WO2021012514A1 - 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板 - Google Patents

柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板 Download PDF

Info

Publication number
WO2021012514A1
WO2021012514A1 PCT/CN2019/117778 CN2019117778W WO2021012514A1 WO 2021012514 A1 WO2021012514 A1 WO 2021012514A1 CN 2019117778 W CN2019117778 W CN 2019117778W WO 2021012514 A1 WO2021012514 A1 WO 2021012514A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nano
reinforced phase
display panel
dimensional carbon
flexible display
Prior art date
Application number
PCT/CN2019/117778
Other languages
English (en)
French (fr)
Inventor
徐志明
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/621,258 priority Critical patent/US20210408403A1/en
Publication of WO2021012514A1 publication Critical patent/WO2021012514A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application relates to the field of flexible display technology, and in particular to a flexible substrate material, a method for preparing a flexible display panel substrate, and a flexible display panel.
  • the liquid crystal display panel includes an array substrate and a color filter substrate disposed opposite to the array substrate.
  • the flexible design of the array substrate and the color filter substrate must be realized respectively.
  • a flexible polyimide layer is used as the substrate of the array substrate and the color filter substrate. During the manufacturing process, the polyimide substrate needs to be fabricated on the glass substrate, and then on the polyimide layer.
  • the flexible design and manufacturing process of the organic light emitting diode display panel is similar to that of the liquid crystal display panel.
  • Polyimide is also used as the flexible substrate material, and the polyimide substrate and the glass substrate need to be separated at the end.
  • the polyimide material used in the prior art has poor resistance to deformation and cracking , After peeling off, the polyimide substrate is prone to curling deformation and cracking, which seriously affects the quality and yield of the product.
  • This application provides a flexible substrate material, which includes:
  • the carbon nano reinforcement is dispersed in the polyimide matrix and is connected to the polyimide matrix through chemical bonds.
  • the carbon nano-reinforced body includes a one-dimensional carbon nano-reinforced phase and a two-dimensional carbon nano-reinforced phase.
  • the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase in the carbon nano-reinforced body are connected by a chemical bond.
  • the chemical bonds are amide bonds and/or conjugate bonds and/or hydrogen bonds.
  • the one-dimensional carbon nano-reinforced phase is carbon nanotubes or oxidized carbon nanotubes.
  • the carbon nanotubes and the oxidized carbon nanotubes have a single-wall structure or a multi-wall structure.
  • the two-dimensional carbon nano-reinforced phase is graphene or graphene oxide.
  • the graphene and the graphene oxide have a single-layer structure or a multilayer structure.
  • This application also provides a method for preparing a flexible display panel substrate, which includes the following steps:
  • the method for preparing a three-dimensional carbon nano-reinforced phase by reacting a one-dimensional carbon nano-reinforced phase and a two-dimensional carbon nano-reinforced phase includes the following steps:
  • the second mixed liquid is filtered to obtain the three-dimensional carbon nano-reinforced phase.
  • the carbon nano-reinforced phase needs to be dried.
  • the three-dimensional carbon nano-reinforced phase is mixed and reacted with 4,4'-diaminodiphenyl ether and pyromellitic dianhydride to prepare a flexible substrate material solution
  • the method includes the following steps:
  • N-hydroxysuccinimide and carbodiimide are added to the fourth mixed solution and stirred and mixed to prepare the flexible substrate material solution.
  • the method of coating the flexible substrate material solution on the glass substrate is spin coating.
  • the method for drying the glass substrate is: placing it in an environment of 100° C. to 300° C. for 1 to 2 hours.
  • the one-dimensional carbon nano-reinforced phase is carbon nanotubes or carbon oxide nanotubes
  • the two-dimensional carbon nano-reinforced phase is graphene or graphene oxide.
  • the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase are connected by a chemical bond to form the three-dimensional carbon nano-reinforced phase.
  • the chemical bonds are amide bonds and/or conjugate bonds and/or hydrogen bonds.
  • the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase are physically joined to form the three-dimensional carbon nano-reinforced phase.
  • the preparation method further includes a step of separating the flexible display panel substrate from the glass substrate.
  • the present application further provides a flexible display panel, which includes a flexible display panel substrate prepared by the above-mentioned method for preparing a flexible display panel substrate.
  • the flexible substrate material provided by this application includes a polyimide matrix and carbon nanoreinforcers doped in the polyimide matrix. Compared with a pure polyimide material, the flexible substrate provided by this application The material has better resistance to curling deformation and crack resistance; the method for preparing a flexible display panel substrate provided by the present application introduces a carbon nano-reinforced phase during the synthesis of the polyimide matrix phase to make the final flexible
  • the display panel substrate has good anti-curling and anti-crack properties, and improves the yield in the manufacturing process;
  • the flexible display panel provided in the present application includes a flexible substrate with anti-curling deformation and anti-crack capabilities, and has a more excellent product quality.
  • FIG. 1 is a schematic diagram of the structure of a flexible substrate material provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a method for preparing a flexible display panel substrate provided by an embodiment of the present application
  • step S1 is a specific flow chart of step S1 in the flow chart of the manufacturing method of the flexible display panel substrate shown in FIG. 2;
  • FIG. 4 is a specific flow chart of step S2 in the flow chart of the manufacturing method of the flexible display panel substrate shown in FIG. 2.
