WO2016169190A1 - 导电胶组合物及其制备方法、封框胶、以及显示面板 - Google Patents

导电胶组合物及其制备方法、封框胶、以及显示面板 Download PDF

Info

Publication number
WO2016169190A1
WO2016169190A1 PCT/CN2015/089525 CN2015089525W WO2016169190A1 WO 2016169190 A1 WO2016169190 A1 WO 2016169190A1 CN 2015089525 W CN2015089525 W CN 2015089525W WO 2016169190 A1 WO2016169190 A1 WO 2016169190A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier particles
conductive
particles
carrier
functional group
Prior art date
Application number
PCT/CN2015/089525
Other languages
English (en)
French (fr)
Inventor
周永山
覃一锋
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/122,583 priority Critical patent/US20170066945A1/en
Publication of WO2016169190A1 publication Critical patent/WO2016169190A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a conductive adhesive composition, a method for preparing the same, a sealant, and a display panel.
  • the conductive adhesive is a kind of adhesive material which can effectively bond various materials and has electrical conductivity. It is a colloidal material widely used in the field of electronic device preparation, such as a material for forming a conductive film (a conductive circuit of a printed circuit board or the like), for conducting adhesion between electronic components (fixing an electrical device on a conductive circuit, a conductive adhesive or the like for connection between conductive circuits, and the like.
  • the main component of the conductive paste is a main body rubber 10 composed of a resin material, and conductive particles 20 such as gold balls dispersed in the main body rubber 10 to conduct electric conduction.
  • the problems existing in the prior art are mainly due to the fact that conductive particles such as gold balls are prone to agglomeration, and the dispersibility in the main rubber material is poor, and even if the stirring is performed for a long time, the dispersibility of the gold ball is poor, so Affect the overall conductivity of the conductive paste; at the same time, long-term stirring will reduce the preparation efficiency.
  • Embodiments of the present invention provide a conductive adhesive composition, a method for preparing the same, a sealant, and a display panel, thereby improving uniformity of dispersion of conductive particles in a colloid, and ensuring superior conductive properties of the conductive adhesive composition. And when the doping ratio of the conductive particles is high, the normal throughput at the time of colloid coating is not affected.
  • an embodiment of the present invention provides a conductive adhesive composition, the conductive adhesive composition comprising: a main adhesive; wherein the conductive adhesive composition further comprises: an adsorbed conductive material dispersed in the main adhesive material Carrier particles of particles.
  • the surface of the carrier particle has an organophilic first functional group.
  • the main body rubber is composed of a resin material; and the first functional group includes at least one of an amino group, a mercapto group, a vinyl group, an epoxy group, a cyano group, and a methacryloxy group.
  • the surface of the carrier particle has a second functional group with a positive or negative charge.
  • the conductive particles are composed of at least one of gold, silver, copper, aluminum, nickel, and tin.
  • the conductive particles are spherical in shape.
  • the carrier particles are composed of at least one of carbon black, activated carbon, carbon nanotubes, and molecular sieves.
  • the embodiment of the present invention further provides a method for preparing a conductive adhesive composition, the method comprising: forming carrier particles adsorbed with conductive particles; and dispersing the carrier particles with conductive particles adsorbed thereon In the glue.
  • the step of forming the carrier particles with the conductive particles adsorbed comprises: dispersing the conductive particles in the first solvent to form a conductive particle dispersion; dispersing the carrier particles in the conductive particle dispersion to Adsorbing the conductive particles; separating the carrier particles from the conductive particle dispersion; and drying the carrier particles to obtain the carrier particles to which the conductive particles are adsorbed.
  • the preparation method further comprises: modifying the carrier particles to form an adsorption channel inside the carrier particles before forming the carrier particles with the conductive particles adsorbed thereon.
  • the step of modifying the carrier particles to expose the adsorption channels inside the carrier particles comprises: dispersing the carrier particles in an acidic solvent; separating the carrier particles from the acidic solvent; The carrier particles are washed to a pH stable; and the carrier particles are dried to obtain the modified carrier particles.
  • the preparation method further comprises: grafting the carrier particles to the surface of the carrier particles to have an organophilic surface before dispersing the carrier particles with the conductive particles adsorbed in the main rubber material.
  • the first functional group is grafting the carrier particles to the surface of the carrier particles to have an organophilic surface before dispersing the carrier particles with the conductive particles adsorbed in the main rubber material.
  • the step of grafting the carrier particles to have the first functional group of the organophilic particles on the surface of the carrier particles comprises: dispersing the carrier particles in the second solvent; heating and dispersing the carrier particles a second solvent; adding a reaction solution having a first functional group to the second solvent; separating the carrier particles; and drying the carrier particles to obtain the carrier particles having the first functional group on the surface.
  • the preparation method further comprises: grafting the carrier particles before the dispersing the carrier particles with the conductive particles in the main gel, so that the surface of the carrier particles is positively charged. Or a negatively charged second functional group.
  • the step of grafting the carrier particles to have a second functional group on the surface of the carrier particles comprises: dispersing the carrier particles in a third solvent; heating the third solvent in which the carrier particles are dispersed Adding a reaction solution having a second functional group to the third solvent; separating the carrier particles; and drying the carrier particles to obtain the carrier particles having the second functional group on the surface.
  • the embodiment of the invention further provides a frame sealant, the sealant comprises a photopolymerization agent; wherein the sealant further comprises: the conductive paste composition.
  • an embodiment of the present invention further provides a display panel, the display panel includes an upper substrate and a lower substrate disposed opposite to each other; wherein the display panel further includes: the frame sealant; and the frame sealant is located Between the upper substrate and the lower substrate.
  • the conductive particles are adsorbed by the carrier particles, the conductive particles can be more uniformly dispersed in the host material by the carrier particles, thereby avoiding the prior art.
  • the phenomenon of agglomeration, particle size increase, etc. caused by directly dispersing conductive particles such as gold balls in the main rubber material improves the overall electrical conductivity of the conductive adhesive composition, and the conductive adhesive effect between the electronic components is further improved.
  • this is especially suitable for the adhesion conduction of the upper and lower substrates of the self-capacitance touch panel which requires high conductivity.
  • the doping ratio of the conductive particles ie, the ratio of the conductive particles to the main rubber material
  • the conductive particles are dispersed in the main rubber by being adsorbed on the carrier particles, the existing one does not occur.
  • the colloidal viscosity caused by directly dispersing the conductive particles having a high doping ratio is excessive, which in turn affects the problem of colloidal throughput.
  • FIG. 1 is a schematic structural view of a conductive adhesive provided by the prior art
  • FIG. 2 is a schematic structural view 1 of a conductive adhesive composition according to an embodiment of the present invention.
  • FIG. 3 is an enlarged schematic view showing the internal structure of carrier particles adsorbed with conductive particles
  • FIG. 5 is an enlarged schematic view showing the internal structure of carrier particles adsorbed with conductive particles
  • FIG. 6 is a schematic flow chart of a method for preparing a conductive adhesive composition according to an embodiment of the present invention.
  • FIG. 7 is a second structural diagram of a conductive adhesive composition according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing the effect of modifying and grafting a conductive adhesive composition provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a frame sealant according to an embodiment of the present invention.
  • 01-conductive adhesive composition 10-main adhesive; 20-conductive particles; 30-carrier particles; 301-first functional group; 02-frame sealant; 03-photopolymerizer.
  • the embodiment of the present invention provides a conductive adhesive composition 01.
  • the conductive adhesive composition 01 includes: a main adhesive 10; and an adsorbed conductive particle 20 dispersed in the main adhesive 10 (Fig. Carrier particles 30 are not illustrated.
  • main body rubber 10 may include a resin material, but is not limited to being composed of a resin material.
  • resin materials such as acrylic resin, epoxy resin, bisphenol-A epoxy resin, polyvinyl butyral resin, diethylene glycol monobutyl ether acetate, and carboxyl group. Polyurethane resin, etc.
  • the term "particle” refers to a geometry having a characteristic shape within a certain size range, and a certain size here is usually between millimeters and nanometers. Therefore, the above-mentioned carrier particles 30 are particles having a smaller order of magnitude, and the specific microscopic shape is not limited to a spherical shape, and may be various shapes, and is not particularly limited.
