WO2021218958A1 - 导电浆料、制备方法及导电薄膜制备方法 - Google Patents

导电浆料、制备方法及导电薄膜制备方法 Download PDF

Info

Publication number
WO2021218958A1
WO2021218958A1 PCT/CN2021/090228 CN2021090228W WO2021218958A1 WO 2021218958 A1 WO2021218958 A1 WO 2021218958A1 CN 2021090228 W CN2021090228 W CN 2021090228W WO 2021218958 A1 WO2021218958 A1 WO 2021218958A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive paste
organic solvent
thermoplastic polyurethane
conductive particles
Prior art date
Application number
PCT/CN2021/090228
Other languages
English (en)
French (fr)
Inventor
唐建石
赵振璇
戴媛
李望维
张正友
原剑
吴华强
钱鹤
高滨
Original Assignee
清华大学
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 腾讯科技(深圳)有限公司 filed Critical 清华大学
Publication of WO2021218958A1 publication Critical patent/WO2021218958A1/zh
Priority to US17/747,906 priority Critical patent/US20220277866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres

Definitions

  • This application relates to the field of electronic devices, and in particular to a conductive paste, a preparation method and a preparation method of a conductive film.
  • Conductive paste is a key material for electronic component packaging, electrodes and electrode interconnection. According to application scenarios, there are conductive glue and conductive ink. After curing or drying, it has certain conductive properties, usually based on matrix resin and conductive fillers, namely conductive particles. The conductive particles are combined through the bonding of the matrix resin to form a conductive path to realize the conductive connection of the bonded material. .
  • the conductive pastes currently on the market are mainly divided into epoxy, silicone and polymer based on the matrix. According to the conductive particles, it can be divided into carbon conductive paste and silver conductive paste.
  • the conductive film formed after curing of the silicone is softer, but the bonding strength is poor, especially the polymer in the conductive ink is basically non-adhesive, making the conductive film formed by the conductive ink easy to crack and peel And other phenomena, the adhesion is poor.
  • thermoplastic polyurethane as the binder of the conductive paste, the problem of the conductive paste formed in the related art is overcome.
  • a conductive paste comprising: thermoplastic polyurethane, conductive particles and an organic solvent, the conductive particles and the thermoplastic polyurethane are mixed in the organic solvent in a mass ratio of 3:7 to 95:5, and the thermoplastic polyurethane is The particle state is dispersed among the conductive particles.
  • a method for preparing a conductive paste is provided.
  • the conductive paste is the conductive paste as described in the first aspect, and includes:
  • thermoplastic polyurethane Disperse the thermoplastic polyurethane in an organic solvent in proportion to obtain the second dispersion
  • the first dispersion liquid and the second dispersion liquid are mixed in proportions to obtain the conductive slurry.
  • the mass ratio of the conductive particles to the thermoplastic polyurethane is 3:7 to 95:5, and the thermoplastic polyurethane is in the form of particles. Disperse between the conductive particles.
  • a method for preparing a conductive film including:
  • the conductive paste coated on the substrate is dried to obtain the conductive film, and the mass ratio of the conductive particles in the conductive paste to the thermoplastic polyurethane is 3:7 to 95:5.
  • the conductive paste, preparation method, and conductive film preparation method use thermoplastic polyurethane as a binder, and the thermoplastic polyurethane and conductive particles are in a mass ratio of 3:7 to 95:5.
  • thermoplastic polyurethane as a cross-linked polymer has strong adhesion, can be coated on the surface of most substrates, and can form a conductive film with good adhesion and no cracking.
  • thermoplastic polyurethane is uniformly dispersed and wrapped on the outside of the conductive particles, the conductive particles are effectively prevented from agglomerating and causing failure during the storage of the conductive paste, so that the resulting conductive paste can be stored at room temperature for a long time.
  • FIG. 1 is a schematic flow diagram of a method for preparing a conductive paste according to an embodiment of the application
  • FIG. 2 is a schematic flow chart of a method for preparing a conductive paste according to another embodiment of the application
  • FIG. 3 is a schematic flow chart of a method for preparing a conductive film according to an embodiment of the application
  • FIG. 4 is a schematic diagram of the structure of forming a conductive film on a glass substrate according to an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of forming a conductive film on a glass substrate according to another embodiment of the application.
  • FIG. 6 is a schematic structural diagram of forming a conductive film on a flexible substrate according to another embodiment of the application.
  • FIG. 7 is a schematic structural diagram of forming a conductive film on a substrate according to another embodiment of the application.
  • FIG. 8 is a schematic structural diagram of forming a conductive film on a substrate according to another embodiment of the application.
  • FIG. 9 is a schematic structural diagram of forming a conductive film on a substrate according to another embodiment of the application.
  • FIG. 10 is a schematic structural diagram of forming a conductive film on a substrate according to another embodiment of the application.
  • FIG. 11 is a schematic structural diagram of forming a conductive film on a substrate according to another embodiment of the application.
  • FIG. 12 is a diagram of the conductive paste of the embodiment of the application on the glass plate after being placed for 80 days;
  • Fig. 13 is a state diagram of the silver conductive paste in the related art on the glass plate after being placed for 80 days.
  • thermoplastic polyurethane As a cross-linked polymer, thermoplastic polyurethane has strong adhesion and can be applied to the surface of most substrates to form a stable performance. Conductive film.
  • thermoplastic polyurethane and the conductive particles are uniformly dispersed in the organic solvent, the conductive particles are effectively prevented from agglomerating in the conductive paste, thereby effectively preventing the conductive performance of the conductive paste from failing, and overcoming the problem of harsh storage conditions.
  • the conductive paste in the embodiments of the present application may include thermoplastic polyurethane, conductive particles, and an organic solvent, and the thermoplastic polyurethane and the conductive particles are mixed in the organic solvent in proportions.
  • thermoplastic polyurethane is dispersed in an organic solvent at room temperature.
  • the thermoplastic polyurethane is dispersed among the conductive particles in a particle state.
  • the conductive particles may be carbon conductive particles, such as carbon nanomaterials, including graphene, conductive carbon black (such as Super P powder), carbon nanotubes, carbon nanospheres, carbon nanofibers, and the like.
  • carbon nanomaterials including graphene, conductive carbon black (such as Super P powder), carbon nanotubes, carbon nanospheres, carbon nanofibers, and the like.
  • the conductive particles may also be nano-scale silver conductive particles and the like.
  • the mass ratio of the conductive particles to the thermoplastic polyurethane is 3:7 to 95:5.
  • the conductive paste in practice, as shown in FIG. 1, can be prepared through the following steps (S1 to S3):
  • thermoplastic polyurethane is dispersed in an organic solvent in proportions at room temperature to obtain a second dispersion, and the thermoplastic polyurethane is dispersed among the conductive particles in a particle state.
  • the prepared conductive paste has different properties, that is, the conductive film further prepared by using the prepared conductive paste will have different properties. Shows different conductivity, different adhesion, etc. (that is, the conductive film prepared according to the conductive paste prepared according to different mass ratios has different technical parameters/performance parameters such as conductive parameters, adhesion parameters, etc. ). If the adhesion is improved, the content of the thermoplastic polyurethane binder can be appropriately increased, and if stronger electrical conductivity is required, the content of conductive particles can be increased.
  • the organic solvent may include a mixture of N-methylpyrrolidone and N,N-dimethylformamide, one or more of N-methylpyrrolidone and tetrahydrofuran.
  • organic solvent corresponding to the first dispersion liquid and the organic solvent corresponding to the second dispersion liquid may be the same organic solvent or different organic solvents, which are not specifically limited in the embodiments of the present application. .
