WO2014176831A1 - 导电封框胶、显示面板及其制作方法、显示装置 - Google Patents

导电封框胶、显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2014176831A1
WO2014176831A1 PCT/CN2013/079822 CN2013079822W WO2014176831A1 WO 2014176831 A1 WO2014176831 A1 WO 2014176831A1 CN 2013079822 W CN2013079822 W CN 2013079822W WO 2014176831 A1 WO2014176831 A1 WO 2014176831A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
conductive
display panel
substrate
carbon nanotubes
Prior art date
Application number
PCT/CN2013/079822
Other languages
English (en)
French (fr)
Inventor
张雨
柳在健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/346,092 priority Critical patent/US20140335290A1/en
Publication of WO2014176831A1 publication Critical patent/WO2014176831A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • C09K2323/059Unsaturated aliphatic polymer, e.g. vinyl
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • Embodiments of the present invention relate to a conductive sealant, a display panel, a method of fabricating the same, and a display device. Background technique
  • the conductive sealant is mainly used to bond the color filter substrate and the array substrate to form a liquid crystal cell (Cell), and to realize the conductive function between the array substrate and the color filter substrate.
  • a conductive sealant used in the conventional LCD panel includes a sealant 10 and conductive particles 11 coated with an organic resin.
  • the sealant 10 realizes the adhesion between the color filter substrate and the array substrate, and the conductive particles 11 coated with the organic resin of the graphene realize the conductive function between the array substrate and the color filter substrate.
  • the embodiments of the present invention provide a conductive frame sealant, a display panel, a manufacturing method thereof, and a display device, which solve the problem that the conductive effect of the display panel is poor due to agglomeration of the graphite, and improve the display effect of the display panel.
  • One aspect of the present invention provides a conductive sealant comprising a sealant material and conductive particles, the conductive particles being a composite material in which graphene or carbon nanotubes are added to a resin.
  • Another aspect of the present invention provides a display panel including a first substrate and a second substrate disposed opposite to each other, and a conductive sealant having any of the above features is disposed between the opposite first substrate and the second substrate.
  • a composite material in which graphene or carbon nanotubes are added to a resin is a composite material of graphene and polystyrene, or a composite material of graphene and polymethyl methacrylate, or a composite of carbon nanotubes and polystyrene.
  • the conductive particles have a particle diameter in the range of 100 nm to 10,000 nm.
  • the particle diameter of the conductive particles is 1.2 to 1.5 times the thickness of the display panel, and the thickness of the display panel is the distance between the first substrate and the second substrate.
  • the conductive particles are uniformly distributed in the conductive sealant.
  • a method for fabricating a display panel includes: forming an array substrate; forming an opposite substrate; and providing a conductive sealant on the array substrate and/or the opposite substrate;
  • the conductive sealant comprises a sealant material and conductive particles, and the conductive particles are made of a composite material in which graphene or carbon nanotubes are added to the resin.
  • the manufacturing method of the conductive sealant comprises: adding the conductive particles to the sealant material and stirring, and performing vacuum defoaming treatment to form the conductive sealant.
  • the composite material in which graphene or carbon nanotubes are added to the resin is a composite material of graphene and polystyrene, or a composite material of graphene and polymethyl methacrylate, or carbon nanotubes and polystyrene. Composites, or composites of carbon nanotubes with polymethyl methacrylate.
  • Still another aspect of the present invention provides a display device including the display panel having any of the above.
  • FIG. 1 is a schematic structural view of a prior art LCD panel
  • FIG. 2 is a schematic structural view of a display panel provided by the present invention.
  • FIG. 3 is a flow chart of a method for manufacturing a display panel provided by the present invention. detailed description
  • the embodiment of the invention provides a conductive sealant, which comprises a sealant material and conductive particles, and the conductive particles are composite materials in which graphene or carbon nanotubes are added to the resin.
  • a composite material in which graphene or carbon nanotubes are added to a resin is, for example, a composite material of graphene and polystyrene, or a composite material of graphene and polymethyl methacrylate, or a composite material of carbon nanotubes and polystyrene. , or a composite of carbon nanotubes and polymethyl methacrylate.
  • the conductive sealant provided by the embodiment of the invention comprises a sealant material and conductive particles, and the conductive particles are composite materials in which graphene or carbon nanotubes are added to the resin. Since the conductive particles are composite materials in which graphene or carbon nanotubes are added to the resin, on the one hand, the introduction of the resin reduces the specific surface area of the graphene, so that the graphene does not agglomerate; on the other hand, the introduction of the resin is reduced. The van der Waals force between the carbon nanotubes is small, and it also has good electrical conductivity and support. Therefore, when the conductive sealant is applied to the display panel, the problem that the graphene is agglomerated causes the conductive effect of the display panel to be poor, thereby improving the display effect of the display panel.
  • the embodiment of the invention provides a display panel comprising a first substrate and a second substrate disposed opposite to each other, and any one of the above-mentioned conductive sealing materials is disposed between the first substrate and the second substrate.
  • the display panel 2 provided by the embodiment of the present invention includes: an array substrate 20 and a color filter substrate 21 disposed opposite to each other, and a conductive sealant 22 disposed between the array substrate 20 and the color filter substrate 21.
  • the array substrate 20 and the color filter substrate 21 are examples of the first substrate and the second substrate, respectively.
