WO2017063290A1 - 碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法 - Google Patents

碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法 Download PDF

Info

Publication number
WO2017063290A1
WO2017063290A1 PCT/CN2015/099269 CN2015099269W WO2017063290A1 WO 2017063290 A1 WO2017063290 A1 WO 2017063290A1 CN 2015099269 W CN2015099269 W CN 2015099269W WO 2017063290 A1 WO2017063290 A1 WO 2017063290A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
conductive
ball
epoxy resin
preparing
Prior art date
Application number
PCT/CN2015/099269
Other languages
English (en)
French (fr)
Inventor
张霞
李泳锐
胡韬
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/913,370 priority Critical patent/US9816013B2/en
Priority to JP2018514869A priority patent/JP6691961B2/ja
Priority to GB1803008.0A priority patent/GB2556600B/en
Priority to KR1020187006538A priority patent/KR102016868B1/ko
Publication of WO2017063290A1 publication Critical patent/WO2017063290A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/149Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/30Drying; Impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Definitions

  • the invention relates to the field of flat panel displays, in particular to a method for preparing a carbon nanotube conductive ball and a method for preparing the carbon nanotube ball conductive glue.
  • a frame glue containing conductive gold balls is commonly used to conduct the upper and lower substrates to form a conductive path.
  • the gold/nickel coating layer on the outer layer of the conductive gold ball can transmit electrons (the conductivity requirement is 2.4 ⁇ 10 5 S/cm), and the elastic gold ball core has an elastic resin ball to buffer the pressure after bonding.
  • the gold ball and the frame glue are mixed and prepared into a gold glue, and the gold glue is mainly composed of a conductive gold ball, a resin matrix, a dispersing agent, a curing agent, a promoter and the like.
  • the traditional conductive gold ball is produced by electroless plating on the surface of a resin ball with a diameter of 5-8 ⁇ m.
  • the method consumes a large amount of energy and has a complicated process.
  • the gold salt used in the gold plating process is mostly cyanide, and the toxicity is high. Very large, heavy metal pollution is easy to occur in the process, and the price of gold is expensive and increases the cost.
  • Patent CN102643625 proposes a technical solution for using polyaniline conductive particles instead of conductive gold balls for LCD.
  • the polyaniline conductive particles can effectively maintain the thickness of the box and save cost, and have relatively large innovation and practical value;
  • the electrical conductivity of aniline conductive particles is still far from that of other commonly used conductive fillers (new carbon materials, metals, etc.).
  • patent CN 201310181828 proposes a technical solution for preparing high-performance conductive adhesive by using electroless silver-plated carbon nanotubes as conductive filler, which fully utilizes the advantages of large aspect ratio and high electrical conductivity of carbon nanotubes.
  • silver itself is more expensive, and micron-sized silver is more susceptible to oxidation, and there is a certain risk in material stability.
  • the object of the present invention is to provide a method for preparing a carbon nanotube conductive ball, which comprises polymer microspheres or SiO2 microspheres as a matrix, and encapsulates the carbon nanotube material to form a spherical carbon nanotube conductive ball.
  • the carbon nanotube conductive ball has controllable particle size, high material stability and excellent electrical conductivity.
  • the object of the present invention is to provide a method for preparing a carbon nanotube ball conductive adhesive, which uses a carbon nanotube conductive ball as a conductive particle to replace a conductive gold ball commonly used in current conductive sealant.
  • the rice tube conductive ball has simple preparation process, low equipment requirement, low cost and high efficiency, and can avoid heavy metal pollution generated during the production process of the conductive gold ball.
  • the present invention provides a method for preparing a carbon nanotube conductive ball, comprising the following steps:
  • Step 1 Providing a carbon nanotube powder and a solvent, adding the carbon nanotube powder to a solvent, and performing ultrasonication, stirring treatment, centrifugation, and taking the supernatant to obtain carbon nanometers having a concentration ranging from 0.01 mg/mL to 10 mg/mL.
  • Tube dispersion Providing a carbon nanotube powder and a solvent, adding the carbon nanotube powder to a solvent, and performing ultrasonication, stirring treatment, centrifugation, and taking the supernatant to obtain carbon nanometers having a concentration ranging from 0.01 mg/mL to 10 mg/mL.
  • Step 2 providing polymer microspheres, or SiO 2 microspheres, adding the polymer microspheres or SiO 2 microspheres to the carbon nanotube dispersion, and performing ultrasonic treatment to obtain uniformly dispersed carbon nanotubes/ Polymer microsphere mixture, or carbon nanotube/SiO 2 microsphere mixture;
  • Step 3 The carbon nanotube/polymer microsphere mixture or the carbon nanotube/SiO 2 microsphere mixture is centrifuged, filtered, and dried to remove the solvent and impurities in the mixed solution to obtain carbon nanotube conductive. Ball powder.
  • the solvent includes one or more of water, ethanol, ethylene glycol, isopropanol, acetone, chloroform, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide, and toluene.
  • the step 1 further includes adding a surfactant to the solvent.
  • the surfactant includes one or more of sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium tetradecyl sulfate. .
  • the polymer microspheres include one or more of polystyrene, polyaniline, polypyrrole, polythiophene, and polyacrylic resin microspheres, and the polymer microspheres are uniform in size.
  • the polymer microspheres have a particle size ranging from 1 to 30 ⁇ m.
  • the invention also provides a preparation method of carbon nanotube ball conductive adhesive, comprising the following steps:
  • Step 10 preparing a carbon nanotube conductive ball powder by using the preparation method of the carbon nanotube conductive ball described above;
  • Step 20 providing an epoxy resin, a curing agent, an accelerator, and mixing and stirring until uniformly dispersed to obtain an epoxy resin colloid;
  • Step 30 according to the mass ratio of the epoxy resin colloid to the carbon nanotube conductive ball is 100:1-50, the prepared carbon nanotube conductive ball powder is dispersed in the epoxy resin colloid to obtain carbon nanotube ball conductive Glue preparation material;