  • the conductive paste provided in the embodiments of the present application when the conductive particles are carbon conductive particles, the carbon conductive particles and the thermoplastic polyurethane are uniformly dispersed in the organic solvent, and when the conductive paste is formed, due to the effect of the thermoplastic polyurethane, the With the cooperation of, it can repair the defects of the carbon conductive particles, which can effectively prevent the carbon conductive particles in the conductive paste from agglomerating during the conductive paste placement, thereby preventing the reduction or loss of conductive performance caused thereby, ensuring Long-term availability of conductive paste. That is, in the conductive paste provided in the embodiments of the present application, the conductive particles are carbon conductive particles, and the carbon conductive particles and the thermoplastic
  • thermoplastic polyurethane as a cross-linked polymer
  • thermoplastic polyurethane can also be uniformly dispersed on the outside of the silver conductive particles, so that the silver conductive particles are evenly dispersed in the binder to prevent The agglomeration of conductive particles.
  • the conductive paste provided in the examples of this application mixes thermoplastic polyurethane with conductive particles in proportions, and uses high-quality (that is, good conductivity) conductive particles for filling to ensure the conductive ability of the conductive paste.
  • Thermoplastic polyurethane is used as a cross-linking
  • the polymer has strong adhesion and can be applied to the surface of most substrates to form a conductive film with good adhesion and no cracking.
  • the thermoplastic polyurethane and the conductive particles are uniformly dispersed in the organic solvent, the conductive particles are effectively prevented from agglomerating in the conductive paste, which causes the conductive performance of the paste to fail, so that the resulting conductive paste can be stored at room temperature for a long time.
  • Room temperature refers to the room temperature, which is also called normal temperature or general temperature. In some embodiments, room temperature refers to a temperature of 15-40°C, such as 18°C, 20°C, 25°C, 28°C, and so on.
  • directly melting solid thermoplastic polyurethane into a liquid state in a high-temperature environment will cause more bubbles in the conductive paste prepared based on the molten thermoplastic polyurethane, and thus the thickness of the conductive film prepared further will be thicker;
  • the thermoplastic polyurethane in the molten state has a poor isolation effect on conductive particles.
  • the thermoplastic polyurethane is dispersed in an organic solvent at room temperature, that is, the second dispersion can be obtained by mixing at room temperature, and the conductive paste prepared by using the second dispersion obtained at room temperature can be The surface of the substrate is cured into a conductive film with a smaller thickness; and, because the thermoplastic polyurethane does not need to be heated, the use of the second dispersion obtained at room temperature can reduce the conductive paste and the bubbles in the conductive film, and improve the preparation of the conductive paste The uniformity of the thickness of the conductive film; in addition, in the conductive paste prepared by the second dispersion obtained at room temperature, the thermoplastic polyurethane is dispersed in the state of particles between the conductive particles, so that the conductive particles can be separated from the conductive particles.
  • S11 Disperse 30g (gram, grams) of carbon conductive particles in 30g ⁇ 30,000g of organic solvent, such as dispersed in a mixture of N-methylpyrrolidone and N,N-dimethylformamide, or dispersed in N -In methylpyrrolidone, the first dispersion is obtained.
  • the mass ratio of the carbon nanomaterial powder (ie, carbon conductive particles with a smaller diameter) to the organic solvent can be 1:1 to 1:1000.
  • the organic solvent may be N-methylpyrrolidone or a mixture of N-methylpyrrolidone and N,N-dimethylformamide.
  • this step S11 may specifically include the following steps (S111 to S112):
  • S111 Disperse each of the plurality of conductive carbon particles in an organic solvent in sequence to obtain a dispersion liquid corresponding to each of the plurality of conductive carbon particles.
  • each carbon conductive particle in order to obtain a dispersion in which carbon conductive particles are fully mixed with an organic solvent, each carbon conductive particle can be added to a certain amount of organic solvent, and then each carbon conductive particle can be separated according to a certain mass ratio or volume ratio. The corresponding multiple dispersions are mixed to obtain the first dispersion.
  • 10g of carbon nanotubes, 10g of graphene, and 10g of carbon nanospheres can be dispersed in 3 parts of organic solvent at room temperature to obtain carbon nanotube dispersion, graphene dispersion, and carbon nanospheres, respectively.
  • Ball dispersion the organic solvent may be 30 g of N-methylpyrrolidone, or a mixture of N-methylpyrrolidone and N,N-dimethylformamide.
  • the above-mentioned carbon nanotube dispersion, graphene dispersion and carbon nanosphere dispersion are mixed in a mass ratio of 1:1:1 to obtain a dispersion of carbon conductive particles, that is, the first dispersion.
  • the carbon conductive particles can be deeply dispersed by means of an ultrasonic cell pulverizer.
  • thermoplastic polyurethane is dispersed in 140 g to 3500 g of organic solvent at room temperature to obtain the second dispersion liquid.
  • the thermoplastic polyurethane cross-linked polymer with N,N-dimethylformamide can be 1:1 to 1:1000.
  • the temperature corresponding to the room temperature environment may be 20°C, 25°C, etc., which are specifically set by relevant technicians, which are not specifically limited in the embodiments of the present application.
  • thermo stirring can be used to promote the dispersion of the thermoplastic polyurethane, such as using a magnetic stirrer or a mechanical stirrer to assist in accelerating the dissolution rate of the thermoplastic polyurethane and improving the dispersion uniformity of the thermoplastic polyurethane.
  • thermoplastic polyurethane is dispersed between conductive particles in a particle state.
  • the first dispersion containing 30g of carbon conductive particles obtained in the above steps 1 and 2 and the second dispersion containing 70g of thermoplastic polyurethane are added to a vessel (in no particular order) for thorough mixing, such as The solvent is fully mixed with the assistance of manual stirring, magnetic stirrer or mechanical stirrer to obtain a conductive paste with thermoplastic polyurethane as the adhesive, and the mass ratio of carbon conductive particles to thermoplastic polyurethane in the conductive paste is 3:7.
  • the mass ratio of the conductive particles to the organic solvent and the mass ratio of the thermoplastic polyurethane to the organic solvent are not strictly required, and the conductive particles and the thermoplastic polyurethane can be dispersed in the organic solvent.
  • the carbon conductive particles are used as the conductive material of the conductive paste to ensure good conductivity, and the mass ratio of the carbon conductive particles to the thermoplastic polyurethane is set to 3:7, so that the prepared conductive paste It has good adhesion and can be applied to curved and smooth substrate surfaces to be suitable for making flexible electronic devices.
  • the carbon conductive particles are effectively prevented from agglomerating in the conductive paste and causing the conductive paste to fail, so that the conductive paste can be stored at room temperature for a long time.
  • S201 Disperse 60g of carbon conductive particles in a 180g ⁇ 6000g organic solvent, such as a mixture of N-methylpyrrolidone and N,N-dimethylformamide (1:1 ⁇ 1:20), Or dispersed in N-methylpyrrolidone to obtain the first dispersion.
  • organic solvent such as a mixture of N-methylpyrrolidone and N,N-dimethylformamide (1:1 ⁇ 1:20), Or dispersed in N-methylpyrrolidone to obtain the first dispersion.
  • 20g of carbon nanotubes, 20g of graphene, and 20g of carbon nanospheres can be dispersed in 3 parts of organic solvent at room temperature to obtain carbon nanotube dispersion, graphene dispersion, and carbon nanospheres.
  • Ball dispersion the organic solvent may be 1000 g of N-methylpyrrolidone or a mixture of N-methylpyrrolidone and N,N-dimethylformamide.
  • the above-mentioned carbon nanotube dispersion, graphene dispersion, and carbon nanosphere dispersion are mixed to obtain a dispersion of carbon conductive particles.
  • thermoplastic polyurethane is dispersed in 80 g to 2000 g of organic solvent at room temperature to obtain the second dispersion liquid.
  • the prepared conductive paste has better conductivity and Adhesiveness can be applied to curved and smooth substrate surfaces, or suitable for the production of flexible electronic devices.
  • the carbon conductive particles are effectively prevented from agglomerating in the conductive paste and causing the slurry to fail, so that the conductive paste can be stored at room temperature for a long time.
