WO2019033481A1 - 一种高分子掩膜版及其制作方法和应用 - Google Patents

一种高分子掩膜版及其制作方法和应用 Download PDF

Info

Publication number
WO2019033481A1
WO2019033481A1 PCT/CN2017/101276 CN2017101276W WO2019033481A1 WO 2019033481 A1 WO2019033481 A1 WO 2019033481A1 CN 2017101276 W CN2017101276 W CN 2017101276W WO 2019033481 A1 WO2019033481 A1 WO 2019033481A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
polymer
layer
substrate
film
Prior art date
Application number
PCT/CN2017/101276
Other languages
English (en)
French (fr)
Inventor
唐凡
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/579,344 priority Critical patent/US20190221741A1/en
Publication of WO2019033481A1 publication Critical patent/WO2019033481A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0015Production of aperture devices, microporous systems or stamps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/162Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using laser ablation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/12Production of screen printing forms or similar printing forms, e.g. stencils
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the invention belongs to the technical field of organic light emitting diode display manufacturing, and in particular to a polymer mask and a manufacturing method thereof, and an application of the polymer mask in the manufacture of an OLED.
  • OLED Organic Light Emitting Diode
  • the OLED has an anode, an organic light-emitting layer, and a cathode which are sequentially formed on a substrate.
  • each layer of the material in the OLED needs to be evaporated onto the array substrate by an evaporation process, and in the evaporation process, a corresponding Fine Metal Mask (FMM) is required.
  • the OLED material is vapor-deposited to the designed position through the opening on the FMM. Specifically, by heating the OLED material, the OLED material is slowly changed into a gaseous sublimation, and then a film is formed on the surface of the substrate through the opening of the FMM.
  • the color display OLED display devices currently put into commercial production mainly include RGB three-color OLED display devices and white light OLEDs with color filter (CF) display devices.
  • RGB three-color OLED display devices are widely used in mobile display devices, and their FMM technology is the determining factor of display device resolution.
  • the conventional FMM is a metal mask made of Invar, which is opened in the mask, and the opening position is paired with the pixel area on the vapor-deposited substrate which is pre-deposited. Should be done after the opening is completed, the netting and welding process is required. When coating, the FMM needs to be precisely aligned with the vapor-deposited substrate.
  • the size of the opening is required to be smaller and the density of the opening is required to be higher and higher. In consideration of the shadow effect, the size of the mask required is also required. The thinner, the greater the challenge of controlling TP and CD during the process of opening the net.
  • the process is as follows: the PI film is stretched and fixed by a fixture, and then bonded to the vapor-deposited substrate, and the laser is used to open the area corresponding to the pixel on the vapor-deposited substrate.
  • the hole and the pixel area form the PI mask in situ, but this process also has the following defects: (1)
  • the PI film needs to be stretched and adhered to the vapor-deposited substrate, and the laser is punched after bonding. The risk of damage to the Ag electrode on the vapor-deposited substrate. When the PI film is punched, the burning residue of the PI film will also contaminate the ITO surface.
  • the PI film is first tensioned and then perforated. After punching, the effective area of the PI film is reduced, and the tension is tightened. The force will change. At this time, adjusting the tension will change the TP CD of the PI mask. (3) Since the PI film is not magnetic at the time of coating, the PI film and the vapor-deposited substrate are difficult to closely adhere to each other to cause a large shadow.
  • the present invention provides a polymer mask and a manufacturing method and application thereof, which are easy to manufacture a polymer mask having a high pixel density, and do not require a tensioning mechanism. And the process, thereby avoiding the problem that the laser tensioning needs to change the magnitude of the tension and the size of the mask opening.
  • a polymer mask comprising a carrier substrate and a mask disposed on the carrier substrate; a sacrificial layer is further disposed between the carrier substrate and the mask; the mask comprises a polymer film layer and A plurality of holes are formed in the polymer film layer and penetrate the polymer film layer, and the polymer film layer is doped with magnetic nanoparticles.
  • the polymer film layer has a thickness of 5 ⁇ m to 50 ⁇ m, and the material of the polymer film layer is selected from the group consisting of polyimide, graphene, and polyethylene terephthalate.
  • the sacrificial layer has a thickness of 1 nm to 5 ⁇ m, and the material of the sacrificial layer is selected from the group consisting of a light-sensitive resin, a ruthenium-based silicon oxide, and a trinitrotoluene.
  • Another object of the present invention is to provide a method for fabricating a polymer mask, comprising the steps of:
  • the polymer raw film has a thickness of 5 ⁇ m to 50 ⁇ m, and the material of the polymer raw film is selected from the group consisting of polyimide, polypropylene, polystyrene, polysulfone ether, graphene, and polyterephthalic acid. Any of ethylene glycol esters.
  • the sacrificial layer has a thickness of 1 nm to 5 ⁇ m, and the material of the sacrificial layer is selected from the group consisting of a light-sensitive resin, a ruthenium-based silicon oxide, and a trinitrotoluene.
  • the method for weakening the force between the carrier substrate and the mask in the step S4 is specifically: irradiating a surface of the carrier substrate away from the sacrificial layer by using a laser.
  • Another object of the present invention is to provide a method for fabricating an OLED, comprising the steps of:
  • Step 1 sequentially forming an anode and a hole transport layer on the substrate to form an evaporated substrate
  • Step 2 respectively forming a red light emitting layer, a green light emitting layer and a blue light emitting layer on the vapor deposition substrate;
  • Step 3 sequentially forming an electron transport layer and a cathode on the red light emitting layer, the green light emitting layer and the blue light emitting layer;
  • the method of the second step specifically includes:
  • the polymer mask is aligned with the vapor deposition substrate, and the magnetic plate of the vapor deposition machine is moved to a side of the vapor deposition substrate that is away from the polymer mask. a mask is adsorbed on the surface of the vapor-deposited substrate, and the carrier substrate and the sacrificial layer are detached;
  • the polymer raw film has a thickness of 5 ⁇ m to 50 ⁇ m, and the material of the polymer raw film is selected from the group consisting of polyimide, polypropylene, polystyrene, polysulfone ether, graphene, and polyterephthalic acid. Any one of ethylene glycol esters; the sacrificial layer has a thickness of 1 nm to 5 ⁇ m, and the material of the sacrificial layer is selected from the group consisting of a light-sensitive resin, a sulfhydryl-based silicon oxide, and a trinitrotoluene.
  • the magnetic plate of the vapor deposition machine is moved away from the vapor-deposited substrate, and the vapor-deposited substrate is transferred to other colors. Evaporate the cavity.
  • the polymer film layer of the present invention is made of a polymer film layer, and the polymer film layer not covered by the mask mask is ablated to form a polymer mask;
  • the metal mask in the technology the polymer mask has high precision, so that the pixel density can be achieved.
  • the method of laser scanning combined with the mask mask can be used to cover the mask.
  • the size of the hole in the film is the same as the size of the pixel area on the pre-vapor-deposited vapor-deposited substrate, and the hole in the metal mask does not appear to be larger than the pixel.
  • the area is much larger; on the other hand, the formation of the holes is very fast.
  • the polymer film layer of the polymer mask according to the present invention is doped with magnetic nanoparticles, and when the polymer mask is applied to fabricate an OLED, the mask thereof can be used as a magnetic plate of the vapor deposition machine. It is attracted and closely adhered to the vapor-deposited substrate. On the one hand, it is not necessary to perform stretching and fixing on the polymer film layer. On the other hand, in the process of manufacturing the mask, after the hole is formed, the washing process can effectively avoid the laser drilling process. Contamination of the vaporized substrate caused by the ablation residue generated therein;
  • the polymer film layer in the polymer mask according to the present invention is a single layer film, so there is no need to consider the risk of curl deformation caused by the difference in thermal expansion between the multilayer films of different materials;
  • the thickness of the single layer film is thinner, so the adverse effect of the shadow effect can also be minimized.
  • FIG. 1 is a schematic structural view of a polymer mask according to Embodiment 1 of the present invention.
  • 6 to 20 are process flow diagrams of a method of fabricating an OLED according to Embodiment 2 of the present invention.
  • the present embodiment provides a polymer mask.
  • the polymer mask includes a carrier substrate 11 and a sacrificial layer 12 and a mask 13 which are sequentially stacked on the carrier substrate 11 .
  • the mask 13 includes a polymer film layer 131 and a plurality of holes 132 formed in the polymer film layer 131 and penetrating the polymer film layer 131.
  • the polymer film layer 131 is doped with magnetic nanoparticles (not shown).
  • the thickness of the polymer film layer 131 is generally controlled to be 5 ⁇ m to 50 ⁇ m, and the material thereof may be selected from the group consisting of polyimide (PI), polypropylene (PP), polystyrene (PS), and polysulfone.
  • Ether abbreviated as PES
  • graphene or a modified material thereof
  • PET polyethylene terephthalate
  • PI is preferably used as the material of the polymer film layer 131.
  • the thickness of the sacrificial layer 12 is generally controlled to be 1 nm to 5 ⁇ m, and the material thereof may be selected from any one of a light-sensitive resin such as a photoresist, a cerium-based silicon oxide, and a trinitrotoluene;
  • the layer 12 is provided for facilitating the removal of the carrier substrate 11 from the mask 13 when the polymer mask is used, and is not particularly limited herein.
  • Step S1 a sacrificial layer 12 is formed on the carrier substrate 11; as shown in FIG.
  • the carrier substrate 11 may be a transparent rigid substrate such as a glass substrate, and is not particularly limited herein.
  • the thickness of the sacrificial layer 12 is generally controlled to be 1 nm to 5 ⁇ m, and the material thereof may be selected from any one of a light-sensitive resin such as a photoresist, a ruthenium-based silicon oxide, and a trinitrotoluene.
  • a light-sensitive resin such as a photoresist, a ruthenium-based silicon oxide, and a trinitrotoluene.
  • Step S2 coating a polymer precursor on the sacrificial layer 12 and solidifying the film to form a polymer original film 13a; as shown in FIG.
  • the polymer precursor is uniformly doped with magnetic nanoparticles, and when the polymer precursor is solidified into a film, the magnetic nanoparticles are uniformly distributed in the polymer original film 13a. .
  • the thickness of the polymer raw film 13a is generally controlled to be 5 ⁇ m to 50 ⁇ m, and the material thereof may be selected from the group consisting of polyimide (PI), polypropylene (PP), polystyrene (PS), and polysulfone ether. (PES for short), graphene or a modified material thereof, or polyethylene terephthalate (abbreviated as PET); in the present embodiment, PI is preferably used as the material of the polymer raw film 13a.