  • the carrier particles 30 have a function of adsorbing fine particles, and for example, may be composed of an adsorbent material. That is, the carrier particles 30 have a larger specific surface area, a suitable pore structure and a surface microstructure with respect to the adsorbate, and have a stronger adsorption capacity for the adsorbate (i.e., the conductive particles).
  • the carrier particles 30 may include, but are not limited to, carbon black, activated carbon, carbon nanotubes, molecular sieves (ie, crystalline silicates or aluminosilicates).
  • the conductive adhesive composition 01 is generally applied to the sealant material of the cartridge between the upper and lower substrates of the product, and therefore it is preferable to use carbon having a small particle size, easy to obtain raw materials, and dark color to prevent light leakage.
  • the black material constitutes the above-described carrier particles 30.
  • the conductive particles 20 may include at least one of gold (Au), silver (Ag), copper (Cu), aluminum (Al), nickel (Ni), and tin (Sn), but is not limited thereto.
  • the shape of the conductive particles 20 may include, but is not limited to, a spherical shape, a scale shape, and a dendritic shape.
  • the conductive particles 20 are adsorbed by the carrier particles 30, and the adsorption form thereof may be as shown in FIG. 3, that is, the conductive particles 20 are adsorbed in the channels such as the internal pores of the carrier particles 30.
  • the microscopic shape of the conductive particles 20 is generally a spherical structure or the like, and the size of the conductive particles 20 is smaller than the channel size of the carrier particles 30.
  • the form in which the conductive particles 20 are adsorbed by the carrier particles 30 may also be a portion of the conductive particles 20 adsorbed at the inner pores of the carrier particles 30 and the like and the surface microstructure. That is, the size of the conductive particles 20 is similar to the size of the channel and surface microstructure of the carrier particles 30.
  • the microscopic shape of the conductive particles 20 is usually a structure such as a scaly shape or a dendritic shape.
  • the conductive particles 20 are adsorbed by the carrier particles 30, and the adsorptive conductive particles 20 are dispersed in the host rubber 10 by the carrier particles 30.
  • the adsorption of the carrier particles is more advantageous when the conductive particles 20 are spherical than those of the scaly or dendritic structure, and thus the conductive particles 20 are preferably spherical.
  • FIG. 4 shows the carbon black particles adsorbed with gold balls in the case where the carrier particles 30 are carbon black particles and the conductive particles 20 are gold balls in the above-mentioned conductive adhesive assembly 01 provided by the embodiment of the present invention.
  • the particle sizes of the gold spheres directly dispersed in the main rubber material are about 0.1 ⁇ m, and the gold spheres directly dispersed in the main rubber material have a particle size distribution of about 2 to 3 ⁇ m due to agglomeration phenomenon. The particle size is thus significantly larger than the carbon black particles to which the gold spheres are adsorbed in the examples of the present invention.
  • the conductive particles 20 are adsorbed by the carrier particles 30, the conductive particles 20 can be more uniformly dispersed in the host material by the carrier particles 30, so
  • the phenomenon of agglomeration and particle size increase caused by directly dispersing conductive particles such as gold balls in the main rubber material increases the overall electrical conductivity of the conductive adhesive composition 01 and applies it to electronic components.
  • the conductive adhesion effect is better, which is especially suitable for the adhesion conduction of the upper and lower substrates of the self-capacitive touch panel which requires high conductivity.
  • the doping ratio of the conductive particles 20 i.e., the ratio of the conductive particles 20 to the main body rubber 10
  • the conductive particles 20 are dispersed in the main body rubber 10 by being adsorbed on the carrier particles 30, Therefore, the colloidal viscosity which is caused by the direct dispersion of the conductive particles having a high doping ratio is excessively generated in the prior art, thereby affecting the problem of colloidal throughput.
  • the surface of the carrier particles 30 has an organophilic first functional group 301 (not illustrated in FIG. 6).
  • the first functional group 301 serves to enhance the adhesion of the main adhesive 10 to improve the adhesion between the conductive adhesive composition 01 and the substrate to be coated.
  • the first functional group 301 may include, but is not limited to, an amino group, a mercapto group, a vinyl group, an epoxy group, a cyano group, and a methacryloyloxy group. At least one.
  • all of the above groups are branched groups of a coupling agent or a silane coupling agent, have an organophilic property, and are easily reacted with a resin material, thereby greatly enhancing the conductive adhesive composition 01 and the coating to be coated.
  • the adhesion between the substrates since the surface of the carrier particle 30 has the above-described organophilic first functional group 301, the dispersibility of the carrier particle 30 itself in the main rubber material 10 is greatly improved, and finally the conductive particle 20 is further improved in the main rubber material 10.
  • the dispersibility is such that the above-mentioned conductive paste composition 01 formed has superior electrical conductivity, so that the adhesion effect applied to an electronic device is better.
  • the surface of the carrier particle 30 has a second functional group having a positive or negative charge.
  • the above second functional group may include, but is not limited to, a divalent sulfate group (SO 4 2- ), a trivalent nitrate (NO 3- ), and the like.
  • the surface of the carrier particle 30 has a positive or negatively charged second functional group, the principle of repulsion of the surface charge is utilized, so that the carrier particles 30 are less likely to agglomerate after being dispersed in the above-mentioned host rubber 10, that is, the conductive particles are further improved. 20 dispersion.
  • the embodiment of the present invention further provides a method for preparing the conductive adhesive composition 01, as shown in FIG. 7, the preparation method includes:
  • the carrier particles 30 to which the conductive particles 20 are adsorbed are dispersed in the main body rubber 10.
  • step S01 may specifically include the following sub-steps:
  • the carrier particles 30 are dispersed in the conductive particle dispersion to adsorb the conductive particles 20;
  • the carrier particles 30 are dried to obtain carrier particles 30 to which the conductive particles 20 are adsorbed.
  • ultrasonic dispersion is preferably employed in step S11 to maximize the dispersion uniformity of the conductive particles 20 in the first solvent, thereby improving the subsequent carrier particles. 30 adsorption efficiency.
  • the function of the first solvent is to prevent sedimentation and agglomeration of the conductive particles 20 so as to form a stable suspension, which may be, for example, a usual dispersing agent such as a polymeric dispersant.
  • Step S13 may preferably separate the carrier particles 30 from the conductive particle dispersion by a high speed centrifuge.
  • step S14 in order to prevent the solid phase reaction of the carrier particles 30 due to high temperature, thereby causing particle agglomeration, the temperature and time of drying should be flexibly adjusted according to the quality of the carrier particles 30, and the drying of the stepwise heating can be assisted. the way.
  • the carrier particles 30 are exemplified by a carbon material such as carbon black, activated carbon, or carbon nanotubes. Since the above materials are converted into gaseous carbon dioxide by heating at a high temperature, it is convenient and quick to verify whether the carrier particles 30 are adsorbed with the above-mentioned conductive particles 20 in the following manner:
  • the carrier particles 30 obtained by the above steps S11 to S14 are placed in a heating device such as a muffle furnace and calcined to remove carbon materials such as carbon black, activated carbon, carbon nanotubes, etc., and the remaining solid matter is conductive particles. s material.
  • the carrier particles 30 are made of other materials such as molecular sieves
  • a test instrument such as a SEM (Scanning Electron Microscope) can be used to more specifically characterize whether the carrier particles 30 adsorb the above-mentioned conductive particles 20 and conduct electricity. Detailed structural information such as the distribution state after the particles 20 are adsorbed.
  • the carrier particles 30 are usually composed of carbon black, activated carbon, carbon nanotubes, molecular sieves and the like which have a large specific surface area, a suitable pore structure and a surface microstructure, and have a strong adsorption capacity for the adsorbate. Due to the electrostatic adsorption effect, many impurity ions are adsorbed on the surface of the carrier particle 30, causing the internal adsorption channel to be blocked, and impurities are introduced into the system of the conductive adhesive composition 01, thereby affecting its performance.
  • the method for preparing the conductive adhesive composition 01 further includes: before the step S01,
  • the carrier particles 30 are modified to expose the adsorption channels inside the carrier particles 30.
  • the above steps may specifically include the following sub-steps:
  • the first and the above-mentioned acidic solvents may be, for example, a common modification reagent such as nitric acid, and the reaction time and the reaction temperature may be flexibly adjusted according to the difference between the carrier particles 30 and the acidic solvent, and are not limited herein.
  • the pH value is a value indicating the degree of acidity and alkalinity of the solution.
  • "washing to pH stability” means that the carrier particles 30 are carried out by deionized water (that is, pure water after removal of impurities in the form of ions). Wash until the pH of the deionized water after washing does not change, or the magnitude of the change is very small.