  • S31 Disperse 95g of carbon conductive particles in 285g-9500g of organic solvent, such as in a mixture of N-methylpyrrolidone and N,N-dimethylformamide (1:1 ⁇ 1:20), Or dispersed in N-methylpyrrolidone to obtain the first dispersion.
  • 30g of carbon nanotubes, 30g of graphene, and 35g of carbon nanospheres can be dispersed in 3 parts of organic solvents at room temperature to obtain a carbon nanotube dispersion, graphene dispersion, and carbon nanospheres.
  • Ball dispersion the organic solvent may be 1000 g of N-methylpyrrolidone or a mixture of N-methylpyrrolidone and N,N-dimethylformamide.
  • the above-mentioned carbon nanotube dispersion, graphene dispersion, and carbon nanosphere dispersion are mixed to obtain a dispersion of carbon conductive particles.
  • thermoplastic polyurethane is dispersed in 10 g to 250 g of organic solvent at room temperature to obtain the second dispersion.
  • thermoplastic polyurethane is dispersed between conductive particles in a particle state.
  • the carbon conductive particles are used as the conductive material of the conductive paste to ensure the good conductivity of the conductive paste, and the mass ratio of the carbon conductive particles to the thermoplastic polyurethane in the conductive paste is set to 95:5, Even if there are conductive particles with a higher mass ratio in the prepared conductive paste, it is ensured that the prepared conductive paste has good conductivity.
  • thermoplastic polyurethane due to the thermoplastic polyurethane, the adhesion of the conductive paste is ensured, and it is suitable for making flexible electronic devices. And it can effectively prevent the carbon conductive particles from agglomerating in the conductive paste and causing the paste to fail, so that the conductive paste can be stored for a long time at room temperature.
  • the conductive paste of the embodiment of the present application is convenient to use, easy to remove, easy to store, and good in electrical conductivity. It can be used in semiconductor microelectronic device packaging and other scenarios.
  • the silver nanomaterial in the silver conductive paste due to the high cost of the silver nanomaterial in the silver conductive paste, its preparation cost is relatively high.
  • the conductive paste in this application is suitable for large-scale production due to the convenient preparation of carbon conductive particles and low cost.
  • the conductive paste prepared in the examples of the present application and the silver conductive paste currently on the market were tested for storage time under 2°C refrigeration.
  • Figure 12 shows the effect of the conductive paste prepared in the example of the application on the glass plate after 80 days at room temperature.
  • Figure 13 shows the silver conductive paste currently on the market after 80 days of refrigeration at 2°C. The effect of coating on the glass plate.
  • the conductive paste prepared by using thermoplastic polyurethane as the adhesive in the embodiment of the present application after being placed for 80 days, the adhesive and the conductive particles still maintain a good mixing state.
  • the embodiments of the present application also provide a method for preparing a conductive film, that is, the conductive paste prepared in the embodiments of the present application can be used in electronic devices, specifically, the conductive paste can be used to prepare conductive films in electronic devices. film.
  • the method for preparing the conductive film may include:
  • the conductive paste provided in the embodiments of the present application may be applied to the preparation of conductive paths of electronic devices, such as the preparation of electrode lines of electronic devices, or the preparation of data lines and common lines in display panels.
  • the conductive paste prepared in the above embodiments can be coated on the substrate, and the organic solvent can be fully volatilized by means of thermal drying, ultraviolet lamp baking, heating plate, etc., to form a conductive film, wherein,
  • the mass ratio of conductive particles to thermoplastic polyurethane is 3:7 ⁇ 95:5.
  • the resulting conductive paste can be coated on various substrates by spin coating, printing, blade coating, printing, or the like.
  • the substrate is a glass substrate, a fiber substrate, a plastic substrate, a metal sink, or the like.
  • FIG. 4 shows a schematic diagram of the conductive film made by coating the conductive paste on the glass substrate by means of blade coating, and drying the conductive film made of carbon nanotubes.
  • FIG. 5 shows a schematic diagram of the conductive film made by coating the conductive paste on the glass substrate by means of blade coating, and drying the conductive film.
  • the conductive film formed by using carbon nanotubes as conductive particles in which the binder thermoplastic polyurethane is uniformly dispersed around the carbon nanotubes, between the carbon nanotubes, and between the carbon nanotubes and the substrate. Make bonding.
  • the thermoplastic polyurethane adheres in the state of small particles and does not exist in the state of large particles, which avoids blocking the two carbon nanotubes, thereby ensuring the good conductivity of the conductive film.
  • the conductive film formed by using carbon nanospheres as conductive particles the binder thermoplastic polyurethane is uniformly dispersed around the carbon nanospheres, between the carbon nanospheres, and between the carbon nanospheres and the base. Bonding between materials.
  • the thermoplastic polyurethane also adheres in the state of small particles and does not exist in the state of large particles, avoiding the blocking of multiple carbon nanospheres, thereby ensuring the good conductivity of the conductive film.
  • the binder thermoplastic polyurethane can also be uniformly dispersed on the top and bottom of the graphene layer to bond between the graphene layers and between the graphene and the substrate. .
  • FIG. 6 shows a schematic diagram of a conductive film formed after the conductive particles are carbon nanotubes, the conductive paste is coated on a flexible plastic substrate by a blade coating method, and the conductive film is dried.
  • FIGS. 7-11 a schematic diagram of the structure of the conductive film formed after the conductive paste is coated on the glass plate by printing or spraying and the like, and dried.
  • the conductive paste provided in the embodiments of the present application can be coated on most substrates by various coating processes to form conductive films of various shapes.
  • N-methylpyrrolidone can also be used to remove the conductive film.
  • different application scenarios have different requirements for the viscosity of the conductive paste.
  • a conductive film is formed by a process such as blade coating
  • a conductive paste with a larger viscosity is required.
  • a conductive paste with a smaller viscosity can be used.
  • the viscosity of the conductive slurry can be adjusted according to the requirements of the application scenario to obtain a conductive slurry that meets the viscosity requirements, such as a higher viscosity. Conductive glue, or conductive ink with less viscosity.
  • the method may include the following steps:
  • the obtained conductive paste is heated to volatilize the organic solvent to obtain a conductive paste with a preset viscosity; or, an organic solvent is added to the obtained conductive paste to dilute the conductive paste to obtain a conductive paste. Set the viscosity of the conductive paste.
  • the prepared conductive paste can be heated at a low temperature in a heat source environment to volatilize the excess organic solvent.
  • manual stirring, magnetic stirring or mechanical stirring can be used to speed up the volatilization of the organic solvent, and the heating can be stopped until the viscosity of the conductive paste reaches the required viscosity to obtain a conductive adhesive with moderate viscosity.
  • the conductive paste when a conductive paste with a smaller viscosity is required, can be diluted.
  • the diluent can also be N-methylpyrrolidone, N,N-dimethylformamide or a mixed solvent of the two.
  • a certain amount of diluent is gradually added to the conductive slurry, and the diluent can be fully mixed with the conductive slurry with the assistance of manual stirring, magnetic stirrer or mechanical stirrer, and the dilution speed is increased until it is diluted to a certain viscosity. Get the required conductive glue or conductive ink.
  • thermoplastic polyurethane elastomer as a binder, and the conductive particles are mixed in the thermoplastic polyurethane elastomer solvent, and the conductive fillers (ie conductive particles)
  • the conductivity of the conductive film is guaranteed.
  • thermoplastic polyurethane has strong adhesion and can be applied to curved or smooth substrate surfaces to form a conductive film with good adhesion and no cracking.
  • thermoplastic polyurethane is uniformly dispersed and wrapped on the outside of the conductive particles, the conductive particles are effectively prevented from agglomerating in the pre-curing agent and causing the slurry to fail, so that the resulting conductive slurry can be stored at room temperature for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Abstract