  • the polymer precursor is preferably cured by a baking reaction to form the polymer original film 13a.
  • Step S3 placing a mask mask 21 over the polymer original film, and ablation of a region of the polymer original film that is not blocked by the mask mask 21 by laser scanning to form a hole 132, thereby obtaining a polymer mask.
  • Precursor 1a as shown in Figure 4.
  • the polymer original film is subjected to laser ablation to form a polymer film layer 131 and a plurality of holes 132 located in the polymer film layer 131 and penetrating the polymer film layer 131, thereby forming a mask 13;
  • the arrow indicates the direction of laser incidence.
  • the incident hole 211 in the mask mask 21 selected at this time corresponds to the hole 132 in the pre-made polymer mask, and is also applied according to the polymer mask.
  • the pixel area on the vapor-deposited substrate is determined; thus, the vapor deposition operation is performed on the pixel regions of any size, and the mask mask 21 having the incident holes 211 of equal or larger size is used here.
  • Step S4 After cleaning and drying the polymer mask precursor 1a, the force between the carrier substrate 11 and the mask 13 is weakened to obtain a polymer mask; as shown in FIG.
  • the hole 132 After the hole 132 is formed, a part of the ablation residue is generated by laser ablation, and adheres to the surface of the carrier substrate 11.
  • the washing process can effectively avoid contamination of the vapor-deposited substrate by ablation of the residue during the process of using the polymer mask.
  • the force between the carrier substrate 11 and the mask 13 is weakened by irradiating the surface of the carrier substrate 11 away from the surface of the sacrificial layer 12 by laser irradiation; as shown in FIG. 5, in FIG. 5, the arrow indicates the incident direction of the laser light. .
  • the embodiment provides a method for fabricating an OLED by using the polymer mask obtained in Embodiment 1, which specifically includes the following steps:
  • Step 1 The anode 312 and the hole transport layer 313 are sequentially laminated on the substrate 311 to form an evaporated substrate 31; as shown in FIG.
  • different pixel regions are spaced apart by the pixel defining layer 314.
  • the method for fabricating the vapor-deposited substrate 31 can be referred to the prior art, and will not be described herein.
  • Step 2 a red light emitting layer 321 , a green light emitting layer 322 , and a blue light emitting layer 323 are respectively deposited on the vapor deposited substrate 31 .
  • a sacrificial layer 12 is formed on the carrier substrate 11; as shown in FIG.
  • a polymer precursor is coated on the sacrificial layer 12 and cured to form a polymer original film 13a; as shown in FIG.
  • a mask mask 21 is placed over the polymer original film 13a, and a region of the polymer film 13a that is not blocked by the mask mask 21 is ablated by laser scanning to form a hole 132 to form a mask 13. , obtaining a polymer mask precursor; as shown in FIG.
  • steps Q1 to Q4 and FIGS. 7 to 10 respectively correspond to steps S1 to S4 and FIGS. 2 to 5 in the first embodiment, and are not described herein again.
  • the polymer mask 1 and the vapor deposition substrate 31 are aligned, and the magnetic plate 221 of the vapor deposition machine is moved to the side of the vapor deposition substrate 31 facing away from the polymer mask 1, and the mask 13 is adsorbed.
  • the surface of the substrate 31 is vapor-deposited, and the carrier substrate 11 and the sacrificial layer 12 are peeled off; as shown in FIG. 12 and 13 is shown.
  • the vapor deposition substrate 31 is vapor-deposited, and a red light-emitting layer 321, a green light-emitting layer 322, and a blue light-emitting layer 323 are formed on the vapor-deposited substrate 31, respectively, as shown in FIG.
  • the magnetic plate 221 of the vapor deposition machine is moved away from the vapor-deposited substrate 31, and the vapor-deposited substrate 31 is moved to the evaporation chamber of other colors.
  • the position corresponding to the body In other words, when the red light-emitting layer 321 is first formed, when the polymer mask 1 and the vapor-deposited substrate 31 are aligned, the holes 132 are aligned with the pixel regions corresponding to the red light-emitting layer 321 .
  • the pixel regions corresponding to the green light emitting layer 322 and the blue light emitting layer 323 are all blocked by the polymer film layer 131; at this time, the evaporation source 222 of the vapor deposition machine is turned on, and the red light emitting layer 321 is formed in the corresponding pixel region; Figure 15 and Figure 16 show. Then, the green light emitting layer 322 is prepared, and the magnetic plate 221 of the vapor deposition machine needs to be away from the vapor deposition substrate 31, and the vapor deposition substrate 31 is transferred so that the holes 132 are aligned with the corresponding pixel regions of the green light emitting layer 322, in the corresponding pixel regions. A green light emitting layer 322 is formed; as shown in FIG. 17 and FIG. Finally, the blue light emitting layer 323 is formed in the same manner as shown in FIG. Thus, each of the light-emitting layers as shown in FIG. 14 was obtained.
  • Step 3 sequentially forming an electron transport layer 33 and a cathode 34 on the red light emitting layer 321, the green light emitting layer 322, and the blue light emitting layer 323 to obtain an OLED; as shown in FIG.
  • the manufacturing method of the electron transport layer 33 and the cathode 34 can be referred to the prior art, and will not be described herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种高分子掩膜版(1)及其制作方法、以及该高分子掩膜版(1)在制作OLED中的应用,该高分子掩膜版(1)包括承载基板(11)以及依次叠层设置于承载基板(11)上的牺牲层(12)和掩膜(13);掩膜(13)包括高分子膜层(131)以及开设在高分子膜层(131)上并贯穿高分子膜层(131)的若干孔洞(132),高分子膜层(131)中掺有磁性纳米颗粒。该高分子掩膜版(1)的制作方法,包括步骤:S1、在承载基板(11)上制作牺牲层(12);S2、在牺牲层(12)上涂布掺有磁性纳米颗粒的高分子前驱体并固化成膜,形成高分子原膜(13a);S3、利用光罩掩膜版(21)采用激光扫描对高分子原膜(13a)上未被光罩掩膜版(21)遮挡的区域进行烧蚀形成孔洞(132)以形成掩膜(13),获得高分子掩膜版前驱体(1a);S4、清洗并干燥高分子掩膜版前驱体(1a)后,弱化承载基板(11)与掩膜(13)之间的作用力,获得高分子掩膜版(1)。