  • the conductive sealant 22 includes a sealant material 220 and conductive particles 221, and the sealant material 220 is used to bond the color filter substrate 20 and the array substrate 21 to form a liquid crystal cell, for example, to accommodate a liquid crystal material, and the conductive particles 221 implement the array substrate 220.
  • the conductive particles 221 of the embodiment of the present invention are composite materials in which graphene or carbon nanotubes are added to a resin.
  • the conductive sealant 22 may be disposed only on the array substrate 20, and may be disposed only on the color filter substrate 21 or on the array substrate 20 and the color filter substrate 21. limit.
  • the composite material in which graphene is added to the resin is, for example, a composite material of graphene and polystyrene, or a composite material of graphene and polymethyl methacrylate; a composite material in which carbon nanotubes are added to the resin is A composite of carbon nanotubes and polystyrene, or a composite of carbon nanotubes and polymethyl methacrylate.
  • the material of the conductive particles proposed in the embodiments of the present invention may be an unused conductive base material depending on the base material.
  • the base material is polystyrene
  • a composite material in which graphene or carbon nanotubes are added to polystyrene using graphene or carbon nanotubes as a conductive base material if the base material is polymethyl Methyl acrylate can be made of graphene or carbon nanotubes as a conductive matrix material.
  • Adding a composite material of graphene or carbon nanotubes to polymethyl methacrylate is only a preferred scheme, and other resins may be used, which may cause the graphene to not agglomerate or overcome the van der Waals force of the carbon nanotubes.
  • the material is not limited in the embodiment of the present invention.
  • the particle diameter of the conductive particles is in the range of 100 nm to 10000 nm, and the specific particle size can be differently designed as needed, and the present invention is not limited.
  • the particle size of the conductive particles is related to the distance between the array substrate and the color filter substrate (ie, the thickness of the cell), and the conductive particles prepared in the embodiments of the present invention may have the conductive function. Supporting the thickness of the box, so the particle size of the conductive particles is preferably larger than the array substrate
  • the distance between the first substrate and the color filter substrate is generally 1.2-1.5 times the thickness of the cell.
  • the conductive particles are uniformly distributed in the conductive sealant, so that the conductive effect of the display panel is good, and the display effect is improved.
  • the conductive particle structure is single, and only the conductive particles are added to the sealant material, and the conductive seal is prepared.
  • the sealant has both a supporting function and a conductive function, and does not require additional spacers such as glass fibers.
  • the conductive particles are copolymerized, cracking does not occur, and the pressure resistance is large and the elasticity is strong;
  • the specific surface area of the graphene is reduced due to the introduction of the resin, the van der Waals force inherent between the carbon nanotubes is reduced, the agglomeration of the graphene is reduced, and the conductive particles are uniformly Dispersed in the sealant material;
  • the introduction of graphene or carbon nanotubes into the process of making conductive sealant glue greatly improves the heat resistance of the conductive sealant, while graphene or carbon nanotubes have Strong electrical conductivity imparts electrical conductivity to conductive particles.
  • Embodiments of the present invention provide a display panel including an array substrate and a counter substrate (eg, a color filter substrate) disposed opposite to each other, and a conductive sealant disposed between the array substrate and the opposite substrate.
  • the conductive sealant comprises a sealant material and conductive particles, and the conductive particles are added with graphene or A composite of carbon nanotubes. Since the conductive particles are composite materials in which graphene or carbon nanotubes are added to the resin, on the one hand, the introduction of the resin reduces the specific surface area of the graphene, so that the graphene does not agglomerate; on the other hand, the introduction of the resin is reduced. The van der Waals force between the carbon nanotubes is small, and also has good electrical conductivity and support.
  • the counter substrate may not have a color filter, and thus is not a color filter substrate.
  • the array substrate is a color filter (COA) substrate on an array, it is not necessary to repeatedly set the color filter on the opposite substrate.
  • COA color filter
  • Embodiments of the present invention provide a display device including the display panel having any of the above.
  • the display device can be any liquid crystal panel, electronic paper, OLED (Organic Light-Emitting Diode) panel, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigation device, etc. Or parts.
  • OLED Organic Light-Emitting Diode
  • An embodiment of the present invention provides a method for fabricating a display panel, including the steps of: forming an array substrate; forming an opposite substrate; and providing a conductive sealant on the array substrate and/or the opposite substrate; Opposite to the opposite substrate.
  • the conductive sealant comprises a sealant material and conductive particles, and the conductive particles are a composite material in which graphene or carbon nanotubes are added to the resin.
  • An example of a counter substrate is a color film substrate.
  • an example of a method for manufacturing a display panel provided by an embodiment of the present invention includes:
  • the conductive sealant comprises a sealant material and conductive particles, and the sealant material is used for bonding the color filter substrate and the array substrate, and the conductive particles realize the conductive function between the array substrate and the color filter substrate.
  • the conductive particles of the present example are composite materials in which graphene or carbon nanotubes are added to a resin.
  • the composite material in which graphene is added to the resin is, for example, a composite material of graphene and polystyrene, or a composite material of graphene and polymethyl methacrylate; a composite material in which carbon nanotubes are added to the resin. It can be a composite material of carbon nanotubes and polystyrene, or a composite material of carbon nanotubes and polymethyl methacrylate.
  • the material of the conductive particles proposed in the embodiments of the present invention may be an unused conductive base material depending on the base material.
  • the base material is polystyrene, it can be made of graphene or carbon nanotubes as a conductive matrix material, and graphite is added to the polystyrene.