  • the carrier particles 30 are dispersed in the acidic solvent before the step S23, the pH value is accordingly stabilized within a range of the acidic value after the step S23.
  • step S24 the carrier particles 30 can be placed in an oven and subjected to drying activation at a temperature of 120 ° C to expose the adsorption channels inside the carrier particles 30, that is, the modification of the carrier particles 30 is completed.
  • sexual treatment
  • the carrier particles 30 may undergo a small degree of agglomeration during the drying process, they may be gently rolled by a glass rod to reduce the degree of agglomeration thereof.
  • the material ratio of the above reaction process, the concentration of the modifier (ie, acidic solvent), the stirring speed, the reaction time, the reaction temperature, and the activation temperature and time all have an effect on the surface modification effect of the carrier particles 30.
  • the modification effect can be flexibly adjusted according to the above various influencing factors, and is not limited.
  • the method for preparing the conductive adhesive composition 01 further includes: before the step S02,
  • the carrier particles 30 are subjected to a grafting treatment so that the surface of the carrier particles 30 has an organophilic first functional group 301; wherein the first functional group 301 serves to enhance the adhesion of the host rubber 10.
  • the first functional group 301 may include, but is not limited to, an amino group, a mercapto group, a vinyl group, an epoxy group, a cyano group, and a methacryloyloxy group. At least one of them.
  • the above groups are all branched groups of a coupling agent or a silane coupling agent, have an organophilic property, and are easily reacted with a resin material, thereby greatly enhancing the relationship between the conductive adhesive composition 01 and the substrate to be coated. Adhesion. Meanwhile, since the surface of the carrier particle 30 has the above-described organophilic first functional group 301, the dispersibility of the carrier particle 30 itself in the main rubber 10 is greatly improved, and finally the conductive particle 20 is further improved in the main adhesive 10 The dispersibility in the above makes the above-mentioned conductive paste composition 01 formed to have superior electrical conductivity, so that the adhesion effect applied to an electronic device is better.
  • the step of grafting the carrier particles 30 may be carried out before or after the step of modifying the carrier particles 30 to expose the adsorption channels inside the carrier particles 30, and is not specifically limited.
  • the above step of grafting the carrier particles 30 to have the first functional group 301 having an organophilic surface on the surface of the carrier particles 30 specifically includes the following substeps:
  • the action of the second solvent is to prevent sedimentation and aggregation of the carrier particles 30, thereby enabling formation of a stable suspension, which may be, for example, a usual dispersion agent such as a polymeric dispersant.
  • the at least one of the first functional group 301 to be grafted including an amino group, a mercapto group, a vinyl group, an epoxy group, a cyano group, and a methacryloxy group:
  • the separated carrier particles 30 are placed in a watch glass and dried in an oven at a temperature to obtain carrier particles 302 having a first functional group 301 on the surface.
  • the material ratio of the above reaction process, the concentration of the grafting agent (ie, the second solvent), the stirring speed, the reaction time, the reaction temperature and the like all have the effect of grafting the surface of the carrier particle 30.
  • the impact is affected, and the grafting effect can be flexibly adjusted according to the above-mentioned various influencing factors, and the specificity is not limited.
  • the method for preparing the conductive adhesive composition 01 further includes: before the step S02,
  • the carrier particles 30 are subjected to a grafting treatment so that the surface of the carrier particles has a second functional group having a positive or negative charge.
  • the above second functional group may include, but is not limited to, a divalent sulfate group (SO 4 2- ), a trivalent nitrate (NO 3- ), and the like.
  • the surface of the carrier particle 30 has a positive or negatively charged second functional group, the principle of repulsion of the surface charge is utilized, so that the carrier particles 30 are less likely to agglomerate after being dispersed in the above-mentioned host rubber 10, that is, the conductive particles are further improved. 20 dispersion.
  • the step of grafting the carrier particles 30 may be performed before or after the step of modifying the carrier particles 30 to expose the adsorption channels inside the carrier particles 30, and is not specifically limited.
  • step of grafting the carrier particles 30 to have a positively or negatively charged second functional group on the surface of the carrier particles 30 comprises the following substeps:
  • the role of the third solvent is to prevent sedimentation and aggregation of the carrier particles 30, thereby enabling formation of a stable suspension, which may be, for example, a usual dispersion agent such as a polymeric dispersant.
  • step S430 at a certain speed of stirring, the appropriate concentration of ammonium persulfate and / or sulfur The acid solution is slowly added to the solution formed in step S320; wherein the proper ratio relationship between the two can be flexibly adjusted according to the specific reaction;
  • the separated carrier particles 30 are placed in a watch glass and dried in an oven at a temperature to obtain carrier particles 302 having a second functional group on the surface.
  • the material ratio of the above reaction process, the concentration of the grafting agent (ie, the third solvent), the stirring speed, the reaction time, the reaction temperature and the like all have an effect on the surface grafting effect of the carrier particles 30, and the grafting effect can be flexibly according to the above various influencing factors. Adjustment, the specific is not limited.
  • FIG. 7 is a diagram showing the effect of modifying and grafting the above conductive adhesive composition provided by the embodiment of the present invention.
  • the abscissa indicates the time and the ordinate indicates the resistivity of the material obtained by the test, and the conductive particles 20 are specifically described as an example.
  • the "resistivity-modification time curve” indicates the modification effect of the above-described modification treatment of the carrier particles 30 to expose the adsorption channels inside the carrier particles 30.
  • the modification time is prolonged, the resistivity of the carrier particles 30 adsorbed with the conductive particles 20 tends to decrease first and then increase, because the modification of the carrier particles 30 usually requires a certain drying treatment.
  • the modification time is too long, which causes the carrier particles 30 to agglomerate, thereby increasing the electrical resistivity. Therefore, there is a relatively good modification time (ie, time t1 in the figure) for the modification of the carrier particles 30, which is related to the specific material and morphology of the carrier particles 30, and is not specifically limited.
  • FIG. 8 only shows The above trend.
  • the resistivity shows a downward trend, which indicates that the longer the grafting time, the more the second functional group grafted on the surface of the carrier particle 30, and the better the dispersibility is.
  • the resistivity of the formed conductive paste composition 01 is also lower. As time goes by, the trend of this curve tends to be stable, which indicates that for a specific material of the carrier particles 30, the ability of the surface to graft the second functional group is limited, and the resistivity does not follow The extension of time is infinitely reduced.
  • resistivity-gold ball adsorption time curve As the adsorption time of the gold ball is extended, the resistivity shows a downward trend, which indicates that the gold ball is dispersed in the main rubber material 10 through the carrier particles 30, The agglomeration of the gold ball itself is reduced, so that the resistivity of the formed conductive paste composition 01 is also lower. As the time elapses, the tendency of this curve to decrease also tends to be stable, which indicates that for a specific material of the carrier particles 30, its ability to adsorb the conductive particles 20 is limited, and the resistivity does not follow Time extension low.
  • the embodiment of the present invention further provides a sealant 02.
  • the sealant 02 includes a photopolymerization agent 03 and the conductive adhesive composition 01 described above.
  • the photopolymerization agent 03 refers to energy capable of absorbing UV under ultraviolet light UV irradiation to generate active radicals or cations, so that a series of photopolymerization reactions occur inside the sealant 02 to be finally cured.
  • the photopolymerization agent may include, but is not limited to, an alkyl benzophenone (such as ⁇ , ⁇ -diethoxyacetophenone, ⁇ -hydroxyalkylphenone, ⁇ -aminoalkylbenzophenone); acyl phosphorus oxide (Aroylphosphine oxide, bisbenzoylphenylphosphine oxide); benzophenones (benzophenone, 2,4-dihydroxybenzophenone, Michler's ketone); thioxanthone ( Thiopropoxy thioxanthone, isopropyl thioxanthone, and the like.
  • an alkyl benzophenone such as ⁇ , ⁇ -diethoxyacetophenone, ⁇ -hydroxyalkylphenone, ⁇ -aminoalkylbenzophenone
  • acyl phosphorus oxide Aroylphosphine oxide, bisbenzoylphenylphosphine oxide
  • benzophenones benzophenone, 2,
  • an embodiment of the present invention further provides a display panel including an upper substrate and a lower substrate disposed opposite to each other, and the above-mentioned frame sealant 02; wherein the sealant 02 is located between the upper substrate and the lower substrate .
  • the display panel described above may be a product or component having any display function such as a liquid crystal panel, an organic electroluminescence display panel, an electronic paper, a mobile phone, or a tablet computer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明实施例涉及显示技术领域,提供了一种导电胶组合物及其制备方法、封框胶、以及显示面板,由此可提高导电粒子在胶体中的分散均匀性,保证导电胶组合物具有较优的导电性能;并且在导电粒子的掺杂比例较高时,不会影响胶体涂布时的正常吞吐。该导电胶组合物包括:主体胶材;以及分散于主体胶材中的吸附有导电粒子的载体颗粒。本发明适用于导电胶组合物及包括该导电胶组合物的封框胶和显示面板的制备。

