WO2017065081A1 - 熱電変換材料、その製造方法、および、熱電変換モジュール - Google Patents

熱電変換材料、その製造方法、および、熱電変換モジュール Download PDF

Info

Publication number
WO2017065081A1
WO2017065081A1 PCT/JP2016/079772 JP2016079772W WO2017065081A1 WO 2017065081 A1 WO2017065081 A1 WO 2017065081A1 JP 2016079772 W JP2016079772 W JP 2016079772W WO 2017065081 A1 WO2017065081 A1 WO 2017065081A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
composition
additive
tisi
Prior art date
Application number
PCT/JP2016/079772
Other languages
English (en)
French (fr)
Inventor
直人 深谷
聡悟 西出
洋輔 黒崎
早川 純
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US15/766,752 priority Critical patent/US10658562B2/en
Priority to JP2017545177A priority patent/JP6544437B2/ja
Publication of WO2017065081A1 publication Critical patent/WO2017065081A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a thermoelectric conversion material having high thermoelectric conversion efficiency, a manufacturing method thereof, and a thermoelectric conversion module using the thermoelectric conversion material.
  • thermoelectric conversion technology using the Seebeck effect as a method for directly converting thermal energy into electrical energy.
  • Thermoelectric conversion technology is capable of energy conversion without emitting greenhouse gases, and can be applied even at a low temperature of less than 200 ° C. Therefore, power generation with low environmental load using unused low-temperature heat is expected by using thermoelectric conversion technology.
  • figure of merit Z As an indicator of the performance of the thermoelectric conversion material. Since the figure of merit Z has a dimension of [K ⁇ 1 ], a dimensionless figure of merit ZT of the following formula (1) obtained by multiplying Z by an average temperature T is used.
  • T is the average temperature (absolute temperature)
  • S is the Seebeck coefficient
  • is the electrical resistivity
  • is the thermal conductivity.
  • thermoelectric conversion material having an excellent dimensionless figure of merit ZT in a low temperature range below 200 ° C.
  • a full Heusler alloy represented by an Fe 2 VAl-based alloy is known.
  • These full-Heusler alloys are composed of elements that are non-toxic and inexpensive and have a large amount of reserves, and have attracted attention in recent years from the viewpoint of environmental impact.
  • Full Heusler alloys have a large Seebeck coefficient S.
  • the full-Heusler alloy has high thermal conductivity ⁇ and electrical resistivity ⁇ , the dimensionless figure of merit ZT has not been increased to a practical level.
  • Patent Document 1 discusses obtaining a high dimensionless figure of merit ZT by reducing the thermal conductivity ⁇ . Specifically, a composite thermoelectric conversion material in which the thermal conductivity is lowered by combining and sintering a full Heusler alloy and an additive having low thermal conductivity is disclosed.
  • thermoelectric conversion material As a method for producing this thermoelectric conversion material, a general formula (Fe 1-x M x ) 2 V 1-y L y Al 1-z R z (wherein M consists of Co, Ni, Pd, Ir, and Pt) At least one element selected from the group, L is at least one element selected from the group consisting of Ti, Cr, Mn, Zr and Mo, R is Mg, Si, P, S, Ca, Ge, Sn , Sb and Bi, at least one element selected from the group consisting of 0 ⁇ x ⁇ 0.2; 0 ⁇ y ⁇ 0.2; 0 ⁇ z ⁇ 0.2.
  • thermoelectric conversion material having an alloy is alloyed by mechanical alloying, then Bi is mixed as an additive having a low thermal conductivity, and these are subjected to current sintering under pressure. Thereby, a substance having low thermal conductivity can be uniformly and finely dispersed in the tissue, and as a result, a thermoelectric conversion material having high thermoelectric conversion efficiency is obtained.
  • JP 2008-192652 A Japanese Patent Laying-Open No. 2015-122476
  • Patent Document 1 an attempt is made to improve the dimensionless figure of merit ZT by adding an additive (specifically, Bi) having a low thermal conductivity ⁇ to an Fe 2 VAl-based full-Heusler thermoelectric conversion material. Therefore, the present inventors conducted an experiment of adding Bi as described in Patent Document 1 using an Fe 2 TiSi-based full Heusler thermoelectric conversion material described in Patent Document 2. However, the thermoelectric conversion material obtained thereby cannot be said to have a sufficiently reduced thermal conductivity ⁇ , and a thermoelectric conversion material having a high dimensionless figure of merit ZT could not be obtained.
  • an additive specifically, Bi
  • An object of the present invention is to provide a thermoelectric conversion material having a high dimensionless figure of merit ZT in a Fe 2 TiSi-based full Heusler thermoelectric conversion material, and a thermoelectric conversion module having high thermoelectric conversion efficiency using the thermoelectric conversion material.
  • Another object of the present invention is to provide a manufacturing method for obtaining a thermoelectric conversion material having a high dimensionless figure of merit ZT in an Fe 2 TiSi-based full-Heusler thermoelectric conversion material.
  • thermoelectric conversion material comprising a full Heusler alloy mainly composed of Fe, Ti, Si, Secondary crystal particles having an Fe 2 TiSi-based composition; A coating layer mainly containing an element other than Fe, Ti, and Si covering the periphery of the secondary crystal particles;
  • the thermoelectric conversion material, wherein the coating layer is a composition that can be dissolved in the crystal structure of the Fe 2 TiSi-based composition and includes an element having an electrical resistivity lower than that of the secondary crystal particles; To do.
  • thermoelectric conversion module having a plurality of thermoelectric conversion elements including a P-type thermoelectric conversion material, an N-type thermoelectric conversion material, and an electrode connecting the P-type thermoelectric conversion material and the N-type thermoelectric conversion material.
  • At least one of the N-type thermoelectric conversion material and the P-type thermoelectric conversion material is made of a full Heusler alloy mainly composed of Fe, Ti, and Si, and has secondary crystal particles having an Fe 2 TiSi-based composition, A coating layer mainly comprising an element other than Fe, Ti, and Si covering the periphery of the next crystal particle, the coating layer being able to be dissolved in the crystal structure of the Fe 2 TiSi-based composition, and the 2 A thermoelectric conversion module characterized by being a thermoelectric conversion material having a composition containing an element having an electric resistivity lower than that of the next crystal particle.
  • a step of producing an alloy powder of an alloy having an Fe 2 TiSi-based composition A step of adding an additive having an electrical resistivity lower than that of the alloy and composed of an element other than Fe, Ti, and Si to the alloy powder; A sintering step of sintering the mixture of the alloy powder and the additive so that they do not completely dissolve; It is set as the manufacturing method of the thermoelectric conversion material characterized by having.
  • thermoelectric conversion material having a high dimensionless performance index ZT, and high thermoelectric conversion module of the thermoelectric conversion efficiency using the same.
  • tissue which can reduce electrical resistivity (rho) and can raise the dimensionless figure of merit ZT can be provided.
  • thermoelectric conversion material It is a mimetic diagram of the organization structure of the thermoelectric conversion material concerning an embodiment of the invention. It is a preparation flowchart of the thermoelectric conversion material which concerns on embodiment of this invention. It is an electron microscope image which shows the structure
  • thermoelectric conversion material which concerns on the 3rd Example of this invention, and product (rho) (kappa) of thermal conductivity and an electrical resistivity (the addition of no additive and Example 1) 2 including each example).
  • rho product (rho) (kappa) of thermal conductivity and an electrical resistivity (the addition of no additive and Example 1) 2 including each example).
  • ZT dimensionless figure of merit ZT in the thermoelectric conversion material according to the third embodiment of the present invention (no additive added and Examples 1 and 2) including).
  • thermoelectric conversion module using the thermoelectric conversion material which concerns on embodiment of this invention.
  • ternary alloy phase diagram which shows the composition range of the full Heusler alloy in the thermoelectric conversion material which concerns on embodiment of this invention.
  • the Fe 2 TiSi-based crystal structure is surrounded around secondary crystal particles having an Fe 2 TiSi-based composition.
  • the dimensionless figure of merit ZT is improved by covering with a coating layer mainly composed of an element other than Fe, Ti, and Si and having an electrical resistivity lower than that of the secondary crystal particles. It was found that it is effective.
  • Patent Document 1 uses a Fe 2 VAl-based full-Heusler alloy and uniformly and finely disperses a material having low thermal conductivity in the structure.
  • the present invention uses a Fe 2 TiSi-based full Heusler alloy and uses a component that can be dissolved in this main composition as an additive, so that a substance having a low electrical resistivity composition is simply a secondary crystal.
  • a coating layer is formed not only to precipitate between particles but also to cover the periphery of secondary crystal particles.
  • the secondary crystal particle refers to one or a plurality of primary crystal particles having an Fe 2 TiSi-based composition aggregated by sintering.
  • the component that can be dissolved in the main composition Fe 2 TiSi-based full Heusler alloy is that a full-Heusler type crystal structure is maintained and a solid solution can be formed even if the component is added.
  • the solid solution is a uniform solid crystalline phase formed by two or more elements as defined in JISG0201: 2000.
  • the coating layer has a lower electrical resistivity than the secondary crystal particles, and a composition mainly containing an element other than Fe, Ti, and Si reduces the electrical resistivity ⁇ and the thermal conductivity ⁇ .
  • the composition of the preferable coating layer is preferably a composition in which the total amount of Fe, Ti, and Si is 3 at% or less of the entire coating layer.
  • a more preferable composition is a composition in which the total amount of Fe, Ti, and Si is 1 at% or less, more preferably 0.5 at% or less of the entire coating layer.