  • Adding a composite material of graphene or carbon nanotubes to polymethyl methacrylate is only a preferred scheme, and other resins may be used, which may cause the graphene to not agglomerate or reduce the van der Waals force of the carbon nanotubes.
  • the material of the present invention is not limited.
  • Examples of the manufacturing method of the conductive sealant include: adding the conductive particles to the sealant material, stirring, and performing vacuum defoaming treatment to form the conductive sealant.
  • the composite material in which graphene or carbon nanotubes are added to the resin is, for example, a composite material of graphene and polystyrene, or a composite material of graphene and polymethyl methacrylate, or carbon nanotubes and polystyrene.
  • the conductive sealant of the embodiment of the invention not only has a good bonding effect, but also has good electrical conductivity due to the presence of graphene or carbon nanotubes, and the polystyrene or polymethyl methacrylate has good properties. Elasticity and toughness make it support well. In addition, the composite of graphene and polystyrene also greatly improves the temperature resistance of polystyrene, making it more widely used as a supporting material.
  • a method of preparing a composite material of graphene and polystyrene of 5 to 25 g is exemplarily described, and the method includes the following steps.
  • a method of preparing a composite material of graphene and polymethyl methacrylate is exemplarily described, and the method includes the following steps:
  • the solution which has completed the above steps is cooled to room temperature, suction filtered, and washed with deionized water and ethanol to prepare a composite material of graphene and polymethyl methacrylate.
  • a method of preparing a composite material of carbon nanotubes and polymethyl methacrylate is exemplarily described, and the method comprises the following steps:
  • a method of preparing a composite material of carbon nanotubes and polystyrene is exemplarily described, and the method comprises the following steps:
  • the mixture to be completed in the above steps was cooled to room temperature, soaked in deionized water for 10 hours, the supernatant was removed, deionized water was added, and the mixture was washed with a high speed centrifuge until the product PH was 6.
  • the particle diameter of the conductive particles may be in the range of 100 nm to 10000 nm, and the specific particle size may be differently designed as needed, and the present invention is not limited.
  • the particle size of the conductive particles is related to the distance between the array substrate and the color filter substrate (ie, the thickness of the cell), and the conductive particles prepared by the present invention may have a support box in addition to the conductive function. Thick, so the particle size of the conductive particles is preferably larger than the distance between the array substrate and the color filter substrate, and is generally 1.2-1.5 times the thickness of the cell.