  • the embodiments of the present application provide a flexible substrate material that can be used to make a flexible display panel substrate.
  • the flexible substrate material includes a polyimide matrix phase and a polyimide matrix phase doped in the polyimide matrix phase.
  • the carbon nano-reinforced phase provides the flexible substrate material provided by the embodiments of the present application with better resistance to curling deformation and crack resistance.
  • the embodiments of the present application also provide a method for preparing a flexible display panel substrate using the flexible substrate material, and a flexible display panel including the flexible display panel substrate prepared by the method.
  • FIG. 1 it is a schematic diagram of the structure of a flexible substrate material provided by an embodiment of the present application.
  • the flexible substrate material includes a polyimide matrix 11 and a carbon nano-reinforcement body 12, and the carbon nano-reinforcement body 12 is dispersed in the polyimide matrix 11 and passes through the polyimide matrix 11
  • the chemical bond connection enhances the interface connection strength between the carbon nanoreinforcement body 12 and the polyimide matrix 11.
  • the flexible substrate material is a composite material structure, wherein the polyimide matrix 11 is used as the matrix phase, and the carbon nanoreinforced body 12 is used as the reinforcing phase. Therefore, compared to a pure polyimide material,
  • the flexible substrate material described in this embodiment has advantages in mechanical properties, which are mainly manifested in the ability to resist curling deformation and crack resistance.
  • the structural formula of the polyimide substrate 11 is as follows:
  • the carbon nano-reinforcement body 12 may be a one-dimensional linear carbon nano-reinforcement body, a two-dimensional carbon nano-reinforcement body or a three-dimensional carbon nano-reinforcement body.
  • the carbon nano-reinforcement body 12 may be a carbon nanotube, Carbon oxide nanotubes, graphene, graphene oxide, or a combination of graphene and carbon nanotubes, wherein the carbon nanotubes and carbon oxide nanotubes may have a single-wall structure or a multi-wall structure, and the graphene and graphite oxide
  • the alkene may have a single-layer structure or a multilayer structure.
  • the carbon nano-reinforced body 12 includes a one-dimensional carbon nano-reinforced phase 121 and a two-dimensional carbon nano-reinforced phase 122.
  • the one-dimensional carbon nano-reinforced phase 121 has a linear structure
  • the two-dimensional carbon nano-reinforced phase 122 has a surface structure.
  • the one-dimensional carbon nano-reinforced phase 121 and the two-dimensional carbon nano-reinforced phase 122 are distributed regularly or irregularly in the polyimide matrix 11.
  • the one-dimensional carbon nano-reinforced phase 121 and the two-dimensional carbon nano-reinforced phase 122 are connected by a chemical bond 12a, so that the one-dimensional carbon nano-reinforced phase 121 and the two-dimensional carbon nano-reinforced phase 121 122 forms a whole to improve the reinforcing effect of the polyimide matrix 11.
  • the chemical bond 12a may be an amide bond and/or a conjugate bond and/or a hydrogen bond.
  • the amide bond is a chemical bond with a -CO-NH- type structure
  • the conjugate bond is a ⁇ - ⁇ conjugate bond formed by the orbital electron hybridization of a carbon atom
  • the hydrogen bond is mediated by a hydrogen atom The bonding force between adjacent atoms formed.
  • the one-dimensional carbon nano-reinforced phase 121 is carbon nanotubes or carbon oxide nanotubes
  • the two-dimensional carbon nano-reinforced phase 122 is graphene or graphene oxide.
  • the carbon nanotube is a nanoscale tubular structure formed by the arrangement of carbon atoms
  • the oxidized carbon nanotube is a structure containing oxygen atoms in the structure of the carbon nanotube
  • the graphene is composed of carbon atoms.
  • the graphene oxide is a structure containing oxygen atoms in the graphene structure.
  • the carbon nanotubes and the carbon oxide nanotubes may have a single-wall structure or a multi-wall structure, and the graphene and the graphene oxide may have a single-layer structure or a multilayer structure.
  • the flexible substrate material provided in the embodiments of the present application includes a polyimide matrix 11 and carbon nano-reinforcers 12 dispersed in the polyimide matrix 11, compared to a simple polyimide matrix.
  • this composite structure material has more excellent resistance to curl deformation; at the same time, the carbon nano-reinforced body 12 plays a role in blocking the propagation of cracks, which can extend the crack propagation path and increase the difficulty of crack propagation. The material exhibits excellent crack resistance.
  • FIG. 2 it is a flowchart of a method for preparing a flexible display panel substrate provided by an embodiment of the present application.
  • the method for preparing the flexible display panel substrate includes the following steps:
  • Step S1 Take the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase to react to prepare a three-dimensional carbon nano-reinforced phase.
  • the one-dimensional carbon nano-reinforced phase has a linear structure
  • the two-dimensional carbon nano-reinforced phase has a sheet structure
  • the one-dimensional carbon nano-reinforced phase may be linear carbon nanotubes or carbon oxide.
  • Nanotubes, the two-dimensional carbon nano-reinforced phase may be sheet-shaped graphene or graphene oxide, and the carbon nanotubes and carbon oxide nanotubes may be single-walled or multi-walled structures.
  • the chemical vapor deposition method may be used, and the redox method may be used to prepare the two-dimensional carbon nano-reinforced phase; the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase may also be ready-made materials.
  • the three-dimensional carbon nano-reinforced phase may be a three-dimensional reinforcing material formed between the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase through physical bonding and/or chemical bonding.
  • the step S1 specifically includes the following steps:
  • Step S101 Disperse the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase in a dimethylformamide solution to prepare a first mixed solution.
  • the dimethylformamide solution is used as a dispersant to mix the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase uniformly.