  • the additive material can be dissolved in the Fe 2 TiSi alloy composition. This is because the crystal structure shown in FIG. 1, that is, the thermoelectric conversion material cannot be obtained if it does not form a solid solution. It is desirable that the solid solution start temperature is lower than the crystallization temperature of the full Heusler alloy. This is because it is desirable to produce this crystal structure near the crystallization temperature (450 ° C. or higher and 800 ° C. or lower) in order to suppress the grain growth of the Fe 2 TiSi-based full Heusler alloy.
  • a composition of such an additive for example, an element composed of at least one of Li, Mg, Al, Cu, Zn, Sn, Ba, and Pb can be used.
  • the additive it is particularly preferable to use an element composed of at least one of Mg, Al, and Cu. Furthermore, by adjusting the melting point and wettability by using an alloy such as Mg and Al or Cu and Al, the liquid phase becomes near the crystallization temperature of the full Heusler alloy (450 ° C. or higher and 800 ° C. or lower). It is preferable because the additive can be uniformly diffused on the particle surface.
  • FIG. 1 is a schematic diagram of a structure (crystal structure) of a thermoelectric conversion material according to an embodiment of the present invention.
  • a coating layer 102 made of an additive covers the periphery of the Fe 2 TiSi-based secondary crystal particles 101. Even if the additive has a low electrical resistivity, the dimensionless figure of merit is not improved even if it is uniformly and finely dispersed in the structure as in Patent Document 1. In order to improve the dimensionless figure of merit ZT, it is important to precipitate the secondary crystal particles and the coating layer as described above. Although the manufacturing method for that will be described later, it is an important point in manufacturing to add an element that dissolves in the Fe 2 TiSi alloy powder before sintering.
  • the component of the additive mainly becomes the triple point of the secondary crystal particles by sintering. Aggregates.
  • the additive uses an element that can be dissolved in the Fe 2 TiSi-based alloy composition, but it is sintered, for example, in the vicinity of the crystallization temperature of the Fe 2 TiSi-based alloy so as not to be completely dissolved. Thus, it can be formed as a coating layer covering the periphery of the secondary crystal grains. This is presumed that by using an element that can be dissolved, the additive easily moves along the grain boundary of the secondary crystal particles, and the additive has a crystal structure covering the secondary crystal particles.
  • thermoelectric conversion material 3 to 5 are electron micrograph images of the structure of the thermoelectric conversion material in the examples. 3 to 5, the structure of the thermoelectric conversion material shown in the figures was confirmed using energy dispersive X-ray spectroscopy using a scanning electron microscope. The magnification was 1500 times.
  • a full Heusler alloy mainly composed of Fe, Ti, Si is composed of Fe, Ti, Si, for example, V, Ru, Cr, Mn, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta.
  • N-type or P-type full Heusler alloy partially substituted with at least one element selected from W, Al, Sn, Ge, Ir, In, and Ga can be used.
  • the thermal conductivity ⁇ of the full Heusler alloy can be further reduced by substituting heavy elements such as Ru, Zr, Nb, Mo, Hf, Ta, W, Sn, Ge, Ir, In, and Ga.
  • elements such as V, Cr, Mn, Co, Ni, Cu, and Al the number of valence electrons can be precisely controlled, or phase stability can be improved.
  • secondary crystal particles composed of a plurality of primary crystal particles having a composition of Fe 2 TiSi can be confirmed.
  • the composition of the primary crystal particles and the secondary crystal particles is substantially the same.
  • the composition of the secondary crystal particles is Fe 2 (Ti 1-a M1 a ) (Si 1-b M2 b ) (where M1 is V, Ru, Cr, Mn, Co, Ni, Cu, Zr, Nb, Mo) M2 is a composition consisting of at least one selected from Cu, Al, Ge, In, Sn, and Ga, and a composition consisting of at least one selected from Hf, Ta, W, and Ir , 0 ⁇ a ⁇ 0.2, 0 ⁇ b ⁇ 0.2) can be used.
  • (Fe, (Ti 1-a M1 a ), (Si 1-b M2 b )) (50, 35, 15), (47.5, 27.5, 25) indicated by 6 small black circles , (40, 25, 35), (50, 17, 33), (52.2, 22.8, 25) and (52.8, 25, 22.2)
  • FIG. 8 is a schematic cross-sectional view showing an example of a thermoelectric conversion module using the thermoelectric conversion material according to the embodiment of the present invention.
  • the thermoelectric conversion module uses a ⁇ -type structure in which an N-type thermoelectric conversion material 201 and a P-type thermoelectric conversion material 202 are joined by electrodes 203a and 203b as a set of thermoelectric conversion elements, and the N-type thermoelectric conversion material 201 and the P-type thermoelectric conversion.
  • a plurality of thermoelectric conversion elements are joined by electrodes 203a and 203b so that the materials 202 are alternately arranged, and heat transfer materials 204a and 204b are joined on the electrodes 203a and 203b.
  • thermoelectric conversion module one surface of the module (the surface on the side where the heat transfer material 204a is disposed in FIG. 8) is heated by a heat source, and the other surface (the heat transfer material 204b in FIG. 8 is disposed).
  • a temperature difference is applied to the entire module, such as by cooling the surface with water or air, the electrical energy is efficiently transferred from both ends of the electrode (the right end electrode 203b and the left end electrode 203b in FIG. 8). It can be taken out.
  • thermoelectric conversion material Next, a manufacturing method for obtaining the thermoelectric conversion material according to the embodiment of the present invention will be described.
  • the manufacturing method of the thermoelectric conversion material includes a step of preparing an Fe 2 TiSi-based alloy powder (Step 1), and the Fe 2 TiSi-based crystal structure composed of other than Fe, Ti, and Si.
  • secondary crystal particles having an Fe 2 TiSi-based composition are formed, and at the same time, the secondary crystal particles cover the periphery of the secondary crystal particles, can be dissolved in the Fe 2 TiSi-based crystal structure, and A coating layer having an electrical resistivity lower than that of the secondary crystal particles and mainly composed of elements other than Fe, Ti, and Si is formed.
  • Step 1 The raw material powder of each element of Fe, Ti, and Si is weighed so as to have the composition ratio of the full Heusler alloy in the ⁇ , ⁇ , or ⁇ region shown in FIG. 9 and alloyed to obtain an alloy powder.
  • This alloy powder is preferably an amorphous alloy.
  • mechanical alloying In order to obtain an amorphous alloy, mechanical alloying, a super rapid cooling method, or the like can be used. In the case of using mechanical alloying, it is preferable that the rotation speed is 250 to 500 rpm and 5 to 100 hours for forming the amorphous.
  • the material structure of the amorphous material is not limited to a complete amorphous material but may be an amorphous material having a long-range order or a short-range order.
  • Step 2 will be further described.
  • an additive having a composition that can be dissolved in the alloy powder and has an electric resistivity lower than that of the alloy and composed of an element other than Fe, Ti, and Si is added. And mix. If Fe, Ti, or Si is added, the composition ratio of the main components changes, and a thermoelectric conversion material having a high dimensionless figure of merit ZT cannot be obtained.
  • thermoelectric conversion material having a tissue structure peculiar to the present invention in which a coating layer covers the periphery of the substrate cannot be obtained.
  • the additive material has a composition having a lower electrical resistivity than the alloy powder. Specifically, as described below, the electrical resistivity of the thermoelectric conversion material can be lowered, and as a result, the dimensionless figure of merit ZT can be improved.
  • the additive has a solid solution starting temperature lower than the crystallization temperature of the full Heusler alloy.
  • the crystal structure of the thermoelectric conversion material is changed near the crystallization temperature of the full Heusler alloy. This is because it is desirable to produce it.
  • the crystallization temperature of the Fe 2 TiSi-based full Heusler alloy used in the thermoelectric conversion material according to the present embodiment is 500 ° C. to 600 ° C.
  • an element composed of at least one of Li, Mg, Al, Cu, Zn, Sn, Ba, and Pb can be used for the composition of the additive.
  • the additive it is particularly preferable to use an element composed of at least one of Mg, Al and Cu.
  • an element composed of at least one of Mg and Al is used as the additive. Since the coating layer is easily formed by setting the melting point of the additive to a temperature not higher than the melting temperature during sintering, the additive is more preferably an alloy of Mg and Al.
  • the addition amount of the additive is preferably more than 0 vol% and 6 vol% or less with respect to the total amount of the alloy powder and the additive. Within this range, it is possible to obtain a thermoelectric conversion material having a dimensionless figure of merit ZT higher than that produced when no additive is used. A more preferable range is 2 vol% or more and 5.5 vol% or less.
  • Step 3 will be further described.
  • the mixed powder obtained in Step 2 is sintered so that both do not completely dissolve.
  • secondary crystal particles having an Fe 2 TiSi-based composition are formed, and at the same time, the secondary crystal particles are covered, can be dissolved in the Fe 2 TiSi-based crystal structure, and A coating layer having an electrical resistivity lower than that of the secondary crystal particles and mainly composed of elements other than Fe, Ti, and Si is formed.
  • Tm ⁇ Ts ⁇ As specific conditions for sintering, Tm ⁇ Ts ⁇ , where Ts is the sintering temperature, Tm is the melting point of the additive, and Tu is the temperature at which the additive is completely dissolved in the Fe 2 TiSi alloy powder. It is desirable to perform sintering so as to be Tu.
  • Ts the sintering temperature
  • Tm the melting point of the additive
  • Tu the temperature at which the additive is completely dissolved in the Fe 2 TiSi alloy powder.
  • the sintering temperature is preferably 1000 ° C. or lower. By setting this temperature, grain growth of the full Heusler alloy is suppressed, so that the grain size of the primary crystal particles contained in the secondary crystal particles becomes small. As a result, it becomes easy to efficiently scatter phonons responsible for heat conduction, the thermal conductivity ⁇ decreases, and the dimensionless figure of merit ZT can be improved. More preferable sintering temperature is 450 ° C. or higher and 800 ° C. or lower because the additive is uniformly dispersed and effects such as densification and shortening of the sintering time can be obtained.