  • the conductive sealant can be disposed only on the array substrate, and then the color filter substrate and the array substrate are paired with the array; or, the conductive sealant can be disposed only on the color filter substrate, and then the array substrate and the array substrate are
  • the color film substrate is a pair of boxes; or the conductive frame sealant may be disposed on both the array substrate and the color filter substrate, and the embodiment of the present invention is not limited.
  • the embodiment of the present invention provides a method for fabricating a display panel, comprising: after forming an array substrate and a counter substrate, providing a conductive sealant on the array substrate and/or the opposite substrate;
  • the sealant material and the conductive particles are made of a composite material in which graphene or carbon nanotubes are added to the resin, and the array substrate and the counter substrate are disposed opposite to each other.
  • the introduction of the resin reduces the van der Waals force between the carbon nanotubes, and also has good electrical conductivity and supporting effect, thereby solving the problem that the graphene is agglomerated and the conductive effect of the display panel is poor, and the display panel is improved. display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种导电封框胶,包括封框胶材料和导电粒子,所述导电粒子为在树脂中添加石墨烯或碳纳米管的复合材料。该导电封框胶避免石墨烯发生团聚而导致显示面板导电效果不良的问题。还提供了一种显示面板及其制作方法、显示装置。

Description

导电封框胶、 显示面板及其制作方法、 显示装置 技术领域
本发明的实施例涉及导电封框胶、 显示面板及其制作方法、 显示装置。 背景技术
随着液晶显示器 (Liquid Crystal Display, LCD)的不断普及, 用户对液晶 显示器功能的要求也越来越高。 在 LCD 面板生产过程中, 导电封框胶主要 用来粘接彩膜基板和阵列基板以形成液晶盒(Cell ) , 以及实现阵列基板和 彩膜基板间的导电功能。
如图 1所示, 现有的 LCD面板所用的一种导电封框胶包括封框胶 10及 石墨烯包裹有机树脂的导电粒子 11。 封框胶 10实现彩膜基板和阵列基板的 粘接,石墨烯包裹有机树脂的导电粒子 11实现阵列基板和彩膜基板间的导电 功能。
然而, 由于石墨烯具有很大的比表面积, 很容易发生不可逆团聚。 石墨 烯的团聚会导致 LCD面板的导电效果不良,从而影响 LCD面板的显示效果。 发明内容
本发明的实施例提供了导电封框胶、显示面板及其制作方法、显示装置, 以解决石墨婦发生团聚导致显示面板导电效果不良的问题, 提高显示面板的 显示效果。
本发明的一个方面提供一种导电封框胶, 包括封框胶材料和导电粒子, 所述导电粒子为在树脂中添加石墨烯或碳纳米管的复合材料。
本发明的另一个方面提供一种显示面板, 包括相对设置的第一基板和第 二基板, 所述相对设置的第一基板与第二基板之间设置有具有上述任意特征 的导电封框胶。
例如, 在树脂中添加石墨烯或碳纳米管的复合材料为石墨烯与聚苯乙烯 的复合材料, 或石墨烯与聚甲基丙烯酸甲酯的复合材料, 或碳纳米管与聚苯 乙烯的复合材料, 或碳纳米管与聚甲基丙烯酸甲酯的复合材料。 例如, 所述导电粒子的粒径在 100纳米至 10000纳米的范围内。
例如,所述导电粒子的粒径为所述显示面板的盒厚的 1.2倍至 1.5倍,所 述显示面板的盒厚为第一基板与第二基板之间的距离。
例如, 所述导电粒子均匀分布于所述导电封框胶中。
本发明的再一个方面提供一种显示面板的制作方法, 包括: 形成阵列基 板; 形成对置基板; 在所述阵列基板和 /或所述对置基板上设置导电封框胶; 所述阵列基板与对置基板相对设置; 所述导电封框胶包括封框胶材料和导电 粒子, 所述导电粒子的材料为在树脂中添加石墨烯或碳纳米管的复合材料。
例如, 所述导电封框胶的制作方法包括: 将所述导电粒子加入封框胶材 料中搅拌后, 进行真空脱泡处理, 以制成所述导电封框胶。
例如, 所述在树脂中添加石墨烯或碳纳米管的复合材料为石墨烯与聚苯 乙烯的复合材料, 或石墨烯与聚甲基丙烯酸甲酯的复合材料, 或碳纳米管与 聚苯乙烯的复合材料, 或碳纳米管与聚甲基丙烯酸甲酯的复合材料。
本发明的再一个方面还提供一种显示装置, 包括具有上述任一的显示面 板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术的 LCD面板结构示意图;