Description

一种高分子掩膜版及其制作方法和应用 技术领域
本发明属于有机发光二极管显示器制作技术领域,具体地讲,涉及一种高分子掩膜版及其制作方法、以及该高分子掩膜版在制作OLED中的应用。
背景技术
有机发光二级管显示器(Organic Light Emitting Diode,OLED)是一种极具发展前景的平板显示技术,它具有十分优异的显示性能,特别是自发光、结构简单、超轻薄、响应速度快、宽视角、低功耗及可实现柔性显示等特性,被誉为“梦幻显示器”,再加上其生产设备投资远小于TFT-LCD,得到了各大显示器厂家的青睐,己成为显示技术领域中第三代显示器件的主力军。目前OLED己处于大规模量产的前夜,随着研究的进一步深入,新技术的不断涌现,OLED显示器件必将有一个突破性的发展。
OLED具有依次形成于基板上的阳极、有机发光层和阴极。在制备OLED显示器件时,需要将OLED中的各层材料通过蒸镀工艺蒸镀到阵列基板上,而且在蒸镀过程中,需要使用到相应的精细金属掩膜板(Fine Metal Mask,FMM),通过FMM上的开孔使OLED材料蒸镀到设计的位置,具体地,通过加热OLED材料,使得OLED材料慢慢变成气态升华,然后穿过FMM的开孔沉积在基板表面形成薄膜。当前投入商业化生产的进行彩色显示的OLED显示器件主要有RGB三色OLED显示器件和白光OLED搭配彩色滤光片(color filter,CF)的显示器件。其中,RGB三色OLED显示器件当前广泛应用于移动显示设备,其FMM技术是显示器件解析度的决定因素。
传统的FMM是以因瓦合金(Invar)为材料的金属掩膜版,在掩膜上开孔,且开孔位置与预进行蒸镀的蒸镀基板上的像素区域一一对 应;开孔完成后需要进行张网和焊接工艺流程,在镀膜时,FMM需要与蒸镀基板进行精密对位。传统的FMM在对应制作高像素密度的面板时,需要开孔的尺寸要求越来越小,开孔的密度也要求越来越高,考虑到阴影效应,所需掩膜的尺寸也要求越来越薄,这在张网的过程中对TP和CD的控制都是很大的挑战。
目前有采用PI膜进行原位掩膜制作的技术方案,其工艺为:PI膜经过拉伸并采用治具固定后与蒸镀基板贴合,采用激光在与蒸镀基板上像素所对应区域开孔,像素区域原位形成PI掩膜,但是这一工艺也存在以下缺陷:(1)PI膜需要经过拉伸后与蒸镀基板贴合,贴合后采用激光打孔,此种方式存在激光损伤蒸镀基板上Ag电极的风险,PI膜打孔时,PI膜燃烧残渣也会污染ITO表面;(2)PI膜先进行张紧然后打孔,打孔后PI膜有效面积减少,张紧力会产生变化,此时调整张紧力会使得PI掩膜的TP CD发生变化;(3)镀膜时PI膜由于没有磁性,PI膜与蒸镀基板难以紧密贴合而造成较大的阴影。
发明内容
为解决上述现有技术存在的问题,本发明提供了一种高分子掩膜版及其制作方法和应用,该制作方法易于制作具有高像素密度的高分子掩膜版,且不需要张紧机构和流程,从而避免了激光打孔后需要改变张紧力大小和掩膜开孔尺寸变化大的问题。
为了达到上述发明目的,本发明采用了如下的技术方案:
一种高分子掩膜版,包括承载基板以及设置于所述承载基板上的掩膜;所述承载基板与所述掩膜之间还设置有牺牲层;所述掩膜包括高分子膜层以及开设在所述高分子膜层上并贯穿所述高分子膜层的若干孔洞,所述高分子膜层中掺有磁性纳米颗粒。
进一步地,所述高分子膜层的厚度为5μm~50μm,所述高分子膜层的材料选自聚酰亚胺、石墨烯、聚对苯二甲酸乙二醇酯中的任意一种。
进一步地,所述牺牲层的厚度为1nm~5μm,所述牺牲层的材料选自光敏感树脂、带巯基的氧化硅、三硝基甲苯中的任意一种。
本发明的另一目的在于提供一种高分子掩膜版的制作方法,包括步骤:
S1、在承载基板上制作牺牲层;
S2、在所述牺牲层上涂布高分子前驱体并固化成膜,形成高分子原膜;其中,所述高分子前驱体中掺有磁性纳米颗粒;
S3、在所述高分子原膜上方放置光罩掩膜版,并采用激光扫描对所述高分子原膜上未被所述光罩掩膜版遮挡的区域进行烧蚀形成孔洞以形成掩膜,获得高分子掩膜版前驱体;
S4、清洗并干燥所述高分子掩膜版前驱体后,弱化所述承载基板与所述掩膜之间的作用力,获得高分子掩膜版。
进一步地,所述高分子原膜的厚度为5μm~50μm,所述高分子原膜的材料选自聚酰亚胺、聚丙烯、聚苯乙烯、聚砜醚、石墨烯、聚对苯二甲酸乙二醇酯中的任意一种。
进一步地,所述牺牲层的厚度为1nm~5μm,所述牺牲层的材料选自光敏感树脂、带巯基的氧化硅、三硝基甲苯中的任意一种。
进一步地,所述步骤S4中弱化所述承载基板与所述掩膜之间的作用力的方法具体为:采用激光照射所述承载基板的背离所述牺牲层的表面。
本发明的另一目的还在于提供一种OLED的制作方法,包括步骤:
步骤一、在基板上依次叠层制作阳极和空穴传输层,形成蒸镀基板;
步骤二、在所述蒸镀基板上分别蒸镀形成红光发光层、绿光发光层和蓝光发光层;
步骤三、在所述红光发光层、绿光发光层和蓝光发光层上依次叠层制作电子传输层和阴极;
所述步骤二的方法具体包括:
Q1、在承载基板上制作牺牲层;
Q2、在所述牺牲层上涂布高分子前驱体并固化成膜,形成高分子原膜;其中,所述高分子前驱体中掺有磁性纳米颗粒;
Q3、在所述高分子原膜上方放置光罩掩膜版,并采用激光扫描对所述高分子原膜上未被所述光罩掩膜版遮挡的区域进行烧蚀形成孔洞以形成掩膜,获得高分子掩膜版前驱体;
Q4、清洗并干燥所述高分子掩膜版前驱体,并弱化所述承载基板与所述掩膜之间的作用力,获得高分子掩膜版;
Q5、将所述高分子掩膜版与所述蒸镀基板进行对位贴合,蒸镀机的磁板移至所述蒸镀基板的远离所述高分子掩膜版的一侧,所述掩膜吸附在所述蒸镀基板表面,所述承载基板与所述牺牲层脱落;
Q6、对所述蒸镀基板进行蒸镀,在所述蒸镀基板上分别形成所述红光发光层、绿光发光层和蓝光发光层。
进一步地,所述高分子原膜的厚度为5μm~50μm,所述高分子原膜的材料选自聚酰亚胺、聚丙烯、聚苯乙烯、聚砜醚、石墨烯、聚对苯二甲酸乙二醇酯中的任意一种;所述牺牲层的厚度为1nm~5μm,所述牺牲层的材料选自光敏感树脂、带巯基的氧化硅、三硝基甲苯中的任意一种。
进一步地,在所述步骤Q6中,每蒸镀完成一种颜色的发光层后,将所述蒸镀机的磁板远离所述蒸镀基板,再将所述蒸镀基板传送至其他颜色的蒸镀腔体处。
本发明的有益效果:
(1)本发明以高分子膜层为材料,采用激光扫描的方法,未被光罩掩膜版遮蔽区域处的高分子膜层被烧蚀,以形成高分子掩膜版;相比现有技术中的金属掩膜版,该种高分子掩膜版由于制作精度高,从而可以达到很高的像素密度的效果,同时,采用激光扫描结合光罩掩膜版的方法,一方面可使掩膜上的孔洞大小与预蒸镀的蒸镀基板上的像素区域的大小保持一致,而不会出现金属掩膜版中的孔洞较像素 区域大很多的情况;另一方面孔洞的形成过程非常快,不存在金属掩膜版的制作过程中需要单一激光束逐一开孔,耗时很长,且需要对激光束的移动精度进行精确控制的问题,因此使得制作过程更加快速方便;
(2)本发明的高分子掩膜版在制作过程中,相比现有技术中的其他高分子掩膜版的制作方法,无需张紧机构和流程,从而避免了激光打孔后需要改变张紧力大小和掩膜版的孔洞尺寸变化大的问题;
(3)根据本发明的高分子掩膜版的高分子膜层内掺杂有磁性纳米颗粒,当该高分子掩膜版应用于制作OLED时,其中的掩膜可被蒸镀机的磁板吸引并紧密贴合在蒸镀基板上,一方面不需要对高分子膜层进行拉伸固定等操作,另一方面掩膜的制作过程中,孔洞形成后,洗涤工艺可有效避免激光打孔过程中产生的烧蚀残渣对蒸镀基板的污染;
(4)根据本发明的高分子掩膜版中的高分子膜层为单层膜,因此无需考虑不同材料的多层膜之间存在的热膨胀差异所造成的卷曲变形的风险;相比之下,单层膜较多层膜的厚度更薄,因此也可尽量减小阴影效应的不良影响。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是根据本发明的实施例1的高分子掩膜版的结构示意图;
图2-图5是根据本发明的实施例1的高分子掩膜版的制作方法的工艺流程图;
图6-图20是根据本发明的实施例2的OLED的制作方法的工艺流程图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里 阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,为了清楚起见,可以夸大元件的形状和尺寸,并且相同的标号将始终被用于表示相同或相似的元件。
实施例1
本实施例提供了一种高分子掩膜版,具体参照图1,该高分子掩膜版包括承载基板11以及依次叠层设置于该承载基板11上的牺牲层12和掩膜13;其中,掩膜13包括高分子膜层131以及开设在高分子膜层131上并贯穿该高分子膜层131的若干孔洞132,高分子膜层131中掺有磁性纳米颗粒(图中未示出)。
具体来讲,高分子膜层131的厚度一般控制为5μm~50μm,且其材料可选自聚酰亚胺(简称PI)、聚丙烯(简称PP)、聚苯乙烯(简称PS)、聚砜醚(简称PES)、石墨烯或其改性材料、聚对苯二甲酸乙二醇酯(简称PET)中的任意一种;本实施例中优选以PI作为高分子膜层131的材料。
更为具体地,牺牲层12的厚度一般控制为1nm~5μm即可,且其材料可选自光敏感树脂如光刻胶、带巯基的氧化硅、三硝基甲苯中的任意一种;牺牲层12的设置用于使用该高分子掩膜版时,方便将承载基板11从掩膜13上脱落,此处不作特别限定。
以下将结合附图对本实施例的高分子掩膜版的制作方法进行详细的描述。
本实施例的高分子掩膜版的制作方法具体参阅下述步骤:
步骤S1、在承载基板11上制作牺牲层12;如图2所示。
具体地,承载基板11可以是玻璃基板等透明硬质基板,此处不作特别限定。
牺牲层12的厚度一般控制为1nm~5μm即可,且其材料可选自光敏感树脂如光刻胶、带巯基的氧化硅、三硝基甲苯中的任意一种。
步骤S2、在牺牲层12上涂布高分子前驱体并固化成膜,形成高分子原膜13a;如图3所示。