  • Step 40 Defoaming the carbon nanotube ball conductive adhesive preparation material to obtain a carbon nanotube ball conductive adhesive.
  • the mass percentage of each component in the epoxy resin colloid obtained in the step 20 is 80% to 95% of the epoxy resin, 1% to 12% of the curing agent, and 0.3% to 5% of the accelerator.
  • the epoxy resin is a bisphenol A type epoxy resin E44, a bisphenol A type ring Oxygen resin E51, bisphenol A type epoxy resin E54, bisphenol A type epoxy resin EPON826 or bisphenol A type epoxy resin EPON828.
  • the curing agent is hexahydrophthalic anhydride, tetrahydrophthalic anhydride, succinic acid hydrazide, adipic acid hydrazide, dicyandiamide or p-phenylenediamine.
  • the promoter is di-ethyl-tetramethylimidazole, imidazole, dimethylimidazole or triethylamine.
  • the invention also provides a preparation method of carbon nanotube ball conductive adhesive, comprising the following steps:
  • Step 10 preparing a carbon nanotube conductive ball powder by using the method for preparing a carbon nanotube conductive ball according to claim 1;
  • Step 20 providing an epoxy resin, a curing agent, an accelerator, and mixing and stirring until uniformly dispersed to obtain an epoxy resin colloid;
  • Step 30 according to the mass ratio of the epoxy resin colloid to the carbon nanotube conductive ball is 100:1-50, the prepared carbon nanotube conductive ball powder is dispersed in the epoxy resin colloid to obtain carbon nanotube ball conductive Glue preparation material;
  • Step 40 performing defoaming treatment on the carbon nanotube ball conductive adhesive preparation material to obtain a carbon nanotube ball conductive adhesive
  • the mass percentage of each component in the epoxy resin colloid obtained in the step 20 is: 80% to 95% of epoxy resin, 1% to 12% of curing agent, and 0.3% to 5% of accelerator;
  • the epoxy resin is bisphenol A epoxy resin E44, bisphenol A epoxy resin E51, bisphenol A epoxy resin E54, bisphenol A epoxy resin EPON826 or Bisphenol A type epoxy resin EPON828;
  • the curing agent is hexahydrophthalic anhydride, tetrahydrophthalic anhydride, succinic acid hydrazide, adipic acid hydrazide, dicyandiamide or p-phenylenediamine;
  • the promoter is di-ethyl-tetramethylimidazole, imidazole, dimethylimidazole or triethylamine.
  • the invention provides a preparation method of carbon nanotube conductive balls and a preparation method of carbon nanotube ball conductive glue.
  • the preparation method of the carbon nanotube conductive ball of the invention combines the stability of the polymer microsphere, the SiO 2 microsphere and the high conductivity of the carbon nanotube, and is coated with the polymer microsphere or the SiO 2 microsphere as a matrix.
  • the carbon nanotube material obtains spherical carbon nanotube conductive ball, which has simple preparation process, low equipment requirement, abundant raw materials, low cost and high efficiency, and the prepared carbon nanotube conductive ball has controllable particle size and high material stability.
  • the conductive property is excellent and the environment is friendly, and can replace the conductive gold ball commonly used in current conductive adhesives.
  • the carbon nanotube conductive ball can also be used for conductive ink, which has potential commercial value in the field of flexible circuits; the carbon nanotube ball of the present invention
  • the preparation method of the conductive adhesive adopts the carbon nanotube conductive ball as the conductive particle, and is used in the TFT-LCD instead of the conductive gold ball commonly used in the current conductive adhesive, thereby overcoming the high content and high price of the conductive filler in the traditional conductive adhesive.
  • the preparation process is complicated, and the pollution to the environment is high.
  • the prepared carbon nanotube ball conductive adhesive has a great application prospect in the ultra-fine circuit connection.
  • FIG. 1 is a flow chart of a method for preparing a carbon nanotube conductive ball of the present invention
  • FIG. 3 is a flow chart of a method for preparing a carbon nanotube ball conductive paste of the present invention
  • 5-6 are schematic views showing the structure of a carbon nanotube ball conductive adhesive applied to a TFT-LCD according to the present invention.
  • the present invention first provides a method for preparing a carbon nanotube conductive ball, comprising the following steps:
  • Step 1 providing a carbon nanotube powder and a solvent, adding the carbon nanotube powder to the solvent, in order to help the carbon nanotubes to be uniformly dispersed, optionally adding a surfactant, and performing ultrasonication, stirring treatment, centrifugation, and taking The supernatant liquid obtains a carbon nanotube dispersion liquid having a concentration ranging from 0.01 mg/mL to 10 mg/mL;
  • the solvent includes one or more of water, ethanol, ethylene glycol, isopropanol, acetone, chloroform, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide, toluene;
  • the agent includes one or more of sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecylsulfonate, sodium dodecylbenzenesulfonate, and sodium tetradecyl sulfate.
  • Step 2 providing polymer microspheres, or SiO 2 microspheres, adding the polymer microspheres or SiO 2 microspheres to the carbon nanotube dispersion, and performing ultrasonic treatment to obtain uniformly dispersed carbon nanotubes/ Polymer microsphere mixture, or carbon nanotube/SiO2 microsphere mixture;
  • the polymer microspheres include polystyrene, polyaniline, polypyrrole, polythiophene, One or more of polyacrylic resin microspheres having uniform size, and the polymer microspheres having a particle size ranging from 1 to 30 ⁇ m.
  • Step 3 The carbon nanotube/polymer microsphere mixture or the carbon nanotube/SiO 2 microsphere mixture is centrifuged, filtered, and dried to remove the solvent and impurities in the mixed solution to obtain carbon nanotube conductive.
  • the ball powder specifically, please refer to FIG. 2 , which is a scanning electron micrograph of the carbon nanotube conductive ball prepared by the invention, and the carbon nanotube conductive ball of the invention has a spherical shape.
  • the filtering process may be repeatedly washed with ethanol and water to remove impurities in the mixed liquid.
  • the preparation method of the carbon nanotube conductive ball combines the stability of the polymer microsphere, the SiO 2 microsphere and the high conductivity of the carbon nanotube, and the polymer microsphere or the SiO 2 microsphere is used as the matrix.
  • the carbon nanotube material is wrapped to obtain a spherical carbon nanotube conductive ball, which has simple preparation process, low equipment requirement, abundant raw materials, low cost and high efficiency;