一种导电浆料、制备方法及导电薄膜制备方法,涉及电子器件领域。导电浆料包括:热塑性聚氨酯、导电颗粒及有机溶剂,热塑性聚氨酯及导电颗粒按比例混合在有机溶剂中,热塑性聚氨酯以颗粒状态分散在导电颗粒之间。以热塑性聚氨酯弹性体作为粘结剂,将导电颗粒混合于包含热塑性聚氨酯弹性体的有机溶剂中,导电颗粒保证了制备的导电薄膜的导电能力,热塑性聚氨酯具有较强的黏附性,可应用于大部分基材的表面,形成粘附性好、不开裂的导电薄膜。另外,由于热塑性聚氨酯及导电颗粒均匀分散在有机溶剂中,有效防止了导电颗粒在导电浆料中发生团聚导致浆料失效,使所得到的导电浆料可在室温下长期保存。

Description

导电浆料、制备方法及导电薄膜制备方法
本申请要求于2020年04月28日提交的、申请号为202010352024.9、发明名称为“导电浆料、制备方法及导电薄膜制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子器件领域,尤其涉及一种导电浆料、制备方法及导电薄膜制备方法。
背景技术
导电浆料是电子元器件封装、电极和电极互联的关键材料,根据应用场景,有导电胶和导电墨水。其固化或干燥后具有一定导电性能,通常以基体树脂和导电填料即导电粒子为主要成分,通过基体树脂的粘接作用把导电粒子结合在一起,形成导电通路,实现被粘结材料的导电连接。
目前市场上的导电浆料,按基体主要分为环氧类,硅酮类和聚合物类。按照导电颗粒可以分为碳导电浆及银导电浆。
其中,硅酮类固化后形成的导电薄膜较软,但粘接强度较差,尤其是导电墨水中的聚合物的基本没有粘附性,使得该导电墨水所形成的导电薄膜极易发生开裂剥离等现象,粘附性较差。
发明内容
鉴于相关技术中的上述缺陷或不足,期望提供一种导电浆料、制备方法及导电薄膜制备方法,通过利用热塑性聚氨酯作为导电浆料的粘结剂,克服了相关技术中的导电浆料形成的导电薄膜粘附性较差的技术问题。
第一方面,提供一种导电浆料,包括:热塑性聚氨酯、导电颗粒及有机溶剂,该导电颗粒与热塑性聚氨酯按3:7~95:5的质量比混合在该有机溶剂中,该热塑性聚氨酯以颗粒状态分散在该导电颗粒之间。
第二方面,提供一种导电浆料的制备方法,该导电浆料为如第一方面所述的导电浆料,包括:
将导电颗粒按比例分散在有机溶剂中,得到第一种分散液;
将热塑性聚氨酯按比例分散在有机溶剂中,得到第二种分散液;
将第一种分散液与该第二种分散液按比例进行混合,得到该导电浆料,该导电颗粒与该热塑性聚氨酯的质量比为3:7~95:5的,该热塑性聚氨酯以颗粒状态分散在该导电颗粒之间。
第三方面,提供一种导电薄膜制备方法,该方法包括:
获取如第一方面所述的导电浆料;
将获取的导电浆料涂覆在基材上;
对涂覆在基材上的导电浆料进行烘干处理,得到该导电薄膜,该导电浆料中的导电颗粒与该热塑性聚氨酯的质量比为3:7~95:5的。
综上所述,本申请实施例提供的一种导电浆料、制备方法及导电薄膜制备方法,以热塑性聚氨酯作为粘结剂,将热塑性聚氨酯与导电颗粒按3:7~95:5的质量比混合,热塑性聚氨酯作为一种交联聚合物具有较强的黏附性,可涂覆于大部分基材的表面,能够形成粘附性好,不开裂的导电薄膜。另外,由于热塑性聚氨酯均匀分散且包裹在导电颗粒外部,有效防止了导电颗粒在导电浆料存储过程中发生团聚导致失效,使得所得到的导电浆料可在室温下长期保存。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为本申请实施例的导电浆料的制备方法流程示意图;
图2为本申请又一实施例的导电浆料的制备方法流程示意图;
图3为本申请实施例的导电薄膜制备方法的流程示意图;
图4为本申请实施例在玻璃基材上形成导电薄膜的结构示意图;
图5为本申请又一实施例在玻璃基材上形成导电薄膜的结构示意图;
图6为本申请又一实施例在柔性基材上形成导电薄膜的结构示意图;
图7为本申请又一实施例在基材上形成导电薄膜的结构示意图;
图8为本申请又一实施例在基材上形成导电薄膜的结构示意图;
图9为本申请又一实施例在基材上形成导电薄膜的结构示意图;
图10为本申请又一实施例在基材上形成导电薄膜的结构示意图;
图11为本申请又一实施例在基材上形成导电薄膜的结构示意图;
图12为本申请实施例的导电浆料放置80天后在玻璃板上状态图;
图13为相关技术中的银导电浆料放置80天后在玻璃板上状态图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例的内容仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是, 为了便于描述,附图中仅示出了与实施例相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
可以理解,在电子器件的导电薄膜制备,需要利用导电浆料完成。由于目前市场上的导电浆料,存在成膜较硬,容易断裂,或者粘性较差,或者保存不易等问题。本申请为了解决上述问题,通过使用热塑性聚氨酯作为导电浆料的粘接剂,热塑性聚氨酯作为一种交联聚合物具有较强的黏附性,可应用于大部分基材的表面,形成性能稳定的导电薄膜。并且,由于热塑性聚氨酯与导电颗粒均匀分散于有机溶剂,有效防止了导颗粒在导电浆料中发生团聚,进而有效防止了导电浆料的导电性能失效,克服了存储条件苛刻的问题。
为了更好的理解本申请实施例提供的导电浆料及制备方法,以及利用所制备的导电浆料制备导电薄膜的方法,下面结合图1至图13,通过以下实施例详细阐述。
本申请实施例中的导电浆料可以包括热塑性聚氨酯、导电颗粒及有机溶剂,该热塑性聚氨酯及该导电颗粒按比例混合在该有机溶剂中。
可选地,热塑性聚氨酯是在室温下分散在有机溶剂中的。在导电浆料中,热塑性聚氨酯以颗粒状态分散在导电颗粒之间。
可选的,该导电颗粒可以为碳导电颗粒,如碳纳米材料,包括石墨烯、导电炭黑(如Super P粉末)、碳纳米管、碳纳米球、碳纳米纤维等。
可以理解,该导电颗粒也可以为纳米级别的银导电颗粒等。
可选的,该导电颗粒与该热塑性聚氨酯的质量比为3:7~95:5。进一步,为了更好的理解该导电浆料,在实际中,如图1所示,该导电浆料可以通过如下步骤制备(S1~S3):
S1,将导电颗粒按比例分散在有机溶剂中,得到第一种分散液;
S2,将热塑性聚氨酯按比例分散在有机溶剂中,得到第二种分散液;
S3,将第一种分散液与第二种分散液按比例进行混合,得到导电浆料。
可选地,在室温下将热塑性聚氨酯按比例分散在有机溶剂中,得到第二种分散液,热塑性聚氨酯以颗粒状态分散在导电颗粒之间。
可以理解,本申请实施例中,通过根据需求设定导电颗粒与热塑性聚氨酯的质量比,使得所制备的导电浆料具有不同的性能,即使得利用所制备的导电浆料进一步制备的导电薄膜会表现出不同的导电能力、不同的粘附性等等(也即,按照不同质量比制备的导电浆料进一步制备的导电薄膜,其导电参数、粘附性参数等技术参数/性能参数也不相 同)。如若提高粘附性可适当提高热塑性聚氨酯粘结剂含量,若需要较强的电导能力可提高导电颗粒的含量。
其中,该有机溶剂可以包括N-甲基吡咯烷酮和N,N-二甲基甲酰胺的混合液、N-甲基吡咯烷酮及四氢呋喃中的一种或多种。
需要说明的是,上述第一种分散液对应的有机溶剂,与第二种分散液对应的有机溶剂可以是相同的有机溶剂,也可以是不同的有机溶剂,本申请实施例对此不作具体限定。
可以理解,本申请实施例提供的导电浆料,当导电颗粒为碳导电颗粒时,碳导电颗粒及热塑性聚氨酯均匀分散在有机溶剂中,形成导电浆料时,由于热塑性聚氨酯的作用,在有机溶剂的配合下,能够修补碳导电颗粒的缺陷位,从而能够有效的防止导电浆料中的碳导电颗粒,在导电浆料放置期间发生团聚,进而防止因此引起的导电性能的降低或丧失,保证了导电浆料的长期可用。也即,本申请实施例提供的导电浆料中,导电颗粒为碳导电颗粒,而碳导电颗粒和热塑性