  • Step S102 Add p-phenylenediamine, N-hydroxysuccinimide and carbodiimide to the first mixed solution, so that the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase are generated Cross-linking reaction to obtain a second mixed solution.
  • a cross-linking reaction occurs between the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase, so that an amide bond is generated between the two to form a whole, that is, the three-dimensional carbon nano-reinforced phase is formed .
  • the one-dimensional carbon nano-reinforced phase and the two-dimensional carbon nano-reinforced phase can also be connected by conjugate bonds and hydrogen bonds to further strengthen the one-dimensional carbon nano-reinforced phase and The connection relationship between the two-dimensional carbon nano-reinforced phases.
  • the amide bond is a chemical bond with a -CO-NH- type structure
  • the conjugate bond is a ⁇ - ⁇ conjugate bond formed by the orbital electron hybridization of a carbon atom
  • the hydrogen bond is a hydrogen atom as The bonding force between adjacent atoms formed by the media.
  • Step S103 Filter the second mixed solution to obtain the three-dimensional carbon nano-reinforced phase.
  • the filtrate is taken and dried to obtain the three-dimensional carbon nano-reinforced phase.
  • Step S2 The three-dimensional carbon nano-reinforced phase is mixed and reacted with 4,4'-diaminodiphenyl ether and pyromellitic dianhydride to prepare a flexible substrate material solution.
  • step S2 specifically includes the following steps:
  • Step S201 Disperse the three-dimensional carbon nano-reinforced phase in the N-methylpyrrolidone solution to prepare a third mixed solution.
  • the N-methylpyrrolidone solution is used as a dispersant.
  • operations such as stirring or shaking can be carried out to accelerate the dispersion and make the dispersion uniform.
  • an appropriate amount of the three-dimensional carbon nano-reinforced phase can be selected according to needs. It should be understood that the higher the content of the three-dimensional carbon nano-reinforcing phase, the stronger the curling and crack resistance of the final flexible display panel substrate, but in order to ensure that the final flexible display panel substrate has sufficient Generally speaking, there is a certain limit to the amount of the three-dimensional carbon nano-reinforced phase used. This application does not limit the amount of the three-dimensional carbon nano-reinforced phase used, and can be freely controlled according to actual needs in production.
  • Step S202 Add 4,4'-diaminodiphenyl ether and pyromellitic dianhydride to the third mixed liquid and stir and mix to obtain a fourth mixed liquid.
  • the 4,4'-diaminodiphenyl ether and the pyromellitic dianhydride can be stirred or shaken while adding the 4,4'-diaminodiphenyl ether and the pyromellitic dianhydride to the third mixed liquid to ensure that the 4,4'- Diaminodiphenyl ether, pyromellitic dianhydride and the three-dimensional carbon nano-reinforced phase are uniformly mixed.
  • Step S203 Add N-hydroxysuccinimide and carbodiimide to the fourth mixed solution and stir and mix to prepare the flexible substrate material solution.
  • N-hydroxysuccinimide and carbodiimide are reaction accelerators for promoting the reaction between the 4,4'-diaminodiphenyl ether and the pyromellitic dianhydride Condensation reaction.
  • the first step is condensation reaction to produce polyacrylic acid mesophase
  • the reaction formula is as follows:
  • the second step is the imidization reaction to produce polyimide.
  • the reaction formula is as follows:
  • the three-dimensional carbon nano-reinforced phase is doped to form polyimide.
  • the polyimide matrix is connected to the polyimide matrix by a chemical bond to form a network structure composed of the polyimide matrix and the carbon nano-reinforced body, so The network structure has good anti-crimp and anti-crack properties.
  • Step S3 coating the flexible substrate material solution on the glass substrate.
  • the method of coating the flexible substrate solution may be spin coating.
  • Step S4 drying the glass substrate to obtain a flexible display panel substrate attached to the glass substrate.
  • the method for drying the glass substrate is to place the glass substrate in an environment of 100° C. to 300° C. for 1-2 hours. After the drying operation, the solvent in the flexible substrate material solution coated on the glass substrate volatilizes, and the flexible substrate material is condensed into a film on the glass substrate to form the flexible display panel substrate. It should be noted that the thickness of the flexible display panel substrate can be controlled by the amount of the flexible substrate material solution coated on the glass substrate. In production, flexible display panel substrates of different thicknesses can be prepared according to actual needs.
  • the glass substrate is used to support the flexible display panel substrate. Since the flexible display panel substrate is flexible, in order to prevent the flexible substrate from deforming and affecting the manufacturing accuracy during the display panel manufacturing process, the glass substrate will be retained, and the glass substrate and the flexible display panel will be combined at the end of the manufacturing process. The substrate is separated.
  • the final flexible display panel substrate has good anti-curling and Anti-crack performance.
  • the embodiments of the present application also provide a flexible display panel, the flexible display panel includes a flexible display panel substrate, the flexible display panel substrate is made of the flexible substrate material provided in the embodiments of the present application, or implemented by the present application
  • the flexible display panel substrate preparation method provided in the example is prepared. Since the flexible display panel substrate has good anti-curling deformation and crack resistance, in the process of separating the flexible display panel substrate from the glass substrate, the flexible display panel substrate will not be exposed to heat or force. The deformation or breakage occurs due to the effect of, which improves the quality of the flexible display panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板。所述柔性衬底材料包括聚酰亚胺基体和掺杂于所述聚酰亚胺基体中的碳纳米增强体;所述柔性显示面板衬底制备方法,通过在聚酰亚胺基体相的合成过程中引入碳纳米增强相,使最终制得的柔性显示面板衬底具有良好的抗卷曲和抗裂纹性能;所述柔性显示面板,因包含具有抗卷曲变形和抗裂纹能力的柔性衬底,而具有更加优异的产品质量。

