CN112509729A - 一种双层结构的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管柔性透明导电薄膜及其制备方法 - Google Patents

一种双层结构的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管柔性透明导电薄膜及其制备方法 Download PDF

Info

Publication number
CN112509729A
CN112509729A CN201910873494.7A CN201910873494A CN112509729A CN 112509729 A CN112509729 A CN 112509729A CN 201910873494 A CN201910873494 A CN 201910873494A CN 112509729 A CN112509729 A CN 112509729A
Authority
CN
China
Prior art keywords
poly
ethylenedioxythiophene
graphene oxide
conductive film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910873494.7A
Other languages
English (en)
Other versions
CN112509729B (zh
Inventor
耿宏章
赵惠
温建功
景立超
王涛
田颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201910873494.7A priority Critical patent/CN112509729B/zh
Publication of CN112509729A publication Critical patent/CN112509729A/zh
Application granted granted Critical
Publication of CN112509729B publication Critical patent/CN112509729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明公开了一种双层结构的聚3,4‑乙烯二氧噻吩/氧化石墨烯‑碳纳米管柔性透明导电薄膜及其制备方法,主要步骤在于采用喷涂法将氧化石墨烯(GO)与碳纳米管(CNT)的混合溶液和聚3,4‑乙烯二氧噻吩(PEDOT)溶液依次喷涂在聚对苯二甲酸乙二醇酯(PET)薄膜基底上,通过加入有机溶剂和酸处理的方法得到导电性能优异的透明导电薄膜。其特征在于:(1)采用性能优异的GO、CNT和PEDOT为原料,以PET为基底,制备出结构稳定、透光率高、面电阻低的柔性透明导电薄膜;(2)在透明导电膜中GO、CNT和PEDOT并不是简单地堆叠,而是由于相互的交叉形成了稳定的双层结构,具有很高的附着力;(3)该薄膜制备工艺简单、周期短,薄膜导电性高,可广泛应用于光电设备中。