  • the carbon nanotube conductive ball prepared by the invention has the controllable particle size, high material stability, excellent electrical conductivity and environmental friendliness, can be used in the conductive glue of the liquid crystal panel instead of the conductive gold ball, and the carbon nanotube conductive ball It can also be used in conductive inks and has potential commercial value in the field of flexible circuits.
  • the present invention also provides a method for preparing a carbon nanotube ball conductive adhesive, comprising the following steps:
  • Step 10 preparing a carbon nanotube conductive ball powder by using the preparation method of the carbon nanotube conductive ball described above;
  • the carbon nanotube conductive ball prepared in the step is obtained by coating the carbon nanotube material with the polymer microsphere as a matrix; and the polymer microsphere as the matrix has a certain elasticity, the carbon nanotube conductive ball is prepared from the carbon nanotube conductive ball.
  • the carbon nanotube ball conductive adhesive is applied to the liquid crystal panel.
  • Step 20 providing an epoxy resin, a curing agent, an accelerator, and mixing and stirring until uniformly dispersed to obtain an epoxy resin colloid;
  • the mass percentage of each component in the epoxy resin colloid is: 80% to 95% of epoxy resin, 1% to 12% of curing agent, and 0.3% to 5% of accelerator.
  • the epoxy resin is bisphenol A epoxy resin E44, bisphenol A epoxy resin E51, bisphenol A epoxy resin E54, bisphenol A epoxy resin EPON826 or bisphenol A ring Oxygen resin EPON828;
  • the curing agent is hexahydrophthalic anhydride, tetrahydrophthalic anhydride, succinic acid hydrazide, adipic acid hydrazide, dicyandiamide or p-phenylenediamine;
  • the accelerator It is di-ethyl-tetramethylimidazole, imidazole, dimethylimidazole or triethylamine.
  • Step 30 The mass ratio of the epoxy resin to the carbon nanotube conductive ball is 100:1 to 50, Dissolving the prepared carbon nanotube conductive ball powder in the epoxy resin colloid to obtain a carbon nanotube ball conductive adhesive preparation material;
  • Step 40 Defoaming the carbon nanotube ball conductive adhesive preparation material to obtain a carbon nanotube ball conductive adhesive. Specifically, referring to FIG. 4, the carbon nanotube ball conductive adhesive prepared by the invention is scanned. Electron micrograph.
  • the carbon nanotube ball conductive adhesive prepared by the invention can be applied to the TFT-LCD by using the carbon nanotube conductive ball as a filler.
  • the carbon nanotube ball conductive adhesive 500 can be located in the sealant.
  • the inner side of the 300 is used for connecting the electrode 110 on the side of the array substrate 100 and the electrode 210 on the side of the color filter substrate 200, so that the common electrode on the side of the array substrate and the side of the color filter substrate is ensured; or it can be located outside the sealant 300 for connecting the array.
  • the invention provides a method for preparing a carbon nanotube ball conductive adhesive, which uses a carbon nanotube conductive ball as a conductive particle to replace the conductive gold ball commonly used in current conductive glue and is applied to a TFT-LCD, thereby overcoming the traditional conductive adhesive.
  • the content of the conductive filler is too high, the price is expensive, the preparation process is complicated, and the environmental pollution is high.
  • the prepared carbon nanotube ball conductive adhesive also has a great application prospect in the ultra-fine circuit connection.
  • the components were weighed according to the following mass ratio: bisphenol A type epoxy resin E44 (93%), hexahydrophthalic anhydride (6%), di-ethyl-tetramethylimidazole (1%) , mixing, stirring until evenly dispersed to obtain an epoxy resin colloid.
  • the carbon nanotube conductive ball prepared in the above step A is added to the epoxy resin system, wherein the mass ratio of the epoxy resin system to the carbon nanotube conductive ball is 50:1, and the mixture is stirred until the dispersion is uniform, and the carbon nanotube ball is obtained.
  • the prepared carbon nanotube ball conductive rubber preparation material was added to a defoaming machine, and defoaming treatment was carried out for 30 min at a rotation speed of 500 rpm under a vacuum of 0.7 KPa to obtain a carbon nanotube ball conductive paste.
  • the components were weighed according to the following mass ratio: bisphenol A type epoxy resin EPON826 (89%), hexahydrophthalic anhydride (9%), triethylamine (2%), mixed, stirred until dispersed Uniformly, an epoxy resin system is obtained.
  • the carbon nanotube conductive ball powder prepared in step A is added to the epoxy resin system, wherein the mass ratio of the epoxy resin system to the carbon nanotube conductive ball is 15:1, and the mixture is stirred until uniformly dispersed to obtain carbon nanotubes.
  • Ball conductive adhesive preparation material
  • the prepared carbon nanotube ball conductive rubber preparation material was added to a defoaming machine, and defoaming treatment was carried out for 30 min at a rotation speed of 500 rpm under a vacuum of 0.7 KPa to obtain a carbon nanotube ball conductive paste.
  • the method for preparing the carbon nanotube conductive ball of the present invention combines the stability of the polymer microsphere, the SiO 2 microsphere and the high conductivity of the carbon nanotube to the polymer microsphere, or SiO 2 micro
  • the ball is a matrix, and the carbon nanotube material is wrapped to obtain a spherical carbon nanotube conductive ball.
  • the preparation process is simple, the equipment requirements are low, the raw materials are abundant, the cost is low, and the efficiency is high, and the prepared carbon nanotube conductive ball diameter can be controlled.
  • the preparation method of the carbon nanotube ball conductive adhesive adopts the carbon nanotube conductive ball as the conductive particle, and is used in the TFT-LCD instead of the conductive gold ball commonly used in the current conductive adhesive, thereby overcoming the content of the conductive filler in the traditional conductive adhesive. High, expensive, complicated preparation process, high environmental pollution, etc. In addition, the prepared carbon nanotube ball conductive adhesive also has a huge connection in ultra-fine circuit connection. With prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法。本发明的碳纳米管导电球的制备方法,结合聚合物微球、SiO2微球的稳定性和碳纳米管的高导电性优势,以聚合物微球、或SiO2微球为基体,包裹碳纳米管材料,得到球状的碳纳米管导电球,其制备工艺简单,设备要求低,原料丰富,成本低廉,效率高,所制得的碳纳米管导电球粒径可控,材料稳定性高,导电性能优异,环境友好;本发明的碳纳米管球导电胶的制备方法,采用碳纳米管导电球作为导电粒子,代替目前导电胶中常用的导电金球而应用于TFT-LCD中,克服了传统导电胶中导电填料的含量过高、价格昂贵、制备工艺复杂、对环境污染性高等缺点,此外,所制备的碳纳米管球导电胶在超细电路连接中也有着巨大的应用前景。