Description

导电胶组合物及其制备方法、封框胶、以及显示面板
相关申请
本申请要求2015年4月24日提交的中国专利申请号201510202593.4的优先权,该中国专利申请以其全文通过引用并入本文。
技术领域
本发明涉及显示技术领域,尤其涉及一种导电胶组合物及其制备方法、封框胶、以及显示面板。
背景技术
目前,导电胶是一种既能有效地粘接各种材料,又具有导电性能的胶材。其是广泛应用于电子器件制备领域的胶体材料,如用于形成导电薄膜(印刷电路板等的导电电路)的材料、用于在电子部件之间进行导电粘连(在导电电路上固定电学器件、导电电路之间的连接等)的导电粘结剂等。
如图1所示,导电胶的主要成分是由树脂材料构成的主体胶材10、以及分散在主体胶材10中的起到导电作用的金球等导电粒子20。
现有技术存在的问题主要是,由于金球等导电粒子很容易发生团聚现象,在主体胶材中的分散性较差,即使通过长时间的搅拌,金球的分散性也较差,因而直接影响导电胶的整体导电性能;同时,长时间搅拌还会降低制备效率。
此外,当金球的掺杂比例较高时,不但会延长搅拌时间,还会引起导电胶粘滞性过大,从而影响胶体涂布时的吞吐。
发明内容
本发明的实施例提供一种导电胶组合物及其制备方法、封框胶、以及显示面板,由此可以提高导电粒子在胶体中的分散均匀性,保证导电胶组合物具有较优的导电性能;并且在导电粒子的掺杂比例较高时,不会影响胶体涂布时的正常吞吐。
为达到上述目的,本发明的实施例采用如下技术方案:
一方面,本发明实施例提供了一种导电胶组合物,所述导电胶组合物包括:主体胶材;其中所述导电胶组合物还包括:分散于所述主体胶材中的吸附有导电粒子的载体颗粒。
可选地,所述载体颗粒的表面具有亲有机物的第一官能团。
进一步优选地,所述主体胶材由树脂材料构成;并且所述第一官能团包括氨基、巯基、乙烯基、环氧基、氰基以及甲基丙烯酰氧基中的至少一种。
可选地,所述载体颗粒的表面具有带正电荷或负电荷的第二官能团。
在上述基础上优选地,所述导电粒子由金、银、铜、铝、镍、锡中的至少一种材料构成。
在上述基础上优选地,所述导电粒子为球状。
在上述基础上优选地,所述载体颗粒由炭黑、活性炭、炭纳米管、分子筛中的至少一种材料构成。
另一方面,本发明实施例还提供了一种导电胶组合物的制备方法,所述制备方法包括:形成吸附有导电粒子的载体颗粒;以及将所述吸附有导电粒子的载体颗粒分散于主体胶材中。
可选地,所述形成吸附有导电粒子的载体颗粒的步骤,包括:将导电粒子分散于第一溶剂中,以形成导电粒子分散液;将载体颗粒分散于所述导电粒子分散液中,以吸附所述导电粒子;分离所述载体颗粒与所述导电粒子分散液;以及烘干所述载体颗粒,以获得所述吸附有导电粒子的载体颗粒。
可选地,所述制备方法还包括:在形成吸附有导电粒子的载体颗粒之前,对载体颗粒进行改性处理,以暴露出所述载体颗粒内部的吸附通道。
进一步优选地,所述对载体颗粒进行改性处理,以暴露出所述载体颗粒内部的吸附通道的步骤,包括:将载体颗粒分散于酸性溶剂中;分离所述载体颗粒与所述酸性溶剂;将载体颗粒洗涤至pH值稳定;以及烘干所述载体颗粒,以获得经过改性处理的所述载体颗粒。
可选地,所述制备方法还包括:在将所述吸附有导电粒子的载体颗粒分散于主体胶材中之前,对所述载体颗粒进行嫁接处理,以使所述载体颗粒表面具有亲有机物的第一官能团。
进一步优选地,所述对载体颗粒进行嫁接处理,以使所述载体颗粒表面具有亲有机物的第一官能团的步骤,包括:将载体颗粒分散于第二溶剂中;加热分散有所述载体颗粒的第二溶剂;将具有第一官能团的反应溶液加入所述第二溶剂中;分离所述载体颗粒;以及烘干所述载体颗粒,以获得表面具有所述第一官能团的所述载体颗粒。
可选地,所述制备方法还包括:在将所述吸附有导电粒子的载体颗粒分散于主体胶材中之前,对所述载体颗粒进行嫁接处理,以使所述载体颗粒表面具有带正电或负电荷的第二官能团。
进一步优选地,所述对载体颗粒进行嫁接处理,以使所述载体颗粒表面具有第二官能团的步骤,包括:将载体颗粒分散于第三溶剂中;加热分散有所述载体颗粒的第三溶剂;将具有第二官能团的反应溶液加入所述第三溶剂中;分离所述载体颗粒;以及烘干所述载体颗粒,以获得表面具有所述第二官能团的所述载体颗粒。
再一方面,本发明实施例还提供了一种封框胶,所述封框胶包括光聚合剂;其中所述封框胶还包括:上述导电胶组合物。
又一方面,本发明实施例还提供了一种显示面板,所述显示面板包括相对设置的上基板和下基板;其中所述显示面板还包括:上述封框胶;并且所述封框胶位于所述上基板和所述下基板之间。
基于此,在本发明实施例提供的上述导电胶组合物中,由于导电粒子被载体颗粒所吸附,使得导电粒子能够借助载体颗粒而较为均匀地分散于主体材料中,从而避免了现有技术中由于直接将金球等导电粒子分散在主体胶材中而产生的团聚、粒径增大等现象,提高了导电胶组合物的整体导电性能,使其应用于电子部件之间的导电粘连效果更优,这尤其适用于对导电能力要求较高的自电容触摸面板的上下基板的粘结导通。
并且,当导电粒子的掺杂比例(即导电粒子相对于主体胶材的比例)较高时,由于导电粒子是通过吸附在载体颗粒上而分散在主体胶材中的,因此不会产生现有技术中由于直接分散掺杂比例较高的导电粒子而引发的胶体粘滞性过大,进而影响胶体吞吐的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面 将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,而对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的一种导电胶的结构组成示意图;
图2为本发明实施例提供的一种导电胶组合物的结构组成示意图一;
图3为吸附有导电粒子的载体颗粒的内部结构放大示意图一;
图4为吸附有导电粒子的载体颗粒与直接分散的导电粒子的粒径分布对比图;
图5为吸附有导电粒子的载体颗粒的内部结构放大示意图二;
图6为本发明实施例提供的一种导电胶组合物的制备方法的流程示意图;
图7为本发明实施例提供的一种导电胶组合物的结构组成示意图二;
图8为对本发明实施例提供的一种导电胶组合物进行改性、嫁接的效果图;以及
图9为本发明实施例提供的一种封框胶的结构组成示意图。
附图标记:
01-导电胶组合物;10-主体胶材;20-导电粒子;30-载体颗粒;301-第一官能团;02-封框胶;03-光聚合剂。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,由于本发明实施例所涉及的各结构尺寸通常在毫米(mm)、微米(μm)、亚微米(100nm~1.0m)、纳米(nm)的数量级,所以为了清楚起见,本发明实施例附图中的各结构的尺寸均被夸大,且不代表实际尺寸。
而且,本领域技术人员还应当理解,本发明所有附图中示出的各结构并不构成对本发明实施例提供的以下导电胶组合物01和/或封框胶02的具体结构组成的限定,其只为清楚描述本发明而体现出与发明点相关的结构,而其他的与发明点无关的结构是现有结构,在附图中并未体现或只部分体现。
本发明实施例提供了一种导电胶组合物01,如图2所示,该导电胶组合物01包括:主体胶材10;以及分散于上述主体胶材10中的吸附有导电粒子20(图中未示意出)的载体颗粒30。
需要说明的是,第一、主体胶材10可以包括树脂材料,但不限于由树脂材料构成。其中,树脂材料的选择有多种,例如其可以为丙烯酸树脂、环氧树脂、双酚-A型环氧树脂、聚乙烯醇缩丁醛树脂、二乙二醇单丁醚醋酸酯、含羧基聚氨酯树脂等。
第二、所谓“颗粒”是指在一定尺寸范围内具有特性形状的几何体,这里所说的一定尺寸通常在毫米到纳米之间。因此,上述的载体颗粒30即指具有较小尺寸数量级的颗粒,其具体微观形状不限于球状,也可以为多种形状,具体不作限定。
这里,载体颗粒30具有吸附微小粒子的功能,例如可以由吸附材料构成。即载体颗粒30相对于吸附质具有更大的比表面积、适宜的孔径结构和表面微结构,并且对吸附质(即导电粒子)具有较强烈的吸附能力。
例如,载体颗粒30可以包括炭黑、活性炭、炭纳米管、分子筛(即结晶态的硅酸盐或硅铝酸盐)中的至少一种材料,但不限于由其构成。
其中,考虑到上述的导电胶组合物01通常应用于显示产品上下基板之间对盒的封框胶材料,因此优选地采用粒径较小、原料易获取且颜色较深以能够防止漏光的炭黑材料构成上述的载体颗粒30。
第三、导电粒子20可以包括金(Au)、银(Ag)、铜(Cu)、铝(Al)、镍(Ni)、锡(Sn)中的至少一种材料,但不限于由其构成。导电粒子20的形状可以包括但不限于球状、鳞片状、树枝状。
需要指出的是,导电粒子20被载体颗粒30所吸附,其吸附形式可以是如图3所示的,即,导电粒子20被吸附在载体颗粒30的内部孔径等通道中。在这一吸附方式中,导电粒子20的微观形状通常为球状等结构,且导电粒子20的尺寸小于载体颗粒30的通道尺寸。
附加地/可替换地,导电粒子20被载体颗粒30所吸附的形式也可以是导电粒子20的一部分被吸附在载体颗粒30的内部孔径等通道以及表面微结构处。即,导电粒子20的尺寸与载体颗粒30的通道、表面微结构的尺寸相近。此时,导电粒子20的微观形状通常为鳞片状、树枝状等结构。具体不作限定,只要可实现上述的导电粒子20被载体颗粒30所吸附,使吸附导电粒子20通过载体颗粒30而分散在上述的主体胶材10中即可。
这里,考虑到相比于鳞片状、树枝状等结构,导电粒子20为球状时更有利于载体颗粒的吸附,因此导电粒子20优选地为球状。
在此基础上,图4为在本发明实施例提供的上述导电胶组合01中以载体颗粒30为炭黑颗粒、导电粒子20为金球的情况下,吸附有金球的炭黑颗粒与现有技术中直接分散在主体胶材中的金球的粒径对比图。可以看出,吸附有金球的炭黑颗粒的平均粒径分布在0.1μm左右,而直接分散在主体胶材中的金球由于自身发生团聚现象而使得其粒径分布在2~3μm左右,由此粒径尺寸比本发明实施例中吸附有金球的炭黑颗粒明显大一个数量级。
基于此,在本发明实施例提供的上述导电胶组合物01中,由于导电粒子20被载体颗粒30所吸附,使得导电粒子20能够借助载体颗粒30而较为均匀地分散于主体材料中,所以避免了现有技术中由于直接将金球等导电粒子分散在主体胶材中而产生的团聚、粒径增大等现象,从而提高了导电胶组合物01的整体导电性能,使其应用于电子部件之间的导电粘连效果更优,这尤其适用于对导电能力要求较高的自电容触摸面板的上下基板的粘结导通。
而且,当导电粒子20的掺杂比例(即导电粒子20相对于主体胶材10的比例)较高时,由于导电粒子20是通过吸附在载体颗粒30上而分散在主体胶材10中的,因此不会产生现有技术中由于直接分散掺杂比例较高的导电粒子而引发的胶体粘滞性过大,由此影响胶体吞吐的问题。
进一步地,如图5和图6所示,载体颗粒30的表面具有亲有机物的第一官能团301(图6中未示意出)。第一官能团301用于增强主体胶材10的粘接性,以提高导电胶组合物01与待涂布的基板之间的粘接力。
在此基础上,由于主体胶材10通常主要由树脂材料构成,因此,第一官能团301可以包括但不限于氨基、巯基、乙烯基、环氧基、氰基以及甲基丙烯酰氧基中的至少一种。
需要说明的,上述的这些基团均为偶联剂或硅烷偶联剂的支链基团,具有亲有机物的特性,易于和树脂材料发生反应,从而大幅增强导电胶组合物01与待涂布基板之间的粘接力。同时,由于载体颗粒30的表面具有上述的亲有机物的第一官能团301,使得载体颗粒30自身在主体胶材10中的分散性得以大幅提高,最终进一步提高导电粒子20在主体胶材10中的分散性,使得形成的上述导电胶组合物01具有更优的导电性能,从而应用于电子器件的粘合效果更好。
进一步地,载体颗粒30的表面具有带正电荷或负电荷的第二官能团。
这里,以第二官能团带负电荷为例,上述的第二官能团可以包括但不限于二价的硫酸根基团(SO4 2-)、三价的硝酸根(NO3-)等。
由于载体颗粒30的表面具有带正电荷或负电荷的第二官能团,利用表面电荷的排斥的原理,使得载体颗粒30在分散于上述主体胶材10中后难以发生团聚,即进一步提高了导电粒子20的分散性。
需要说明的是,本领域技术人员可根据导电胶组合物01的具体结构组分进行灵活调整,即使载体颗粒30的表面具有上述的第一官能团301和/或第二官能团,具体不作限定。
在上述基础上,本发明实施例还提供了上述的导电胶组合物01的制备方法,如图7所示,该制备方法包括:
S01、形成吸附有导电粒子20的载体颗粒30;以及
S02、将吸附有导电粒子20的载体颗粒30分散于主体胶材10中。
进一步地,上述步骤S01具体可包括以下子步骤:
S11、将导电粒子20分散于第一溶剂中,以形成导电粒子分散液;
S12、将载体颗粒30分散于导电粒子分散液中,以吸附导电粒子20;
S13、分离载体颗粒30与导电粒子分散液;以及
S14、烘干载体颗粒30,以获得吸附有导电粒子20的载体颗粒30。
需要说明的是,在步骤S11中优选地采用超声波分散,以尽可能提高导电粒子20在第一溶剂中的分散均匀性,从而提高后续载体颗粒 30的吸附效率。
第一溶剂的作用是防止导电粒子20发生沉降和凝聚,以便能够形成稳定的悬浮液,其例如可以为高分子型分散剂等常用分散试剂。
步骤S13可优选地通过高速离心机将载体颗粒30与导电粒子分散液分离开来。
在步骤S14中,为了防止载体颗粒30由于高温而发生固相反应,从而造成颗粒团聚,烘干的温度及时间应根据载体颗粒30的质量灵活调整,并可辅助地采用阶梯逐渐升温的烘干方式。
这里,以载体颗粒30由炭黑、活性炭、炭纳米管等炭材料构成为例。由于上述的材料经高温加热后转变为气态的二氧化碳,因此,可以采用以下方式方便快捷地验证载体颗粒30是否吸附有上述的导电粒子20:
将通过上述步骤S11至步骤S14获得的载体颗粒30放置于马弗炉等加热设备中进行焙烧,以除掉炭黑、活性炭、炭纳米管等炭材料,此时剩余的固体物质即为导电粒子的材料。
当然,对于载体颗粒30采用分子筛等其他材料构成的情况,也可以采用SEM(Scanning Electron Microscope,扫描电子显微镜)等测试仪器更为专业地表征载体颗粒30是否吸附有上述的导电粒子20,以及导电粒子20吸附后的分布状态等详细的结构信息。
这里,载体颗粒30通常由炭黑、活性炭、炭纳米管、分子筛等具有较大的比表面积、适宜的孔径结构和表面微结构,对吸附质有较强烈的吸附能力的材料构成。由于静电吸附效应,载体颗粒30表面会吸附有很多杂质离子,导致其内部的吸附通道被封堵,还会在导电胶组合物01的体系中引入杂质,从而影响其性能。
因此,进一步地,上述导电胶组合物01的制备方法还包括:在上述步骤S01之前,
对载体颗粒30进行改性处理,以暴露出载体颗粒30内部的吸附通道。
上述步骤具体可包括以下子步骤:
S21、将载体颗粒30分散于酸性溶剂中;
S22、分离载体颗粒30与酸性溶剂;
S23、将载体颗粒30洗涤至pH值稳定;以及
S24、烘干载体颗粒30,以获得经过改性处理的载体颗粒。
需要说明的是,第一、上述的酸性溶剂例如可以为硝酸等常见的改性试剂,其反应时间及反应温度可根据载体颗粒30与酸性溶剂的不同灵活调整,在此不作限定。
pH值是表示溶液酸碱程度的一个值,在上述步骤S23中,“洗涤至pH值稳定”是指通过去离子水(即指除去了呈离子形式杂质后的纯水)对载体颗粒30进行洗涤,直至洗涤后的去离子水的pH值不再发生变化,或变化的幅度非常微小。
这里,由于在步骤S23前,载体颗粒30是分散于酸性溶剂中的,因此,在步骤S23后pH值相应地稳定在一个偏酸性的数值范围内。
第二、在步骤S24中,可以将载体颗粒30放置于烘箱中,在120℃的温度条件下进行烘干活化,以暴露出载体颗粒30内部的吸附通道,即完成对载体颗粒30进行的改性处理。
这里,由于在烘干过程中载体颗粒30可能会发生较小程度的团聚,所以可以通过玻璃棒将其进行轻轻碾压,以减小其团聚程度。
第三、上述反应过程的物料配比、改性剂(即酸性溶剂)浓度、搅拌转速、反应时间、反应温度以及活化温度和时间等因素都会对载体颗粒30的表面改性的效果产生影响,改性效果可根据上述各影响因素灵活调整,具体不作限定。
进一步地,上述的导电胶组合物01的制备方法还包括:在上述步骤S02之前,
对载体颗粒30进行嫁接处理,以使载体颗粒30表面具有亲有机物的第一官能团301;其中,第一官能团301用于增强主体胶材10的粘接性。
需要说明的是,第一、由于主体胶材10通常由树脂材料构成,因此,第一官能团301可以包括但不限于氨基、巯基、乙烯基、环氧基、氰基以及甲基丙烯酰氧基中的至少一种。
上述的这些基团均为偶联剂或硅烷偶联剂的支链基团,具有亲有机物的特性,易于和树脂材料发生反应,从而大幅增强导电胶组合物01与待涂布基板之间的粘接力。同时,由于载体颗粒30的表面具有上述的亲有机物的第一官能团301,使得载体颗粒30自身在主体胶材10中的分散性得以大幅提高,最终进一步提高导电粒子20在主体胶材10 中的分散性,使得形成的上述导电胶组合物01具有更优的导电性能,从而应用于电子器件的粘合效果更好。
第二、上述对载体颗粒30进行嫁接处理的步骤可以在前述的对载体颗粒30进行改性处理,以暴露出载体颗粒30内部的吸附通道这一步骤之前或之后进行,具体不作限定。
进一步地,上述的对载体颗粒30进行嫁接处理,以使载体颗粒30表面具有亲有机物的第一官能团301的步骤,具体包括以下子步骤:
S31、将载体颗粒30分散于第二溶剂中;
S32、加热分散有载体颗粒30的第二溶剂;
S33、将具有第一官能团301的反应溶液加入第二溶剂中;
S34、分离载体颗粒30;以及
S35、烘干载体颗粒30,以获得表面具有第一官能团301的载体颗粒302。
这里,第二溶剂的作用是防止载体颗粒30发生沉降和凝聚,从而能够形成稳定的悬浮液,其例如可以为高分子型分散剂等常用分散试剂。
下面以需要嫁接的第一官能团301包括氨基、巯基、乙烯基、环氧基、氰基以及甲基丙烯酰氧基中的至少一种为例,详细描述上述的各个子步骤:
S310、将一定质量的炭黑颗粒放置于三口烧瓶中,加入适当体积的高分子型分散剂,通过超声波振荡进行一定时间的分散;
S320、通过加热套,将分散有炭黑颗粒的高分子型分散剂加热至一定的温度;
S330、在一定转速的搅拌作用下,将偶联剂或硅烷偶联剂(即具有需要的嫁接第一官能团301的溶液)缓慢加入进步骤S320形成的溶液中;其中,两者之间合适的配比关系可根据具体反应灵活调整;
S340、通过离心洗涤,将高分子型分散剂以及未反应的偶联剂或硅烷偶联剂与载体颗粒30分离;以及
S350、将分离的载体颗粒30放置于表面皿内,在烘箱中以一定温度进行烘干,以获得表面具有第一官能团301的载体颗粒302。
上述反应过程的物料配比、嫁接剂(即第二溶剂)浓度、搅拌转速、反应时间、反应温度等因素都会对载体颗粒30的表面嫁接的效果 产生影响,嫁接效果可根据上述各影响因素灵活调整,具体不作限定。
进一步地,上述的导电胶组合物01的制备方法还包括:在上述步骤S02之前,
对载体颗粒30进行嫁接处理,以使载体颗粒表面具有带正电荷或负电荷的第二官能团。
这里,以第二官能团表面带负电荷为例,上述的第二官能团可以包括但不限于二价的硫酸根基团(SO4 2-)、三价的硝酸根(NO3-)等。
由于载体颗粒30的表面具有带正电荷或负电荷的第二官能团,利用表面电荷的排斥的原理,使得载体颗粒30在分散于上述主体胶材10中后难以发生团聚,即进一步提高了导电粒子20的分散性。
需要说明的是,上述对载体颗粒30进行嫁接处理的步骤可以在前述的对载体颗粒30进行改性处理,以暴露出载体颗粒30内部的吸附通道这一步骤之前或之后进行,具体不作限定。
进一步地,上述的对载体颗粒30进行嫁接处理,以使载体颗粒30表面具有带正电荷或负电荷的第二官能团的步骤,具体包括以下子步骤:
S41、将载体颗粒30分散于第三溶剂中;
S42、加热分散有载体颗粒30的第三溶剂;
S43、将具有第二官能团的反应溶液加入第三溶剂中;
S44、分离载体颗粒30;以及
S45、烘干载体颗粒30,以获得表面具有第二官能团的载体颗粒30。
这里,第三溶剂的作用是防止载体颗粒30发生沉降和凝聚,从而能够形成稳定的悬浮液,其例如可以为高分子型分散剂等常用分散试剂。
下面以需要嫁接的第二官能团包括负电荷SO4 2-为例,详细描述上述的各个子步骤:
S410、将一定质量的炭黑颗粒放置于三口烧瓶中,加入适当体积的高分子型分散剂,通过超声波振荡进行一定时间的分散;
S420、通过加热套,将分散有炭黑颗粒的高分子型分散剂加热至一定的温度;
S430、在一定转速的搅拌作用下,将合适浓度的过硫酸铵和/或硫 酸溶液缓慢加入进步骤S320形成的溶液中;其中,两者之间合适的配比关系可根据具体反应灵活调整;
S440、通过离心洗涤,将高分子型分散剂以及未反应的过硫酸铵和/或硫酸溶液与载体颗粒30分离;以及
S450、将分离的载体颗粒30放置于表面皿内,在烘箱中以一定温度进行烘干,以获得表面具有第二官能团的载体颗粒302。
上述反应过程的物料配比、嫁接剂(即第三溶剂)浓度、搅拌转速、反应时间、反应温度等因素都会对载体颗粒30的表面嫁接的效果产生影响,嫁接效果可根据上述各影响因素灵活调整,具体不作限定。
在上述基础上,图7为对本发明实施例提供的上述导电胶组合物进行改性、嫁接的效果图。其中,横坐标表示时间、纵坐标表示通过测试获得的材料电阻率,并具体以导电粒子20为金球为例进行说明。
由图中可以看出,“电阻率-改性时间曲线”表示了上述对载体颗粒30进行改性处理,以暴露出载体颗粒30内部的吸附通道后的改性效果。随着改性时间的延长,吸附有导电粒子20的载体颗粒30的电阻率呈现先减小后增大的趋势,这是由于对载体颗粒30进行改性处理通常需要经过一定的烘干处理,改性时间过长,会导致载体颗粒30发生团聚,从而使得电阻率增大。因此,对于载体颗粒30的改性存在一个相对较优的改性时间(即图中的时间t1),该时间与载体颗粒30的具体材料、形貌有关,具体不作限定,图8仅示意出上述趋势。
由“电阻率-嫁接时间曲线”可以看出,随着嫁接时间的延长,电阻率呈现下降趋势,这说明嫁接时间越长载体颗粒30表面嫁接的第二官能团越多,其分散性越好,形成的导电胶组合物01的电阻率也越低。随着时间的延长,这一曲线下降的趋势趋于平稳,这说明对于某一具体材料的载体颗粒30而言,其表面能够嫁接第二官能团的能力是有限的,电阻率并不会随着时间的延长无限降低。
同样地,由“电阻率-金球吸附时间曲线”可以看出,随着金球吸附时间的延长,电阻率均呈现下降趋势,这说明金球通过载体颗粒30分散于主体胶材10中,减小了金球自身的团聚,从而使得形成的导电胶组合物01的电阻率也越低。随着时间的延长,这一曲线下降的趋势也趋于平稳,这说明对于某一具体材料的载体颗粒30而言,其能够吸附导电粒子20的能力是有限的,电阻率并不会随着时间的延长无限降 低。
在上述基础上,本发明实施例还提供了一种封框胶02,如图9所示,该封框胶02包括光聚合剂03以及上述的导电胶组合物01。
这里,光聚合剂03是指在紫外光UV照射下能够吸收UV的能量,产生活性自由基或阳离子,使得封框胶02内部发生一系列的光聚合反应而最终固化。
其中,光聚合剂可以包括但不限于烷基苯酮类(如α,α-二乙氧基苯乙酮、α-羟烷基苯酮、α-胺烷基苯酮);酰基磷氧化物(芳酰基膦氧化物、双苯甲酰基苯基氧化膦);二苯甲酮类(二苯甲酮、2,4-二羟基二苯甲酮、米蚩酮);硫杂蒽酮类(硫代丙氧基硫杂蒽酮、异丙基硫杂蒽酮)等。
进一步地,本发明实施例还提供了一种显示面板,该显示面板包括相对设置的上基板和下基板、以及上述的封框胶02;其中,封框胶02位于上基板和下基板之间。
上述的显示面板可以为液晶面板、有机电致发光显示面板、电子纸、手机、平板电脑等具有任何显示功能的产品或者部件。
需要说明的是,本发明所有附图是上述导电胶组合物及其制备方法的简略的示意图。只为清楚描述本方案而体现出与发明点相关的结构,对于其他的与发明点无关的结构是现有结构,在附图中并未体现或只部分体现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种导电胶组合物,所述导电胶组合物包括:主体胶材;其中,所述导电胶组合物还包括:分散于所述主体胶材中的吸附有导电粒子的载体颗粒。
  2. 根据权利要求1所述的导电胶组合物,其中,所述载体颗粒的表面具有亲有机物的第一官能团。
  3. 根据权利要求2所述的导电胶组合物,其中,
    所述主体胶材由树脂材料构成;并且
    所述第一官能团包括氨基、巯基、乙烯基、环氧基、氰基以及甲基丙烯酰氧基中的至少一种。
  4. 根据权利要求1所述的导电胶组合物,其中,所述载体颗粒的表面具有带正电荷或负电荷的第二官能团。
  5. 根据权利要求1至4中任一项所述的导电胶组合物,其中,所述导电粒子由金、银、铜、铝、镍、锡中的至少一种材料构成。
  6. 根据权利要求1至4中任一项所述的导电胶组合物,其中,所述导电粒子为球状。
  7. 根据权利要求1至4中任一项所述的导电胶组合物,其中,所述载体颗粒由炭黑、活性炭、炭纳米管、分子筛中的至少一种材料构成。
  8. 一种导电胶组合物的制备方法,其中,所述制备方法包括:
    形成吸附有导电粒子的载体颗粒;以及
    将所述吸附有导电粒子的载体颗粒分散于主体胶材中。
  9. 根据权利要求8所述的制备方法,其中,所述形成吸附有导电粒子的载体颗粒的步骤,包括:
    将导电粒子分散于第一溶剂中,以形成导电粒子分散液;
    将载体颗粒分散于所述导电粒子分散液中,以吸附所述导电粒子;
    分离所述载体颗粒与所述导电粒子分散液;以及
    烘干所述载体颗粒,以获得所述吸附有导电粒子的载体颗粒。
  10. 根据权利要求8所述的制备方法,其中,所述制备方法还包括:在形成吸附有导电粒子的载体颗粒之前,
    对载体颗粒进行改性处理,以暴露出所述载体颗粒内部的吸附通 道。
  11. 根据权利要求10所述的制备方法,其中,所述对载体颗粒进行改性处理,以暴露出所述载体颗粒内部的吸附通道的步骤,包括:
    将载体颗粒分散于酸性溶剂中;
    分离所述载体颗粒与所述酸性溶剂;
    将载体颗粒洗涤至pH值稳定;以及
    烘干所述载体颗粒,以获得经过改性处理的所述载体颗粒。
  12. 根据权利要求8所述的制备方法,其中,所述制备方法还包括:在将所述吸附有导电粒子的载体颗粒分散于主体胶材中之前,
    对所述载体颗粒进行嫁接处理,以使所述载体颗粒表面具有亲有机物的第一官能团。
  13. 根据权利要求12所述的制备方法,其中,所述对载体颗粒进行嫁接处理,以使所述载体颗粒表面具有亲有机物的第一官能团的步骤,包括:
    将载体颗粒分散于第二溶剂中;
    加热分散有所述载体颗粒的第二溶剂;
    将具有第一官能团的反应溶液加入所述第二溶剂中;
    分离所述载体颗粒;以及
    烘干所述载体颗粒,以获得表面具有所述第一官能团的所述载体颗粒。
  14. 根据权利要求8所述的制备方法,其中,所述制备方法还包括:在将所述吸附有导电粒子的载体颗粒分散于主体胶材中之前,
    对所述载体颗粒进行嫁接处理,以使所述载体颗粒表面具有带正电荷或负电荷的第二官能团。
  15. 根据权利要求14所述的制备方法,其中,所述对载体颗粒进行嫁接处理,以使所述载体颗粒表面具有第二官能团的步骤,包括:
    将载体颗粒分散于第三溶剂中;
    加热分散有所述载体颗粒的第三溶剂;
    将具有第二官能团的反应溶液加入所述第三溶剂中;
    分离所述载体颗粒;以及
    烘干所述载体颗粒,以获得表面具有所述第二官能团的所述载体颗粒。
  16. 一种封框胶,所述封框胶包括光聚合剂;其中,所述封框胶还包括:如权利要求1至7中任一项所述的导电胶组合物。
  17. 一种显示面板,所述显示面板包括相对设置的上基板和下基板;其中,所述显示面板还包括:如权利要求16所述的封框胶;并且所述封框胶位于所述上基板和所述下基板之间。
PCT/CN2015/089525 2015-04-24 2015-09-14 导电胶组合物及其制备方法、封框胶、以及显示面板 WO2016169190A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,583 US20170066945A1 (en) 2015-04-24 2015-09-14 Conductive adhesive composition, method for producing the same, sealant and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510202593.4A CN104845548B (zh) 2015-04-24 2015-04-24 一种导电胶组合物及其制备方法、封框胶、显示面板
CN201510202593.4 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016169190A1 true WO2016169190A1 (zh) 2016-10-27

Family

ID=53845549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089525 WO2016169190A1 (zh) 2015-04-24 2015-09-14 导电胶组合物及其制备方法、封框胶、以及显示面板

Country Status (3)

Country Link
US (1) US20170066945A1 (zh)
CN (1) CN104845548B (zh)
WO (1) WO2016169190A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845548B (zh) * 2015-04-24 2017-05-03 京东方科技集团股份有限公司 一种导电胶组合物及其制备方法、封框胶、显示面板
CN105182623A (zh) * 2015-09-09 2015-12-23 京东方科技集团股份有限公司 一种封框胶及其制备方法、显示装置
CN106125410B (zh) * 2016-06-28 2019-08-02 京东方科技集团股份有限公司 导电球及其制备方法、各向异性导电胶、显示装置
CN106200136B (zh) 2016-08-29 2019-08-20 京东方科技集团股份有限公司 一种封框胶及、显示面板
CN106531284A (zh) * 2016-12-22 2017-03-22 武汉智普天创科技有限公司 导电膏及其制备方法
CN107286667A (zh) * 2017-07-21 2017-10-24 吉林大学 一种用于硅橡胶复合导电薄膜的导电填料
CN109119535B (zh) * 2018-08-31 2021-01-22 京东方科技集团股份有限公司 柔性基材、柔性基板及其制备方法
CN110187566A (zh) * 2019-05-10 2019-08-30 深圳市华星光电技术有限公司 框胶及液晶显示面板
CN111574937B (zh) * 2020-05-15 2021-10-08 武汉华星光电半导体显示技术有限公司 一种异方性导电胶、显示面板及显示装置
CN112904625B (zh) * 2021-01-25 2022-09-27 北海惠科光电技术有限公司 导电边框胶的制备方法、导电边框胶及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131685A1 (en) * 2006-11-16 2008-06-05 Korea Institute Of Science And Technology Microcapsule-conductive particle complex, preparation method thereof and anisotropic conductive adhesive film using the same
JP4848674B2 (ja) * 2005-06-03 2011-12-28 日本電気株式会社 樹脂金属複合導電材料およびその製造方法
CN102714071A (zh) * 2009-11-20 2012-10-03 3M创新有限公司 包含其上共价连接有表面改性的纳米粒子的导电粒子的组合物、以及制备方法
CN103642422A (zh) * 2013-12-10 2014-03-19 江苏瑞德新能源科技有限公司 一种修复性导电胶及其制备方法
CN104845548A (zh) * 2015-04-24 2015-08-19 京东方科技集团股份有限公司 一种导电胶组合物及其制备方法、封框胶、显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232820B (zh) * 2013-05-02 2016-03-30 京东方科技集团股份有限公司 导电封框胶、显示面板及其制作方法、显示装置
CN104342060A (zh) * 2013-07-30 2015-02-11 上海天臣防伪技术股份有限公司 Rfid用异向导电胶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848674B2 (ja) * 2005-06-03 2011-12-28 日本電気株式会社 樹脂金属複合導電材料およびその製造方法
US20080131685A1 (en) * 2006-11-16 2008-06-05 Korea Institute Of Science And Technology Microcapsule-conductive particle complex, preparation method thereof and anisotropic conductive adhesive film using the same
CN102714071A (zh) * 2009-11-20 2012-10-03 3M创新有限公司 包含其上共价连接有表面改性的纳米粒子的导电粒子的组合物、以及制备方法
CN103642422A (zh) * 2013-12-10 2014-03-19 江苏瑞德新能源科技有限公司 一种修复性导电胶及其制备方法
CN104845548A (zh) * 2015-04-24 2015-08-19 京东方科技集团股份有限公司 一种导电胶组合物及其制备方法、封框胶、显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, WEI: "Study on Novel Modified Graphite/Epoxy Resin Conductive Adhesives", CNKI MASTER'S THESES DATABASE, 1 April 2009 (2009-04-01) *

Also Published As

Publication number Publication date
US20170066945A1 (en) 2017-03-09
CN104845548A (zh) 2015-08-19
CN104845548B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2016169190A1 (zh) 导电胶组合物及其制备方法、封框胶、以及显示面板
JP6691961B2 (ja) 導電性球状カーボンナノチューブの製造方法及び導電性球状カーボンナノチューブシール剤の製造方法
WO2016026190A1 (zh) 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶
CN106928773B (zh) 一种可用于喷墨打印的石墨烯复合导电墨水及其制备方法
WO2016176895A1 (zh) 石墨烯基树脂球及其导电框胶的制备方法
WO2017133120A1 (zh) 封框胶、液晶面板、液晶显示器及制备方法
JP6149683B2 (ja) フィルム状回路接続材料及びこれを用いた接続構造体
JP5472332B2 (ja) 導電粒子、その製造方法及び絶縁被覆導電粒子の製造方法、並びに異方導電性接着剤フィルム
JP5939063B2 (ja) 絶縁被覆導電粒子及びそれを用いた異方導電性接着剤
CN106520008B (zh) 碳纳米管导电球及其制备方法与导电胶及其制备方法
WO2014176831A1 (zh) 导电封框胶、显示面板及其制作方法、显示装置
CN114023494B (zh) 石墨烯太阳能hjt电池正面银浆及其制备方法
WO2020042762A1 (zh) 柔性基材、柔性基板及其制备方法
US20210317327A1 (en) Graphene-based conductive ink and preparation thereof
CN105182623A (zh) 一种封框胶及其制备方法、显示装置
CN105153813B (zh) 一种低渗流阈值导电油墨的制备方法
JP5589361B2 (ja) 導電粒子及びその製造方法
JP6119130B2 (ja) 複合粒子及び異方導電性接着剤
JP5434626B2 (ja) 回路接続用接着剤及び異方導電性フィルム
JP2013251099A (ja) 導電粒子及びその製造方法
JP2012036313A (ja) 無機酸化物粒子の製造方法、及び当該製造方法により得られる無機酸化物粒子を用いた異方導電接着剤
CN106128554B (zh) 一种抗老化晶硅太阳能电池背电极银浆
WO2020248852A1 (zh) 导电粒子及其制备方法和显示面板
CN101941803A (zh) 一种用于太阳能电池电极的二氧化钛薄膜的制备方法
JP2011066015A (ja) 導電性粒子、異方性導電材料及び接続構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15122583

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889677

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15889677

Country of ref document: EP

Kind code of ref document: A1