Description

一种双层结构的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管 柔性透明导电薄膜及其制备方法
技术领域
本发明属于柔性透明导电薄膜制备技术领域,尤其涉及两种碳纳米材料和导电聚合物透明导电薄膜的溶液法喷涂制备工艺。
背景技术
由于电子设备的快速发展,对透明导电薄膜(TCFs)的需求变得越来越迫切。在过去的几十年中,许多导电纳米材料已经被研究用于TCFs,例如碳纳米材料、金属纳米线、金属纳米粒子和导电聚合物等。其中,具有优异导电性的金属纳米线是银纳米线,但基于银纳米线的TCFs具有高表面粗糙度,稳定性差,易在空气中氧化和硫化,使其应用受到限制。碳纳米管以其独特的结构,优异的机械性能、热力学和电学性质而引起了大量的研究。由于其自身的半导体特性,碳纳米管已被广泛应用于晶体管、逻辑器件、存储器件和光电器件。碳纳米管透明导电薄膜可用于柔性电致发光器件,碳纳米管也可作为空穴注入缓冲层引入ITO,实现高亮度有机发光二极管。氧化石墨拥有含氧官能团,因此表现出两亲性质,同时由于其合适的功函数,氧化石墨烯可以用作ITO表面上的空穴传输层。将易于变形的二维氧化石墨烯片加入到碳纳米管网络中,由于氧化石墨烯与碳纳米管重叠形成三明治结构,从而能够填充碳纳米管网络间的部分空隙,增加碳纳米管之间的粘附力。聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸钠(PEDOT:PSS)是具有优异导电性和透光率的导电材料之一。聚3,4-乙烯二氧噻吩可以使用聚苯乙烯磺酸钠分散在水溶液中,使其容易被应用。由于基于PEDOT:PSS的TCFs导电性高度依赖于PEDOT:PSS在水中的粒径以及PEDOT与PSS的比例,我们需要通过后处理的方式从薄膜中去除不导电的物质PSS。最近一些研究人员指出,通过添加极性溶剂可以提高PEDOT:PSS TCFs的电导率。
到目前为止,工艺最成熟和最广泛使用的透明电极仍然是氧化铟锡(ITO)薄膜。然而,传统的ITO具有一些缺点,例如制备工艺复杂、具有脆性、铟资源稀少等。由于碳纳米管的良好导电性和高光学透明性,碳纳米管透明导电薄膜具有相对低的面电阻和高透光率,因此有望取代相对昂贵且易碎的ITO薄膜。柔性的碳纳米管透明导电薄膜可通过直接生长、溶液沉积、喷涂和真空抽滤的方法制备。其中,喷涂是一种常用的制备方法,具有成本低、简单、易于实现大规模成膜和均匀成膜的优点。使用喷涂制备透明导电膜的一个重要问题是我们需要制备碳纳米管溶液。碳纳米管的比表面积大,并且在碳纳米管之间存在很强的范德华力,因此碳纳米管基本上以团聚体的形式缠结在一起。我们需要使用表面活性剂来分散碳纳米管,这会影响薄膜的导电性,因为表面活性剂固有的绝缘性质。因此,我们需要通过后处理去除表面活性剂,以提高透明导电膜的导电性。如今一种非常有效的处理方法是使用硝酸处理。
发明内容
本发明的目的在于提供一种双层结构的聚3,4-乙烯二氧噻吩/碳纳米管柔性透明导电薄膜及其制备方法,制得的膜具有优异的稳定结构,面电阻低、透光度高,在光电器件中有很好的应用价值。
本发明的技术方案如下:主要步骤在于首先将聚对苯二甲酸乙二醇酯(PET)基底薄膜用蒸馏水和乙醇超声清洗然后烘干。采用喷涂法将配好的聚3,4-乙烯二氧噻吩和氧化石墨烯-碳纳米管混合溶液依次喷涂在PET薄膜基底上,制得了具有双层结构的聚3,4-乙烯二氧噻吩/碳纳米管(PEDOT/GO-CNT)柔性透明导电薄膜。其中聚3,4-乙烯二氧噻吩溶液经过稀释后使其更容易进行喷涂,通过在聚3,4-乙烯二氧噻吩溶液中加入确定量的乙二醇和先硝酸后硫酸的处理的方法得到导电性优异的柔性导电薄膜。制备出结构更加稳定透光率高的柔性导电薄膜。该薄膜制备工艺简单、周期短,薄膜导电性高,在透光率为87%时,面电阻低至47Ω/sq。通过扫描电子显微镜表征,我们发现在透明导电膜中碳纳米管和聚3,4-乙烯二氧噻吩并不是简单地堆叠,而是由于相互的交叉形成了稳定的三维结构。这样的结构使得薄膜有更好的稳定性和良好的导电性。
本发明的主要创新点如下:通过喷涂法制备了具有双层结构的聚3,4-乙烯二氧噻吩/碳纳米管(PEDOT/GO-CNT)柔性透明导电薄膜。这种结构使薄膜更加稳定,在应用的过程中具有更优异的性能。
本发明方法中制备碳纳米管分散液的方法如下:以纯度>95wt.%,外径1~2nm,长度为5~30μm的单壁碳纳米管和浓度为5mg/ml,厚度为0.8-1.2nm,粒径为1-20μm的氧化石墨烯为原料,十二烷基苯磺酸钠作为分散剂,蒸馏水为溶剂。以氧化石墨烯与碳纳米管的质量比为0.1-2,单壁碳纳米管与十二烷基苯磺酸钠的比例为10∶1进行称量,然后加入相应比例的蒸馏水,使得碳纳米管的浓度为0.1mg/ml,超声波分散机进行超声17min,再用离心机以8000r/min的速率离心20min,提取上清液,得到氧化石墨烯与碳纳米管比例为0.1-2的混合分散液。
本发明所用的试剂和材料:单壁碳纳米管、氧化石墨烯、PEDOT:PSS(PH1000)、聚对苯二甲酸乙二醇酯(PET)、十二烷基苯磺酸钠、硫酸、硝酸、蒸馏水、乙二醇等。
本发明中采用了扫描电子显微镜(SEM)来表征所制备的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管(PEDOT/GO-CNT)薄膜的形貌。
附图说明
图1为氧化石墨烯-碳纳米管(GO-CNT)薄膜的结构示意图。
图2为聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管(PEDOT/GO-CNT)薄膜的结构示意图。
图3(a)为氧化石墨烯-碳纳米管(GO-CNT)薄膜硝酸处理后的SEM图;(b)为聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管(PEDOT/GO-CNT)薄膜硫酸处理后的SEM图。
图4为聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管(PEDOT/GO-CNT)薄膜的面电阻和透光率的关系图。
具体实施方式
下面结合具体实例对本发明作详细说明。
实例1:
取45mg单壁碳纳米管,225mg十二烷基苯磺酸钠,1.8ml 5mg/mL氧化石墨烯溶液于烧杯中,然后加入28.2mL的蒸馏水,然后采用超声波分散机进行超声17min,最后再用离心机以8000r/min的速率离心20min,提取上清液,得到氧化石墨烯与碳纳米管质量浓度为0.2∶1.0,碳纳米管浓度大约1.5mg/ml的混合分散液。聚3,4-乙烯二氧噻吩溶液稀释5倍然后加入乙二醇,搅拌20min以上,聚3,4-乙烯二氧噻吩稀释溶液和乙二醇的体积比为10∶1。将清洗好的PET薄膜放置在加热板上,加热板上的温度控制在105℃,先喷涂氧化石墨烯和碳纳米管混合溶液然后硝酸(10M)后处理得到的透明导电薄膜再喷涂聚3,4-乙烯二氧噻吩溶液最后硫酸(12M)后处理。通过不同的喷涂量,得到了不同透光度的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管(PEDOT/GO-CNT)薄膜。经过酸处理最后得到了低面电阻和高透光率的透明导电薄膜。
实例2:
取3mg单壁碳纳米管,30mg十二烷基苯磺酸钠,1.2mL 5mg/mL氧化石墨烯溶液于烧杯中,然后加入28.8mL的蒸馏水,然后采用超声波分散机进行超声70min,最后再用离心机以8000r/min的速率离心20min,提取上清液,得到氧化石墨烯与碳纳米管质量浓度为2.0∶1.0,碳纳米管浓度大约0.1mg/ml的混合分散液。聚3,4-乙烯二氧噻吩溶液稀释20倍然后加入乙二醇,搅拌20min以上,PEDOT稀释溶液和乙二醇的体积比为10∶7。将清洗好的PET薄膜放置在加热板上,加热板上的温度控制在105℃,先喷涂氧化石墨烯和碳纳米管混合溶液然后硝酸(12M)后处理得到的透明导电薄膜再喷涂聚3,4-乙烯二氧噻吩溶液最后硫酸(10M)后处理。通过不同的喷涂量,得到了不同透光度的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管(PEDOT/GO-CNT)薄膜。经过酸处理最后得到了低面电阻和高透光率的透明导电薄膜。