又或者当导电颗粒为纳米级别的银导电颗粒时,热塑性聚氨酯,作为一种交联聚合物,同样能够均匀分散在银导电颗粒外部,使得银导电颗粒被均匀的分散在粘结剂中,阻止了导电颗粒的团聚。
本申请实施例提供的导电浆料,将热塑性聚氨酯与导电颗粒按比例混合,使用高质量(即电导良好)的导电颗粒进行填充,保证了导电浆料的导电能力,热塑性聚氨酯作为一种交联聚合物具有较强的黏附性,可应用于大多数基材的表面,形成粘附性好、不开裂的导电薄膜。另外,由于热塑性聚氨酯及导电颗粒均匀分散在有机溶剂中,有效防止了导电颗粒在导电浆料中发生团聚导致浆料的导电性能失效,使得所得到的导电浆料可在室温下长期保存。
室温是指室内温度,也称为常温或者一般温度。在一些实施例中,室温是指15~40℃的温度,如18℃、20℃、25℃、28℃等等。相关技术中,直接在高温环境中将固态的热塑性聚氨酯熔化成液态,会导致基于该熔化的热塑性聚氨酯制备得到的导电浆料中存在较多气泡,因而进一步制备成的导电膜的厚度较厚;并且熔融状态的热塑性聚氨酯对导电颗粒的隔离效果较差。而本申请实施例中,热塑性聚氨酯是在室温下分散在有机溶剂中的,也即室温下即可混合得到第二分散液,采用室温下得到的第二分散液制备得到的导电浆料,能够在基材表面固化成厚度较小的导电薄膜;并且,由于热塑性聚氨酯无需加热,采用室温下得到的第二分散液能够减少导电浆料以及导电薄膜中的气泡,提升由该导电浆料制备得到的导电薄膜厚度的均匀性;另外,采用室温下得到的第二分散液制 备得到的导电浆料中,热塑性聚氨酯是以颗粒状态分散在导电颗粒之间的,从而能够将导电颗粒与导电颗粒之间隔开,并且不影响导电颗粒的导电性,进一步防止了碳导电颗粒材料在导电浆料中发生团聚导致导电浆料失效,进而进一步保证了导电浆料可在室温下长期保存。
为了更好的理解本申请实施例提供的导电浆料的制备方法,下面通过几个示例性实施例进行详细介绍。
在示例性实施例中:
S11,将30g(gram,克)的碳导电颗粒分散在30g~30000g的有机溶剂中,如分散在N-甲基吡咯烷酮和N,N-二甲基甲酰胺的混合液中,或分散在N-甲基吡咯烷酮中,得到第一种分散液。
可以理解,可以使得碳纳米材料粉体(即直径较小的碳导电颗粒)与有机溶剂的质量比可以为1:1~1:1000。其中,有机溶剂可以是N-甲基吡咯烷酮,也可以是N-甲基吡咯烷酮和N,N-二甲基甲酰胺的混合液。
在该步骤中,如图2所示,该步骤S11具体可以包括如下步骤(S111~S112):
S111,依次将多种碳导电颗粒中的每一种碳导电颗粒分散到有机溶剂中,得到多种碳导电颗粒中的每一种碳导电颗粒分别对应的分散液。
S112,将每种碳导电颗粒对应的该分散液按比例进行混合,得到该第一种分散液。
具体地,为了得到碳导电颗粒与有机溶剂充分混合的分散液,可以分别将每种碳导电颗粒加入到一定量的有机溶剂中,然后再根据一定的质量比或体积比将各个碳导电颗粒分别对应的多种分散液混合,得到第一种分散液。
例如,可以在室温环境下,将10g的碳纳米管、10g的石墨烯及10g的碳纳米球分别分散到3份有机溶剂中,从而分别得到碳纳米管分散液、石墨烯分散液及碳纳米球分散液。其中,有机溶剂可以是30g的N-甲基吡咯烷酮,也可以是N-甲基吡咯烷酮和N,N-二甲基甲酰胺的混合。最后,将上述的碳纳米管分散液、石墨烯分散液及碳纳米球分散液按1:1:1的质量比进行混合,得到碳导电颗粒的分散液,即第一种分散液。
可选的,在该步骤中,为了实现快速分散,增强碳导电颗粒的分散度,可借助超声波细胞粉碎机对碳导电颗粒进行深度分散。
S12,将70g热塑性聚氨酯分散到140g~3500g有机溶剂中,得到第二种分散液。
可选地,在室温下将70g热塑性聚氨酯分散到140g~3500g有机溶剂中,得到第二种分散液。例如,可以在室温环境下用N,N-二甲基甲酰胺充分溶解70g的热塑性聚氨酯交 联聚合物,得到第二种分散液。其中,塑性聚氨酯交联聚合物和N,N-二甲基甲酰胺的质量比可以为1:1~1:1000。其中,室温环境对应的温度可以为20℃、25℃等等,具体由相关技术人员进行设定,本申请实施例对此不作具体限定。
可选的,在该步骤中,可通过磁力搅拌来促进热塑性聚氨酯进行分散,如利用磁力搅拌器或机械搅拌器辅助加快热塑性聚氨酯的溶解速度,并提升热塑性聚氨酯的分散均匀性。
S13,将第一种分散液与第二种分散液进行混合,得到碳导电颗粒与热塑性聚氨酯的质量比为3:7的导电浆料。
可选地,热塑性聚氨酯以颗粒状态分散在导电颗粒之间。
具体的,将上述步骤1和步骤2得到的含有30g碳导电颗粒的第一种分散液,和含有70g热塑性聚氨酯的第二种分散液加入器皿中(不分先后),以进行充分混合,如在手工搅拌、磁力搅拌器或者机械搅拌器的辅助下使溶剂充分混合,得到以热塑性聚氨酯为粘接剂的导电浆料,并使得该导电浆料中的碳导电颗粒与热塑性聚氨酯的质量比为3:7。
可以理解,本申请实施例中,对于导电颗粒与有机溶剂的质量比,以及热塑性聚氨酯与有机溶剂的质量比,不做严格要求,能使导电颗粒及热塑性聚氨酯分散在有机溶剂中即可。
本申请实施例中,通过将碳导电颗粒作为导电浆料的导电材料,保证了良好的导电性,并将碳导电颗粒与热塑性聚氨酯的质量比设置为3:7,使得所制备的导电浆料具有较好的粘附性,可应用于弯曲并且光滑的基材表面,以适用于制作柔性电子器件。另外,由于热塑性聚氨酯对碳导电颗粒之间的隔离作用,有效防止了碳导电颗粒在导电浆料中发生团聚导致导电浆料失效,使得导电浆料可在室温下长期保存。
在示例性实施例中:
S201,将60g的碳导电颗粒分散在180g~6000g的有机溶剂中,如分散在N-甲基吡咯烷酮和N,N-二甲基甲酰胺(1:1~1:20)的混合液中,或分散在N-甲基吡咯烷酮中,得到第一种分散液。
例如,可以在室温环境下,可以将20g的碳纳米管、20g的石墨烯及20g的碳纳米球分别分散到3份有机溶剂中,以得到碳纳米管分散液、石墨烯分散液及碳纳米球分散液。其中,有机溶剂可以是1000g的N-甲基吡咯烷酮,也可以是N-甲基吡咯烷酮和N,N-二甲基甲酰胺的混合液。最后,将上述的碳纳米管分散液、石墨烯分散液及碳纳米球分散液进行混合,得到碳导电颗粒的分散液。
S202,将40g热塑性聚氨酯分散到80g~2000g有机溶剂中,得到第二种分散液。
可选地,在室温下将40g热塑性聚氨酯分散到80g~2000g有机溶剂中,得到第二种分散液。
S203,将第一种分散液与第二种分散液进行混合,得到导电颗粒与热塑性聚氨酯的质量比为3:2的导电浆料。
可以理解,本申请实施例中,碳导电颗粒分散液、热塑性聚氨酯分散液及导电浆料的具体工艺过程,与上述S11~S13对应的示例性实施例类似,此处不再赘述。
本申请实施例中,通过将碳导电颗粒作为导电浆料的导电材料,并将碳导电颗粒与热塑性聚氨酯的质量比设置为3:2,使得所制备的导电浆料具有较好的导电性及粘附性,可应用于弯曲并且光滑的基材表面,或者,适用于制作柔性电子器件。同样的,由于热塑性聚氨酯对碳导电颗粒之间的隔离作用,有效防止了碳导电颗粒在导电浆料中发生团聚导致浆料失效,使得导电浆料可在室温下长期保存。
在示例性实施例中:
S31,将95g的碳导电颗粒分散在285g~9500g的有机溶剂中,如分散在N-甲基吡咯烷酮和N,N-二甲基甲酰胺(1:1~1:20)的混合液中,或分散到N-甲基吡咯烷酮中,得到第一种分散液。
