光显示,由于不需要背光源,因此具有更快的响应时间,更大的可视角度,更高的对比度以及更轻的元器件质量,低功耗等特点,是目前公认的最有潜力的平板显示技术。
目前,有机发光二极管由具有不同功能的多层结构组成。一般通过真空蒸镀或者喷墨打印(IJP)技术完成不同层材料的堆栈过程。高分辨的手机OLED显示屏通过精细金属掩模板和蒸镀技术可以达到接近600PPI的分辨率,但是工艺制程对OLED有机材料的利用率极低;大尺寸OLED电视通过喷墨打印技术完成,虽然材料利用率比蒸镀制程高出很多,但是受喷墨液滴大小以及精度的限制,分辨率较低,一般约在230PPI左右。
所以需要寻找既要提高OLED材料利用率,又要可以实现高分辨的OLED显示屏制程工艺。光刻技术发展的历史已经有200余年,技术设备成熟,具有完善的工艺流程。光刻技术中应用的材料造价低廉,如光刻胶,显影液等。若能通过使用光刻技术作出高分辨率的OLED显示屏,则会极大的降低成本。
CN106711173A中提出了制作高分辨率OLED显示屏的OLED像素排布设计,但是该专利中提出的设计依旧受到喷墨打印和蒸镀制程精度限制,做不到超高分辨OLED。
即使更够实现高分辨OLED显示屏,通过真空蒸镀以及FMM调节空穴传输层(HTL)的膜厚,来调节不同颜色(RGB)的微腔效应,达到平衡颜色的目的,在RGB三色对应的空穴传输层(HTL)和发光层(EML)需要分别蒸镀,制作工艺繁琐且生产成本高。
因此,现有技术的OLED像素排布设计受到喷墨打印和蒸镀制程精度限制做不到超高分辨OLED显示屏以及高分辨率OLED显示屏的制作方法的生产成本高。
技术问题
本发明的目的在于,提供一种OLED像素排布结构、OLED显示面板及显示面板都制作方法,以解决OLED像素排布设计受到喷墨打印和蒸镀制程精度限制做不到超高分辨OLED显示屏以及高分辨率OLED显示屏的制作方法的生产成本高的技术问题。
技术解决方案
为了解决上述问题,本发明提供一种OLED像素排布结构,其包括相互错位设置的像素单元奇数行和像素单元偶数行;所述像素单元奇数行和所述像素单元偶数行均包括在一直线上依次循环间隔排布的第一像素单元组、第二像素单元组以及第三像素单元组,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组均包括三个子像素单元,且所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元的排布方式一致;其中所述像素单元偶数行的所述第一像素单元组对应设置于所述像素单元奇数行的所述第二像素单元组与所述第三像素单元组之间,所述像素单元偶数行的所述第二像素单元组对应设置于所述像素单元奇数行的所述第三像素单元组与所述第一像素单元组之间,所述像素单元偶数行的所述第三像素单元组对应设置于所述像素单元奇数行的所述第一像素单元组与所述第二像素单元组之间。
进一步地,在所述像素单元偶数行与所述像素单元奇数行的相接位置形成多个RGB像素单元,每一RGB像素单元均包括所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的一个子像素单元。
进一步地,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元互不相同且分别包括蓝色子像素、红色子像素以及绿色子像素中的一种。
进一步地,所述蓝色子像素的面积小于所述红色子像素的面积,所述红色子像素的面积小于所述绿色子像素的面积。
进一步地,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元均呈三角形方式排布。
进一步地,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元的横截面均呈圆形、三角形、矩形、多边形中的任一种。
本发明还提供一种OLED显示面板,包括所述OLED像素排布结构。
进一步地,所述OLED显示面板还包括层叠设置的第一电极层、空穴注入层(HIL)、所述OLED像素排布结构、电子传输层(ETL)、电子注入层(EIL)以及第二电极层;具体地讲,所述空穴注入层设于所述第一电极层上;所述OLED像素排布结构设于所述空穴注入层上,所述OLED像素排布结构中所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的子像素单元均包括设于所述空穴注入层上的空穴传输层(HTL)以及设于所述空穴传输层上的发光层(EML);所述电子传输层设于所述空穴注入层上并覆盖所述OLED像素排布结构;所述电子注入层设于所述电子传输层上;所述第二电极层设于所述电子注入层上。