  • the holding time of sintering should just be 1 minute or more which can crystallize a full Heusler alloy, and is normally 10 hours or less. Preferably it is 0.1 hour or more and 5 hours or less.
  • the sintering atmosphere is preferably 100 Pa or less in order to prevent oxidation during sintering. More preferably, it is 50 Pa or less.
  • the applied pressure at the time of sintering shall be 40 Mpa or more which a full Heusler alloy densifies. More preferably, it is 300 MPa or more.
  • Example 1 A first embodiment of the present invention will be described. Needless to say, the above-mentioned matters described in the column of the mode for carrying out the invention can be applied to this embodiment as long as there are no special circumstances.
  • Fe, Ti, and Si were used as main raw materials of the full Heusler alloy, and V was used as an element for adjusting the valence number to obtain N-type thermoelectric conversion characteristics.
  • MgAl additive an additive composed of an alloy powder of Mg 0.3 Al 0.7 (hereinafter, MgAl additive) was added to the Fe 2 TiSi alloy powder.
  • This alloy powder is for covering the periphery of the Fe 2 TiSi-based secondary crystal particles and forming a coating layer having a low electrical resistivity.
  • Mg and Al Fe 2 TiSi alloy powder from a low melting point, an element which can be dissolved in Fe 2 TiSi alloy powder.
  • the amount of the added MgAl additive was 4 vol% with respect to the total volume of the mixed powder.
  • a mixed powder was obtained by sufficiently mixing, for example, the Fe 2 TiSi alloy powder and the MgAl additive under the mixing condition of 100 rpm ⁇ 1 h described above.
  • the mixed powder was sintered by a discharge plasma sintering method. Insert a cylindrical carbon jig with an inner diameter of 5 mm and a height of 40 mm into a tungsten carbide die, put the mixed powder into the carbon jig, insert tungsten carbide punches up and down, and apply pressure from above and below Sintering was performed. Since the melting point of the MgAl additive is 440 ° C., and the crystallization temperature of the Fe 2 TiSi alloy powder is 550 ° C., the sintering temperature is higher than these temperatures and below the temperature at which they do not completely alloy (this In the examples, the temperature was set to 600 ° C., which is 800 ° C. or less. The holding time was 30 minutes. The applied pressure during sintering was 1000 MPa. The sintering atmosphere was an Ar atmosphere with a vacuum degree of 10 Pa or less.
  • the particle diameter of the primary crystal particles was 20 to 100 nm as determined from the half-value width of the X-ray diffraction spectrum using the Scherrer equation. Further, when observed with a scanning electron microscope image, the primary crystal particles aggregated to form secondary crystal particles. The secondary crystal particles could be observed at a magnification of about 1500 times using the same scanning electron microscope, and the particle size was 5 to 20 ⁇ m.
  • FIG. 3 shows the surface of the sintered body produced in this example polished and observed for structure by energy dispersive X-ray spectroscopy using a scanning electron microscope.
  • a coating layer (a portion that appears black) formed from the MgAl additive is formed so as to cover the secondary crystal particles (a portion that appears white).
  • the dimensionless figure of merit ZT of the obtained thermoelectric conversion material was 0.213.
  • thermoelectric conversion material having a high dimensionless figure of merit ZT in the Fe 2 TiSi-based full Heusler thermoelectric conversion material.
  • a manufacturing method for obtaining a thermoelectric conversion material having a high dimensionless figure of merit ZT can be provided.
  • Example 2 A second embodiment of the present invention will be described. Note that the matters described in the first embodiment but not described in the present embodiment can be applied to the present embodiment as long as there is no special circumstances.
  • the additive was made of an additive powder made of Cu 0.2 Al 0.8 alloy powder (hereinafter referred to as CuAl additive), and the other materials were prepared and evaluated under the same raw material powder and conditions as in Example 1. went.
  • Cu, Al, or an alloy thereof is an element that can be dissolved in a small amount with respect to the Fe 2 TiSi alloy powder.
  • FIG. 4 shows the result of polishing the surface of the sintered body produced in this example and observing the structure by energy dispersive X-ray spectroscopy using a scanning electron microscope.
  • a coating layer (a portion that looks black) formed from a CuAl additive is formed so as to cover the secondary crystal particles (a portion that looks white).
  • the obtained thermoelectric conversion material had a dimensionless figure of merit ZT of 0.135.
  • thermoelectric conversion material having a high dimensionless figure of merit ZT in the Fe 2 TiSi-based full Heusler thermoelectric conversion material.
  • a manufacturing method for obtaining a thermoelectric conversion material having a high dimensionless figure of merit ZT can be provided.
  • Comparative Example 1 The additive was made of Bi (hereinafter referred to as “Bi additive”), and experiments and evaluations were performed using the same raw material powder and conditions as in Example 1.
  • Bi is an element that does not dissolve in Fe 2 TiSi alloy powder.
  • FIG. 5 shows the surface of the sintered body produced in this comparative example polished and observed for structure by energy dispersive X-ray spectroscopy using a scanning electron microscope.
  • Bi the part that looks black
  • it is in the form of locally precipitated at the grain boundaries of the secondary crystal grains. This is presumably because Bi does not form a solid solution in the Fe 2 TiSi-based alloy powder, and Bi is locally precipitated to minimize the surface energy.
  • the electrical resistivity ⁇ of the sintered body was also the same as that without the additive, and the improvement effect of the dimensionless figure of merit ZT was not obtained.
  • Example 3 A third embodiment of the present invention will be described. Note that matters described in the first or second embodiment but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances. In this embodiment, an example in which the amount of additive added is changed will be described.
  • the MgAl additive used in Example 1 was used as the additive.
  • the addition amounts were 2 vol% and 6 vol% with respect to the total amount of the mixed powder. Other than that, it was produced and evaluated under the same raw material powder and conditions as in Example 1.
  • FIG. 6 is a graph showing the relationship between the additive amount of the additive in the thermoelectric conversion material according to this example and the product ⁇ of electrical resistivity ⁇ and thermal conductivity ⁇ .
  • Example 1 using MgAl additive, addition amount 4 vol%)
  • Example 2 using CuAl additive, addition amount 4 vol%) are also shown.
  • additional amount 0% an example in which no additive is added.
  • thermoelectric conversion material to which no additive was added had a ⁇ of 38.9 ⁇ V 2 / K.
  • the thermoelectric conversion material obtained by adding 6 vol% is, Rokappa value lower than (22.5 ⁇ V 2 /K,19.6 ⁇ V 2 /K,31.6 ⁇ V 2 / K )Met.
  • thermoelectric conversion material of Example 1 with the MgAl additive (addition amount 4 vol%) exhibiting the lowest ⁇ has a product ⁇ of thermal conductivity and electrical resistivity that is about It was reduced by 50%.
  • FIG. 7 is a graph showing the relationship between the additive amount in the thermoelectric conversion material according to this example and the dimensionless figure of merit ZT. Similarly to FIG. 6, the measured values of Example 1 (using MgAl additive, addition amount 4 vol%), Example 2 (using CuAl additive, addition amount 4 vol%) are also shown.
  • thermoelectric conversion material with 0 vol% additive added had a dimensionless figure of merit ZT of 0.120.
  • the dimensionless figure of merit ZT was higher (0.154, 0.213, 0.123) for the thermoelectric conversion material to which 2 to 6 vol% of the MgAl additive was added.
  • the thermoelectric conversion material of the MgAl additive (addition amount 4 vol%) showing the highest dimensionless figure of merit ZT is improved by about 78% compared to the one with the dimensionless figure of merit ZT of 0 vol%. did.
  • thermoelectric conversion material having a high dimensionless figure of merit ZT in the Fe 2 TiSi-based full Heusler thermoelectric conversion material.
  • a manufacturing method for obtaining a thermoelectric conversion material having a high dimensionless figure of merit ZT can be provided.
  • Example 4 A fourth embodiment of the present invention will be described. Note that matters described in any of the first to third embodiments but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
  • the thermoelectric conversion material produced in Example 1 was used for the thermoelectric conversion module shown in FIG. 8, and the power generation efficiency was simulated.
  • the ZT of the N-type and P-type thermoelectric conversion materials was both assumed to be 0.213 in Example 1.
  • the dimensions were determined so that the total thermal resistance of the electrodes 203a and 203b and the heat transfer materials 204a and 204b was one tenth of the thermal resistance of the thermoelectric conversion material.
  • the heat transfer material 204a on the high temperature side was set to 200 ° C.
  • the temperature of the heat transfer material 204b on the low temperature side was set to 50 ° C.
  • the power generation efficiency of the thermoelectric conversion module under these conditions was about 2.0%.
  • thermoelectric conversion efficiency was about 1.2%.
  • thermoelectric conversion material according to Example 1 has a thermoelectric conversion efficiency of 1.7 times that of the conventional material (thermoelectric conversion efficiency is 2.0%, plus 0.8% of the conventional material). A simulation result was obtained.
  • the P-type and N-type thermoelectric conversion materials shown in Example 1 were used.
  • at least one of the P-type and N-type thermoelectric conversion materials was used in Example 1, so that the thermoelectric conversion efficiency was increased.
  • An improvement effect can be obtained.
  • the thermoelectric conversion efficiency is further improved by applying to both.
  • thermoelectric conversion module having high thermoelectric conversion efficiency using a thermoelectric conversion material having a high dimensionless figure of merit ZT can be provided in the Fe 2 TiSi-based full Heusler thermoelectric conversion material.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • 101 secondary crystal particles
  • 102 coating layer
  • 201 N-type thermoelectric conversion material
  • 202 P-type thermoelectric conversion material
  • 203a, 203b electrode
  • 204a, 204b heat transfer material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