例如,可以在室温环境下,可以将30g的碳纳米管、30g的石墨烯及35g的碳纳米球分别分散到3份有机溶剂中,以得到碳纳米管分散液、石墨烯分散液及碳纳米球分散液。其中,有机溶剂可以是1000g的N-甲基吡咯烷酮,也可以是N-甲基吡咯烷酮和N,N-二甲基甲酰胺的混合液。最后,将上述的碳纳米管分散液、石墨烯分散液及碳纳米球分散液进行混合,得到碳导电颗粒的分散液。
S32,将5g热塑性聚氨酯分散到10g~250g有机溶剂中,得到第二种分散液。
可选地,在室温下将5g热塑性聚氨酯分散到10g~250g有机溶剂中,得到第二种分散液。
S33,将第一种分散液与第二种分散液进行混合,得碳导电颗粒与热塑性聚氨酯的质量比为95:5的导电浆料。
可选地,热塑性聚氨酯以颗粒状态分散在导电颗粒之间。
可以理解,本申请实施例中,碳导电颗粒的分散液、热塑性聚氨酯分散液及导电浆料的具体工艺过程,与上述S1~S13对应的示例性实施例类似,此处不再赘述。
本申请实施例中,通过将碳导电颗粒作为导电浆料的导电材料,保证了导电浆料良 好的导电性,将导电浆料中的碳导电颗粒与热塑性聚氨酯的质量比设置为95:5,即使得所制备的导电浆料中存在较高质量比的导电颗粒,确保所制备的导电浆料具有良好的导电性。
同样的,由于热塑性聚氨酯,保证了该导电浆料的粘附性,适用于制作柔性电子器件。并能够有效防止碳导电颗粒在导电浆料中发生团聚导致浆料失效,使得导电浆料可在室温下长期保存。
进一步的,为了更好的理解本申请实施例提供的导电浆料的各性能,通过对目前市场上的导电浆料与本申请实施例中的导电浆料的性能进行了对比,具体如表1所示:
表1
Figure PCTCN2021090228-appb-000001
Figure PCTCN2021090228-appb-000002
由表1可知,本申请实施例的导电浆料,使用方便,易清除、易存储,导电性能好。能够用于半导体的微电子器件封装等场景。
另外,由于银导电浆中的银纳米材料本申成本高,使得其制备成本较高。而本申申请中的导电浆料,由于碳导电颗粒的制备方便,成本较低,适宜大规模生产。
进一步地,测试了本申请实施例制备的导电浆料及目前市场上存在的银导电浆料,在2℃冷藏下的保存时长。图12所示为本申请实施例制备的导电浆料在常温下80天后,涂覆在玻璃板上的效果,图13所示为目前市场上的银导电浆料在2℃冷藏下80天后,涂覆在玻璃板上的效果。
由图12可知,本申请实施例中将热塑性聚氨酯作为粘接剂制备的导电浆料,在放置80天后,粘接剂与导电颗粒仍保持良好的混合状态。
由图13可知,目前市场上的银导电浆料,在放置80天后,银导电颗粒发生团聚,粘接剂与导电颗粒发生分层。
另一方面,本申请实施例还提供了一种导电薄膜制备方法,即本申请实施例制备的导电浆料,可以使用在电子器件中,具体可以在电子器件中的利用导电浆料制备出导电薄膜。
如图3所示,该导电薄膜制备方法可以包括:
S21,获取导电浆料;
S22,将获取的导电浆料涂覆在基材上;
S23,对涂覆在基材上的导电浆料进行烘干处理,得到对应的导电薄膜。
具体地,本申请实施例提供的导电浆料,可以应用于电子器件的导电通路的制备中,如应用于电子器件的电极线,或者显示面板中的数据线、公共线等的制备中。
实际中,可以将上述各实施例所制备的导电浆料涂覆在基材上,可通过热烘干、紫外灯烘烤、加热板等方式使有机溶剂充分挥发,制成导电薄膜,其中,导电颗粒与热塑 性聚氨酯的质量比为3:7~95:5。
例如,可以将所得的导电浆料通过旋涂、印刷、刮涂、打印等方式涂覆在各类基材上。可选地,基材为玻璃基材、纤维基材、塑料基材、金属沉底等等。
图4所示为导电颗粒为碳纳米管,利用刮涂的方式,将导电浆料涂覆在玻璃基材上,并经过烘干后所制成的导电薄膜的结构示意图。
图5所示为导电颗粒为碳纳米球,利用刮涂的方式,将导电浆料涂覆在玻璃基材上,并经过烘干后所制成的导电薄膜的结构示意图。
由图4可知,以碳纳米管作为导电颗粒所形成的导电薄膜,其中的粘结剂热塑性聚氨酯均匀的分散在碳纳米管周围,对碳纳米管之间,以及碳纳米管与基材之间进行粘结。并且,热塑性聚氨酯以小颗粒状态附着,不会以大颗粒状态存在,避免了将两根碳纳米管阻断的情况,从而保证了导电薄膜良好的导电性能。
同样的,由图5可知,以碳纳米球作为导电颗粒所形成的导电薄膜,其中的粘结剂热塑性聚氨酯均匀的分散在碳纳米球周围,对碳纳米球之间,以及碳纳米球与基材之间进行粘结。并且,热塑性聚氨酯同样以小颗粒状态附着,不会以大颗粒状态存在,避免了将多个碳纳米球阻断的情况,从而保证了导电薄膜良好的导电性能。
可以理解,当石墨烯作为导电颗粒形成导电薄膜后,其中的粘结剂热塑性聚氨酯同样可以均匀的分散在石墨烯层上下,对石墨烯层之间,以及石墨烯与基材之间进行粘结。
图6所示为导电颗粒为碳纳米管,利用刮涂的方式,将导电浆料涂覆在柔性的塑料基材上,经过烘干处理后所形成的导电薄膜的结构示意图。
由图6可知,在成膜固化后,由该导电浆料形成的导电薄膜不会发生开裂及脱落现象。
进一步,如图7-图11所示为利用印刷或喷涂等的工艺方式,将导电浆料涂覆在玻璃板上,并烘干后形成的导电薄膜的结构示意图。
由图可知,本申请实施例中提供的导电浆料,可以通过各种涂覆工艺,将所制备的导电浆料涂覆在绝大多数的基材上,形成各种形状的导电薄膜。
可选的,在一种实施例中,当将导电浆料涂覆在基材上形成导电薄膜后,还可以利用N-甲基吡咯烷酮将该导电薄膜清除。
可选的,在上述不同的应用场景及工艺中,不同的应用场景对导电浆料的粘度要求不同。如在通过刮涂等工艺形成导电薄膜时,需要较大粘度的导电浆料。又如,当通过印刷或喷涂等工艺方式形成导电薄膜时,可以采用较小粘度的导电浆料。
即本申请实施例中,在将导电浆料涂覆在基材上之前,还可以根据应用场景的要求,对导电浆料的粘度进行调节,得到满足粘度要求的导电浆料,如粘度较大的导电胶,或粘度较小的导电墨水。
具体的,该方法可以包括如下步骤:
获取上述实施例提供的导电浆料;
将获取的导电浆料进行加热处理,以挥发掉其中的有机溶剂,得到预设粘度的导电浆料;或者,在获取的导电浆料中添加有机溶剂,以对导电浆料进行稀释,得到预设粘度的导电浆料。
例如,当需要粘度较大的导电浆料时,如导电胶,则可以将制备好的导电浆料放入热源环境中低温加热,以挥发掉多余有机溶剂。同时可以通过手工搅拌、磁力搅拌或机械搅拌等辅助操作,加快有机溶剂的挥发,直至导电浆料的粘度达到所需黏度即可停止加热,得到粘度适中的导电胶。
又例如,当需要粘度较小的导电浆料时,可以稀释导电浆料。如利用有机溶剂直接对导电浆料进行稀释,稀释剂同样可选择N-甲基吡咯烷酮、N,N-二甲基甲酰胺或两者的混合溶剂。将一定量的稀释剂逐步加入到导电浆料中,同样可以在手工搅拌、磁力搅拌器或者机械搅拌器的辅助下使稀释剂和导电浆料充分混合,加快稀释速度,直至稀释到一定粘度即得到所需的导电胶或导电墨水。
综上所述,本申请实施例提供的导电浆料、制备方法及使用方法,以热塑性聚氨酯弹性体作为粘结剂,将导电颗粒混合于热塑性聚氨酯弹性体溶剂中,导电填料(即导电颗粒)保证了导电薄膜的导电能力,而热塑性聚氨酯作为一种交联聚合物具有较强的黏附性,可应用于弯曲或光滑的基材表面,形成粘附性好、不开裂的导电薄膜。另外,由于热塑性聚氨酯均匀分散且包裹在导电颗粒外部,有效防止了导电颗粒在预固化剂中发生团聚导致浆料失效,使得所得到的导电浆料可在室温下长期保存。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的实施例范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述实施例构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (15)