Description

柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板 技术领域
本申请涉及柔性显示技术领域,尤其涉及一种柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板。
背景技术
近年来,柔性显示面板逐渐受到市场的青睐,各大开发商也在加紧针对柔性显示面板制造技术的开发和推广。目前市场上出现的主流的两种显示面板,液晶显示面板和有机发光二极管显示面板,均可以实现柔性显示。其中,液晶显示面板包括阵列基板和与阵列基板相对设置的彩膜基板,要实现液晶显示面板的柔性显示需要分别实现阵列基板和彩膜基板的柔性设计。现有技术是采用柔性的聚酰亚胺层作为阵列基板和彩膜基板的衬底,制造过程中需要先将聚酰亚胺衬底制作在玻璃基板上,然后再在聚酰亚胺层上制备其它组件,最后采用激光剥离的方法将玻璃基板和聚酰亚胺衬底分离开来。有机发光二极管显示面板的柔性设计及制造过程与液晶显示面板相类似,也是使用聚酰亚胺作为柔性衬底材料,并且在最后也需要将聚酰亚胺衬底与玻璃基板分离开来。
技术问题
将聚酰亚胺衬底与玻璃基板进行分离时,需要借助力学和/或热学的作用,如使用激光剥离等,但现有技术使用的聚酰亚胺材料的抗变形和抗开裂能力较差,剥离后容易出现聚酰亚胺衬底卷曲变形及破裂的问题,严重影响产品的质量和良率。
技术解决方案
为了解决上述技术问题,本申请的解决方案如下:
本申请提供了一种柔性衬底材料,其包括:
聚酰亚胺基体;
碳纳米增强体,分散于所述聚酰亚胺基体中,与所述聚酰亚胺基体通过化学键连接。
在本申请的柔性衬底材料中,所述碳纳米增强体包括一维碳纳米增强相和二维碳纳米增强相。
在本申请的柔性衬底材料中,所述碳纳米增强体中的所述一维碳纳米增强相和所述二维碳纳米增强相之间通过化学键连接。
在本申请的柔性衬底材料中,所述化学键是酰胺键和/或共轭键和/或氢键。
在本申请的柔性衬底材料中,所述一维碳纳米增强相为碳纳米管或氧化碳纳米管。
在本申请的柔性衬底材料中,所述碳纳米管和所述氧化碳纳米管是单壁结构或多壁结构。
在本申请的柔性衬底材料中,所述二维碳纳米增强相为石墨烯或氧化石墨烯。
在本申请的柔性衬底材料中,所述石墨烯和所述氧化石墨烯是单层结构或多层结构。
本申请还提供了一种柔性显示面板衬底制备方法,其包括以下步骤:
取一维碳纳米增强相和二维碳纳米增强相反应制得三维碳纳米增强相;
将所述三维碳纳米增强相与4,4’-二氨基二苯醚和均苯四甲酸二酐混合反应,制得柔性衬底材料溶液;
将所述柔性衬底材料溶液涂布于玻璃基板上;
烘干所述玻璃基板,得到附着于所述玻璃基板上的柔性显示面板衬底。
在本申请的柔性显示面板衬底制备方法中,所述取一维碳纳米增强相和二维碳纳米增强相反应制得三维碳纳米增强相的方法包括以下步骤:
取所述一维碳纳米增强相和所述二维碳纳米增强相分散于二甲基甲酰胺溶液中,制得第一混合液;
向所述第一混合液中加入对苯二胺、N-羟基丁二酰亚胺和碳二亚胺,使所 述一维碳纳米增强相和所述二维碳纳米增强相发生交联反应,得到第二混合液;
过滤所述第二混合液,得到所述三维碳纳米增强相。
在本申请的柔性显示面板衬底制备方法中,通过过滤所述第二混合液得到所述三维碳纳米增强相后,还需要对所述碳纳米增强相进行干燥处理。
在本申请的柔性显示面板衬底制备方法中,所述将所述三维碳纳米增强相与4,4’-二氨基二苯醚和均苯四甲酸二酐混合反应制得柔性衬底材料溶液的方法包括以下步骤:
将所述三维碳纳米增强相分散于N-甲基吡咯烷酮溶液中,制得第三混合液;
向所述第三混合液中加入4,4’-二氨基二苯醚和均苯四甲酸二酐并搅拌混合,制得第四混合液;
向所述第四混合液中加入N-羟基丁二酰亚胺和碳二亚胺并搅拌混合制得所述柔性衬底材料溶液。
在本申请的柔性显示面板衬底制备方法中,将所述柔性衬底材料溶液涂布于玻璃基板上的方法是旋转涂布。
在本申请的柔性显示面板衬底制备方法中,所述烘干所述玻璃基板的方法是:在100℃至300℃的环境中放置1至2小时。
在本申请的柔性显示面板衬底制备方法中,所述一维碳纳米增强相为碳纳米管或氧化碳纳米管,所述二维碳纳米增强相为石墨烯或氧化石墨烯。
在本申请的柔性显示面板衬底制备方法中,所述一维碳纳米增强相和所述二维碳纳米增强相之间通过化学键连接形成所述三维碳纳米增强相。
在本申请的柔性显示面板衬底制备方法中,所述化学键是酰胺键和/或共轭键和/或氢键。
在本申请的柔性显示面板衬底制备方法中,所述一维碳纳米增强相和所述二维碳纳米增强相之间通过物理搭接形成所述三维碳纳米增强相。
在本申请的柔性显示面板衬底制备方法中,所述制备方法还包括将所述柔性显示面板衬底与所述玻璃基板分离的步骤。
本申请又提供了一种柔性显示面板,其包括使用上述柔性显示面板衬底制备方法制得的柔性显示面板衬底。
有益效果
本申请提供的柔性衬底材料包括聚酰亚胺基体和掺杂于所述聚酰亚胺基体中的碳纳米增强体,相较于单纯的聚酰亚胺材料,本申请提供的柔性衬底材料具有更好的抗卷曲变形和抗裂纹的能力;本申请提供的柔性显示面板衬底制备方法,通过在聚酰亚胺基体相的合成过程中引入碳纳米增强相,使最终制得的柔性显示面板衬底具有良好的抗卷曲和抗裂纹性能,提升制程中的良率;本申请提供的柔性显示面板,因包含具有抗卷曲变形和抗裂纹能力的柔性衬底,而具有更加优异的产品质量。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的柔性衬底材料结构示意图;
图2是本申请实施例提供的柔性显示面板衬底制备方法流程图;
图3是图2所示的柔性显示面板衬底制备方法流程图中步骤S1的具体流程图;
图4是图2所示的柔性显示面板衬底制备方法流程图中步骤S2的具体流程图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、 [内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请实施例提供了一种可以用于制作柔性显示面板衬底的柔性衬底材料,所述柔性衬底材料包括聚酰亚胺基体相和掺杂于所述聚酰亚胺基体相中的碳纳米增强相,相较于单纯的聚酰亚胺材料,本申请实施例提供的柔性衬底材料具有更好的抗卷曲变形和抗裂纹的能力。本申请实施例还提供了一种利用所述柔性衬底材料制备柔性显示面板衬底的方法,以及包含所述方法制得的柔性显示面板衬底的柔性显示面板。
如图1所示,是本申请实施例提供的柔性衬底材料的结构示意图。所述柔性衬底材料包括聚酰亚胺基体11和碳纳米增强体12,所述碳纳米增强体12分散于所述聚酰亚胺基体11中,并且与所述聚酰亚胺基体11通过化学键连接,从而增强所述碳纳米增强体12与所述聚酰亚胺基体11之间的界面连接强度。所述柔性衬底材料为一种复合材料结构,其中所述聚酰亚胺基体11作为基体相,所述碳纳米增强体12作为增强相,因此,相较于单纯的聚酰亚胺材料,本实施例所述的柔性衬底材料具有力学性能方面的优势,主要表现为抗卷曲变形能力和抗裂纹能力优异。
其中,所述聚酰亚胺基体11的结构式如下:
Figure PCTCN2019117778-appb-000001
可选地,所述碳纳米增强体12可以是一维线型碳纳米增强体、二维碳纳米增强体或三维碳纳米增强体,例如,所述碳纳米增强体12可以是碳纳米管、氧化碳纳米管、石墨烯、氧化石墨烯或石墨烯与碳纳米管的结合体,其中所述碳纳米管和氧化碳纳米管可以是单壁结构或多壁结构,所述石墨烯和氧化石墨烯可以是单层结构或多层结构。
根据本申请一实施例,在所述柔性衬底材料中,所述碳纳米增强体12包括一维碳纳米增强相121和二维碳纳米增强相122。所述一维碳纳米增强相121为线型结构,所述二维碳纳米增强相122为面型结构。所述一维碳纳米增强相121和所述二维碳纳米增强相122在所述聚酰亚胺基体11中为规则或不规则分布。
可选地,所述一维碳纳米增强相121和所述二维碳纳米增强相122之间通过化学键12a连接,从而使所述一维碳纳米增强相121和所述二维碳纳米增强相122形成一个整体,提高对所述聚酰亚胺基体11的增强作用。
可选地,所述化学键12a可以是酰胺键和/或共轭键和/或氢键。其中所述酰胺键为具有-CO-NH-型结构的化学键,所述共轭键是由碳原子的轨道电子杂化形成的π-π共轭键,所述氢键是以氢原子为媒介形成的相邻原子间的键合力作用。
可选地,所述一维碳纳米增强相121为碳纳米管或氧化碳纳米管,所述二维碳纳米增强相122为石墨烯或氧化石墨烯。其中,所述碳纳米管是由碳原子排列形成的纳米级管状结构;所述氧化碳纳米管是在所述碳纳米管的结构中包含有氧原子的结构;所述石墨烯是由碳原子排列形成的纳米级片状结构;所述氧化石墨烯是在所述石墨烯结构中包含有氧原子的结构。所述碳纳米管和所述氧化碳纳米管可以是单壁结构或多壁结构,所述石墨烯和所述氧化石墨烯可以是单层结构或多层结构。
应当理解的是,本申请实施例提供的柔性衬底材料,包括聚酰亚胺基体11和分散于所述聚酰亚胺基体11中的碳纳米增强体12,相较于单纯的聚酰亚胺柔性材料,这种复合结构的材料具有更加优异的抗卷曲变形能力;同时,所述碳纳米增强体12对裂纹的扩展起到阻挡作用,可以延长裂纹扩展路径,增加裂纹扩展的难度,因此使材料表现出优异的抗裂纹能力。
如图2所示,是本申请实施例提供的柔性显示面板衬底制备方法流程图。所述柔性显示面板衬底制备方法包括以下步骤:
步骤S1、取一维碳纳米增强相和二维碳纳米增强相反应制得三维碳纳米增 强相。
具体地,所述一维碳纳米增强相具有线型结构,所述二维碳纳米增强相具有片状结构,例如,所述一维碳纳米增强相可以是线型的碳纳米管或氧化碳纳米管,所述二维碳纳米增强相可以是片状的石墨烯或氧化石墨烯,并且所述碳纳米管和氧化碳纳米管可以是单壁结构或多壁结构,所述石墨烯和氧化石墨烯可以是单层结构或多层结构;制备所述一维碳纳米增强相和所述二维碳纳米增强相的方法可以是现有技术中的方法,例如:制备一维碳纳米增强相可以采用化学气相沉积法,制备二维碳纳米增强相可以采用氧化还原法;所述一维碳纳米增强相和所述二维碳纳米增强相也可以是现成的材料。
所述三维碳纳米增强相可以是所述一维碳纳米增强相和所述二维碳纳米增强相之间通过物理搭接和/或化学键合形成的三维增强材料。
如图3所示,所述步骤S1具体包括以下步骤:
步骤S101.取所述一维碳纳米增强相和所述二维碳纳米增强相分散于二甲基甲酰胺溶液中,制得第一混合液。其中所述二甲基甲酰胺溶液作为分散剂,用于将所述一维碳纳米增强相和所述二维碳纳米增强相混合均匀。
步骤S102.向所述第一混合液中加入对苯二胺、N-羟基丁二酰亚胺和碳二亚胺,使所述一维碳纳米增强相和所述二维碳纳米增强相发生交联反应,得到第二混合液。
具体地,所述一维碳纳米增强相和所述二维碳纳米增强相之间发生交联反应,使二者之间产生酰胺键,从而形成一个整体,即形成所述三维碳纳米增强相。另外,在交联反应的同时,所述一维碳纳米增强相和所述二维碳纳米增强相之间还可以通过共轭键和氢键连接,进一步增强所述一维碳纳米增强相和所述二维碳纳米增强相之间的连接关系。
其中,所述酰胺键为具有-CO-NH-型结构的化学键,所述共轭键是由碳原子的轨道电子杂化形成的π-π共轭键,所述氢键是以氢原子为媒介形成的相邻原子间的键合力作用。
步骤S103.过滤所述第二混合液,得到所述三维碳纳米增强相。
具体地,过滤所述第二混合液后,取滤出物进行干燥处理,得到所述三维碳纳米增强相。
步骤S2、将所述三维碳纳米增强相与4,4’-二氨基二苯醚和均苯四甲酸二酐混合反应,制得柔性衬底材料溶液。
其中,所述4,4’-二氨基二苯醚的结构式如下:
Figure PCTCN2019117778-appb-000002
所述均苯四甲酸二酐的结构式如下:
Figure PCTCN2019117778-appb-000003
如图4所示,所述步骤S2具体包括以下步骤:
步骤S201.将所述三维碳纳米增强相分散于N-甲基吡咯烷酮溶液中,制得第三混合液。
其中,所述N-甲基吡咯烷酮溶液作为分散剂。在分散的过程中可以进行搅拌或震动等操作,以加速分散,并使分散均匀。需要说明的是,在实际生产中可以根据需要选用适量的所述三维碳纳米增强相。应当理解的是,所述三维碳纳米增强相的含量越高,最终制成的柔性显示面板衬底的抗卷曲和抗裂纹能力越强,但为了保证最终制成的柔性显示面板衬底具有足够的柔性,一般会对使用的所述三维碳纳米增强相的量有一定的限制。本申请不对使用的所述三维碳纳米增强相的量进行限制,在生产中可以根据实际需要进行自由控制。
步骤S202.向所述第三混合液中加入4,4’-二氨基二苯醚和均苯四甲酸二酐并搅拌混合,制得第四混合液。
具体地,在向所述第三混合液中加入所述4,4’-二氨基二苯醚和所述均苯四 甲酸二酐的同时可以搅拌或震动,以保证所述4,4’-二氨基二苯醚、均苯四甲酸二酐和所述三维碳纳米增强相均匀混合。
步骤S203.向所述第四混合液中加入N-羟基丁二酰亚胺和碳二亚胺并搅拌混合制得所述柔性衬底材料溶液。
其中,所述N-羟基丁二酰亚胺和碳二亚胺是反应的促进剂,用于促进所述4,4’-二氨基二苯醚和所述均苯四甲酸二酐之间发生缩合反应。
具体地,所述4,4’-二氨基二苯醚和所述均苯四甲酸二酐之间通过两步反应生成聚酰亚胺。
其中,第一步为缩合反应,生产聚丙烯酸中间相,反应式如下:
Figure PCTCN2019117778-appb-000004
第二步为亚胺化反应,生成聚酰亚胺,反应式如下:
Figure PCTCN2019117778-appb-000005
需要说明的是,在所述4,4’-二氨基二苯醚和所述均苯四甲酸二酐之间反应生成聚酰亚胺的同时,所述三维碳纳米增强相被掺杂在生成的所述聚酰亚胺基体中,并与所述聚酰亚胺基体之间通过化学键连接,从而形成由所述聚酰亚胺基体和所述碳纳米增强体构成的网络状结构体,所述网络状结构体具有良好的抗卷曲和抗裂纹性能。
步骤S3、将所述柔性衬底材料溶液涂布于玻璃基板上。
具体地,涂布所述柔性衬底溶液的方法可以是旋转涂布。
步骤S4、烘干所述玻璃基板,得到附着于所述玻璃基板上的柔性显示面板衬底。
具体地,烘干所述玻璃基板的方法为将所述玻璃基板置于100℃至300℃的环境中放置1-2小时。经过烘干操作,涂布于所述玻璃基板上的柔性衬底材料溶液中的溶剂挥发,所述柔性衬底材料在所述玻璃基板上凝结成膜状,形成所述柔性显示面板衬底。需要说明的是,所述柔性显示面板衬底的厚度可以通过涂布于所述玻璃基板上的柔性衬底材料溶液的量进行控制。在生产中,可以根据实际需求,制备不同厚度的柔性显示面板衬底。
需要说明的是,所述玻璃基板用于支撑所述柔性显示面板衬底。由于所述柔性显示面板衬底具有柔性,在显示面板制造过程中为了防止柔性衬底变形而影响制造精度,会保留所述玻璃基板,并在制程结尾将所述玻璃基板与所述柔性显示面板衬底分离。
本申请实施例提供的柔性显示面板衬底制备方法,通过在所述聚酰亚胺基体相的合成过程中引入碳纳米增强相,使最终制得的柔性显示面板衬底具有良好的抗卷曲和抗裂纹性能。
本申请实施例还提供了一种柔性显示面板,所述柔性显示面板包括柔性显示面板衬底,所述柔性显示面板衬底由本申请实施例提供的柔性衬底材料制成,或通过本申请实施例提供的柔性显示面板衬底制备方法制备而成。由于所述柔性显示面板衬底具有良好的抗卷曲变形和抗裂纹能力,在将所述柔性显示面板衬底与玻璃基板进行分离的过程中,所述柔性显示面板衬底不会因受热或力的作用而出现卷曲变形或发生断裂,提升所述柔性显示面板的品质。
综上所述,虽然本申请以具体实施例揭露如上,但上述实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种柔性衬底材料,其包括:
    聚酰亚胺基体;
    碳纳米增强体,分散于所述聚酰亚胺基体中,与所述聚酰亚胺基体通过化学键连接。
  2. 根据权利要求1所述的柔性衬底材料,其中,所述碳纳米增强体包括一维碳纳米增强相和二维碳纳米增强相。
  3. 根据权利要求2所述的柔性衬底材料,其中,所述碳纳米增强体中的所述一维碳纳米增强相和所述二维碳纳米增强相之间通过化学键连接。
  4. 根据权利要求3所述的柔性衬底材料,其中,所述化学键是酰胺键和/或共轭键和/或氢键。
  5. 根据权利要求2所述的柔性衬底材料,其中,所述一维碳纳米增强相为碳纳米管或氧化碳纳米管。
  6. 根据权利要求5所述的柔性衬底材料,其中,所述碳纳米管和所述氧化碳纳米管是单壁结构或多壁结构。
  7. 根据权利要求2所述的柔性衬底材料,其中,所述二维碳纳米增强相为石墨烯或氧化石墨烯。
  8. 根据权利要求7所述的柔性衬底材料,其中,所述石墨烯和所述氧化石墨烯是单层结构或多层结构。
  9. 一种柔性显示面板衬底制备方法,其包括以下步骤:
    取一维碳纳米增强相和二维碳纳米增强相反应制得三维碳纳米增强相;
    将所述三维碳纳米增强相与4,4’-二氨基二苯醚和均苯四甲酸二酐混合反应,制得柔性衬底材料溶液;
    将所述柔性衬底材料溶液涂布于玻璃基板上;
    烘干所述玻璃基板,得到附着于所述玻璃基板上的柔性显示面板衬底。
  10. 根据权利要求9所述的柔性显示面板衬底制备方法,其中,所述取一维碳纳米增强相和二维碳纳米增强相反应制得三维碳纳米增强相的方法包括以 下步骤:
    取所述一维碳纳米增强相和所述二维碳纳米增强相分散于二甲基甲酰胺溶液中,制得第一混合液;
    向所述第一混合液中加入对苯二胺、N-羟基丁二酰亚胺和碳二亚胺,使所述一维碳纳米增强相和所述二维碳纳米增强相发生交联反应,得到第二混合液;
    过滤所述第二混合液,得到所述三维碳纳米增强相。
  11. 根据权利要求10所述的柔性显示面板衬底制备方法,其中,通过过滤所述第二混合液得到所述三维碳纳米增强相后,还需要对所述碳纳米增强相进行干燥处理。
  12. 根据权利要求9所述的柔性显示面板衬底制备方法,其中,所述将所述三维碳纳米增强相与4,4’-二氨基二苯醚和均苯四甲酸二酐混合反应制得柔性衬底材料溶液的方法包括以下步骤:
    将所述三维碳纳米增强相分散于N-甲基吡咯烷酮溶液中,制得第三混合液;
    向所述第三混合液中加入4,4’-二氨基二苯醚和均苯四甲酸二酐并搅拌混合,制得第四混合液;
    向所述第四混合液中加入N-羟基丁二酰亚胺和碳二亚胺并搅拌混合制得所述柔性衬底材料溶液。
  13. 根据权利要求9所述的柔性显示面板衬底制备方法,其中,将所述柔性衬底材料溶液涂布于玻璃基板上的方法是旋转涂布。
  14. 根据权利要求9所述的柔性显示面板衬底制备方法,其中,所述烘干所述玻璃基板的方法是:在100℃至300℃的环境中放置1至2小时。
  15. 根据权利要求9所述的柔性显示面板衬底制备方法,其中,所述一维碳纳米增强相为碳纳米管或氧化碳纳米管,所述二维碳纳米增强相为石墨烯或氧化石墨烯。
  16. 根据权利要求9所述的柔性显示面板衬底制备方法,其中,所述一维碳纳米增强相和所述二维碳纳米增强相之间通过化学键连接形成所述三维碳纳 米增强相。
  17. 根据权利要求16所述的柔性显示面板衬底制备方法,其中,所述化学键是酰胺键和/或共轭键和/或氢键。
  18. 根据权利要求9所述的柔性显示面板衬底制备方法,其中,所述一维碳纳米增强相和所述二维碳纳米增强相之间通过物理搭接形成所述三维碳纳米增强相。
  19. 根据权利要求9所述的柔性显示面板衬底制备方法,其中,所述制备方法还包括将所述柔性显示面板衬底与所述玻璃基板分离的步骤。
  20. 一种柔性显示面板,其包括使用权利要求9所述的柔性显示面板衬底制备方法制得的柔性显示面板衬底。
PCT/CN2019/117778 2019-07-24 2019-11-13 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板 WO2021012514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/621,258 US20210408403A1 (en) 2019-07-24 2019-11-13 Flexible substrate material, method of manufacturing flexible display panel substrate and flexible display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910670910.3 2019-07-24
CN201910670910.3A CN110408204A (zh) 2019-07-24 2019-07-24 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板