Description

碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法 技术领域
本发明涉及平面显示器领域,尤其涉及一种碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法。
背景技术
目前,在薄膜晶体管液晶显示(Thin Film Transistor Liquid Crystal Display,TFT-LCD)产业中常用掺有导电金球(Au ball)的框胶来导通上下基板,形成导电通路。当基板贴合后,导电金球外层的金/镍包裹层能够传输电子(电导率要求达到2.4×105S/cm),导电金球内核具有弹性的树脂球能够缓冲贴合后的压力。实际应用时,金球与框胶混合调制成金胶使用,该金胶主要由导电金球、树脂基体、分散剂、固化剂、促进剂等组成。传统导电金球的生产是使用化学镀法在直径为5~8μm的树脂球表面进行金/镍的包裹,此法耗能大,工艺复杂,镀金过程中使用的金盐大多是氰化物,毒性非常大,过程中易产生重金属污染,而且金的价格昂贵,增加了成本。
专利CN102643625提出了一种聚苯胺导电微粒取代导电金球应用于LCD的技术方案,该聚苯胺导电微粒既可有效维持盒厚,又可有效节省成本,有比较大的创新和实用价值;但聚苯胺导电微粒的导电性能与其他常用导电填料(新型炭材料、金属等)相比仍有较大的差距。除此以外,专利CN 201310181828提出了一种以化学镀银的碳纳米管为导电填料制得高性能导电胶的技术方案,该方案充分发挥了碳纳米管大长径比、高导电率的优势,但银本身价格较贵,微米级的银较易氧化,材料稳定性存在一定风险。
因此,开发一种工艺简单、原材料丰富、价格低廉、环境友好的新型导电框胶填料,具有很强的实用意义。
发明内容
本发明的目的在于提供一种碳纳米管导电球的制备方法,以聚合物微球、或SiO2微球为基体,包裹碳纳米管材料,形成一种球状的碳纳米管导电球,所制得的碳纳米管导电球粒径可控,材料稳定性高,导电性能优异。
本发明的目的还在于提供一种碳纳米管球导电胶的制备方法,采用碳纳米管导电球作为导电粒子代替目前导电框胶中常用的导电金球,该碳纳 米管导电球制备工艺简单,设备要求低,成本低廉,效率高,能够避免导电金球生产过程中产生的重金属污染。
为实现上述目的,本发明提供一种碳纳米管导电球的制备方法,包括以下步骤:
步骤1、提供碳纳米管粉末及溶剂,将所述碳纳米管粉末加入溶剂中,通过超声、搅拌处理,离心,取上清液,获得浓度范围为0.01mg/mL~10mg/mL的碳纳米管分散液;
步骤2:提供聚合物微球、或SiO2微球,将所述聚合物微球、或SiO2微球加入所述碳纳米管分散液中,进行超声处理,得到分散均匀的碳纳米管/聚合物微球混合液、或碳纳米管/SiO2微球混合液;
步骤3:将所述碳纳米管/聚合物微球混合液、或碳纳米管/SiO2微球混合液进行离心、过滤、干燥处理,去除混合液中的溶剂和杂质,得到碳纳米管导电球粉末。
所述步骤1中,所述溶剂包括水、乙醇、乙二醇、异丙醇、丙酮、氯仿、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、甲苯中的一种或多种。
所述步骤1中还包括在溶剂中加入表面活性剂。
所述表面活性剂包括十二烷基硫酸钠、十二烷基硫酸铵、十二烷基磺酸钠、十二烷基苯磺酸钠、十四烷基硫酸钠中的一种或多种。
所述步骤2中,所述聚合物微球包括聚苯乙烯、聚苯胺、聚吡咯、聚噻吩、聚丙烯酸树脂微球中的一种或多种,所述聚合物微球尺寸均一,所述聚合物微球的粒径范围为1~30μm。
本发明还提供一种碳纳米管球导电胶的制备方法,包括以下步骤:
步骤10、采用以上所述的碳纳米管导电球的制备方法制备出碳纳米管导电球粉末;
步骤20、提供环氧树脂、固化剂、促进剂,并混合、搅拌至分散均匀,得到环氧树脂胶体;
步骤30、按环氧树脂胶体与碳纳米管导电球的质量比为100:1~50,将制得的碳纳米管导电球粉末分散于所述环氧树脂胶体中,得到碳纳米管球导电胶预备材料;
步骤40、将所述碳纳米管球导电胶预备材料进行脱泡处理,得到碳纳米管球导电胶。
所述步骤20中得到的环氧树脂胶体中各组分的质量百分比为:环氧树脂80%~95%、固化剂1%~12%、促进剂0.3%~5%。
所述步骤20中,所述环氧树脂为双酚A型环氧树脂E44、双酚A型环 氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂EPON828。
所述步骤20中,所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺。
所述步骤20中,所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺。
本发明还提供一种碳纳米管球导电胶的制备方法,包括以下步骤:
步骤10、采用如权利要求1所述的碳纳米管导电球的制备方法制备出碳纳米管导电球粉末;
步骤20、提供环氧树脂、固化剂、促进剂,并混合、搅拌至分散均匀,得到环氧树脂胶体;
步骤30、按环氧树脂胶体与碳纳米管导电球的质量比为100:1~50,将制得的碳纳米管导电球粉末分散于所述环氧树脂胶体中,得到碳纳米管球导电胶预备材料;
步骤40、将所述碳纳米管球导电胶预备材料进行脱泡处理,得到碳纳米管球导电胶;
其中,所述步骤20中得到的环氧树脂胶体中各组分的质量百分比为:环氧树脂80%~95%、固化剂1%~12%、促进剂0.3%~5%;
其中,所述步骤20中,所述环氧树脂为双酚A型环氧树脂E44、双酚A型环氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂EPON828;
其中,所述步骤20中,所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺;
其中,所述步骤20中,所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺。
本发明提供一种碳纳米管导电球的制备方法与一种碳纳米管球导电胶的制备方法。本发明的碳纳米管导电球的制备方法,结合聚合物微球、SiO2微球的稳定性和碳纳米管的高导电性优势,以聚合物微球、或SiO2微球为基体,包裹碳纳米管材料,得到球状的碳纳米管导电球,其制备工艺简单,设备要求低,原料丰富,成本低廉,效率高,所制得的碳纳米管导电球粒径可控,材料稳定性高,导电性能优异,环境友好,可代替目前导电胶中常用的导电金球,此外该碳纳米管导电球还可用于导电油墨,在柔性电路领域有着潜在的商业价值;本发明的碳纳米管球导电胶的制备方法,采用碳纳米管导电球作为导电粒子,代替目前导电胶中常用的导电金球而应用 于TFT-LCD中,克服了传统导电胶中导电填料的含量过高、价格昂贵、制备工艺复杂、对环境污染性高等缺点,此外,所制备的碳纳米管球导电胶在超细电路连接中也有着巨大的应用前景。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的碳纳米管导电球的制备方法的流程图;
图2为本发明的碳纳米管导电球的扫描电镜照片;
图3为本发明的碳纳米管球导电胶的制备方法的流程图;
图4为本发明的碳纳米管球导电胶的扫描电镜照片;
图5-6为本发明的碳纳米管球导电胶应用于TFT-LCD的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种碳纳米管导电球的制备方法,包括以下步骤:
步骤1、提供碳纳米管粉末及溶剂,将所述碳纳米管粉末加入所述溶剂中,为帮助碳纳米管分散均匀,可选择性地加入表面活性剂,通过超声、搅拌处理,离心,取上清液,获得浓度范围为0.01mg/mL~10mg/mL的碳纳米管分散液;
具体的,所述溶剂包括水、乙醇、乙二醇、异丙醇、丙酮、氯仿、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、甲苯中的一种或多种;所述表面活性剂包括十二烷基硫酸钠、十二烷基硫酸铵、十二烷基磺酸钠、十二烷基苯磺酸钠、十四烷基硫酸钠中的一种或多种。
步骤2:提供聚合物微球、或SiO2微球,将所述聚合物微球、或SiO2微球加入所述碳纳米管分散液中,进行超声处理,得到分散均匀的碳纳米管/聚合物微球混合液、或碳纳米管/SiO2微球混合液;
具体的,所述聚合物微球包括聚苯乙烯、聚苯胺、聚吡咯、聚噻吩、 聚丙烯酸树脂微球中的一种或多种,所述聚合物微球尺寸均一,所述聚合物微球的粒径范围为1~30μm。
步骤3:将所述碳纳米管/聚合物微球混合液、或碳纳米管/SiO2微球混合液进行离心、过滤、干燥处理,去除混合液中的溶剂和杂质,得到碳纳米管导电球粉末,具体的,请参阅图2,为本发明所制得的碳纳米管导电球的扫描电镜照片,本发明的碳纳米管导电球为球状。
具体的,所述步骤3中,所述过滤过程可用乙醇和水反复洗涤,以去除混合液中的杂质。
本发明提供的碳纳米管导电球的制备方法,结合聚合物微球、SiO2微球的稳定性和碳纳米管的高导电性优势,以聚合物微球、或SiO2微球为基体,包裹碳纳米管材料,得到球状的碳纳米管导电球,其制备工艺简单,设备要求低,原料丰富,成本低廉,效率高;
本发明所制得的碳纳米管导电球粒径可控,材料稳定性高,导电性能优异,环境友好,可取代导电金球而应用于液晶面板的导电胶中,此外该碳纳米管导电球还可用于导电油墨,在柔性电路领域有着潜在的商业价值。
请参阅图3,本发明还提供一种碳纳米管球导电胶的制备方法,包括以下步骤:
步骤10、采用以上所述的碳纳米管导电球的制备方法制备出碳纳米管导电球粉末;
优选的,该步骤所制备出的碳纳米管导电球以聚合物微球为基体,包裹碳纳米管材料而得到;由于聚合物微球作为基体具有一定弹性,则将由该碳纳米管导电球制备的碳纳米管球导电胶应用于液晶面板,在进行液晶面板真空对组时,两侧基板会受到一定压力,具有弹性的球状填料可确保上下基板导通,同时对基板无损伤;
步骤20、提供环氧树脂、固化剂、促进剂,并混合、搅拌至分散均匀,得到环氧树脂胶体;
具体的,所述环氧树脂胶体中各组分的质量百分比为:环氧树脂80%~95%、固化剂1%~12%、促进剂0.3%~5%。
具体的,所述环氧树脂为双酚A型环氧树脂E44、双酚A型环氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂EPON828;所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺;所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺。
步骤30、按环氧树脂胶体与碳纳米管导电球的质量比为100:1~50, 将制得的碳纳米管导电球粉末分散于所述环氧树脂胶体中,得到碳纳米管球导电胶预备材料;
步骤40、将所述碳纳米管球导电胶预备材料进行脱泡处理,得到碳纳米管球导电胶,具体的,请参阅图4,为本发明所制得的碳纳米管球导电胶的扫描电镜照片。
具体的,本发明所制备的碳纳米管球导电胶以碳纳米管导电球作为填料,可应用于TFT-LCD中,如图5-6所示,碳纳米管球导电胶500可位于框胶300内侧用于连接阵列基板100侧的电极110与彩膜基板200侧的电极210,使得阵列基板侧和彩膜基板侧的共通电极导通得到保证;也可以位于框胶300外侧用于连接阵列基板100侧的电极110与IC芯片400等。
本发明提供的一种碳纳米管球导电胶的制备方法,采用碳纳米管导电球作为导电粒子,代替目前导电胶中常用的导电金球而应用于TFT-LCD中,克服了传统导电胶中导电填料的含量过高、价格昂贵、制备工艺复杂、对环境污染性高等缺点,此外,所制备的碳纳米管球导电胶在超细电路连接中也有着巨大的应用前景。
以下为本发明的碳纳米管导电球与碳纳米管球导电胶的制备方法的优选实施例。
实施例1:
A、碳纳米管导电球的制备
称取6mg碳纳米管粉末加入10ml去离子水中,加入十二烷基硫酸铵,超声1h,磁力搅拌30min,离心,取上清液,获得碳纳米管分散液;向其中加入60mg粒径为5.7μm的聚苯乙烯微球,搅拌、超声至碳纳米管与聚苯乙烯微球形成稳定、分散均匀的悬浮液。将碳纳米管/聚苯乙烯微球悬浮液离心,取固体,用90mL乙醇和120mL去离子水分三次清洗,重复离心、取固体步骤。将清洗后所得固体放入真空干燥箱,70℃干燥24h,得到碳纳米管/聚苯乙烯导电球复合材料,即本发明所制备的碳纳米管导电球。
B、碳纳米管球导电胶的制备
将各组分按照如下质量比进行称量:双酚A型环氧树脂E44(93%)、六氢邻苯二甲酸酐(6%)、二-乙基-四甲基咪唑(1%),混合,搅拌至分散均匀,获得环氧树脂胶体。取上步A制得的碳纳米管导电球加入到环氧树脂体系中,其中,环氧树脂体系与碳纳米管导电球质量比为50:1,混合搅拌至分散均匀,获得碳纳米管球导电胶预备材料。将制得的碳纳米管球导电胶预备材料加入脱泡机,在0.7KPa真空度下,500rpm转速下,脱泡处理30min,得到碳纳米管球导电胶。
实施例2:
A、碳纳米管导电球的制备
称取5mg碳纳米管粉末加入10ml乙醇中,超声50min,磁力搅拌1h,离心,取上清液,获得碳纳米管分散液。向其中加入50mg粒径为5μm的聚苯胺微球,加入上述碳纳米管分散液中,经过进一步超声处理,制得分散均匀的碳纳米管/聚苯胺微球悬浮液,将其离心,取固体,用100mL乙醇和100mL去离子水分三次洗涤,重复离心、取固体步骤。将清洗后所得固体真空干燥箱中,80℃下干燥20h,得到碳纳米管/聚苯胺微球复合材料,即本发明所制备的碳纳米管导电球。
B、碳纳米管球导电胶的制备
将各组分按照如下质量比进行称量:双酚A型环氧树脂EPON826(89%)、六氢邻苯二甲酸酐(9%)、三乙胺(2%),混合,搅拌至分散均匀,获得环氧树脂胶体系。取上步A制得的碳纳米管导电球粉末加入到环氧树脂体系中,其中,环氧树脂体系与碳纳米管导电球质量比为15:1,混合搅拌至分散均匀,获得碳纳米管球导电胶预备材料。将制得的碳纳米管球导电胶预备材料加入脱泡机,在0.7KPa真空度下,500rpm转速下,脱泡处理30min,得到碳纳米管球导电胶。
综上所述,本发明的碳纳米管导电球的制备方法,结合聚合物微球、SiO2微球的稳定性和碳纳米管的高导电性优势,以聚合物微球、或SiO2微球为基体,包裹碳纳米管材料,得到球状的碳纳米管导电球,其制备工艺简单,设备要求低,原料丰富,成本低廉,效率高,所制得的碳纳米管导电球粒径可控,材料稳定性高,导电性能优异,环境友好,可代替目前导电胶中常用的导电金球,此外该碳纳米管导电球还可用于导电油墨,在柔性电路领域有着潜在的商业价值;本发明的碳纳米管球导电胶的制备方法,采用碳纳米管导电球作为导电粒子,代替目前导电胶中常用的导电金球而应用于TFT-LCD中,克服了传统导电胶中导电填料的含量过高、价格昂贵、制备工艺复杂、对环境污染性高等缺点,此外,所制备的碳纳米管球导电胶在超细电路连接中也有着巨大的应用前景。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (11)