  1. 一种导电浆料,包括热塑性聚氨酯、导电颗粒及有机溶剂,所述导电颗粒与所述热塑性聚氨酯按3:7~95:5的质量比混合在所述有机溶剂中,所述热塑性聚氨酯以颗粒状态分散在所述导电颗粒之间。
  2. 根据权利要求1所述的导电浆料,其中,所述导电颗粒包括碳导电颗粒。
  3. 根据权利要求2所述的导电浆料,其中,所述碳导电颗粒包括石墨烯、导电炭黑、碳纳米管、碳纳米球及碳纳米纤维中的一种或多种。
  4. 一种导电浆料的制备方法,其中,所述导电浆料为权利要求1-3任一项所述的导电浆料,所述方法包括:
    将导电颗粒按比例分散在有机溶剂中,得到第一种分散液;
    将热塑性聚氨酯按比例分散在有机溶剂中,得到第二种分散液;
    将所述第一种分散液与所述第二种分散液按比例进行混合,得到所述导电浆料,所述导电颗粒与所述热塑性聚氨酯的质量比为3:7~95:5,所述热塑性聚氨酯以颗粒状态分散在所述导电颗粒之间。
  5. 根据权利要求4所述的导电浆料的制备方法,其中,所述导电颗粒包括多种碳导电颗粒,所述将导电颗粒按比例分散在有机溶剂中,得到第一种分散液包括:
    依次将多种碳导电颗粒中的各种碳导电颗粒分散到有机溶剂,得到多种碳导电颗粒中的各种碳导电颗粒分别对应的分散液;
    将所述各种碳导电颗粒分别对应的分散液按比例进行混合,得到所述第一种分散液。
  6. 根据要求4所述的导电浆料的制备方法,其中,所述有机溶剂包括N-甲基吡咯烷酮和N,N-二甲基甲酰胺的混合液、N-甲基吡咯烷酮及四氢呋喃中的一种或多种。
  7. 根据权利要求4-6任一项所述的导电浆料的制备方法,其中,所述将导电颗粒按比例分散在有机溶剂中,得到第一种分散液包括:
    将所述导电颗粒与有机溶剂按1:1~1:1000的质量比进行分散,得到所述第一种分散液。
  8. 根据权利要求4-6任一项所述的导电浆料的制备方法,其中,所述将热塑性聚氨酯按比例分散在有机溶剂中,得到第二种分散液包括:
    将所述热塑性聚氨酯与所述有机溶剂按1:1~1:1000的质量比进行分散,得到所述第二种分散液。
  9. 根据权利要求4-6任一项所述的导电浆料的制备方法,其中,所述将导电颗粒按比例分散在有机溶剂中,得到第一种分散液包括:
    通过超声波振动将所述导电颗粒按比例分散在有机溶剂中,得到第一种分散液。
  10. 根据权利要求4-6任一项所述的导电浆料的制备方法,其中,所述将热塑性聚氨酯按比例分散在有机溶剂中,得到第二种分散液包括:
    通过磁力搅拌促进所述热塑性聚氨酯按比例分散在有机溶剂中,得到第二种分散液。
  11. 一种导电薄膜制备方法,所述方法包括:
    获取如权利要求1-4任一项所述的导电浆料;
    将获取的所述导电浆料涂覆在基材上;
    对涂覆在所述基材上的导电浆料进行烘干处理,得到导电薄膜,所述导电浆料中的导电颗粒与热塑性聚氨酯的质量比为3:7~95:5。
  12. 根据权利要求11所述的导电薄膜制备方法,其中,所述将获取的导电浆料涂覆在基材上包括:
    将所述导电浆料涂覆在玻璃基材、纤维基材、塑料基材或金属基材上。
  13. 根据权利要求11所述的导电薄膜制备方法,其中,所述将获取的所述导电浆料涂覆在基材上包括:
    通过印刷工艺或喷涂工艺在电子器件的基板上涂覆所述导电浆料,得到在所述基板上形成的导电通路。
  14. 根据权利要求11所述的导电薄膜制备方法,其中,所述将获取的所述导电浆料涂覆在基材上之前,还包括:
    将获取的所述导电浆料进行加热处理,减少所述导电浆料中的有机溶剂,得到预设粘度的导电浆料;
    或者,
    在获取的所述导电浆料中添加有机溶剂,对所述导电浆料进行稀释,得到预设粘度的导电浆料。
  15. 根据权利要求11所述的导电薄膜制备方法,其中,所述对涂覆在所述基材上的导电浆料进行烘干处理,得到导电薄膜之后,还包括:
    利用N-甲基吡咯烷酮清除所述导电薄膜。
PCT/CN2021/090228 2020-04-28 2021-04-27 导电浆料、制备方法及导电薄膜制备方法 WO2021218958A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/747,906 US20220277866A1 (en) 2020-04-28 2022-05-18 Conductive paste, preparation method thereof, and preparation method of conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010352024.9A CN111564236B (zh) 2020-04-28 2020-04-28 导电浆料、制备方法及导电薄膜制备方法
CN202010352024.9 2020-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/747,906 Continuation US20220277866A1 (en) 2020-04-28 2022-05-18 Conductive paste, preparation method thereof, and preparation method of conductive film