进一步地,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元的所述发光层互不相同且分别包括蓝色子像素、红色子像素以及绿色子像素中的一种;与所述蓝色子像素对应设置的所述空穴传输层的厚度小于与所述绿色子像素对应设置的所述空穴传输层的厚度,与所述绿色子像素对应设置的所述空穴传输层的厚度小于与所述红色子像素对应设置的所述空穴传输层的厚度。
本发明还提供一种OLED显示面板的制作方法,包括以下步骤:
制作第一电极层,并在所述第一电极层上通过喷墨打印方式制作空穴注入层;
在所述空穴注入层上涂布负性光刻胶,在所述负性光刻胶上方设置第一掩膜板,在所述第一掩膜板上方使用紫外光曝光显影,使用显影液清洗未被曝光的负性光刻胶形成第一蚀刻槽;
在所述第一蚀刻槽内通过喷墨打印方式依次制作空穴传输层以及发光层,剥离所述负性光刻胶形成第一像素单元组,所述第一像素单元组包括三个子像素单元;
在所述空穴注入层及所述第一像素单元组上涂布负性光刻胶,在所述负性光刻胶上方设置第二掩膜板,在所述第二掩膜板上方使用紫外光曝光显影,使用显影液清洗未被曝光的负性光刻胶形成第二蚀刻槽;
在所述第二蚀刻槽内通过喷墨打印方式依次制作空穴传输层以及发光层,剥离所述负性光刻胶形成第二像素单元组,所述第二像素单元组包括三个子像素单元;
在所述空穴注入层、所述第一像素单元组上及所述第二像素单元组上上涂布负性光刻胶,在所述负性光刻胶上方设置第三掩膜板,在所述第三掩膜板上方使用紫外光曝光显影,使用显影液清洗未被曝光的负性光刻胶形成第三蚀刻槽;
在所述第三蚀刻槽内通过喷墨打印方式依次制作空穴传输层以及发光层,剥离所述负性光刻胶形成第三像素单元组,所述第三像素单元组包括三个子像素单元;
在所述空穴注入层以及所述OLED像素排布结构上通过喷墨打印方式制作电子传输层;
在所述电子传输层上通过喷墨打印方式制作电子注入层;以及
在所述电子注入层上制作第二电极层。
有益效果
本发明的技术效果在于,提供一种OLED显示面板及其制作方法、OLED像素排布结构,通过设计一种OLED像素排布结构并将喷墨打印技术和光刻技术相结合制作高分辨的OLED显示显示面板;在制作方法中利用光刻工艺形成具有阻挡作用的负性光刻胶以及用于制作子像素单元的蚀刻槽,在蚀刻槽内通过喷墨打印方式制作子像素单元,进而实现OLED显示面板的每一层有机材料都可以通过喷墨打印技术实现整面喷涂,而不需要考虑喷墨打印的打印精度,再结合本发明的OLED像素排布结构,实现了方法简单且低生产成本的方式制作1800PPI超高分辨率的OLED显示屏。
附图说明
图1为本发明的实施例中一种OLED像素排布结构的结构示意图;
图2为本发明的第一实施例中一种OLED显示面板的结构示意图;
图3为本发明的实施例中所述第一掩膜板、所述第二掩膜板、所述第三掩膜板的结构示意图;
图4为本发明的实施例中所述第二掩膜板的结构示意图;
图5为本发明的实施例中所述第三掩膜板的结构示意图;
图6为本发明的实施例中一种显示面板的制作方法步骤中的所述紫外光曝光显影过程的结构示意图;
图7为本发明的实施例中一种显示面板的制作方法步骤中的制作空穴传输层以及发光层的过程的结构示意图。
图中部件标号如下:
1、第一像素单元组,2、第二像素单元组,3、第三像素单元组,
4、RGB像素单元,11、像素单元奇数行,12、像素单元偶数行,
21、第一掩膜板,22、第二掩膜板,23、第三掩膜板,
10、第一电极层,20、空穴注入层,30、OLED像素排布结构,
31、空穴传输层,32、发光层,40、电子传输层,
50、电子注入层,60、第二电极层,70、负性光刻胶,
100、OLED显示面板。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
请参阅图1所示,本发明实施例中提供一种OLED像素排布结构30,其包括相互错位设置的像素单元奇数行11和像素单元偶数行12;所述像素单元奇数行11和所述像素单元偶数行12均包括在一直线上依次循环间隔排布的第一像素单元组1、第二像素单元组2以及第三像素单元组3,所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3均包括三个子像素单元,且所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3的三个子像素单元的排布方式一致;其中所述像素单元偶数行12的所述第一像素单元组1对应设置于所述像素单元奇数行11的所述第二像素单元组2与所述第三像素单元组3之间,所述像素单元偶数行12的所述第二像素单元组2对应设置于所述像素单元奇数行11的所述第三像素单元组3与所述第一像素单元组1之间,所述像素单元偶数行12的所述第三像素单元组3对应设置于所述像素单元奇数行11的所述第一像素单元组1与所述第二像素单元组2之间。