  1. 一种碳纳米管导电球的制备方法,包括以下步骤:
    步骤1、提供碳纳米管粉末及溶剂,将所述碳纳米管粉末加入溶剂中,通过超声、搅拌处理,离心,取上清液,获得浓度范围为0.01mg/mL~10mg/mL的碳纳米管分散液;
    步骤2:提供聚合物微球、或SiO2微球,将所述聚合物微球、或SiO2微球加入所述碳纳米管分散液中,进行超声处理,得到分散均匀的碳纳米管/聚合物微球混合液、或碳纳米管/SiO2微球混合液;
    步骤3:将所述碳纳米管/聚合物微球混合液、或碳纳米管/SiO2微球混合液进行离心、过滤、干燥处理,去除混合液中的溶剂和杂质,得到碳纳米管导电球粉末。
  2. 如权利要求1所述的碳纳米管导电球的制备方法,其中,所述步骤1中,所述溶剂包括水、乙醇、乙二醇、异丙醇、丙酮、氯仿、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺、甲苯中的一种或多种。
  3. 如权利要求1所述的碳纳米管导电球的制备方法,其中,所述步骤1中还包括在溶剂中加入表面活性剂。
  4. 如权利要求3所述的碳纳米管导电球的制备方法,其中,所述表面活性剂包括十二烷基硫酸钠、十二烷基硫酸铵、十二烷基磺酸钠、十二烷基苯磺酸钠、十四烷基硫酸钠中的一种或多种。
  5. 如权利要求1所述的碳纳米管导电球的制备方法,其中,所述步骤2中,所述聚合物微球包括聚苯乙烯、聚苯胺、聚吡咯、聚噻吩、聚丙烯酸树脂微球中的一种或多种,所述聚合物微球尺寸均一,所述聚合物微球的粒径范围为1~30μm。
  6. 一种碳纳米管球导电胶的制备方法,包括以下步骤:
    步骤10、采用如权利要求1所述的碳纳米管导电球的制备方法制备出碳纳米管导电球粉末;
    步骤20、提供环氧树脂、固化剂、促进剂,并混合、搅拌至分散均匀,得到环氧树脂胶体;
    步骤30、按环氧树脂胶体与碳纳米管导电球的质量比为100:1~50,将制得的碳纳米管导电球粉末分散于所述环氧树脂胶体中,得到碳纳米管球导电胶预备材料;
    步骤40、将所述碳纳米管球导电胶预备材料进行脱泡处理,得到碳纳 米管球导电胶。
  7. 如权利要求6所述的碳纳米管球导电胶的制备方法,其中,所述步骤20中得到的环氧树脂胶体中各组分的质量百分比为:环氧树脂80%~95%、固化剂1%~12%、促进剂0.3%~5%。
  8. 如权利要求6所述的碳纳米管球导电胶的制备方法,其中,所述步骤20中,所述环氧树脂为双酚A型环氧树脂E44、双酚A型环氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂EPON828。
  9. 如权利要求6所述的碳纳米管球导电胶的制备方法,其中,所述步骤20中,所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺。
  10. 如权利要求6所述的碳纳米管球导电胶的制备方法,其中,所述步骤20中,所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺。
  11. 一种碳纳米管球导电胶的制备方法,包括以下步骤:
    步骤10、采用如权利要求1所述的碳纳米管导电球的制备方法制备出碳纳米管导电球粉末;
    步骤20、提供环氧树脂、固化剂、促进剂,并混合、搅拌至分散均匀,得到环氧树脂胶体;
    步骤30、按环氧树脂胶体与碳纳米管导电球的质量比为100:1~50,将制得的碳纳米管导电球粉末分散于所述环氧树脂胶体中,得到碳纳米管球导电胶预备材料;
    步骤40、将所述碳纳米管球导电胶预备材料进行脱泡处理,得到碳纳米管球导电胶;
    其中,所述步骤20中得到的环氧树脂胶体中各组分的质量百分比为:环氧树脂80%~95%、固化剂1%~12%、促进剂0.3%~5%;
    其中,所述步骤20中,所述环氧树脂为双酚A型环氧树脂E44、双酚A型环氧树脂E51、双酚A型环氧树脂E54、双酚A型环氧树脂EPON826或双酚A型环氧树脂EPON828;
    其中,所述步骤20中,所述固化剂为六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、丁二酸酰肼、己二酸酰肼、双氰胺或对苯二胺;
    其中,所述步骤20中,所述促进剂为二-乙基-四甲基咪唑、咪唑、二甲基咪唑或三乙胺。
PCT/CN2015/099269 2015-10-14 2015-12-28 碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法 WO2017063290A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/913,370 US9816013B2 (en) 2015-10-14 2015-12-28 Methods for preparing a carbon nanotube conductive ball and a carbon nanotube ball conductive adhesive
JP2018514869A JP6691961B2 (ja) 2015-10-14 2015-12-28 導電性球状カーボンナノチューブの製造方法及び導電性球状カーボンナノチューブシール剤の製造方法
GB1803008.0A GB2556600B (en) 2015-10-14 2015-12-28 Methods For Preparing A Carbon Nanotube Conductive Ball And A Carbon Nanotube Ball Conductive Adhesive
KR1020187006538A KR102016868B1 (ko) 2015-10-14 2015-12-28 탄소나노튜브 도전성 볼의 제조방법 및 탄소나노튜브 볼 도전성 접착제의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510662918.7A CN105199641B (zh) 2015-10-14 2015-10-14 碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法
CN201510662918.7 2015-10-14