为了使最终形成的高分子膜层具有磁性,高分子前驱体中均匀掺杂有磁性纳米颗粒,当该高分子前驱体固化成膜后,磁性纳米颗粒即均匀地分布在高分子原膜13a中。
一般地,高分子原膜13a的厚度一般控制为5μm~50μm,且其材料可选自聚酰亚胺(简称PI)、聚丙烯(简称PP)、聚苯乙烯(简称PS)、聚砜醚(简称PES)、石墨烯或其改性材料、聚对苯二甲酸乙二醇酯(简称PET)中的任意一种;本实施例中优选以PI作为高分子原膜13a的材料。
在本实施例中,高分子前驱体优选通过烘烤反应固化形成高分子原膜13a。
步骤S3、在高分子原膜上方放置光罩掩膜版21,并采用激光扫描对高分子原膜上未被光罩掩膜版21遮挡的区域进行烧蚀形成孔洞132,获得高分子掩膜版前驱体1a;如图4所示。
具体来讲,高分子原膜经过激光烧蚀,形成高分子膜层131以及位于高分子膜层131中并贯通高分子膜层131的若干孔洞132,由此形成掩膜13;在图4中,箭头表示激光入射方向。
值得说明的是,此时所选用的光罩掩膜版21中的入射孔211与预制作的高分子掩膜版中的孔洞132是相对应的,也是根据该高分子掩膜版所应用的蒸镀基板上的像素区域确定的;由此,预对任何尺寸的像素区域进行蒸镀操作,则此处即选用具有相等或更大尺寸的入射孔211的光罩掩膜版21。
步骤S4、清洗并干燥高分子掩膜版前驱体1a后,弱化承载基板11与掩膜13之间的作用力,获得高分子掩膜版;如图1所示。
孔洞132形成后,经激光烧蚀会产生部分烧蚀残渣,附着在承载基板11表面,采用洗涤工艺可有效避免在使用该高分子掩膜版的过程中烧蚀残渣对蒸镀基板的污染。
优选地,通过采用激光照射承载基板11的背离牺牲层12的表面的方法来弱化承载基板11与掩膜13之间的作用力;如图5所示,在图5中,箭头表示激光入射方向。
实施例2
本实施例提供了一种OLED的制作方法,即利用实施例1中获得的高分子掩膜版进行OLED的制作,其具体包括下述步骤:
步骤一、在基板311上依次叠层制作阳极312和空穴传输层313,形成蒸镀基板31;如图6所示。
优选地,为了方便后续进行不同颜色的发光层的制作,不同的像素区域之间利用像素定义层314进行了间隔。
蒸镀基板31的制作方法参照现有技术即可,此处不再赘述。
步骤二、在蒸镀基板31上分别蒸镀形成红光发光层321、绿光发光层322和蓝光发光层323。
具体来讲,包括下述步骤:
Q1、在承载基板11上制作牺牲层12;如图7所示。
Q2、在牺牲层12上涂布高分子前驱体并固化成膜,形成高分子原膜13a;如8所示。
Q3、在高分子原膜13a上方放置光罩掩膜版21,并采用激光扫描对高分子原膜13a上未被光罩掩膜版21遮挡的区域进行烧蚀形成孔洞132以形成掩膜13,获得高分子掩膜版前驱体;如图9所示。
Q4、清洗并干燥高分子掩膜版前驱体,并弱化承载基板11与掩膜13之间的作用力,获得高分子掩膜版1;如图10和图11所示。
上述步骤Q1~Q4以及图7~图10分别对应实施例1中步骤S1~S4以及图2~图5所示,此处不再赘述。
Q5、将高分子掩膜版1与蒸镀基板31进行对位贴合,蒸镀机的磁板221移至蒸镀基板31的背离高分子掩膜版1的一侧,掩膜13吸附在蒸镀基板31表面,承载基板11与牺牲层12脱落;如图12和图 13所示。
Q6、对蒸镀基板31进行蒸镀,在蒸镀基板31上分别形成红光发光层321、绿光发光层322和蓝光发光层323;如图14所示。
具体来讲,在蒸镀的过程中,每蒸镀完成一种颜色的发光层后,将蒸镀机的磁板221远离蒸镀基板31,并移动蒸镀基板31至其他颜色的蒸镀腔体对应的位置处。也就是说,若首先制作红光发光层321,则在高分子掩膜版1与蒸镀基板31进行对位贴合时,即将孔洞132对准红光发光层321对应的像素区域处,而绿光发光层322和蓝光发光层323所对应的像素区域均被高分子膜层131所遮挡;此时开启蒸镀机的蒸发源222,则在对应的像素区域形成红光发光层321;如图15和图16所示。然后制作绿光发光层322,需要将蒸镀机的磁板221远离蒸镀基板31,传送蒸镀基板31以使孔洞132对准绿光发光层322对应的像素区域处,在对应的像素区域形成绿光发光层322;如图17所示和图18所示。最后采用同样的方法制作蓝光发光层323,如图19所示。如此,即获得如图14所示的各发光层。
值得说明的是,在制作不同颜色的发光层时,需要对应使用不同的掩膜13;也就是说,每完成一种颜色的发光层的制作后,在传送蒸镀基板31的过程中,需要将已完成颜色发光层对应的掩膜13更换为预制作颜色发光层对应的掩膜13,而不同掩膜13中的孔洞132位置及尺寸会根据不同颜色发光层的制作要求有所不同。
步骤三、在红光发光层321、绿光发光层322和蓝光发光层323上依次叠层制作电子传输层33和阴极34,获得OLED;如图20所示。
电子传输层33和阴极34的制作方法参照现有技术即可,此处不再赘述。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (13)