如图1所示,在所述像素单元偶数行12与所述像素单元奇数行11的相接位置形成多个RGB像素单元4,圆形(带字母)实线框表示OLED像素排布结构30划分为多个RGB像素单元4,为在OLED基板上由像素定义层(PDL)定义出的RGB像素;每一RGB像素单元4均包括位于所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3中的一个子像素单元,即包含R、G、B三个子像素,”Y”型虚线仅表示区分一个像素单元组内的三个子像素单元,无实际实体;包含R、G、B三个子像素的圆形框仅表示一个显像像素,无实际实体,亦即表示发光层所在区域。
如图1所示,所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3均包括三个子像素单元,其排布方式均为3 IN 1,每一子像素单元通过光刻掩模板方式制作可达到600PPI的分辨率,避免了喷墨打印方式限制其分辨率在230PPI左右,从而每一所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3均可达到1800PPI的分辨率,使得具有所述OLED像素排布结构30的显示面板的分辨率可以进一步提高至1800PPI。
本实施例中,所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3的三个子像素单元互不相同且分别包括蓝色子像素(B)、红色子像素(R)以及绿色子像素(G)中的一种。在图1中,蓝色子像素(B)、红色子像素(R)以及绿色子像素(G)用包含B、R、G三个子像素的圆形框表示。
本实施例中,所述蓝色子像素的面积小于所述红色子像素的面积,所述红色子像素的面积小于所述绿色子像素的面积。这样设置能够使所述蓝色子像素(B)、所述红色子像素(R)以及所述绿色子像素(G)的发光颜色均匀。
本实施例中,所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3的三个子像素单元均呈三角形方式排布,但三个子像素单元的形状并不限定于三角形,只要在一个所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3内包括同色的三个子像素单元即可。
本实施例中,所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3的三个子像素单元均呈柱状。所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3的三个子像素单元的横截面均呈圆形、三角形、矩形、多边形中的任一种。
请参阅图2所示,本发明还提供一种OLED显示面板100,包括所述OLED像素排布结构30。
本发明的所述OLED显示面板100可适用于各种场合,可与各种器件、结构相结合,所述OLED显示面板100既可以是移动终端(手机、智能穿戴)或者固定终端(PC),也可为带有显示功能的其他设备,例如平板电脑、电视机、显示橱窗等。应该理解,为了实现功能,本发明的所述OLED显示面板100带有在本说明书中未示出的其他器件、结构等。
请参阅图2所示,本实施例中,所述OLED显示面板100还包括层叠设置的第一电极层10、空穴注入层(HIL)20、所述OLED像素排布结构30、电子传输层(ETL)40、电子注入层(EIL)50以及第二电极层60。
具体地讲,所述第一电极层10的材质为氧化铟锡(ITO),作为阳极;所述空穴注入层20设于所述第一电极层10上;所述OLED像素排布结构30设于所述空穴注入层20上,所述OLED像素排布结构30中所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3的子像素单元均包括设于所述空穴注入层20上的空穴传输层(HTL)31以及设于所述空穴传输层31上的发光层(EML)32;具体地,所述空穴传输层31包括相互错位设置的奇数行空穴传输单元和偶数行空穴传输单元,所述奇数行空穴传输单元和所述偶数行空穴传输单元均包括在一直线上依次循环间隔排布的第一空穴传输单元组、第二空穴传输单元组以及第三空穴传输单元组,所述第一空穴传输单元组