Publications (1)

Publication Number Publication Date
WO2021218958A1 true WO2021218958A1 (zh) 2021-11-04

Family

ID=72074493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090228 WO2021218958A1 (zh) 2020-04-28 2021-04-27 导电浆料、制备方法及导电薄膜制备方法

Country Status (3)

Country Link
US (1) US20220277866A1 (zh)
CN (1) CN111564236B (zh)
WO (1) WO2021218958A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564236B (zh) * 2020-04-28 2022-11-29 清华大学 导电浆料、制备方法及导电薄膜制备方法
CN112778840A (zh) * 2021-01-25 2021-05-11 中科院长春应化所黄埔先进材料研究院 一种导电墨水及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173051A (zh) * 2007-10-18 2008-05-07 西北工业大学 一种碳纳米管/聚合物导电复合材料的制备方法
KR20160108089A (ko) * 2015-03-06 2016-09-19 주식회사 주영하이텍 전도성 마스터 배치 및 그 제조방법과 이를 이용한 전도성 필름 제조방법
CN107001686A (zh) * 2014-11-06 2017-08-01 E.I.内穆尔杜邦公司 用于热塑性基材和可穿戴电子产品的可拉伸聚合物厚膜组合物
CN109749105A (zh) * 2018-12-26 2019-05-14 武汉工程大学 一种高导电电磁屏蔽复合材料及其制备方法
KR102030066B1 (ko) * 2018-05-11 2019-10-08 울산과학기술원 실레인 결합층을 가지는 나노 구조체 전극, 그 제조 방법 및 이를 포함하는 센서
CN111564236A (zh) * 2020-04-28 2020-08-21 清华大学 导电浆料、制备方法及导电薄膜制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754907B (zh) * 2018-12-21 2020-03-27 昆明理工大学 一种碳纳米管聚合物复合导电材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173051A (zh) * 2007-10-18 2008-05-07 西北工业大学 一种碳纳米管/聚合物导电复合材料的制备方法
CN107001686A (zh) * 2014-11-06 2017-08-01 E.I.内穆尔杜邦公司 用于热塑性基材和可穿戴电子产品的可拉伸聚合物厚膜组合物
KR20160108089A (ko) * 2015-03-06 2016-09-19 주식회사 주영하이텍 전도성 마스터 배치 및 그 제조방법과 이를 이용한 전도성 필름 제조방법
KR102030066B1 (ko) * 2018-05-11 2019-10-08 울산과학기술원 실레인 결합층을 가지는 나노 구조체 전극, 그 제조 방법 및 이를 포함하는 센서
CN109749105A (zh) * 2018-12-26 2019-05-14 武汉工程大学 一种高导电电磁屏蔽复合材料及其制备方法
CN111564236A (zh) * 2020-04-28 2020-08-21 清华大学 导电浆料、制备方法及导电薄膜制备方法

Also Published As

Publication number Publication date
US20220277866A1 (en) 2022-09-01
CN111564236B (zh) 2022-11-29
CN111564236A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021218958A1 (zh) 导电浆料、制备方法及导电薄膜制备方法
JP6691961B2 (ja) 導電性球状カーボンナノチューブの製造方法及び導電性球状カーボンナノチューブシール剤の製造方法
WO2017133120A1 (zh) 封框胶、液晶面板、液晶显示器及制备方法
WO2007125993A1 (ja) 導電粒子配置シート及び異方導電性フィルム
WO2014176831A1 (zh) 导电封框胶、显示面板及其制作方法、显示装置
TW201038703A (en) Film adhesive and anisotropic conductive adhesive
WO2023005396A1 (zh) 一种芯片封装用底部填充胶及芯片封装结构
TWI421323B (zh) Anisotropic conductive adhesive
US6632532B1 (en) Particle material anisotropic conductive connection and anisotropic conductive connection material
WO2015081698A1 (zh) 一种防静电压敏胶保护膜及其制备方法
WO2020124931A1 (zh) 一种各向异性导电胶黏剂及其导电膜
TWI772655B (zh) 抗氧化導電銅漿及其製造方法與應用
TW201840418A (zh) 樹脂組成物、樹脂組成物之製造方法及構造體
WO2015018138A1 (zh) 导电银胶及其制备方法
JP5581605B2 (ja) 異方導電性接着フィルムの製造方法
WO2021012452A1 (zh) 异方性导电胶膜、显示面板及显示面板的制作方法
JP2017019900A (ja) 接着剤組成物、接着フィルム、樹脂付き金属箔及び金属ベース基板
US20200002173A1 (en) Manufacturing method of carbon nanotube conductive microspheres and conductive glue
JP2018135422A (ja) ホットメルト接着剤組成物、および積層体
WO2021004024A1 (zh) 显示面板及其制造方法
CN113621331A (zh) 一种利用纳米碳材料包覆微球制备异方性导电胶膜的方法及其应用
JP2836337B2 (ja) 異方導電性樹脂フィルム状接着剤
KR20090073366A (ko) 이방성 도전접속용 절연 도전성 입자 및 이를 이용한이방성 도전접속재료
WO2023124282A1 (zh) 一种低温固化导电浆料及电子器件
JP3565343B2 (ja) 回路接続用接着剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796056

Country of ref document: EP

Kind code of ref document: A1