  1. 一种高分子掩膜版,包括承载基板以及设置于所述承载基板上的掩膜;其中,所述承载基板与所述掩膜之间还设置有牺牲层;所述掩膜包括高分子膜层以及开设在所述高分子膜层上并贯穿所述高分子膜层的若干孔洞,所述高分子膜层中掺有磁性纳米颗粒。
  2. 根据权利要求1所述的高分子掩膜版,其中,所述高分子膜层的厚度为5μm~50μm,所述高分子膜层的材料选自聚酰亚胺、聚丙烯、聚苯乙烯、聚砜醚、石墨烯、聚对苯二甲酸乙二醇酯中的任意一种。
  3. 根据权利要求1所述的高分子掩膜版,其中,所述牺牲层的厚度为1nm~5μm,所述牺牲层的材料选自光敏感树脂、带巯基的氧化硅、三硝基甲苯中的任意一种。
  4. 根据权利要求2所述的高分子掩膜版,其中,所述牺牲层的厚度为1nm~5μm,所述牺牲层的材料选自光敏感树脂、带巯基的氧化硅、三硝基甲苯中的任意一种。
  5. 一种高分子掩膜版的制作方法,其中,包括步骤:
    S1、在承载基板上制作牺牲层;
    S2、在所述牺牲层上涂布高分子前驱体并固化成膜,形成高分子原膜;其中,所述高分子前驱体中掺有磁性纳米颗粒;
    S3、在所述高分子原膜上方放置光罩掩膜版,并采用激光扫描对所述高分子原膜上未被所述光罩掩膜版遮挡的区域进行烧蚀形成孔洞以形成掩膜,获得高分子掩膜版前驱体;
    S4、清洗并干燥所述高分子掩膜版前驱体后,弱化所述承载基板与所述掩膜之间的作用力,获得高分子掩膜版。
  6. 根据权利要求5所述的制作方法,其中,所述高分子原膜的厚度为5μm~50μm,所述高分子原膜的材料选自聚酰亚胺、聚丙烯、聚苯乙烯、聚砜醚、石墨烯、聚对苯二甲酸乙二醇酯中的任意一种。
  7. 根据权利要求5所述的制作方法,其中,所述牺牲层的厚度 为1nm~5μm,所述牺牲层的材料选自光敏感树脂、带巯基的氧化硅、三硝基甲苯中的任意一种。
  8. 根据权利要求5所述的制作方法,其中,所述步骤S4中弱化所述承载基板与所述掩膜之间的作用力的方法具体为:采用激光照射所述承载基板的背离所述牺牲层的表面。
  9. 根据权利要求7所述的制作方法,其中,所述步骤S4中弱化所述承载基板与所述掩膜之间的作用力的方法具体为:采用激光照射所述承载基板的背离所述牺牲层的表面。
  10. 一种OLED的制作方法,包括步骤:
    步骤一、在基板上依次叠层制作阳极和空穴传输层,形成蒸镀基板;
    步骤二、在所述蒸镀基板上分别蒸镀形成红光发光层、绿光发光层和蓝光发光层;
    步骤三、在所述红光发光层、绿光发光层和蓝光发光层上依次叠层制作电子传输层和阴极;
    其中,所述步骤二的方法具体包括:
    Q1、在承载基板上制作牺牲层;
    Q2、在所述牺牲层上涂布高分子前驱体并固化成膜,形成高分子原膜;其中,所述高分子前驱体中掺有磁性纳米颗粒;
    Q3、在所述高分子原膜上方放置光罩掩膜版,并采用激光扫描对所述高分子原膜上未被所述光罩掩膜版遮挡的区域进行烧蚀形成孔洞以形成掩膜,获得高分子掩膜版前驱体;
    Q4、清洗并干燥所述高分子掩膜版前驱体,并弱化所述承载基板与所述掩膜之间的作用力,获得高分子掩膜版;
    Q5、将所述高分子掩膜版与所述蒸镀基板进行对位贴合,蒸镀机的磁板移至所述蒸镀基板的远离所述高分子掩膜版的一侧,所述掩膜吸附在所述蒸镀基板表面,所述承载基板与所述牺牲层脱落;
    Q6、对所述蒸镀基板进行蒸镀,在所述蒸镀基板上分别形成所述红光发光层、绿光发光层和蓝光发光层。
  11. 根据权利要求10所述的制作方法,其中,所述高分子原膜的厚度为5μm~50μm,所述高分子原膜的材料选自聚酰亚胺、石墨烯、聚对苯二甲酸乙二醇酯中的任意一种;
    所述牺牲层的厚度为1nm~5μm,所述牺牲层的材料选自光敏感树脂、带巯基的氧化硅、三硝基甲苯中的任意一种。
  12. 根据权利要求10所述的制作方法,其中,在所述步骤Q6中,每蒸镀完成一种颜色的发光层后,将所述蒸镀机的磁板远离所述蒸镀基板,再将所述蒸镀基板传送至其他颜色的蒸镀腔体处。
  13. 根据权利要求11所述的制作方法,其中,在所述步骤Q6中,每蒸镀完成一种颜色的发光层后,将所述蒸镀机的磁板远离所述蒸镀基板,再将所述蒸镀基板传送至其他颜色的蒸镀腔体处。
PCT/CN2017/101276 2017-08-18 2017-09-11 一种高分子掩膜版及其制作方法和应用 WO2019033481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/579,344 US20190221741A1 (en) 2017-08-18 2017-09-11 Polymer mask and manufacture method of polymer mask and applied thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710713991.1A CN107574408B (zh) 2017-08-18 2017-08-18 一种高分子掩膜版及其制作方法和应用
CN201710713991.1 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019033481A1 true WO2019033481A1 (zh) 2019-02-21