高い無次元性能指数ZTを持つFeTiSi系のフルホイスラー熱電変換材料を提供するために、FeTiSi系の組成を有する2次結晶粒子101と、2次結晶粒子101の周囲を覆うFe、Ti、Si以外の元素を主成分とする被覆層102とを有し、被覆層102は、FeTiSi系組成の結晶構造に固溶可能で、且つ、2次結晶粒子101よりも低い電気抵抗率を有する元素を含む組成であるフルホイスラー熱電変換材料とする。

Description

熱電変換材料、その製造方法、および、熱電変換モジュール
 本発明は、高い熱電変換効率を有する熱電変換材料、その製造方法、および、その熱電変換材料を用いた熱電変換モジュールに関する。
 近年、エネルギー需要の拡大やエネルギー源となる石油、石炭、天然ガスなどの化石燃料の枯渇、またCOなどの温室効果ガスの排出が大きな社会問題となっている。また化石燃料を用いた発電に於いて、一次エネルギー供給量の2/3は利用されることなく熱エネルギーとして排出され、さらにその2/3は200℃未満の低温熱として広範囲に分布している。限られた化石燃料から多くのエネルギーを得るには、これら低温熱を効率的に電気エネルギーに変換することが求められる。
 熱エネルギーを電気エネルギーに直接変換する手法として、ゼーベック効果を用いた熱電変換技術がある。熱電変換技術は温室効果ガスを排出することなくエネルギー変換が可能であり、また使用する温度域も200℃未満の低温でも適用可能である。従って、熱電変換技術を用いることで未利用の低温熱を用いた環境負荷の小さい発電が期待されている。
 熱電変換材料の性能を示すものとして性能指数Zがある。性能指数Zは、[K-1]の次元を持つので、Zに平均温度Tを乗じた下記(1)式の無次元性能指数ZTが用いられる。Tは平均温度(絶対温度)、Sはゼーベック係数、ρは電気抵抗率、κは熱伝導率である。
Figure JPOXMLDOC01-appb-M000001
 200℃未満の低温域で優れた無次元性能指数ZTを有する熱電変換材料として、例えばFeVAl系合金に代表されるフルホイスラー合金が知られている。これらのフルホイスラー合金は、無毒かつ安価で、埋蔵量の多い元素から構成されており、環境負荷の観点からも近年注目されている。フルホイスラー合金は、大きいゼーベック係数Sを有する。但し、フルホイスラー合金は熱伝導率κや電気抵抗率ρが高いために、無次元性能指数ZTが実用レベルにまで高められていない。
 その対策として、特許文献1では、熱伝導率κを低減して高い無次元性能指数ZTを得ることが検討されている。具体的には、フルホイスラー合金と低熱伝導率の添加材を複合化して焼結することで、熱伝導率を低下させた複合化熱電変換材料が開示されている。この熱電変換材料の製造方法として、一般式(Fe1-x1-yAl1-z(式中、Mは、Co、Ni、Pd、Ir及びPtからなる群から選ばれた少なくとも一種の元素、Lは、Ti、Cr、Mn、Zr及びMoからなる群から選ばれた少なくとも一種の元素、Rは、Mg、Si、P、S、Ca、Ge、Sn、Sb及びBiからなる群から選ばれた少なくとも一種の元素であり、0≦x≦0.2;0≦y≦0.2;0≦z≦0.2である。)で表される組成を有する熱電変換材料をメカニカルアロイングにより合金化し、その後、低熱伝導率の添加材としてBiを混合し、これらを加圧下で通電焼結を行うことが開示されている。これにより、低熱伝導率の物質を組織中に均一かつ微細に分散させることができ、その結果、高い熱電変換効率を持つ熱電変換材料が得られるとしている。
 また、特許文献2では、FeTiSi系のフルホイスラー合金が開示されている。具体的には、組成式Fe2+σTi1+ySi1+zで表わされ、Fe-Ti-Siの三元合金状態図において、at%で、(Fe、Ti、Si)=(50、37、13)、(50、14、36)、(45、30、25)、(39.5、25、35.5)、(54、21、25)、(55.5、25、19.5)で囲まれた領域内{除く、(50、25、25)}となるようなσ、y、zを有することを特徴とする熱電変換材料である。
特開2008-192652号公報 特開2015-122476号公報
 特許文献1では、FeVAl系のフルホイスラー熱電変換材料に低い熱伝導率κの添加材(具体的にはBi)を添加することで無次元性能指数ZTを向上させようとしている。そこで、本発明者らが特許文献2に記載されるFeTiSi系のフルホイスラー熱電変換材料を用いて、特許文献1に記載されるようなBiを添加する実験を行った。しかしながら、それにより得られた熱電変換材料は、熱伝導率κが十分に低減されているとは言えず、高い無次元性能指数ZTを持つ熱電変換材料を得ることはできなかった。
 FeTiSi系の熱電変換材料において、無次元性能指数ZTを向上させるためには、さらなる別手段を検討する必要があった。
 本発明の目的は、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料、およびそれを用いた熱電変換効率の高い熱電変換モジュールを提供することである。また、本発明の別の目的は、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料を得るための製造方法を提供することである。
 上記目的を達成するための一実施形態として、Fe、Ti、Siを主原料とするフルホイスラー合金からなる熱電変換材料であって、
  FeTiSi系の組成を有する2次結晶粒子と、
  前記2次結晶粒子の周囲を覆うFe、Ti、Si以外の元素を主成分とする被覆層とを有し、
  前記被覆層は、前記FeTiSi系組成の結晶構造に固溶可能で、且つ、前記2次結晶粒子よりも低い電気抵抗率を有する元素を含む組成であることを特徴とする熱電変換材料とする。
 また、P型熱電変換材料と、N型熱電変換材料と、前記P型熱電変換材料と前記N型熱電変換材料を接続する電極と、を備えた熱電変換素子を複数有する熱電変換モジュールにおいて、
  前記N型熱電変換材料および前記P型熱電変換材料の少なくとも一方は、Fe、Ti、Siを主原料とするフルホイスラー合金からなり、FeTiSi系の組成を有する2次結晶粒子と、前記2次結晶粒子の周囲を覆うFe、Ti、Si以外の元素を主成分とする被覆層を有し、前記被覆層は、前記FeTiSi系組成の結晶構造に固溶可能で、且つ、前記2次結晶粒子よりも低い電気抵抗率を有する元素を含む組成の熱電変換材料であることを特徴とする熱電変換モジュールとする。
 また、FeTiSi系の組成を有する合金の合金粉末を作製する工程と、
  前記合金粉末に固溶可能で、且つ、前記合金よりも低い電気抵抗率を有し、Fe、Ti、Si以外の元素からなる組成の添加材を、前記合金粉末に添加する工程と、
  前記合金粉末と前記添加材の混合体を、両者が完全には固溶しないように焼結する焼結工程と、
を有することを特徴とする熱電変換材料の製造方法とする。
 本発明によれば、FeTiSi系のフルホイスラー合金であって、高い無次元性能指数ZTを持つ熱電変換材料、およびそれを用いた熱電変換効率の高い熱電変換モジュールを提供することができる。また、電気抵抗率ρを低減し無次元性能指数ZTを高めることが可能な組織構造を持つ熱電変換材料を製造する方法を提供することができる。
本発明の実施の形態に係る熱電変換材料の組織構造の模式図である。 本発明の実施の形態に係る熱電変換材料の作製フロー図である。 本発明の第1の実施例に係る熱電変換材料(MgAl添加)の組織構造を示す電子顕微鏡像である。 本発明の第2の実施例に係る熱電変換材料(CuAl添加)の組織構造を示す電子顕微鏡像である。 本発明の第1の比較例に係る熱電変換材料(Bi添加)の組織構造を示す電子顕微鏡像である。 本発明の第3の実施例に係る熱電変換材料における、添加材の添加量と、熱伝導率および電気抵抗率の積ρκとの関係を示すグラフである(添加材の添加無し及び実施例1、2の各例を含む)。 本発明の第3の実施例に係る熱電変換材料における、添加材の添加量と、無次元性能指数ZTとの関係を示すグラフである(添加材の添加無し及び実施例1、2の各例を含む)。 本発明の実施の形態に係る熱電変換材料を用いた熱電変換モジュールの一例を示す断面模式図である。 本発明の実施の形態に係る熱電変換材料におけるフルホイスラー合金の組成範囲を示す3元合金状態図である。
 本発明者等は、FeTiSi系のフルホイスラー合金からなる熱電変換材料における無次元性能指数ZTの向上を検討するにあたり、特許文献1に記載のFeVAl系のフルホイスラー合金と同様の組織形態にしても、その向上効果が全く得られないことに鑑み、全く異なる手段を検討した。
 その結果、Fe、Ti、Siを主原料とするフルホイスラー合金からなる熱電変換材料の場合には、FeTiSi系の組成を有する2次結晶粒子の周囲を、前記FeTiSi系の結晶構造に固溶可能で、且つ、前記2次結晶粒子よりも低い電気抵抗率を有し、Fe、Ti、Si以外の元素を主成分とする被覆層で覆う構成が、無次元性能指数ZTの向上に効果的であるとの知見を得た。
 つまり、特許文献1は、FeVAl系のフルホイスラー合金を用い、低熱伝導率の物質を組織中に均一、かつ微細に分散させるものであった。それに対して本発明は、FeTiSi系のフルホイスラー合金を用い、この主組成に固溶可能な成分を添加材として用いたことによって、低電気抵抗率の組成からなる物質を単に2次結晶粒子の間などに析出させるだけでなく、2次結晶粒子の周囲を覆うように被覆層を形成させたものである。ここで、2次結晶粒子とは、FeTiSi系の組成を有する一又は複数の1次結晶粒子が焼結により凝集したものを指す。また、主組成FeTiSi系のフルホイスラー合金に固溶可能な成分とは、その成分を添加してもフルホイスラー型の結晶構造が維持されて固溶体を形成することができるということである。このとき、固溶体とはJISG0201:2000に定義されている通り2種以上の元素によって形成される均一な固体の結晶質の相のことである。さらに、被覆層は、前記2次結晶粒子よりも低い電気抵抗率を有し、Fe、Ti、Si以外の元素を主成分とする組成とすることが電気抵抗率ρ及び熱伝導率κを低減するために好ましい。具体的には、好ましい被覆層の組成は、Fe、Ti、Siの総量が、被覆層全体の3at%以下である組成が好ましい。さらに好ましい組成は、Fe、Ti、Siの総量が、被覆層全体の1at%以下の組成、さらに好ましくは0.5at%以下の組成である。
 次に、フルホイスラー合金に添加する添加材について説明する。添加材は、FeTiSi系の合金組成に固溶可能なものとする。固溶しないものでは図1に示す結晶構造、即ち熱電変換材料が得られないためである。固溶開始温度がフルホイスラー合金の結晶化温度よりも小さいものが望ましい。FeTiSi系のフルホイスラー合金の粒成長を抑制するために、結晶化温度近傍(450℃以上800℃以下)で本結晶構造を作製することが望ましいためである。このような添加材の組成として、例えばLi、Mg、Al、Cu、Zn、Sn、Ba及びPbの中の少なくとも1種からなる元素を用いることができる。添加材として、特にMg、Al及びCuの中の少なくとも1種からなる元素を用いることが好ましい。さらに、MgとAl、もしくはCuとAlなどの合金を用いて、融点や濡れ性を調整することで、フルホイスラー合金の結晶化温度近傍(450℃以上800℃以下)で液相化し、2次粒子表面に添加材を均一に拡散可能であるため好ましい。
 図1は、本発明の実施の形態に係る熱電変換材料の組織構造(結晶構造)の模式図である。FeTiSi系の2次結晶粒子101の周囲を、添加材から形成された被覆層102が覆っている。たとえ低電気抵抗率の添加材であっても、特許文献1のように、組織中に均一、かつ微細に分散させても無次元性能指数の向上にならない。無次元性能指数ZTを向上させるためには、上記のような2次結晶粒子及び被覆層の形態になるように析出させることが重要である。そのための製造方法は後述するが、焼結前にFeTiSi系合金粉末に対して固溶する元素を添加することが製造上の重要な点である。
 添加材がFeTiSi系合金粉末に対して固溶しない元素を用いたものである場合は、特許文献1のように、添加材の成分が焼結により主に2次結晶粒子の3重点に凝集してしまう。本発明では、添加材は、FeTiSi系の合金組成に固溶可能な元素を用いるが、完全には固溶しないように、例えばFeTiSi系合金の結晶化温度近傍で焼結することで、2次結晶粒の周囲を覆うような被覆層として形成させることができる。これは、固溶可能な元素を用いることで、2次結晶粒子の粒界に沿って添加材が移動しやすくなり、添加材が2次結晶粒子を覆った結晶構造となったものと推測される。
 図3~図5は、実施例における熱電変換材料の組織構造の電子顕微鏡写真像である。図3~図5において、図に示す熱電変換材料の組織構造は、走査電子顕微鏡によるエネルギー分散型X線分光法を用いて確認した。なお、その倍率は1500倍とした。
 Fe、Ti、Siを主原料とするフルホイスラー合金は、Fe、Ti、Si、を主原料として、例えばV、Ru、Cr、Mn、Co、Ni、Cu、Zr、Nb、Mo、Hf、Ta、W、Al、Sn、Ge、Ir、In及びGaの中の少なくとも1種の元素で一部置換した、N型またはP型のフルホイスラー合金を用いることができる。なかでも、Ru、Zr、Nb、Mo、Hf、Ta、W、Sn、Ge、Ir、In及びGaなどの重元素と置換することでフルホイスラー合金の熱伝導率κを更に低減することができる。また、V、Cr、Mn、Co、Ni、Cu及びAlなどの元素と置換することで価電子数を精密に制御、または相安定性を向上することもできる。
 Fe、Ti、Siを主原料とするフルホイスラー合金は、FeTiSi系の組成を有する複数の1次結晶粒子からなる2次結晶粒子が確認できる。1次結晶粒子と2次結晶粒子の組成は、実質的に同じ組成となる。
 2次結晶粒子の組成は、Fe(Ti1-aM1)(Si1-bM2)(但し、M1はV、Ru、Cr、Mn、Co、Ni、Cu、Zr、Nb、Mo、Hf、Ta、W、及びIrの中から選択される少なくとも1種からなる組成、M2はCu、Al、Ge、In、Sn、及びGaの中から選択される少なくとも1種からなる組成であり、0≦a≦0.2、0≦b≦0.2)で表されるものを用いることができる。
 なお、Fe:(Ti1-aM1):(Si1-bM2)のモル比は2:1:1を基本とするがずれてもよい。具体的には、図9の3元合金状態図上の大きな黒丸6点で示した、at%表示で、(Fe、(Ti1-aM1)、(Si1-bM2))=(50、37、13)、(45、30、25)、(39.5、25、35.5)、(50、14、36)、(54、21、25)、(55.5、25、19.5)を結ぶ直線に囲まれた領域αの組成範囲であればよい。
 さらに小さな黒丸6点で示した、(Fe、(Ti1-aM1)、(Si1-bM2))=(50,35,15)、(47.5,27.5,25)、(40,25,35)、(50,17,33)、(52.2,22.8,25)および(52.8,25,22.2)を結ぶ直線に囲まれた領域βの組成範囲が特に特性が良い。さらに特性の良い領域が、白丸で示した、以下の6点(Fe、Ti、Si)=(50,32.6,17.4)、(49.2,25.8,25)、(43.9,25,31.1)、(50,23,27)、(51,24,25)および(51,25,24)を結ぶ直線に囲まれた領域γの組成範囲である。
 図8は本発明の実施の形態に係る熱電変換材料を用いた熱電変換モジュールの一例を示す断面模式図である。熱電変換モジュールは、N型熱電変換材料201、P型熱電変換材料202を電極203a、203bで接合したπ型の構造を1組の熱電変換素子とし、N型熱電変換材料201とP型熱電変換材料202が交互に配列するように複数の熱電変換素子を電極203a、203bにより接合し、さらに電極203a、203b上に伝熱材204a、204bが接合された構造としている。この熱電変換モジュールは、モジュールの一方の面(図8では伝熱材204aが配置されている側の面)を熱源により加熱し、他方の面(図8では伝熱材204bが配置されている側の面)を水冷もしくは空冷で冷却する等によりモジュール全体に温度差が印加されたときに、電極の両端(図8では右端の電極203bと左端の電極203bの両端)から効率よく電気エネルギーを取り出すことができる。
 次に、本発明の実施の形態に係る熱電変換材料を得るための製造方法について説明する。
 本熱電変換材料の製造方法は、図2に示すように、FeTiSi系の合金粉末を作製する工程(Step 1)と、Fe、Ti、Si以外からなる、前記FeTiSi系の結晶構造に固溶可能で、且つ、前記2次結晶粒子よりも低い電気抵抗率を有する組成を有する添加材を、前記合金粉末に添加する工程(Step 2)と、前記合金粉末と添加材の混合体を、両者が完全には固溶しないように焼結する工程(Step 3)を有するものである。焼結工程により、FeTiSi系の組成を有する2次結晶粒子が形成されると同時に、前記2次結晶粒子の周囲を覆い、前記FeTiSi系の結晶構造に固溶可能で、且つ、前記2次結晶粒子よりも低い電気抵抗率を有し、Fe、Ti、Si以外の元素を主成分とする被覆層が形成される。
 Step 1について、さらに説明する。Fe、Ti、Siの各元素の原料粉末を図9に示すαまたはβあるいはγの領域のフルホイスラー合金の組成比になるように秤量し、合金化して合金粉末を得る。
 この合金粉末は、アモルファス合金とすることが好ましい。アモルファス合金とするためには、メカニカルアロイングや、超急冷法などを用いることができる。メカニカルアロイングを用いる場合、アモルファスが形成される回転数250~500rpm、5~100時間の条件とすることが好ましい。ここでアモルファスの材料組織は完全なアモルファスに限らず長距離秩序や短距離秩序を有するアモルファスでも良い。
 Step 2について、さらに説明する。Step 1で得られた合金粉末に、前記合金粉末に固溶可能で、且つ、前記合金よりも低い電気抵抗率を有し、Fe、Ti、Si以外の元素からなる組成の添加材を添加して混合する。Fe、Ti、Siを添加してしまうと、主成分の組成比が変わってしまい、高い無次元性能指数ZTを持つ熱電変換材料が得られない。また、添加材が合金粉末に固溶しない元素を用いたものであると、上記のように、添加材の成分が焼結により主に2次結晶粒子の3重点に凝集し、2次結晶粒子の周囲を被覆層が覆うような本発明特有の組織構造を持つ熱電変換材料が得られない。
 上記添加材は、前記合金粉末よりも低い電気抵抗率の組成とする。具体的には下記するが、熱電変換材料の電気抵抗率を下げることができ、その結果、無次元性能指数ZTを向上させることができる。
 また、添加材は、固溶開始温度がフルホイスラー合金の結晶化温度よりも低いものが望ましい。添加材をフルホイスラー合金に固溶させ、被覆層を形成しつつ、フルホイスラー合金の結晶粒子の粒成長を抑制するために、フルホイスラー合金の結晶化温度近傍で本熱電変換材料の結晶構造を作製することが望ましいためである。本実施の形態に係る熱電変換材料で用いるFeTiSi系フルホイスラー合金の結晶化温度は、500℃~600℃にある。
 添加材の組成は、前記したように、例えばLi、Mg、Al、Cu、Zn、Sn、Ba及びPbの中の少なくとも1種からなる元素を用いることができる。添加材は、特にMg、Al及びCuの中の少なくとも1種からなる元素を用いることが好ましい。
 さらには、添加材は、MgとAlの少なくとも1種からなる元素を用いることが好ましい。添加材の融点を焼結の際に溶解する温度以下にすることで被覆層が形成されやすくなるため、添加材はMgとAlの合金とすることがさらに好ましい。具体的には、融点が約600℃以下になるMgAl合金の組成は、組成式:Mg1-xAlにおいて、x=0.1~0.9である。
 添加材の添加量は、前記合金粉末と添加材の全体量に対して、0vol%超6vol%以下であることが好ましい。この範囲であれば、添加材を用いないで製造した場合よりも高い無次元性能指数ZTを持つ熱電変換材料を得ることができる。さらに好ましい範囲は、2vol%以上5.5vol%以下である。
 Step 3について、さらに説明する。Step 2で得られた混合粉末を、両者が完全には固溶しないように焼結する。焼結することで、FeTiSi系の組成を有する2次結晶粒子が形成されると同時に、前記2次結晶粒子の周囲を覆い、前記FeTiSi系の結晶構造に固溶可能で、且つ、前記2次結晶粒子よりも低い電気抵抗率を有し、Fe、Ti、Si以外の元素を主成分とする被覆層が形成される。
 焼結の具体的な条件として、焼結温度をTs、添加材の融点をTm、添加材がFeTiSi系の合金粉末に完全に固溶する温度をTuとしたときに、Tm<Ts<Tuとなるように焼結を行うことが望ましい。焼結温度Tsが、添加材の融点Tmよりも高く、かつ添加材が合金粉末に完全に固溶する温度Tuよりも低い温度とすることにより、FeTiSi系の2次結晶粒子の周囲に、添加材の組成からなる被覆層がより広く形成された熱電変換材料が得られる。この被覆層は合金粒子間の極薄の電気伝導層として機能するので、結果的に、電気抵抗率ρを低減できる。
 焼結温度は、1000℃以下とすることが好ましい。この温度とすることで、フルホイスラー合金の粒成長が抑制されるので、2次結晶粒子に含まれる1次結晶粒子の粒径が小さくなる。その結果、熱伝導を担うフォノンを効率的に散乱しやすくなり、熱伝導率κが低下し、無次元性能指数ZTを向上させることができる。添加材が一様に分散し、また緻密化や焼結時間の短縮などの効果を得られるため、より好ましい焼結温度は450℃以上、800℃以下である。
 焼結の保持時間は、フルホイスラー合金が結晶化可能な1分以上であれば良く、通常は10時間以下である。好ましくは0.1時間以上5時間以下である。焼結雰囲気は、焼結中の酸化防止のため、真空度100Pa以下とすることが好ましい。より好ましくは50Pa以下である。また、焼結時の印加圧力は、フルホイスラー合金が緻密化する40MPa以上とすることが好ましい。より好ましくは300MPa以上である。
 以下、実施例により本発明について説明する。
(実施例1)
 本発明の第1の実施例について説明する。なお、発明を実施するための形態の欄に記載された上記事項は特段の事情が無い限り本実施例にも適用できることは言うまでも無い。本実施例では、フルホイスラー合金の主原料としてFe、Ti、およびSiを用い、かつ、価電子数を調整してN型の熱電変換特性とするための元素としてVを用いた。
 Fe1.98Ti0.870.08Si1.07の組成となるように各元素の原料粉末を総重量として10g秤量した。前記原料粉末と直径10mmのSUSボールをSUS製ポット内に入れ、Oリングで封止し、遊星ボールミルを準備した。これらの作業は、酸素濃度0.01%以下のAr雰囲気下で行った。前記遊星ボールミルを用いて100rpm、1hの条件で各原料を十分に混合させ、その後、350rpm、25時間の条件でメカニカルアロイングすることで、上記組成からなるアモルファスの組織形態を有するFeTiSi系合金粉末を作製した。このFeTiSi系合金粉末の平均粒径は約20μmであった。
 次に、Mg0.3Al0.7の合金粉末から成る添加材(以後、MgAl添加材)をFeTiSi系合金粉末に添加した。この合金粉末は、FeTiSi系の2次結晶粒子の周囲を覆い、低い電気抵抗率を有する被覆層を形成するためのものである。MgとAlはFeTiSi系合金粉末より融点が低く、FeTiSi系合金粉末に固溶可能な元素である。添加したMgAl添加材の量は混合粉末全体の体積に対して4vol%とした。遊星ボールミルを用いて、例えば前述の100rpm×1hという混合条件で、FeTiSi系合金粉末とMgAl添加材を十分混合させて混合粉末を得た。
 その後、混合粉末を放電プラズマ焼結法により焼結した。タングステンカーバイド製ダイの中に内径5mm、高さ40mmの円筒状のカーボン冶具を挿入し、混合粉末をカーボン冶具の中に入れ、上下にタングステンカーバイド製パンチを挿入し、上下から圧力を印加しながら焼結を行った。MgAl添加材の融点は440℃、FeTiSi系合金粉末の結晶化温度は550℃であるため、焼結温度は、これらの温度以上で、かつ、両者が完全に合金化しない温度以下(本実施例においては800℃以下)の600℃とした。保持時間は30分とした。焼結時の印加圧力は1000MPaとした。焼結雰囲気は真空度10Pa以下のAr雰囲気中とした。
 1次結晶粒子の粒径は、X線回折スペクトルの半値幅からシェラーの式を用いて求めたところ、20~100nmであった。また、走査電子顕微鏡像で観察したところ、1次結晶粒子が凝集して2次結晶粒子を形成していた。この2次結晶粒子は同じ走査電子顕微鏡を用いて約1500倍の倍率で観察することができ、その粒径は5~20μmであった。
 図3は、本実施例で作製した焼結体の表面を研磨し、走査電子顕微鏡を用いてエネルギー分散型X線分光法で組織観察したものである。MgAl添加材から形成された被覆層(黒く見える部分)が2次結晶粒子(白く見える部分)を覆うように形成されている。得られた熱電変換材料の無次元性能指数ZTは0.213であった。
 以上、本実施例によれば、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料を提供することができる。また、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料を得るための製造方法を提供することができる。
(実施例2)
 本発明の第2の実施例について説明する。なお、実施例1に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用できる。本実施例では、添加材をCu0.2Al0.8の合金粉末から成る添加材(以後、CuAl添加材)とし、それ以外は実施例1と同様の原料粉末と条件により作製し評価を行った。CuやAl、若しくはその合金は、FeTiSi系合金粉末に対して、少量ではあるが固溶可能な元素である。
 図4は、本実施例で作製した焼結体の表面を研磨し、走査電子顕微鏡を用いてエネルギー分散型X線分光法で組織観察したものである。CuAl添加材から形成された被覆層(黒く見える部分)が2次結晶粒子(白く見える部分)を覆うように形成されている。得られた熱電変換材料の無次元性能指数ZTは0.135であった。
 以上、本実施例によれば、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料を提供することができる。また、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料を得るための製造方法を提供することができる。
(比較例1)
 添加材をBiから成る添加材(以後、Bi添加材)とし、それ以外は実施例1と同様の原料粉末と条件により実験および評価を行った。BiはFeTiSi系合金粉末に対して固溶しない元素である。
 図5は、本比較例で作製した焼結体の表面を研磨し、走査電子顕微鏡を用いてエネルギー分散型X線分光法で組織観察したものである。Biの析出(黒く見える部分)が確認できるが、実施例1および2と異なり、2次結晶粒子の粒界に局所的に析出した形態となっている。これは、BiがFeTiSi系合金粉末中に固溶しないため、Biが表面エネルギーを最小化するために局所的に析出したものと推定される。また、焼結体の電気抵抗率ρも、添加材を添加していないものと同等であり、無次元性能指数ZTの向上効果は得られなかった。
(実施例3)
 本発明の第3の実施例について説明する。なお、実施例1又は2に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。本実施例では添加材の添加量を変えた例について説明する。
 添加材として、実施例1で用いたMgAl添加材を用いた。添加量は、混合粉末全体量に対して2vol%と、6vol%とした。それ以外は実施例1と同様の原料粉末と条件により作製し評価を行った。
 図6は、本実施例に係る熱電変換材料における添加材の添加量と、電気抵抗率ρおよび熱伝導率κの積ρκとの関係を示すグラフである。参考のため、実施例1(MgAl添加材使用、添加量4vol%)、実施例2(CuAl添加材使用、添加量4vol%)の測定値も併記している。また、比較として添加材を添加しない例(添加量0%)についても示す。
 添加材を添加していない熱電変換材料は、ρκが38.9μV/Kであった。対して、MgAl添加材を2vol%、4vol%、6vol%添加した熱電変換材料は、ρκがそれよりも低い値(22.5μV/K、19.6μV/K、31.6μV/K)であった。
 特に、最も低いρκを示したMgAl添加材(添加量4vol%)の実施例1の熱電変換材料は、熱伝導率および電気抵抗率の積ρκが、添加量0vol%のものと比較して約50%も低減した。
 図7は、本実施例に係る熱電変換材料における添加材の添加量と、無次元性能指数ZTとの関係を示すグラフである。図6と同様、実施例1(MgAl添加材使用、添加量4vol%)、実施例2(CuAl添加材使用、添加量4vol%)の測定値等も併記している。
 添加材の添加量が0vol%の熱電変換材料は、無次元性能指数ZTが、0.120であった。対して、MgAl添加材を2~6vol%添加した熱電変換材料は、無次元性能指数ZTがそれよりも高い値(0.154、0.213、0.123)であった。特に、最も高い無次元性能指数ZTを示したMgAl添加材(添加量4vol%)の熱電変換材料は、無次元性能指数ZTが、添加量0vol%のものと比較して、約78%も向上した。
 以上、本実施例によれば、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料を提供することができる。また、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料を得るための製造方法を提供することができる。
(実施例4)
 本発明の第4の実施例について説明する。なお、実施例1乃至3の何れかに記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。本実施例では、図8に記載の熱電変換モジュールに、実施例1で作製した熱電変換材料を用いることを想定し、発電効率のシミュレーションを行った。N型、P型の熱電変換材料のZTはともに実施例1の0.213と仮定した。また電極203a、203b、伝熱材204a、204bの熱抵抗の合計が熱電変換材料の熱抵抗の10分の1になるように、それぞれの寸法を決定した。高温側の伝熱材204aを200℃とし、低温側の伝熱材204bの温度を50℃と設定した。この条件における熱電変換モジュールの発電効率は約2.0%であった。
 比較として、添加材の添加量が0vol%の熱電変換材料で同様の実験を行ったところ、熱電変換効率は約1.2%であった。
 実施例1に係る熱電変換材料は、従来のものに対して熱電変換効率が1.7倍(熱電変換効率は2.0%であり、従来のものに対してプラス0.8%)に向上するというシミュレーション結果が得られた。なお、本実施例ではP型およびN型の熱電変換材料として実施例1で示したものを用いたが、少なくともP型かN型の一方を実施例1のものとすることにより、熱電変換効率向上の効果を得ることができる。但し、両者に適用することにより熱電変換効率がより向上することは言うまでも無い。
 以上、本実施例によれば、FeTiSi系のフルホイスラー熱電変換材料において、高い無次元性能指数ZTを持つ熱電変換材料を用いた熱電変換効率の高い熱電変換モジュールを提供することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101:2次結晶粒子、102:被覆層、201:N型熱電変換材料、202:P型熱電変換材料、203a、203b:電極、204a、204b:伝熱材。

Claims (11)

  1.  Fe、Ti、Siを主原料とするフルホイスラー合金からなる熱電変換材料であって、
     FeTiSi系の組成を有する2次結晶粒子と、
     前記2次結晶粒子の周囲を覆うFe、Ti、Si以外の元素を主成分とする被覆層とを有し、
     前記被覆層は、前記FeTiSi系組成の結晶構造に固溶可能で、且つ、前記2次結晶粒子よりも低い電気抵抗率を有する元素を含む組成であることを特徴とする熱電変換材料。
  2.  前記被覆層は、Li、Mg、Al、Cu、Zn、Sn、Ba、及びPbの中の少なくとも1種の元素を主成分とする組成であることを特徴とする請求項1に記載の熱電変換材料。
  3.  前記2次結晶粒子の組成は、Fe(Ti1-aM1)(Si1-bM2)(但し、M1はV、Ru、Cr、Mn、Co、Ni、Cu、Zr、Nb、Mo、Hf、Ta、W、及びIrの中から選択される少なくとも1種からなる組成、M2はCu、Al、Ge、In、Sn、及びGaの中から選択される少なくとも1種からなる組成であり、0≦a≦0.2、0≦b≦0.2)で表されることを特徴とする請求項1または2に記載の熱電変換材料。
  4.  請求項1から3のいずれか一項に記載の熱電変換材料を用いたことを特徴とする熱電変換モジュール。
  5.  P型熱電変換材料と、N型熱電変換材料と、前記P型熱電変換材料と前記N型熱電変換材料を接続する電極と、を備えた熱電変換素子を複数有する熱電変換モジュールにおいて、
     前記N型熱電変換材料および前記P型熱電変換材料の少なくとも一方は、Fe、Ti、Siを主原料とするフルホイスラー合金からなり、FeTiSi系の組成を有する2次結晶粒子と、前記2次結晶粒子の周囲を覆うFe、Ti、Si以外の元素を主成分とする被覆層とを有し、前記被覆層は、前記FeTiSi系組成の結晶構造に固溶可能で、且つ、前記2次結晶粒子よりも低い電気抵抗率を有する元素を含む組成の熱電変換材料であることを特徴とする熱電変換モジュール。
  6.  FeTiSi系の組成を有する合金の合金粉末を作製する工程と、
     前記合金粉末に固溶可能で、且つ、前記合金よりも低い電気抵抗率を有し、Fe、Ti、Si以外の元素からなる組成の添加材を、前記合金粉末に添加する工程と、
     前記合金粉末と前記添加材の混合体を、両者が完全には固溶しないように焼結する焼結工程と、
    を有することを特徴とする熱電変換材料の製造方法。
  7.  前記添加材は、Li、Mg、Al、Cu、Zn、Sn、Ba、及びPbの中の少なくとも1種からなる元素を用いたことを特徴とする請求項6に記載の熱電変換材料の製造方法。
  8.  前記2次結晶粒子の組成は、Fe(Ti1-aM1)(Si1-bM2)(但し、M1はV、Ru、Cr、Mn、Co,Ni,Cu、Zr、Nb、Mo、Hf、Ta、W、及びIrの中から選択される少なくとも1種からなる組成、M2はCu、Al、Ge、In、Sn、及びGaの中から選択される少なくとも1種からなる組成であり、0≦a≦0.2、0≦b≦0.2)で表されることを特徴とする請求項6または7に記載の熱電変換材料の製造方法。
  9.  前記合金粉末は、アモルファス化されたものであることを特徴とする請求項6から8のいずれか一項に記載の熱電変換材料の製造方法。
  10.  前記添加材の添加量は、前記合金粉末と添加材の全体量に対して、0vol%超6vol%以下であることを特徴とする請求項6から9のいずれか一項に記載の熱電変換材料の製造方法。
  11.  前記焼結の温度は、450℃以上800℃以下であることを特徴とする請求項6から10のいずれか一項に記載の熱電変換材料の製造方法。
PCT/JP2016/079772 2015-10-13 2016-10-06 熱電変換材料、その製造方法、および、熱電変換モジュール WO2017065081A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/766,752 US10658562B2 (en) 2015-10-13 2016-10-06 Thermoelectric conversion material, method for producing same, and thermoelectric conversion module
JP2017545177A JP6544437B2 (ja) 2015-10-13 2016-10-06 熱電変換材料、その製造方法、および、熱電変換モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015201866 2015-10-13
JP2015-201866 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017065081A1 true WO2017065081A1 (ja) 2017-04-20

Family

ID=58518125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079772 WO2017065081A1 (ja) 2015-10-13 2016-10-06 熱電変換材料、その製造方法、および、熱電変換モジュール

Country Status (3)

Country Link
US (1) US10658562B2 (ja)
JP (1) JP6544437B2 (ja)
WO (1) WO2017065081A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520418A1 (de) * 2017-09-08 2019-03-15 Avl List Gmbh Thermoelektrischer Generator mit Heuslerscher Legierung
JP2019121628A (ja) * 2017-12-28 2019-07-22 日立金属株式会社 熱電変換材料、熱電変換モジュール、および熱電変換材料の製造方法
JP2019216210A (ja) * 2018-06-14 2019-12-19 日立金属株式会社 熱電変換材料、それを用いた熱電変換モジュール、並びにその製造方法
JP2019216198A (ja) * 2018-06-13 2019-12-19 日立金属株式会社 p型熱電変換材料、熱電変換モジュール及びp型熱電変換材料の製造方法
JP2020057633A (ja) * 2018-09-28 2020-04-09 日立金属株式会社 熱電変換モジュール
CN112899543A (zh) * 2021-01-18 2021-06-04 河北工业大学 电阻率可调控的自旋无能隙半导体材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806199B1 (ja) 2019-08-08 2021-01-06 Tdk株式会社 磁気抵抗効果素子およびホイスラー合金

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152613A (ja) * 1991-11-26 1993-06-18 Isuzu Motors Ltd 熱電変換材料
JPH0645661A (ja) * 1992-07-22 1994-02-18 Isuzu Motors Ltd 熱発電材料の製造方法
JP2010161213A (ja) * 2009-01-08 2010-07-22 Tokuyama Corp 熱電変換材料およびその製造方法
WO2013027662A1 (ja) * 2011-08-22 2013-02-28 株式会社村田製作所 熱電変換素子、熱電変換モジュール、およびそれらの製造方法
WO2013175571A1 (ja) * 2012-05-22 2013-11-28 株式会社日立製作所 熱電変換モジュール
JP2015122476A (ja) * 2013-11-19 2015-07-02 日立金属株式会社 熱電変換材料及びそれを用いた熱電変換モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858976B2 (ja) 2007-01-31 2012-01-18 独立行政法人産業技術総合研究所 複合化した熱電変換材料
JP6460225B2 (ja) * 2015-04-08 2019-01-30 日立金属株式会社 熱電変換材料およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152613A (ja) * 1991-11-26 1993-06-18 Isuzu Motors Ltd 熱電変換材料
JPH0645661A (ja) * 1992-07-22 1994-02-18 Isuzu Motors Ltd 熱発電材料の製造方法
JP2010161213A (ja) * 2009-01-08 2010-07-22 Tokuyama Corp 熱電変換材料およびその製造方法
WO2013027662A1 (ja) * 2011-08-22 2013-02-28 株式会社村田製作所 熱電変換素子、熱電変換モジュール、およびそれらの製造方法
WO2013175571A1 (ja) * 2012-05-22 2013-11-28 株式会社日立製作所 熱電変換モジュール
JP2015122476A (ja) * 2013-11-19 2015-07-02 日立金属株式会社 熱電変換材料及びそれを用いた熱電変換モジュール

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520418A1 (de) * 2017-09-08 2019-03-15 Avl List Gmbh Thermoelektrischer Generator mit Heuslerscher Legierung
AT520418B1 (de) * 2017-09-08 2022-03-15 Avl List Gmbh Thermoelektrischer Generator mit Heuslerscher Legierung
JP2019121628A (ja) * 2017-12-28 2019-07-22 日立金属株式会社 熱電変換材料、熱電変換モジュール、および熱電変換材料の製造方法
JP7087383B2 (ja) 2017-12-28 2022-06-21 日立金属株式会社 熱電変換材料、熱電変換モジュール、および熱電変換材料の製造方法
JP2019216198A (ja) * 2018-06-13 2019-12-19 日立金属株式会社 p型熱電変換材料、熱電変換モジュール及びp型熱電変換材料の製造方法
JP7028076B2 (ja) 2018-06-13 2022-03-02 日立金属株式会社 p型熱電変換材料、熱電変換モジュール及びp型熱電変換材料の製造方法
JP2019216210A (ja) * 2018-06-14 2019-12-19 日立金属株式会社 熱電変換材料、それを用いた熱電変換モジュール、並びにその製造方法
JP7020309B2 (ja) 2018-06-14 2022-02-16 日立金属株式会社 熱電変換材料、それを用いた熱電変換モジュール、並びにその製造方法
JP2020057633A (ja) * 2018-09-28 2020-04-09 日立金属株式会社 熱電変換モジュール
JP7215049B2 (ja) 2018-09-28 2023-01-31 日立金属株式会社 熱電変換モジュール
CN112899543A (zh) * 2021-01-18 2021-06-04 河北工业大学 电阻率可调控的自旋无能隙半导体材料及其制备方法

Also Published As

Publication number Publication date
JPWO2017065081A1 (ja) 2018-08-09
JP6544437B2 (ja) 2019-07-17
US10658562B2 (en) 2020-05-19
US20180301611A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017065081A1 (ja) 熱電変換材料、その製造方法、および、熱電変換モジュール
Nozariasbmarz et al. Thermoelectric silicides: A review
Zhu et al. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium
JP4745183B2 (ja) 熱電変換材料とそれを用いた熱電変換モジュール
JP6424959B2 (ja) 熱電変換材料
JP6460225B2 (ja) 熱電変換材料およびその製造方法
JP2007158191A (ja) 熱電材料およびこの材料を用いた熱電変換素子
JP6054606B2 (ja) 熱電半導体
JP2017168609A (ja) 熱電変換素子、熱電変換モジュール、および熱電変換システム
WO2017175528A1 (ja) 熱電変換材料及びその製造方法
JP6768556B2 (ja) 熱電変換材料及びその製造方法
US10115879B2 (en) Thermoelectric conversion material and method of production thereof
JP5201691B2 (ja) 酸素を含有した金属間化合物熱電変換材料並びに熱電変換素子乃至熱電変換モジュール
CN107112406A (zh) 热电粉末及使用其制备的热电材料
WO2018135286A1 (ja) p型熱電変換材料、熱電変換モジュール及びp型熱電変換材料の製造方法
JP2007173799A (ja) 熱電変換材料および熱電変換素子
Longhin et al. Nanostructured CoSi obtained by spark plasma sintering
KR102409289B1 (ko) 마그네슘계 열전 변환 재료, 마그네슘계 열전 변환 소자, 및 마그네슘계 열전 변환 재료의 제조 방법
JP2008227321A (ja) 熱電変換材料及びこれを用いた熱電変換モジュール
JP2009111357A (ja) 熱電材料及びその製造方法
JP6333204B2 (ja) 熱電変換材料、その製造方法及びそれを用いた熱電変換素子
JP6475153B2 (ja) N型熱電変換材料の製造方法
WO2022259758A1 (ja) 熱電変換材料、熱電変換材料用組成物、熱電変換素子、熱電変換モジュール、及び熱電変換材料の製造方法
JP7020309B2 (ja) 熱電変換材料、それを用いた熱電変換モジュール、並びにその製造方法
JP2017043847A (ja) 合金材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545177

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766752

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855335

Country of ref document: EP

Kind code of ref document: A1