Publications (1)

Publication Number Publication Date
WO2017063290A1 true WO2017063290A1 (zh) 2017-04-20

Family

ID=54947608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099269 WO2017063290A1 (zh) 2015-10-14 2015-12-28 碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法

Country Status (6)

Country Link
US (1) US9816013B2 (zh)
JP (1) JP6691961B2 (zh)
KR (1) KR102016868B1 (zh)
CN (1) CN105199641B (zh)
GB (1) GB2556600B (zh)
WO (1) WO2017063290A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216826A (zh) * 2017-07-28 2017-09-29 青岛海信电器股份有限公司 一种导电布及其制作方法
CN112920749A (zh) * 2021-04-12 2021-06-08 安徽中医药大学 一种热诱导高粘附性导电胶的制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765387B1 (ko) * 2015-06-24 2017-08-23 서강대학교산학협력단 금속 코아 간 초미세 보이드를 가지는 나노 갭 구조체 및 이를 이용한 분자 검출 장치 및 방법, 선택적 에칭을 통한 상기 나노 갭 구조체의 제조 방법
CN105585728B (zh) * 2015-11-26 2018-11-06 中国科学院金属研究所 一种碳纳米管包覆聚合物微球的方法
CN105609164B (zh) * 2016-02-01 2017-10-13 深圳市华星光电技术有限公司 银纳米线基树脂球及导电框胶的制备方法与液晶显示面板
CN106520008B (zh) * 2016-10-11 2018-07-10 深圳市华星光电技术有限公司 碳纳米管导电球及其制备方法与导电胶及其制备方法
CN106654058B (zh) * 2016-12-02 2019-01-22 深圳市华星光电技术有限公司 有机材料蒸镀设备和方法
CN106634669A (zh) * 2016-12-02 2017-05-10 深圳市华星光电技术有限公司 碳纳米管导电球的表面处理方法与碳纳米管球导电胶的制备方法
CN106669555A (zh) * 2016-12-06 2017-05-17 深圳市华星光电技术有限公司 碳纳米管导电球的制备方法
CN106803547B (zh) * 2017-02-15 2018-08-14 深圳市华星光电技术有限公司 顶发射型oled显示器件的制作方法及结构
CN106883610A (zh) * 2017-03-13 2017-06-23 北京大学 一种碳纳米管可拉伸电极的制备方法
CN107082836B (zh) 2017-05-09 2019-12-24 深圳市华星光电技术有限公司 碳纳米管导电微球的制备方法及导电胶
CN107083206A (zh) * 2017-05-23 2017-08-22 深圳市华星光电技术有限公司 导电胶的制备方法及导电胶
CN107418469A (zh) * 2017-05-26 2017-12-01 深圳市华星光电技术有限公司 一种碳纳米管导电球及其制备方法和应用
CN107102489A (zh) * 2017-06-20 2017-08-29 深圳市华星光电技术有限公司 一种异方性导电胶、导电球及其制作方法
CN107964382A (zh) * 2017-12-27 2018-04-27 成都新柯力化工科技有限公司 一种液晶显示电路用巯基碳纳米管微球导电胶的制备方法
US10573976B2 (en) * 2018-03-06 2020-02-25 GM Global Technology Operations LLC Adhesive with tailorable electrical conductivity for monitoring mechanical properties of adhesive joint within polymeric composites
CN108441151B (zh) * 2018-03-19 2021-04-27 Tcl华星光电技术有限公司 一种碳纳米管导电球、碳纳米管导电胶及液晶显示器
CN108986951A (zh) * 2018-06-07 2018-12-11 太仓萃励新能源科技有限公司 一种水性导电浆料
CN110697684B (zh) * 2018-07-10 2022-05-31 中国科学院金属研究所 一种干法制备包覆型碳纳米管导电微球的方法及其应用
WO2020117984A1 (en) * 2018-12-04 2020-06-11 Jabil Inc. Apparatus, system and method of coating organic and inorganic print materials
CN109666413B (zh) * 2018-12-17 2020-09-08 深圳市华星光电技术有限公司 一种各向异性导电胶黏剂及其导电膜
CN109651987A (zh) * 2018-12-17 2019-04-19 深圳市华星光电技术有限公司 一种各向异性导电胶黏剂及其导电膜
CN110187566A (zh) * 2019-05-10 2019-08-30 深圳市华星光电技术有限公司 框胶及液晶显示面板
CN110987288B (zh) * 2019-12-06 2021-07-06 深圳先进技术研究院 一种导电复合微球及其制备方法和应用、包含其的柔性压力传感器
CN112904625B (zh) * 2021-01-25 2022-09-27 北海惠科光电技术有限公司 导电边框胶的制备方法、导电边框胶及显示面板
CN113621331A (zh) * 2021-07-26 2021-11-09 中国科学院金属研究所 一种利用纳米碳材料包覆微球制备异方性导电胶膜的方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097853A1 (en) * 2003-04-24 2004-11-11 Carbon Nanotechnologies, Inc. Conductive carbon nanotube-polymer composite
CN1667757A (zh) * 2004-03-10 2005-09-14 中国科学院成都有机化学有限公司 一种含碳纳米管的复合导电粉体
CN101054500A (zh) * 2007-05-29 2007-10-17 昆明贵金属研究所 一种复合纳米金导电胶的制备方法
CN101717540A (zh) * 2009-12-16 2010-06-02 沈阳建筑大学 一种碳纳米管/聚合物复合材料的混杂制备方法
CN101818280A (zh) * 2010-04-17 2010-09-01 上海交通大学 碳纳米管金属基复合材料的制备方法
CN102275899A (zh) * 2010-06-11 2011-12-14 南京宏德纳米材料有限公司 两性碳纳米管分散粉末的制备
CN102504741A (zh) * 2011-10-26 2012-06-20 中国电器科学研究院有限公司 一种碳纳米管填充型大功率led用高导热导电固晶胶粘剂
CN103289622A (zh) * 2013-05-16 2013-09-11 伍淑华 镀银碳纳米管环氧树脂导电胶的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614189B2 (en) * 2008-09-24 2013-12-24 University Of Connecticut Carbon nanotube composite scaffolds for bone tissue engineering
KR101075979B1 (ko) * 2009-07-20 2011-10-21 주식회사 엑사이엔씨 중합체를 포함하는 탄소나노튜브 용액의 제조방법, 이를 이용한 투명 전도성 필름의 제조방법, 이에 의해 제조된 투명 전도성 필름
KR101635835B1 (ko) * 2009-08-11 2016-07-05 한국세라믹기술원 그래핀 산화물의 코팅방법
CN102134317B (zh) * 2010-01-27 2012-12-12 中国科学院合肥物质科学研究院 碳纳米管/聚苯胺纳米复合导电粉末的制备方法
CN103347957B (zh) * 2011-02-07 2016-05-04 大阳日酸株式会社 复合树脂材料粒子、复合树脂材料粒子的制造方法、复合树脂成型体及其制造方法
CN103333368B (zh) * 2013-07-19 2014-09-10 中物院成都科学技术发展中心 碳纳米材料的复合分散剂及其制备聚合物导电复合材料的方法
CN104559187B (zh) * 2015-02-03 2017-06-16 国家电网公司 碳纳米管改性有机硅树脂基复合材料的制备方法
CN104910536A (zh) * 2015-05-07 2015-09-16 深圳市华星光电技术有限公司 石墨烯基树脂球的制备方法与导电框胶的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097853A1 (en) * 2003-04-24 2004-11-11 Carbon Nanotechnologies, Inc. Conductive carbon nanotube-polymer composite
CN1667757A (zh) * 2004-03-10 2005-09-14 中国科学院成都有机化学有限公司 一种含碳纳米管的复合导电粉体
CN101054500A (zh) * 2007-05-29 2007-10-17 昆明贵金属研究所 一种复合纳米金导电胶的制备方法
CN101717540A (zh) * 2009-12-16 2010-06-02 沈阳建筑大学 一种碳纳米管/聚合物复合材料的混杂制备方法
CN101818280A (zh) * 2010-04-17 2010-09-01 上海交通大学 碳纳米管金属基复合材料的制备方法
CN102275899A (zh) * 2010-06-11 2011-12-14 南京宏德纳米材料有限公司 两性碳纳米管分散粉末的制备
CN102504741A (zh) * 2011-10-26 2012-06-20 中国电器科学研究院有限公司 一种碳纳米管填充型大功率led用高导热导电固晶胶粘剂
CN103289622A (zh) * 2013-05-16 2013-09-11 伍淑华 镀银碳纳米管环氧树脂导电胶的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216826A (zh) * 2017-07-28 2017-09-29 青岛海信电器股份有限公司 一种导电布及其制作方法
CN107216826B (zh) * 2017-07-28 2020-10-30 海信视像科技股份有限公司 一种导电布及其制作方法
CN112920749A (zh) * 2021-04-12 2021-06-08 安徽中医药大学 一种热诱导高粘附性导电胶的制备方法