图 2为本发明提供的显示面板结构示意图;
图 3为本发明提供的显示面板的制作方法流程图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 本发明实施例提供一种导电封框胶, 其包括封框胶材料和导电粒子, 导 电粒子为在树脂中添加石墨烯或碳纳米管的复合材料。
在树脂中添加石墨烯或碳纳米管的复合材料例如为石墨烯与聚苯乙烯的 复合材料, 或石墨烯与聚甲基丙烯酸甲酯的复合材料, 或碳纳米管与聚苯乙 烯的复合材料, 或碳纳米管与聚甲基丙烯酸甲酯的复合材料。
本发明实施例提供的导电封框胶包括封框胶材料和导电粒子, 导电粒子 为在树脂中添加石墨烯或碳纳米管的复合材料。 由于导电粒子为在树脂中添 加石墨烯或碳纳米管的复合材料, 一方面, 树脂的引入减小了石墨烯的比表 面积, 使得石墨烯不会发生团聚现象, 另一方面, 树脂的引入减小了碳纳米 管之间的范德华力, 同样具备良好的导电性和支撑作用。 因此, 在将该导电 封框胶应用于显示面板时, 可解决石墨烯发生团聚导致显示面板导电效果不 良的问题, 进而提高显示面板的显示效果。
本发明实施例提供一种显示面板, 其包括相对设置的第一基板和第二基 板, 所述相对设置的第一基板与第二基板之间设置有上述任意的一种导电封 框胶。
如图 2所示, 本发明实施例提供的显示面板 2包括: 相对设置的阵列基 板 20和彩膜基板 21 , 以及设置于阵列基板 20和彩膜基板 21之间的导电封 框胶 22。 这里, 阵列基板 20和彩膜基板 21分别是第一基板和第二基板的示 例。
导电封框胶 22包括封框胶材料 220和导电粒子 221 ,封框胶材料 220用 于粘接彩膜基板 20和阵列基板 21以形成例如容纳液晶材料的液晶盒, 导电 粒子 221实现阵列基板 220和彩膜基板 221间的导电功能。 本发明实施例的 导电粒子 221为在树脂中添加石墨烯或碳纳米管的复合材料。
进一步地, 所述导电封框胶 22可以仅设置在阵列基板 20上, 可以仅设 置在彩膜基板 21 , 也可以在阵列基板 20和彩膜基板 21上均进行设置, 本发 明实施例不做限制。
例如, 所述在树脂中添加石墨烯的复合材料例如为石墨烯与聚苯乙烯的 复合材料, 或石墨烯与聚甲基丙烯酸甲酯的复合材料; 在树脂中添加碳纳米 管的复合材料为碳纳米管与聚苯乙烯的复合材料, 或碳纳米管与聚甲基丙烯 酸甲酯的复合材料。 需要说明的是, 本发明实施例所提出的导电粒子的材料, 可以根据基体 材料的不同而采用不用的导电基体材料。如上所述,若基体材料是聚苯乙烯, 则可以制成以石墨烯或碳纳米管为导电基体材料的在聚苯乙烯中添加石墨烯 或碳纳米管的复合材料; 若基体材料是聚甲基丙烯酸甲酯, 则可以制成以石 墨烯或碳纳米管为导电基体材料的。 在聚甲基丙烯酸甲酯中添加石墨烯或碳 纳米管的复合材料, 仅为优选方案, 还可以采用其它树脂类、 能够使得石墨 烯不会发生团聚现象, 或克服碳纳米管的范德华力的材料, 本发明实施例不 做限制。
例如, 导电粒子的粒径在 100纳米至 10000纳米的范围内, 具体粒径大 小可以根据需要进行不同的设计, 本发明不做限制。
需要说明的是, 导电粒子的粒径与对盒后的阵列基板与彩膜基板之间的 距离 (即盒厚)存在关系, 由于本发明实施例制备的导电粒子除了具备导电 功能外还可以具备支撑盒厚的作用, 因此导电粒子的粒径优选大于阵列基板
(即第一基板)与彩膜基板(即第二基板)之间的距离,一般为盒厚的 1.2-1.5 倍。
进一步地, 导电粒子均匀分布于所述导电封框胶中, 从而使得显示面板 的导电效果良好, 显示效果有所提升。
综上所述, 对于本发明实施例所提出的显示面板的导电封框胶, 第一方 面, 导电粒子结构筒单, 且只需在封框胶材料中添加导电粒子, 所制成的导 电封框胶既具有支撑作用, 又具有导电功能, 不需要另外添加玻璃纤维等隔 垫物; 第二方面, 由于导电粒子是共聚结合, 因此不会发生开裂现象, 其抗 压力大且弹性强; 第三方面, 对于导电粒子而言, 由于树脂的引入, 减小了 石墨烯的比表面积, 减小了碳纳米管之间固有的范德华力, 减少了石墨烯的 团聚现象, 从而使得导电粒子均匀地分散于封框胶材料中; 第四方面, 将石 墨烯或碳纳米管引入制作导电封框胶的过程中, 大大提高了导电封框胶的耐 热性能, 同时石墨烯或碳纳米管具有较强的导电性能, 赋予了导电粒子的导 电性能。
本发明的实施例提供一种显示面板, 包括相对设置的阵列基板和对置基 板(例如彩膜基板) , 以及设置于阵列基板和对置基板之间的导电封框胶。 导电封框胶包括封框胶材料和导电粒子, 导电粒子为在树脂中添加石墨烯或 碳纳米管的复合材料。 由于导电粒子为在树脂中添加石墨烯或碳纳米管的复 合材料, 一方面, 树脂的引入减小了石墨烯的比表面积, 使得石墨烯不会发 生团聚现象, 另一方面, 树脂的引入减小了碳纳米管之间的范德华力, 同样 具备良好的导电性和支撑作用, 因此可解决石墨婦发生团聚导致显示面板导 电效果不良的问题, 提高显示面板的显示效果。 对置基板也可以不具有彩色 滤色片, 因而不是彩膜基板。 例如, 当阵列基板为阵列上滤色片 (COA )基 板时, 对置基板上无需再重复设置滤色片。
本发明实施例提供一种显示装置, 其包括具有上述任一的显示面板。 该 显示装置可以为液晶面板、 电子纸、 OLED ( Organic Light-Emitting Diode, 有机发光二极管) 面板、 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品或部件。
本发明实施例提供一种显示面板的制作方法, 包括如下步骤: 形成阵列 基板;形成对置基板;在所述阵列基板和 /或所述对置基板上设置导电封框胶; 所述阵列基板与对置基板相对设置。 所述导电封框胶包括封框胶材料和导电 粒子, 所述导电粒子的材料为在树脂中添加石墨烯或碳纳米管的复合材料。 对置基板的一个示例为彩膜基板。
如图 3所示, 本发明实施例提供的显示面板的制作方法的一个示例, 包 括:
S101、 提供彩膜基板和阵列基板。
S102、 在所述彩膜基板上形成导电封框胶。
该导电封框胶包括封框胶材料和导电粒子, 封框胶材料用于粘接彩膜基 板和阵列基板, 导电粒子实现阵列基板和彩膜基板间的导电功能。 例如本示 例的导电粒子为在树脂中添加石墨烯或碳纳米管的复合材料。
优选地, 所述在树脂中添加石墨烯的复合材料例如为石墨烯与聚苯乙烯 的复合材料, 或石墨烯与聚甲基丙烯酸甲酯的复合材料; 在树脂中添加碳纳 米管的复合材料可为碳纳米管与聚苯乙烯的复合材料, 或碳纳米管与聚甲基 丙烯酸甲酯的复合材料。