Claims (10)

1.一种双层结构的聚3,4-乙烯二氧噻吩/氧化石墨烯-碳纳米管柔性透明导电薄膜,主要步骤在于首先将聚对苯二甲酸乙二醇酯(PET)基底薄膜用乙醇超声清洗然后烘干。采用喷涂法先将按一定质量比配好的氧化石墨烯(GO)∶碳纳米管(CNT)的混合溶液喷涂在PET薄膜基底上形成氧化石墨烯和碳纳米管(GO-CNT)的混合层,然后用硝酸(HNO3)(10M~12M)进行处理;聚3,4-乙烯二氧噻吩(PEDOT)溶液喷涂在GO-CNT层的表面,其中PEDOT溶液经过稀释后使其更容易进行喷涂,通过在PEDOT溶液中加入一定量的乙二醇并采用硫酸(H2SO4)(10~12M)后处理的方法得到导电性优异的柔性导电薄膜。此方法制备出了GO-CNT混合层和PEDOT层的双层结构的柔性导电薄膜,该结构具有更加稳定、透光率高、面电阻低的特点。该薄膜制备工艺简单,周期短,薄膜导电性高,在透光率为80%~93%时,面电阻低为45~80Ω/sq,表面粗糙度<10nm。通过扫描电子显微镜表征发现在透明导电膜中氧化石墨烯、碳纳米管和聚3,4-乙烯二氧噻吩并不是简单地堆叠,而是由于相互的交叉形成了稳定的三维结构,因而具有很高的附着力。
2.根据权利要求1所述的方法,其特征在于所采用的原料为氧化石墨烯溶液,浓度为1-10mg/ml,粒径为1~20μm,厚度为0.8~1.2nm;单壁碳纳米管的纯度>95wt%,外径1~2nm,长度为5~30μm;聚3,4-乙烯二氧噻吩溶液为PH1000,固含量为1~1.5%。
3.根据权利要求1所述的方法,其特征在于采用超声波分散机制备碳纳米管分散液的条件:功率150-250W,时间5-80min。分散剂可选用十二烷基苯磺酸钠,聚乙烯吡咯烷酮,十二烷基硫酸钠,十六烷基三甲基溴化铵。
4.根据权利要求1所述的方法,配制的碳纳米管溶液浓度为0.1-2.0mg/ml。
5.根据权利要求1所述的方法配置GO∶CNT质量比为0.1-2.0∶1.0的混合溶液。
6.根据权利要求1所述的方法,聚3,4-乙烯二氧噻吩溶液稀释5~20倍然后加入乙二醇,搅拌20min以上,聚3,4-乙烯二氧噻吩稀释溶液和乙二醇的体积比为10∶1-10∶7。
7.根据权利要求1所述的方法,其特征在于得到透明导电薄膜的透光度为80%以上,面电阻可以达到100Ω/sq以下。
8.根据权利要求1所述的方法,其特征在于透明导电薄膜的结构为双层结构:氧化石墨烯和碳纳米管混合层在底层,聚3,4-乙烯二氧噻吩在顶层。
9.根据权利要求1所述的方法,其特征在于氧化石墨烯能够填充碳纳米管网络的空隙,降低了碳纳米管之间的连接电阻,并形成了稳定的三维交叉结构。
10.根据权利要求1所述的方法,其特征在于三维交叉的稳定结构使得碳纳米管与聚3,4-乙烯二氧噻吩之间有更好的连接,使得薄膜具有更好的稳定性和导电性,并具有很高的附着力。
CN201910873494.7A 2019-09-16 2019-09-16 一种柔性透明导电薄膜及其制备方法 Active CN112509729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910873494.7A CN112509729B (zh) 2019-09-16 2019-09-16 一种柔性透明导电薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910873494.7A CN112509729B (zh) 2019-09-16 2019-09-16 一种柔性透明导电薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112509729A true CN112509729A (zh) 2021-03-16
CN112509729B CN112509729B (zh) 2023-01-24