Family

ID=61034997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101276 WO2019033481A1 (zh) 2017-08-18 2017-09-11 一种高分子掩膜版及其制作方法和应用

Country Status (3)

Country Link
US (1) US20190221741A1 (zh)
CN (1) CN107574408B (zh)
WO (1) WO2019033481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345988B2 (en) * 2018-12-27 2022-05-31 Samsung Display Co., Ltd. Deposition mask and method of manufacturing the deposition mask

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108866478B (zh) * 2018-07-16 2023-07-21 京东方科技集团股份有限公司 掩膜版制作方法以及掩膜版
CN108914056A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种掩膜板及其制作方法
KR20210091382A (ko) * 2020-01-13 2021-07-22 삼성디스플레이 주식회사 마스크, 이의 제조 방법, 및 표시 패널 제조 방법
CN111334750B (zh) * 2020-03-11 2022-02-01 京东方科技集团股份有限公司 一种soi精细掩模版及其制作方法
CN112677629B (zh) * 2021-01-19 2022-06-14 仓和精密制造(苏州)有限公司 一种网版的压合制备方法
CN114864853B (zh) * 2022-03-03 2024-08-16 信利(惠州)智能显示有限公司 Oled显示器的制备方法及oled显示器、显示装置
CN114772545A (zh) * 2022-03-14 2022-07-22 华为技术有限公司 微纳层结构的制作方法、加工装置以及电子器件
CN116285338B (zh) * 2023-04-17 2023-12-01 圣航粉末冶金河北有限公司 一种复合型磁性塑料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177496A (zh) * 2015-09-25 2015-12-23 信利(惠州)智能显示有限公司 掩膜板的制作方法
US20160248011A1 (en) * 2015-02-24 2016-08-25 Samsung Display Co., Ltd. Method of manufacturing mask
CN106191783A (zh) * 2015-02-02 2016-12-07 鸿海精密工业股份有限公司 蒸镀遮罩、蒸镀方法及蒸镀遮罩之制造方法
CN206015072U (zh) * 2015-12-15 2017-03-15 上海天马有机发光显示技术有限公司 一种蒸镀工艺用掩膜版
CN106835026A (zh) * 2017-02-24 2017-06-13 武汉华星光电技术有限公司 蒸镀基板及其蒸镀方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011088A (zh) * 2010-12-01 2011-04-13 东莞宏威数码机械有限公司 掩膜板吸附结构及掩膜板贴合的方法
TWI492373B (zh) * 2012-08-09 2015-07-11 Au Optronics Corp 可撓式顯示模組的製作方法
JP2014077186A (ja) * 2012-10-12 2014-05-01 V Technology Co Ltd メタルマスクの製造方法
CN103757588B (zh) * 2013-12-30 2016-02-03 昆山工研院新型平板显示技术中心有限公司 一种掩膜板及该掩膜板的制备方法和应用
TWI564408B (zh) * 2015-02-02 2017-01-01 鴻海精密工業股份有限公司 蒸鍍遮罩、蒸鍍方法及蒸鍍遮罩之製造方法
JP2017150017A (ja) * 2016-02-23 2017-08-31 株式会社ジャパンディスプレイ 蒸着マスクの製造方法及び有機elディスプレイの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191783A (zh) * 2015-02-02 2016-12-07 鸿海精密工业股份有限公司 蒸镀遮罩、蒸镀方法及蒸镀遮罩之制造方法
US20160248011A1 (en) * 2015-02-24 2016-08-25 Samsung Display Co., Ltd. Method of manufacturing mask
CN105177496A (zh) * 2015-09-25 2015-12-23 信利(惠州)智能显示有限公司 掩膜板的制作方法
CN206015072U (zh) * 2015-12-15 2017-03-15 上海天马有机发光显示技术有限公司 一种蒸镀工艺用掩膜版
CN106835026A (zh) * 2017-02-24 2017-06-13 武汉华星光电技术有限公司 蒸镀基板及其蒸镀方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345988B2 (en) * 2018-12-27 2022-05-31 Samsung Display Co., Ltd. Deposition mask and method of manufacturing the deposition mask

Also Published As

Publication number Publication date
CN107574408A (zh) 2018-01-12
CN107574408B (zh) 2019-06-25
US20190221741A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2019033481A1 (zh) 一种高分子掩膜版及其制作方法和应用
JP6430668B2 (ja) 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
JP5202428B2 (ja) 蒸着装置用マスク密着手段及びそれを用いた蒸着装置
WO2018120382A1 (zh) 精细掩膜板及其制作方法
TWI541368B (zh) 遮罩框架組件、製造該遮罩框架組件之方法、以及使用該遮罩框架組件製造有機發光顯示裝置之方法
CN104532183B (zh) 高精度掩膜板的制作方法
WO2011148750A1 (ja) 蒸着マスク及びこれを用いた有機el素子の製造方法と製造装置
WO2015149467A1 (zh) Oled显示器件及其制作方法、显示装置
US7737631B2 (en) Flat panel display with repellant and border areas and method of manufacturing the same
WO2019019236A1 (zh) Oled背板的制作方法与oled面板的制作方法
US11316136B2 (en) Manufacturing method of flexible display device and flexible display device
JP6596106B2 (ja) 蒸着マスクの製造方法及びその蒸着マスクを使った有機発光ダイオードの製造方法
Hirano et al. 53.2: Distinguished Paper: Novel Laser Transfer Technology for Manufacturing Large‐Sized OLED Displays
KR20140056814A (ko) 유기전계 발광소자의 제조 방법
US20070034866A1 (en) Laser induced thermal imaging (LITI) mask and an organic electroluminescent device fabrication method using the mask
WO2021190123A1 (zh) 掩模版、显示面板及掩模版的制备方法
CN106926559A (zh) 转印基板及其制作方法、oled器件制作方法
US7686052B2 (en) Lamination apparatus and laser-induced thermal imaging method using the same
WO2020181849A1 (zh) 微型精密掩膜板及其制作方法和amoled显示器件
CN107689427A (zh) Oled器件及其制作方法
KR102679609B1 (ko) 마스크 및 이의 제조 방법
WO2019010772A1 (zh) 显示面板及制作方法
JP2007294413A (ja) 有機elパネル及びその製造方法
CN111276618A (zh) 有机功能层及制备有机功能层的方法、显示面板
KR20060020049A (ko) 유기전계발광표시장치의 제조를 위한 레이저 열전사 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921981

Country of ref document: EP

Kind code of ref document: A1