Publications (1)

Publication Number Publication Date
WO2021012514A1 true WO2021012514A1 (zh) 2021-01-28

Family

ID=68362816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117778 WO2021012514A1 (zh) 2019-07-24 2019-11-13 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板

Country Status (3)

Country Link
US (1) US20210408403A1 (zh)
CN (1) CN110408204A (zh)
WO (1) WO2021012514A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408204A (zh) * 2019-07-24 2019-11-05 深圳市华星光电技术有限公司 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板
CN111370577A (zh) * 2020-03-19 2020-07-03 Tcl华星光电技术有限公司 一种柔性衬底材料、柔性衬底制备方法及柔性显示面板
CN112876723A (zh) * 2021-01-15 2021-06-01 任国峰 一种石墨烯柔性可弯曲屏幕及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140121350A1 (en) * 2012-10-31 2014-05-01 Korea Institute Of Science And Technology Polyimide-graphene composite material and method for preparing same
CN104392901A (zh) * 2014-10-28 2015-03-04 京东方科技集团股份有限公司 一种柔性衬底基板及其制作方法
CN108276576A (zh) * 2018-02-02 2018-07-13 天津工业大学 碳纳米管和石墨烯共价连接协同增强聚酰亚胺复合材料及其制备方法
CN109880090A (zh) * 2019-02-18 2019-06-14 华研(佛山)纳米材料有限公司 一种含石墨烯以及碳纳米管的聚酰亚胺导热材料、导热膜及其制备方法
CN110408204A (zh) * 2019-07-24 2019-11-05 深圳市华星光电技术有限公司 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108276577A (zh) * 2018-02-02 2018-07-13 天津工业大学 聚多巴胺改性碳纳米管石墨烯/聚酰亚胺复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140121350A1 (en) * 2012-10-31 2014-05-01 Korea Institute Of Science And Technology Polyimide-graphene composite material and method for preparing same
CN104392901A (zh) * 2014-10-28 2015-03-04 京东方科技集团股份有限公司 一种柔性衬底基板及其制作方法
CN108276576A (zh) * 2018-02-02 2018-07-13 天津工业大学 碳纳米管和石墨烯共价连接协同增强聚酰亚胺复合材料及其制备方法
CN109880090A (zh) * 2019-02-18 2019-06-14 华研(佛山)纳米材料有限公司 一种含石墨烯以及碳纳米管的聚酰亚胺导热材料、导热膜及其制备方法
CN110408204A (zh) * 2019-07-24 2019-11-05 深圳市华星光电技术有限公司 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANFENG WANG ET AL.: "Polyimide reinforced with hybrid graphene oxide @ carbon nanotube: Toward high strength, toughness, electrical conductivity", CARBON, vol. 123, 18 July 2017 (2017-07-18), XP085201226, ISSN: 0008-6223, DOI: 20200316190454X *

Also Published As

Publication number Publication date
US20210408403A1 (en) 2021-12-30
CN110408204A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2021012514A1 (zh) 柔性衬底材料、柔性显示面板衬底制备方法及柔性显示面板
WO2014176831A1 (zh) 导电封框胶、显示面板及其制作方法、显示装置
Zhou et al. Activation of boron nitride nanotubes and their polymer composites for improving mechanical performance
JP2008045124A (ja) Cnt/ポリマー複合材料
KR101160909B1 (ko) 환원 그래핀 옥사이드와 탄소나노튜브로 구성된 전도성 박막의 제조방법 및 이에 의해 제조된 전도성 박막을 포함하는 투명전극
JP2008288189A (ja) 炭素ナノチューブとバインダーを含有する透明伝導性フィルムの製造方法、およびこれにより製造された透明伝導性フィルム
Heo et al. Perspective: Highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process
TW200918586A (en) Method of preparation of a MWCNT/polymer composite having electromagnetic interference shielding effectiveness
JP2019521943A (ja) 炭素溶接構造の単層カーボンナノチューブフレキシブル透明導電性フィルム及びその調製方法
Zhou et al. High-performance polyimide nanocomposites with core-shell AgNWs@ BN for electronic packagings
Chumakov et al. Temperature and mixing ratio effects in the formation of CdSe/CdS/ZnS quantum dots with 4′-n-octyl-4-p-cyanobiphenyl thin films
CN105870340A (zh) 一种钙钛矿薄膜的制备方法及其应用
WO2021218958A1 (zh) 导电浆料、制备方法及导电薄膜制备方法
WO2015003468A1 (zh) 封框胶及其制备方法和含该封框胶的显示装置
WO2018161625A1 (zh) 显示面板及其制造方法、显示装置
CN108735349B (zh) 一种含离子液体的银纳米线透明导电薄膜及其制备方法
US20150210549A1 (en) Covalent functionalization of carbon nanotubes grown on a surface
TW201020208A (en) Carbon nanotube film
CN109181654A (zh) 一种石墨烯基复合导热膜及其制备方法及其应用
TWI575041B (zh) 接著劑、疊層體及前述二者之製造方法
CN109647233B (zh) 一种聚乙烯胺/互穿网络结构碳复合材料混合基质膜的制备方法及应用
CN104914616A (zh) 显示面板及显示装置
KR20150041887A (ko) 다중수소결합에 의해 고차구조를 지니는 탄소나노소재를 이용한 패턴전극 제조방법
Zhan et al. Nitrile functionalized graphene for poly (arylene ether nitrile) nanocomposite films with enhanced dielectric permittivity
CN104932149B (zh) 液晶显示屏、复合基板及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938862

Country of ref document: EP

Kind code of ref document: A1