需要说明的是, 本发明实施例所提出的导电粒子的材料, 可以根据基体 材料的不同而采用不用的导电基体材料。如上所述,若基体材料是聚苯乙烯, 则可以制成以石墨烯或碳纳米管为导电基体材料的, 在聚苯乙烯中添加石墨 烯或碳纳米管的复合材料; 若基体材料是聚甲基丙烯酸甲酯, 则可以制成以 石墨烯或碳纳米管为导电基体材料的。 在聚甲基丙烯酸甲酯中添加石墨烯或 碳纳米管的复合材料, 仅为优选方案, 还可以采用其它树脂类、 能够使得石 墨烯不会发生团聚现象, 或减小碳纳米管的范德华力的材料, 本发明实施例 不做限制。
导电封框胶的制作方法的示例包括: 将所述导电粒子加入封框胶材料中 搅拌后, 进行真空脱泡处理, 以制成所述导电封框胶。
所述在树脂中添加石墨烯或碳纳米管的复合材料例如为石墨烯与聚苯乙 烯的复合材料, 或石墨烯与聚甲基丙烯酸甲酯的复合材料, 或碳纳米管与聚 苯乙烯的复合材料, 或碳纳米管与聚甲基丙烯酸甲酯的复合材料。
本发明实施例的导电封框胶不仅具有良好的粘结作用, 而且导电粒子因 为石墨烯或碳纳米管的存在, 而具有良好的导电性能, 聚苯乙烯或聚甲基丙 烯酸甲酯具有良好的弹性以及韧性, 使其支撑作用良好。 此外石墨烯与聚苯 乙烯的复合材料也大大提高了聚苯乙烯的耐温性能, 使其作为支撑材料的应 用范围有了更加广泛的应用。
进一步地,示例性地对制备 5克至 25克的石墨烯与聚苯乙烯的复合材料 的方法进行介绍, 该方法包括如下步骤。
5201、 将 100毫克至 300毫克的氧化石墨烯溶于 50毫升至 200毫升的 去离子水中后, 加入 0.01克至 5克的十二烷基石克酸钠及 5克至 30克的苯乙 烯, 并进行超声处理 10分钟至 20分钟。
5202、 在完成上述步骤的溶液中加入 0.05克至 0.3克的过二石充酸钠, 在 氮气保护及 80摄氏度的环境下搅拌 15小时。
5203、在完成上述步骤的溶液中加入 10毫升至 30毫升的水合肼,在 100 摄氏度的环境下电磁搅拌反应 2小时。
S204、 将完成上述步骤的溶液冷却至室温, 抽滤并用去离子水与丙酮洗 涤后,在 60摄氏度的真空环境下进行干燥,以制成所述石墨烯与聚苯乙烯的 复合材料。
进一步地, 示例性地对制备石墨烯与聚甲基丙烯酸甲酯的复合材料的方 法进行介绍, 该方法包括如下步骤:
S301、 将 100毫克至 200毫克的氧化石墨烯溶于 100毫升至 200毫升的 去离子水中后, 进行超声剥离处理获得氧化石墨烯的水^:溶液。
5302、 在所述氧化石墨烯的水分散溶液中加入 5克至 20克的甲基丙烯 酸甲酯及 0.5克至 2克的聚乙烯吡咯烷酮, 并进行超声处理 15分钟。
5303、在完成上述步骤的溶液中加入 200毫升至 300毫升甲醇溶解的 0.1 克至 0.3克的偶氮二异丁腈后,在氮气保护的环境下超声处理 10分钟,在 80 摄氏度的环境下搅拌 10小时。
5304、 在完成上述步骤的溶液中加入 5毫升至 10毫升的 80%水合胼, 在 100摄氏度的环境下搅拌 4小时。
5305、 将完成上述步骤的溶液冷却至室温, 抽滤并用去离子水与乙醇洗 涤后, 以制成石墨烯与聚甲基丙烯酸甲酯的复合材料。
进一步地, 示例性地对制备碳纳米管与聚甲基丙烯酸甲酯的复合材料的 方法进行介绍, 该方法包括如下步骤:
S401、 将 10克至 20克的甲基丙烯酸甲酯与质量百分比为 0.2%至 0.5% 的偶氮二异丁腈在 50摄氏度的去离子水中混合。
S402、 将完成上述步骤的溶液在 85摄氏度的水浴中加热 15分钟, 在此 过程中, 每 3分钟搅拌一次。
S403、 在完成上述步骤的溶液中加入 0.2克至 2克的碳纳米管, 反应 30 分钟后, 离心干燥以制成碳纳米管与聚甲基丙烯酸甲酯的复合材料。
进一步地, 示例性地对制备碳纳米管与聚苯乙烯的复合材料的方法进行 介绍, 该方法包括如下步骤:
5501、 将 2克至 20克的碳纳米管放入 100毫升至 500毫升的烧瓶中, 并加入 50毫升至 250毫升的浓硝酸和 150毫升至 750毫升的浓硫酸后,在超 声波发生器水浴中超声处理 2小时。
5502、 待完成上述步骤的混合物冷却至室温, 加入去离子水浸泡 10 小 时, 去除上层清液, 再加入去离子水, 采用高速离心机洗涤, 直至产物 PH 为 6。
5503、 将完成上述步骤的混合物在烘箱中干燥 48 小时, 得到羟基化的 碳纳米管。
5504、 将羟基化的碳纳米管经过超声波处理分散在蒸馏水中后, 将其加 入到聚苯乙烯乳液中, 得到碳纳米管与聚苯乙烯分散溶液, 冷冻干燥后制成 碳纳米管与聚苯乙烯的复合材料。
S103、 将所述阵列基板与所述彩膜基板对盒, 使得所述彩膜基板和所述 阵列基板通过所述导电封框胶粘接。
导电粒子的粒径可在 100纳米至 10000纳米的范围内, 具体粒径大小可 以根据需要进行不同的设计, 本发明不做限制。
需要说明的是, 导电粒子的粒径与对盒后的阵列基板与彩膜基板之间的 距离 (即盒厚)存在关系, 由于本发明制备的导电粒子除了具备导电功能外 还可以具备支撑盒厚的作用, 因此导电粒子的粒径优选大于阵列基板与彩膜 基板之间的距离, 一般为盒厚的 1.2-1.5倍。
需要补充的是, 所述导电封框胶可以仅设置在阵列基板上, 进而将彩膜 基板与阵列基板对盒; 或者, 导电封框胶可以仅设置在彩膜基板上, 进而将 阵列基板与彩膜基板对盒; 或者, 导电封框胶也可以在阵列基板和彩膜基板 上均进行设置, 在进行对盒, 本发明实施例不做限制。
本发明的实施例提供一种显示面板的制作方法, 包括在形成阵列基板和 对置基板后, 在所述阵列基板和 /或对置基板上设置导电封框胶; 所述导电封 框胶包括封框胶材料和导电粒子, 所述导电粒子的材料为在树脂中添加石墨 烯或碳纳米管的复合材料, 进而相对设置所述阵列基板与对置基板。 通过该 方案, 由于导电封框胶的导电粒子为在树脂中添加石墨烯或碳纳米管的复合 材料, 一方面, 树脂的引入减小了石墨烯的比表面积, 使得石墨烯不会发生 团聚现象, 另一方面, 树脂的引入减小了碳纳米管之间的范德华力, 同样具 备良好的导电性和支撑作用, 因此解决了石墨烯发生团聚导致显示面板导电 效果不良的问题, 提高显示面板的显示效果。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种导电封框胶, 包括封框胶材料和导电粒子, 其中, 所述导电粒子 为在树脂中添加石墨烯或碳纳米管的复合材料。
2、 一种显示面板, 包括相对设置的第一基板和第二基板, 其中, 所述相 对设置的第一基板与第二基板之间设置有权利要求 1所述的导电封框胶。
3、根据权利要求 2所述的显示面板, 其中, 在树脂中添加石墨烯或碳纳 米管的复合材料为石墨烯与聚苯乙烯的复合材料, 或石墨烯与聚甲基丙烯酸 甲酯的复合材料, 或碳纳米管与聚苯乙烯的复合材料, 或碳纳米管与聚甲基 丙烯酸甲酯的复合材料。
4、根据权利要求 2或 3所述的显示面板, 其中, 所述导电粒子的粒径在 100纳米至 10000纳米的范围内。