、所述第二空穴传输单元组以及所述第三空穴传输单元组均包括三个子空穴传输单元,且所述第一空穴传输单元组、所述第二空穴传输单元组以及所述第三空穴传输单元组的三个子空穴传输单元的排布方式一致;所述发光层32包括与所述第一空穴传输单元组、所述第二空穴传输单元组以及所述第三空穴传输单元组分别对应设置的第一发光单元组、第二发光单元组以及第三发光单元组,所述第一发光单元组、所述第二发光单元组以及所述第三发光单元组均包括三个子发光单元,且所述第一发光单元组、所述第二发光单元组以及所述第三发光单元组的三个子发光单元分别与所述第一空穴传输单元组、所述第二空穴传输单元组以及所述第三空穴传输单元组的三个子空穴传输单元对应设置;所述电子传输层40设于所述空穴注入层20上并覆盖所述OLED像素排布结构30;所述电子注入层50设于所述电子传输层40上;所述第二电极层60设于所述电子注入层50上,所述第二电极层60作为阴极。
本实施例中,所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3的三个子像素单元的所述发光层32互不相同且分别包括蓝色子像素、红色子像素以及绿色子像素中的一种;在所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3的三个子像素单元中,所述发光层32的厚度相同,所述空穴传输层31的厚度不同,具体的,与所述蓝色子像素对应设置的所述空穴传输层31的厚度小于与所述绿色子像素对应设置的所述空穴传输层31的厚度,与所述绿色子像素对应设置的所述空穴传输层31的厚度小于与所述红色子像素对应设置的所述空穴传输层31的厚度。这样设置能够使所述蓝色子像素(B)、所述红色子像素(R)以及所述绿色子像素(G)的发光颜色均匀。
请参阅图2-图7所示,本发明还提供一种OLED显示面板100的制作方法,包括步骤S1-S10。
步骤S1、制作第一电极层10,所述第一电极层10的材质为氧化铟锡(ITO),作为阳极,并在所述第一电极层10上通过喷墨打印方式制作空穴注入层20。
步骤S2、在所述空穴注入层20上涂布负性光刻胶70,在所述负性光刻胶70上方设置第一掩膜板21,所述第一掩膜板21的结构如图3所示,在所述第一掩膜板21上方使用紫外光(UV)曝光显影,使用显影液清洗未被曝光的负性光刻胶70形成第一蚀刻槽。
步骤S3、在所述第一蚀刻槽内通过喷墨打印方式依次制作空穴传输层31以及发光层32,剥离所述负性光刻胶70形成第一像素单元组1,所述第一像素单元组1包括三个子像素单元。
步骤S4、在所述空穴注入层20及所述第一像素单元组1上涂布负性光刻胶70,在所述负性光刻胶70上方设置第二掩膜板22,所述第二掩膜板22的结构如图4所示,在所述第二掩膜板22上方使用紫外光曝光显影,使用显影液清洗未被曝光的负性光刻胶70形成第二蚀刻槽。
步骤S5、在所述第二蚀刻槽内通过喷墨打印方式依次制作空穴传输层31以及发光层32,剥离所述负性光刻胶70形成第二像素单元组2,所述第二像素单元组2包括三个子像素单元。
步骤S6、在所述空穴注入层20、所述第一像素单元组1上及所述第二像素单元组2上上涂布负性光刻胶70,在所述负性光刻胶70上方设置第三掩膜板23,所述第三掩膜板23的结构如图5所示,在所述第三掩膜板23上方使用紫外光曝光显影,使用显影液清洗未被曝光的负性光刻胶70形成第三蚀刻槽。
其中步骤S2、S4、S6中的所述紫外光曝光显影过程请参阅图6所示。在步骤S2-S6中所用的所述负性光刻胶70以及配套的显影液和剥离液都与有机材料兼容,不会破坏有机材料的属性,所述负性光刻胶70具有光敏组分,所述光敏组分含有卤素溶剂、光致产酸剂化合物、包含至少一个含氟基团的单体与包含至少一个可酸解含酯基团的单体的共聚物。接着用UV曝光将光掩膜板上的图像/图案转移到所述负性光刻胶70层上,从而形成第一蚀刻槽、第二蚀刻槽和第三蚀刻槽,每一蚀刻槽均由光刻掩模板的方式制作,因此每一蚀刻槽可以轻松做到600PPI的分辨率。进而在蚀刻槽内通过喷墨打印方式制作子像素单元,进而实现OLED显示面板100的每一层有机材料都可以通过喷墨打印技术实现整面喷涂,而不需要考虑喷墨打印的打印精度,再结合本发明的OLED像素排布结构30,实现了制作1800PPI超高分辨率的OLED显示屏。
针对本实施例所述第一蚀刻槽、所述第二蚀刻槽和所述第三蚀刻槽的形状设计配套相应的光刻掩模板,与蓝色子像素、绿色子像素和红色子像素对应的光刻掩模板分别为如图3、图4、图5所示的所述第一掩膜板21、所述第二掩膜板22、所述第三掩膜板23。由于三种颜色子像素对应未曝光的区域面积和形状可设计为一样的,即所述第一蚀刻槽、所述第二蚀刻槽和所述第三蚀刻槽的区域面积和形状为一样的,只需要改变对应未曝光区的排布即可,所以可以有效降低光刻掩模板的设计制作成本。