Family

ID=74924057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910873494.7A Active CN112509729B (zh) 2019-09-16 2019-09-16 一种柔性透明导电薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112509729B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702716A (zh) * 2022-04-20 2022-07-05 浙江理工大学 一种强微波吸收性能的双层柔性复合薄膜的制备方法
CN115910432A (zh) * 2022-11-26 2023-04-04 宁波碳源新材料科技有限公司 一种非共价改性碳纳米管柔性透明导电薄膜及其制备方法
WO2023088251A1 (zh) * 2021-11-17 2023-05-25 齐鲁工业大学 一种柔性传感器制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417176A (zh) * 2011-09-06 2012-04-18 天津大学 基于三维网络形貌的石墨烯-碳纳米管复合薄膜的制备方法
US20130048339A1 (en) * 2010-03-08 2013-02-28 William Marsh Rice University Transparent electrodes based on graphene and grid hybrid structures
TW201501184A (zh) * 2013-06-18 2015-01-01 Univ Korea Res & Bus Found 透明電極形成方法及利用其製造之半導體裝置
CN104797666A (zh) * 2012-10-29 2015-07-22 3M创新有限公司 导电油墨和导电聚合物涂层
CN105321592A (zh) * 2014-08-01 2016-02-10 广东阿格蕾雅光电材料有限公司 碳纳米管-高分子层状复合透明柔性电极及其制备方法
CN105482138A (zh) * 2016-01-15 2016-04-13 电子科技大学 一种导电聚合物复合纳米薄膜材料的制备方法
CN105585776A (zh) * 2016-03-23 2016-05-18 浙江润阳新材料科技股份有限公司 一种微波阻燃聚烯烃发泡材料及其制作方法
CN106784288A (zh) * 2016-12-30 2017-05-31 天津工业大学 一种增强复合热电材料性能的制备方法
CN109887647A (zh) * 2019-04-12 2019-06-14 山东卡本新材料科技有限公司 一种复合柔性透明导电薄膜及其制备方法
DE102018001617A1 (de) * 2018-02-27 2019-08-29 Technische Universität Dresden Kohlenstoffkompositformteil, Verfahren zu dessen Herstellung und Verwendung des Kohlenstoffkompositformteils in einem elektrochemischen Energiespeicher