5、根据权利要求 2或 3所述的显示面板, 其中, 所述导电粒子的粒径为 所述显示面板的盒厚的 1.2倍至 1.5倍,所述显示面板的盒厚为所述第一基板 与所述第二基板之间的距离。
6、根据权利要求 2或 3所述的显示面板, 其中, 所述导电粒子均匀分布 于所述导电封框胶中。
7、 一种显示面板的制作方法, 包括:
形成阵列基板;
形成对置基板;
在所述阵列基板和 /或所述对置基板上设置导电封框胶;
所述阵列基板与对置基板相对设置;
其中, 所述导电封框胶包括封框胶材料和导电粒子, 所述导电粒子的材 料为在树脂中添加石墨烯或碳纳米管的复合材料。
8、根据权利要求 7所述的显示面板的制作方法, 其中, 所述导电封框胶 的制作方法包括:
将所述导电粒子加入封框胶材料中搅拌后, 进行真空脱泡处理, 以制成 所述导电封框胶。
9、根据权利要求 7或 8所述的显示面板的制作方法, 其中, 所述在树脂 中添加石墨烯或碳纳米管的复合材料为石墨烯与聚苯乙烯的复合材料, 或石 墨烯与聚甲基丙烯酸甲酯的复合材料, 或碳纳米管与聚苯乙烯的复合材料, 或碳纳米管与聚甲基丙烯酸甲酯的复合材料。
10、 一种显示装置, 包括权利要求 2-6所述的显示面板。
PCT/CN2013/079822 2013-05-02 2013-07-22 导电封框胶、显示面板及其制作方法、显示装置 WO2014176831A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/346,092 US20140335290A1 (en) 2013-05-02 2013-07-22 Conductive sealant, display panel and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310158396.8 2013-05-02
CN201310158396.8A CN103232820B (zh) 2013-05-02 2013-05-02 导电封框胶、显示面板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2014176831A1 true WO2014176831A1 (zh) 2014-11-06

Family

ID=48880892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079822 WO2014176831A1 (zh) 2013-05-02 2013-07-22 导电封框胶、显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US20140335290A1 (zh)
CN (1) CN103232820B (zh)
WO (1) WO2014176831A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845548B (zh) * 2015-04-24 2017-05-03 京东方科技集团股份有限公司 一种导电胶组合物及其制备方法、封框胶、显示面板
CN104910536A (zh) * 2015-05-07 2015-09-16 深圳市华星光电技术有限公司 石墨烯基树脂球的制备方法与导电框胶的制备方法
KR102374554B1 (ko) * 2015-10-02 2022-03-15 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
CN105542685B (zh) * 2016-02-03 2018-12-11 京东方科技集团股份有限公司 封框胶、液晶面板、液晶显示器及制备方法
CN105802565B (zh) * 2016-04-27 2019-01-08 京东方科技集团股份有限公司 封框胶及其制备方法、显示面板及其制备方法、显示装置
CN105807475B (zh) * 2016-05-03 2019-08-30 京东方科技集团股份有限公司 彩膜基板及其制备方法、显示面板及显示装置
CN106019724A (zh) * 2016-05-25 2016-10-12 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示器
KR101882687B1 (ko) * 2016-08-08 2018-07-27 주식회사 이엔에프테크놀로지 액정표시소자용 실란트 조성물
CN106502006B (zh) * 2017-01-04 2019-05-10 京东方科技集团股份有限公司 一种改性封框胶、显示面板及其制备方法
CN106833442B (zh) * 2017-02-24 2019-03-12 京东方科技集团股份有限公司 封框胶、液晶面板、液晶显示器及其制备方法
CN106990622B (zh) * 2017-05-25 2020-05-22 武汉天马微电子有限公司 液晶显示面板及制作方法、液晶显示装置
CN107418469A (zh) * 2017-05-26 2017-12-01 深圳市华星光电技术有限公司 一种碳纳米管导电球及其制备方法和应用
CN109445156A (zh) * 2018-12-24 2019-03-08 惠科股份有限公司 显示面板、显示装置及显示面板制造方法
CN111638616B (zh) * 2019-03-01 2022-04-15 京东方科技集团股份有限公司 显示基板及其制作方法、显示面板及其制作方法
CN110187566A (zh) * 2019-05-10 2019-08-30 深圳市华星光电技术有限公司 框胶及液晶显示面板
US11906852B2 (en) * 2022-03-16 2024-02-20 Lumentum Operations Llc Liquid crystal on silicon panel with electrically-conductive adhesive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1410455A (zh) * 2002-03-14 2003-04-16 四川大学 聚合物/碳纳米管复合乳液及其原位乳液聚合的制备方法
US20030158323A1 (en) * 2001-11-02 2003-08-21 Connell John W. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
US6847355B1 (en) * 1999-06-17 2005-01-25 Nissha Printing Co., Ltd. High-reliability touch panel