步骤S7、在所述第三蚀刻槽内通过喷墨打印方式依次制作空穴传输层31以及发光层32,剥离所述负性光刻胶70形成第三像素单元组3,所述第三像素单元组3包括三个子像素单元。
其中步骤S3、S5、S7中的制作空穴传输层31以及发光层32以形成所述第一像素单元组1、所述第二像素单元组2及所述第三像素单元组3的过程请参阅图7所示。在步骤S3、S5、S7中分别形成的所述第一像素单元组1、所述第二像素单元组2及所述第三像素单元组3的三个子像素单元的排布方式一致。所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3在一直线上依次循环间隔排布形成相互错位设置的像素单元奇数行11和像素单元偶数行12。所述像素单元偶数行12的所述第一像素单元组1对应设置于所述像素单元奇数行11的所述第二像素单元组2与所述第三像素单元组3之间,所述像素单元偶数行12的所述第二像素单元组2对应设置于所述像素单元奇数行11的所述第三像素单元组3与所述第一像素单元组1之间,所述像素单元偶数行12的所述第三像素单元组3对应设置于所述像素单元奇数行11的所述第一像素单元组1与所述第二像素单元组2之间。
步骤S8、在所述空穴注入层20以及所述OLED像素排布结构30上通过喷墨打印方式制作电子传输层40。
步骤S9、在所述电子传输层40上通过喷墨打印方式制作电子注入层50。
步骤S10、在所述电子注入层50上通过蒸镀方式制作第二电极层60。所述第二电极层60作为阴极。
制作完成的OLED显示面板100如图2所示,使得在所述像素单元偶数行12与所述像素单元奇数行11的相接位置形成多个RGB像素单元4,圆形(带字母)实线框表示OLED像素排布结构30划分为多个RGB像素单元4,为在OLED基板上由像素定义层(PDL)定义出的RGB像素;每一RGB像素单元4均包括位于所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3中的一个子像素单元,即包含R、G、B三个子像素,”Y”型虚线仅表示区分一个像素单元组内的三个子像素单元,无实际实体;包含R、G、B三个子像素的圆形框仅表示一个显像像素,无实际实体,亦即表示发光层32所在区域。
其中,所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3均包括三个子像素单元,其排布方式均为3 IN 1,每一子像素单元通过光刻掩模板方式制作可达到600PPI的分辨率,避免了喷墨打印方式限制其分辨率在230PPI左右,从而每一所述第一像素单元组1、所述第二像素单元组2以及所述第三像素单元组3均可达到1800PPI的分辨率,使得具有所述OLED像素排布结构30的显示面板的分辨率可以进一步提高至1800PPI。
本发明提供的所述OLED显示面板100的制作方法中通过光刻技术实现对负性光刻胶70的刻蚀形成蚀刻槽,每一蚀刻槽均由光刻掩模板的方式制作,因此每一蚀刻槽可以轻松做到600PPI的分辨率。进而在蚀刻槽内通过喷墨打印方式制作子像素单元,进而实现OLED显示面板100的每一层有机材料都可以通过喷墨打印技术实现整面喷涂,而不需要考虑喷墨打印的打印精度,再结合本发明的OLED像素排布结构30,实现了制作1800PPI超高分辨率的OLED显示屏。由于喷墨打印为整面喷涂,其打印精度不需要考虑,因此制作的方法简单且成本低。
本发明的技术效果在于,提供一种OLED显示面板及其制作方法、OLED像素排布结构,通过设计一种OLED像素排布结构并将喷墨打印技术和光刻技术相结合制作高分辨的OLED显示显示面板;在制作方法中利用光刻工艺形成具有阻挡作用的负性光刻胶70以及用于制作子像素单元的蚀刻槽,在蚀刻槽内通过喷墨打印方式制作子像素单元,进而实现OLED显示面板的每一层有机材料都可以通过喷墨打印技术实现整面喷涂,而不需要考虑喷墨打印的打印精度,再结合本发明的OLED像素排布结构,实现了方法简单且低生产成本的方式制作1800PPI超高分辨率的OLED显示屏。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种OLED像素排布结构,其中,包括:
    相互错位设置的像素单元奇数行和像素单元偶数行;
    所述像素单元奇数行和所述像素单元偶数行均包括在一直线上依次循环间隔排布的第一像素单元组、第二像素单元组以及第三像素单元组,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组均包括三个子像素单元,且所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元的排布方式一致;
    其中所述像素单元偶数行的所述第一像素单元组对应设置于所述像素单元奇数行的所述第二像素单元组与所述第三像素单元组之间,所述像素单元偶数行的所述第二像素单元组对应设置于所述像素单元奇数行的所述第三像素单元组与所述第一像素单元组之间,所述像素单元偶数行的所述第三像素单元组对应设置于所述像素单元奇数行的所述第一像素单元组与所述第二像素单元组之间。
  2. 根据权利要求1所述的OLED像素排布结构,其中,在所述像素单元偶数行与所述像素单元奇数行的相接位置形成多个RGB像素单元,每一RGB像素单元均包括所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的一个子像素单元。
  3. 根据权利要求1所述的OLED像素排布结构,其中,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元互不相同且分别包括蓝色子像素、红色子像素以及绿色子像素中的一种。
  4. 根据权利要求2所述的OLED像素排布结构,其中,所述蓝色子像素的面积小于所述红色子像素的面积,所述红色子像素的面积小于所述绿色子像素的面积。
  5. 根据权利要求1所述的OLED像素排布结构,其中,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元均呈三角形方式排布。
  6. 根据权利要求1所述的OLED像素排布结构,其中,所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元的横截面均呈圆形、三角形、矩形、多边形中的任一种。
  7. 一种OLED显示面板,其中,包括权利要求1所述的OLED像素排布结构。
  8. 根据权利要求7所述的OLED显示面板,其中,还包括:
    第一电极层;
    空穴注入层,设于所述第一电极层上;
    所述OLED像素排布结构设于所述空穴注入层上,所述OLED像素排布结构中所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的子像素单元均包括设于所述空穴注入层上的空穴传输层以及设于所述空穴传输层上的发光层;
    电子传输层,设于所述空穴注入层上并覆盖所述OLED像素排布结构;
    电子注入层,设于所述电子传输层上;以及
    第二电极层,设于所述电子注入层上。
  9. 根据权利要求8所述的OLED显示面板,其中,
    所述第一像素单元组、所述第二像素单元组以及所述第三像素单元组的三个子像素单元的所述发光层互不相同且分别包括蓝色子像素、红色子像素以及绿色子像素中的一种;
    与所述蓝色子像素对应设置的所述空穴传输层的厚度小于与所述绿色子像素对应设置的所述空穴传输层的厚度,与所述绿色子像素对应设置的所述空穴传输层的厚度小于与所述红色子像素对应设置的所述空穴传输层的厚度。
  10. 一种OLED显示面板的制作方法,其中,包括步骤:
    制作第一电极层,并在所述第一电极层上通过喷墨打印方式制作空穴注入层;
    在所述空穴注入层上涂布负性光刻胶,在所述负性光刻胶上方设置第一掩膜板,在所述第一掩膜板上方使用紫外光曝光显影,使用显影液清洗未被曝光的负性光刻胶形成第一蚀刻槽;
    在所述第一蚀刻槽内通过喷墨打印方式依次制作空穴传输层以及发光层,剥离所述负性光刻胶形成第一像素单元组,所述第一像素单元组包括三个子像素单元;
    在所述空穴注入层及所述第一像素单元组上涂布负性光刻胶,在所述负性光刻胶上方设置第二掩膜板,在所述第二掩膜板上方使用紫外光曝光显影,使用显影液清洗未被曝光的负性光刻胶形成第二蚀刻槽;
    在所述第二蚀刻槽内通过喷墨打印方式依次制作空穴传输层以及发光层,剥离所述负性光刻胶形成第二像素单元组,所述第二像素单元组包括三个子像素单元;
    在所述空穴注入层、所述第一像素单元组上及所述第二像素单元组上上涂布负性光刻胶,在所述负性光刻胶上方设置第三掩膜板,在所述第三掩膜板上方使用紫外光曝光显影,使用显影液清洗未被曝光的负性光刻胶形成第三蚀刻槽;
    在所述第三蚀刻槽内通过喷墨打印方式依次制作空穴传输层以及发光层,剥离所述负性光刻胶形成第三像素单元组,所述第三像素单元组包括三个子像素单元;
    在所述空穴注入层以及所述OLED像素排布结构上通过喷墨打印方式制作电子传输层;
    在所述电子传输层上通过喷墨打印方式制作电子注入层;以及
    在所述电子注入层上制作第二电极层。
PCT/CN2020/097498 2020-05-06 2020-06-22 Oled像素排布结构、oled显示面板及显示面板的制作方法 WO2021223298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/051,181 US20210351246A1 (en) 2020-05-06 2020-06-22 Pixel layout structure of oled, oled display panel, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010372915.0A CN111584553A (zh) 2020-05-06 2020-05-06 Oled像素排布结构、oled显示面板及显示面板的制作方法
CN202010372915.0 2020-05-06

Publications (1)

Publication Number Publication Date
WO2021223298A1 true WO2021223298A1 (zh) 2021-11-11

Family

ID=72117032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097498 WO2021223298A1 (zh) 2020-05-06 2020-06-22 Oled像素排布结构、oled显示面板及显示面板的制作方法

Country Status (2)

Country Link
CN (1) CN111584553A (zh)
WO (1) WO2021223298A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141832A (zh) * 2021-11-23 2022-03-04 Tcl华星光电技术有限公司 一种显示面板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134354A1 (en) * 2004-06-11 2011-06-09 Samsung Electronics Co., Ltd Liquid crystal display device
CN104241314A (zh) * 2013-06-11 2014-12-24 业鑫科技顾问股份有限公司 有机发光二极管显示面板
CN105720074A (zh) * 2014-12-03 2016-06-29 上海和辉光电有限公司 像素结构、金属掩模板及oled显示屏
CN206340547U (zh) * 2016-12-26 2017-07-18 云谷(固安)科技有限公司 Oled像素排布结构、金属掩膜板及oled显示屏
CN109065762A (zh) * 2018-08-01 2018-12-21 武汉华星光电半导体显示技术有限公司 Oled装置的制作方法及oled装置
CN110444566A (zh) * 2019-07-10 2019-11-12 武汉华星光电半导体显示技术有限公司 发光基板及显示设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275360B (zh) * 2016-04-01 2020-10-16 乐金显示有限公司 有机发光显示装置
CN107895567A (zh) * 2017-12-28 2018-04-10 惠州市华星光电技术有限公司 液晶显示面板以及液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134354A1 (en) * 2004-06-11 2011-06-09 Samsung Electronics Co., Ltd Liquid crystal display device
CN104241314A (zh) * 2013-06-11 2014-12-24 业鑫科技顾问股份有限公司 有机发光二极管显示面板
CN105720074A (zh) * 2014-12-03 2016-06-29 上海和辉光电有限公司 像素结构、金属掩模板及oled显示屏
CN206340547U (zh) * 2016-12-26 2017-07-18 云谷(固安)科技有限公司 Oled像素排布结构、金属掩膜板及oled显示屏
CN109065762A (zh) * 2018-08-01 2018-12-21 武汉华星光电半导体显示技术有限公司 Oled装置的制作方法及oled装置
CN110444566A (zh) * 2019-07-10 2019-11-12 武汉华星光电半导体显示技术有限公司 发光基板及显示设备

Also Published As

Publication number Publication date
CN111584553A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2022057436A1 (zh) 显示面板、显示面板的制备方法及显示装置
US9653526B2 (en) Pixel defining layer and manufacturing method thereof, display panel and display device
US10957751B2 (en) Pixel defining layer and manufacturing method thereof, display substrate, display panel
US10811476B2 (en) Pixel definition layer, manufacturing method thereof, display substrate and display device
WO2022057331A1 (zh) 透光显示模组、显示面板及其制备方法
WO2016101452A1 (zh) 显示基板及其制作方法、显示装置
US20220102670A1 (en) Light-transmitting display panel and method for manufacturing the same, and display panel
US11545527B2 (en) Pixel arrangement structure, high-precision metal mask, and display apparatus with hexagon pixel arrangement
CN108321178B (zh) 像素结构、掩膜板及显示装置
CN110581160B (zh) 一种显示基板及其制备方法、显示装置
WO2020164528A1 (zh) 显示基板及其制备方法、显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
WO2020172953A1 (zh) Oled显示装置及其制作方法
TWI623098B (zh) 畫素結構
WO2020118949A1 (zh) 掩膜版及采用该掩膜版的掩膜装置
US9269752B2 (en) Organic electroluminescence display
US20200127240A1 (en) Oled device manufacturing method and oled device
CN111863908A (zh) 显示基板及其制作方法、显示装置
WO2019196798A1 (zh) 像素界定层、像素结构、显示面板及显示装置
WO2021223298A1 (zh) Oled像素排布结构、oled显示面板及显示面板的制作方法
US20210359044A1 (en) Organic light emitting diode back plate and method of manufacturing same
CN110828522A (zh) 全彩amoled显示器件及其生产方法
US11889739B2 (en) OLED with electron transport layer within insulating layer
US20210351246A1 (en) Pixel layout structure of oled, oled display panel, and manufacturing method thereof
CN109817692B (zh) 像素界定层、彩色滤光膜及制造方法、自发光显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934574

Country of ref document: EP

Kind code of ref document: A1