Also Published As

Publication number Publication date
GB201803008D0 (en) 2018-04-11
JP6691961B2 (ja) 2020-05-13
CN105199641B (zh) 2017-12-01
US9816013B2 (en) 2017-11-14
KR102016868B1 (ko) 2019-08-30
CN105199641A (zh) 2015-12-30
GB2556600A (en) 2018-05-30
KR20180037046A (ko) 2018-04-10
US20170260426A1 (en) 2017-09-14
GB2556600B (en) 2021-09-22
JP2018535171A (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2017063290A1 (zh) 碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法
WO2016026190A1 (zh) 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶
WO2016176895A1 (zh) 石墨烯基树脂球及其导电框胶的制备方法
WO2016008187A1 (zh) 导电胶的制备方法及导电胶
WO2018228407A1 (zh) 一种石墨烯/金属纳米带复合导电油墨及其制备方法和应用
CN106634669A (zh) 碳纳米管导电球的表面处理方法与碳纳米管球导电胶的制备方法
CN107903692A (zh) 一种改性石墨烯导电涂料及其制备方法
WO2014176831A1 (zh) 导电封框胶、显示面板及其制作方法、显示装置
WO2016169190A1 (zh) 导电胶组合物及其制备方法、封框胶、以及显示面板
CN108276929B (zh) 一种含有石墨烯的自修复环氧银胶
CN109705803B (zh) 一种单组份有机硅导电胶及其制备方法和应用
CN107342117B (zh) 各向异性导电膜及其制作方法
CN109777335A (zh) 一种纳米银修饰碳纳米管制备高导热导电胶的方法
Cui et al. Using a functional epoxy, micron silver flakes, nano silver spheres, and treated single-wall carbon nanotubes to prepare high performance electrically conductive adhesives
CN111564236B (zh) 导电浆料、制备方法及导电薄膜制备方法
CN106520008A (zh) 碳纳米管导电球及其制备方法与导电胶及其制备方法
CN114283962B (zh) 一种基于镀银微球导电银浆及其制备方法
CN114276766A (zh) 一种微电子封装用纳米银烧结型导电胶及其制备方法
CN108962438B (zh) 一种导电球及其制作方法、液晶显示装置
CN112509729A (zh) 一种双层结构的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管柔性透明导电薄膜及其制备方法
JP5589361B2 (ja) 導電粒子及びその製造方法
CN112266611A (zh) 一种功能化聚酰亚胺复合微球及其制备方法
CN102925099A (zh) 一种改性铜粉导电胶及其制备方法
CN108034394A (zh) 一种高分散型纳米银环氧导电胶及其制作方法
JP6119130B2 (ja) 複合粒子及び異方導電性接着剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14913370

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201803008

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151228

ENP Entry into the national phase

Ref document number: 20187006538

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018514869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906172

Country of ref document: EP

Kind code of ref document: A1