CN101320154A (zh) * 2007-06-08 2008-12-10 北京京东方光电科技有限公司 液晶显示器面板和导电胶、导电粒子及其制作方法
CN102331642A (zh) * 2011-09-22 2012-01-25 深圳市华星光电技术有限公司 液晶显示面板及其制作方法
CN102746808A (zh) * 2012-07-27 2012-10-24 清华大学深圳研究生院 一种高导电率石墨烯导电胶及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727423B2 (en) * 2006-12-29 2010-06-01 Cheil Industries, Inc. Anisotropic conductive film composition and film including the same
WO2009037768A1 (ja) * 2007-09-20 2009-03-26 Fujitsu Limited 液晶表示素子及びその駆動方法、及びそれを用いた電子ペーパー
JP5603059B2 (ja) * 2009-01-20 2014-10-08 大陽日酸株式会社 複合樹脂材料粒子及びその製造方法
CN101928401A (zh) * 2009-06-24 2010-12-29 上海金发科技发展有限公司 通过水交联反应制备聚烯烃/碳纳米管复合材料的方法
CN102161785B (zh) * 2011-03-10 2013-02-13 四川大学 一种石墨烯/聚合物纳米复合材料的制备方法
US8665410B2 (en) * 2011-09-22 2014-03-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display panel and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847355B1 (en) * 1999-06-17 2005-01-25 Nissha Printing Co., Ltd. High-reliability touch panel
US20030158323A1 (en) * 2001-11-02 2003-08-21 Connell John W. Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
CN1410455A (zh) * 2002-03-14 2003-04-16 四川大学 聚合物/碳纳米管复合乳液及其原位乳液聚合的制备方法
CN101320154A (zh) * 2007-06-08 2008-12-10 北京京东方光电科技有限公司 液晶显示器面板和导电胶、导电粒子及其制作方法
CN102331642A (zh) * 2011-09-22 2012-01-25 深圳市华星光电技术有限公司 液晶显示面板及其制作方法
CN102746808A (zh) * 2012-07-27 2012-10-24 清华大学深圳研究生院 一种高导电率石墨烯导电胶及其制备方法

Also Published As

Publication number Publication date
CN103232820A (zh) 2013-08-07
US20140335290A1 (en) 2014-11-13
CN103232820B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2014176831A1 (zh) 导电封框胶、显示面板及其制作方法、显示装置
WO2017133120A1 (zh) 封框胶、液晶面板、液晶显示器及制备方法
KR101856214B1 (ko) 전도성 필름 및 그 제조방법
WO2017063290A1 (zh) 碳纳米管导电球的制备方法与碳纳米管球导电胶的制备方法
Zhu et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets
WO2016176895A1 (zh) 石墨烯基树脂球及其导电框胶的制备方法
CN107342117B (zh) 各向异性导电膜及其制作方法
CN102390830A (zh) 聚酰胺胺原位插层石墨烯复合材料的制备方法
WO2016011683A1 (zh) 石墨烯球导电胶的制备方法及该石墨烯球导电胶
WO2016169190A1 (zh) 导电胶组合物及其制备方法、封框胶、以及显示面板
CN112852076A (zh) 一种石墨烯改性聚合物复合材料的制备方法
KR101018334B1 (ko) 그라펜이 코팅된 전기 전도성 미립자 및 그 제조 방법
CN106520008A (zh) 碳纳米管导电球及其制备方法与导电胶及其制备方法
WO2015018138A1 (zh) 导电银胶及其制备方法
WO2021012514A1 (zh) 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板
KR101269650B1 (ko) 유연성, 접착성 및 전도성을 갖는 금속-탄소 하이브리드형 접착제 및 상기를 이용한 전도성 패턴
WO2021218958A1 (zh) 导电浆料、制备方法及导电薄膜制备方法
US20210230054A1 (en) Method for preparing hollow glass microbeads coated with graphene oxide
CN108399964A (zh) 基于纳米微晶纤维素衬底的石墨烯导电薄膜的制备方法
CN205334442U (zh) 一种复合型纳米银线柔性透明导电电极结构
KR101854778B1 (ko) 전도성 비드 및 이의 제조방법
TWI500048B (zh) 透明導電膜組合物及透明導電膜
CN112980360B (zh) 一种光扩散功能导热胶及其制备方法和应用
US8665410B2 (en) Liquid crystal display panel and its manufacturing method
CN113563832B (zh) 一种复合胶黏剂及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14346092

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13883603

Country of ref document: EP

Kind code of ref document: A1