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048339A1 (en) * 2010-03-08 2013-02-28 William Marsh Rice University Transparent electrodes based on graphene and grid hybrid structures
CN102417176A (zh) * 2011-09-06 2012-04-18 天津大学 基于三维网络形貌的石墨烯-碳纳米管复合薄膜的制备方法
CN104797666A (zh) * 2012-10-29 2015-07-22 3M创新有限公司 导电油墨和导电聚合物涂层
TW201501184A (zh) * 2013-06-18 2015-01-01 Univ Korea Res & Bus Found 透明電極形成方法及利用其製造之半導體裝置
CN105321592A (zh) * 2014-08-01 2016-02-10 广东阿格蕾雅光电材料有限公司 碳纳米管-高分子层状复合透明柔性电极及其制备方法
CN105482138A (zh) * 2016-01-15 2016-04-13 电子科技大学 一种导电聚合物复合纳米薄膜材料的制备方法
CN105585776A (zh) * 2016-03-23 2016-05-18 浙江润阳新材料科技股份有限公司 一种微波阻燃聚烯烃发泡材料及其制作方法
CN106784288A (zh) * 2016-12-30 2017-05-31 天津工业大学 一种增强复合热电材料性能的制备方法
DE102018001617A1 (de) * 2018-02-27 2019-08-29 Technische Universität Dresden Kohlenstoffkompositformteil, Verfahren zu dessen Herstellung und Verwendung des Kohlenstoffkompositformteils in einem elektrochemischen Energiespeicher
CN109887647A (zh) * 2019-04-12 2019-06-14 山东卡本新材料科技有限公司 一种复合柔性透明导电薄膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S.X. DA等: ""High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes"", 《APPLIED SURFACE SCIENCE》 *
Z.Y. LIU等: ""Effects of highly conductive PH1000 anode in combination with ethylene glycol additive and H2SO4 immersion treatments on photovoltaic performance and photostability of polymer solar cells"", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
刘举庆等: "湿法制备氧化石墨烯/碳纳米管电极的聚合物太阳能电池器件", 《南京邮电大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088251A1 (zh) * 2021-11-17 2023-05-25 齐鲁工业大学 一种柔性传感器制造方法
CN114702716A (zh) * 2022-04-20 2022-07-05 浙江理工大学 一种强微波吸收性能的双层柔性复合薄膜的制备方法
CN115910432A (zh) * 2022-11-26 2023-04-04 宁波碳源新材料科技有限公司 一种非共价改性碳纳米管柔性透明导电薄膜及其制备方法

Also Published As

Publication number Publication date
CN112509729B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
Zhou et al. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives
CN112509729B (zh) 一种柔性透明导电薄膜及其制备方法
Chu et al. Air‐stable conductive polymer ink for printed wearable micro‐supercapacitors
Kumar et al. Polyaniline–carbon nanotube composites: preparation methods, properties, and applications
Moon et al. Transparent conductive film based on carbon nanotubes and PEDOT composites
CN106810823B (zh) 石墨烯量子点/碳纳米管/pedot:pss复合薄膜及其制备方法
Jin et al. Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder
Li et al. Organic light-emitting diodes having carbon nanotube anodes
CN101573802B (zh) 光伏器件用的高保真纳米结构体和阵列及其制造方法
US20160280947A1 (en) Transparent conductive ink composited by carbon nano tubes and polymers, and method for preparing same
Wang et al. Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode
WO2016026190A1 (zh) 石墨烯导电聚合物导电胶的制备方法及该石墨烯导电聚合物导电胶
US20140308524A1 (en) Stacked Transparent Electrode Comprising Metal Nanowires and Carbon Nanotubes
Gu et al. Highly conductive sandwich-structured CNT/PEDOT: PSS/CNT transparent conductive films for OLED electrodes
Wang et al. Smooth ZnO: Al-AgNWs composite electrode for flexible organic light-emitting device
Qiao et al. Characteristics of water-soluble polythiophene: TiO2 composite and its application in photovoltaics
CN106784288A (zh) 一种增强复合热电材料性能的制备方法
KR20160084387A (ko) 고분산 탄소나노튜브 복합 전도성 잉크
Wang et al. Strong adhesion and high optoelectronic performance hybrid graphene/carbon nanotubes transparent conductive films for green-light OLED devices
CN106520008A (zh) 碳纳米管导电球及其制备方法与导电胶及其制备方法
WO2016019422A1 (en) Transparent electrode materials and methods for forming same
Singh et al. Correlation between morphology and ambipolar transport in organic field-effect transistors
CN214012530U (zh) 一种导电结构及电子设备
CN112509728A (zh) 一种四氯金酸三水合物掺杂碳纳米管柔性透明导电薄膜及其制备方法
US20130075074A1 (en) Thermal Dissipation Device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant