WO2017057301A1 - 導電層形成用塗布液及び導電層の製造方法 - Google Patents

導電層形成用塗布液及び導電層の製造方法 Download PDF

Info

Publication number
WO2017057301A1
WO2017057301A1 PCT/JP2016/078328 JP2016078328W WO2017057301A1 WO 2017057301 A1 WO2017057301 A1 WO 2017057301A1 JP 2016078328 W JP2016078328 W JP 2016078328W WO 2017057301 A1 WO2017057301 A1 WO 2017057301A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
metal fine
forming
fine particles
coating
Prior art date
Application number
PCT/JP2016/078328
Other languages
English (en)
French (fr)
Inventor
元彦 杉浦
岡田 一誠
岡 良雄
健嗣 大木
Original Assignee
住友電気工業株式会社
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工プリントサーキット株式会社 filed Critical 住友電気工業株式会社
Priority to US15/756,629 priority Critical patent/US20180315519A1/en
Priority to JP2017543277A priority patent/JP6766057B2/ja
Priority to CN201680050839.3A priority patent/CN107949607A/zh
Publication of WO2017057301A1 publication Critical patent/WO2017057301A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0709Catalytic ink or adhesive for electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0759Forming a polymer layer by liquid coating, e.g. a non-metallic protective coating or an organic bonding layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity

Definitions

  • the present invention relates to a coating liquid for forming a conductive layer and a method for producing a conductive layer.
  • a substrate for printed wiring boards has been proposed in which a copper thin layer is laminated on a heat-resistant insulating base film without an adhesive layer (see JP-A-9-136378).
  • a copper thin film layer having a thickness of 0.25 to 0.30 ⁇ m is formed on the surface of the heat-resistant insulating base film by sputtering.
  • This printed wiring board base material has a copper thick film layer laminated on the outer surface of the copper thin film layer using an electroplating method, thereby ensuring sufficient adhesive strength between the base film and the copper thin film layer. It is said that the density can be increased.
  • the conductive layer forming coating solution according to one embodiment of the present invention is a conductive layer forming coating solution containing fine metal particles, a dispersion medium, and a dispersant, and has a pH of 4 to 8 and an electrical conductivity of 100 ⁇ S / cm.
  • the content of the metal fine particles is 20% by mass or more and 80% by mass or less.
  • a method for producing a conductive layer according to another aspect of the present invention is a method for producing a conductive layer using a coating liquid for forming a conductive layer containing metal fine particles, a dispersion medium, and a dispersing agent.
  • a coating step of coating the coating solution; and a heating step of heating the coating solution for forming the conductive layer after coating is 4 to 8, and the electrical conductivity is 100 ⁇ S / cm or more and 800 ⁇ S / cm or less, and the content of the metal fine particles is 20% by mass or more and 80% by mass or less.
  • the substrate for printed wiring boards described in the above publication can be said to meet the demand for high-density printed wiring in that a copper thin film layer can be directly laminated on a base film.
  • this printed wiring board base material has a copper thin film layer formed by a sputtering method, vacuum equipment is required, and the equipment costs such as construction, maintenance, and operation of the equipment increase.
  • this printed wiring board base material since it is necessary to form this printed wiring board base material under vacuum conditions using a vacuum facility, there is a limit to increasing the size of the base material.
  • the present invention has been made based on such circumstances, and a conductive layer forming coating solution capable of easily and reliably forming a conductive layer having a certain thickness at a relatively low cost, and the conductive layer forming coating.
  • An object is to provide a method for producing a conductive layer using a liquid.
  • the conductive layer forming coating liquid and the conductive layer manufacturing method of the present invention can easily and reliably form a conductive layer having a certain thickness at a relatively low cost.
  • the conductive layer forming coating solution according to one embodiment of the present invention is a conductive layer forming coating solution containing fine metal particles, a dispersion medium, and a dispersant, and has a pH of 4 to 8 and an electrical conductivity of 100 ⁇ S / cm.
  • the content of the metal fine particles is 20% by mass or more and 80% by mass or less.
  • the conductive layer forming coating solution contains a dispersion medium and a dispersant, and the pH and electrical conductivity are within the above ranges, so that even if the content of the metal fine particles is as large as within the above range, the dispersion medium. It is excellent in the uniform dispersibility of the metal fine particles. Therefore, the coating liquid for forming a conductive layer is applied and heated, for example, on the surface of the base film constituting the substrate for a printed wiring board, so that the metal fine particles are arranged at a high density with a certain thickness. The conductive layer can be easily and reliably formed.
  • the said coating liquid for conductive layer formation can form a conductive layer at comparatively low cost, without using the expensive vacuum equipment required for physical vapor deposition, such as sputtering. Furthermore, since the conductive layer forming coating solution does not require the use of vacuum equipment when forming the conductive layer, the size of the conductive layer can be prevented from being limited by the size of the vacuum equipment. As a result, according to the coating liquid for forming a conductive layer, it is easy to form a conductive layer having a large outer dimension.
  • the dispersing agent may be a polymer compound.
  • the dispersant is a polymer dispersant, it is easy to uniformly disperse the metal fine particles in the dispersion medium while preventing aggregation of the metal fine particles. Thereby, it is easy to form a dense and unbroken conductive layer.
  • the polymer compound preferably has an imino group.
  • the polymer compound has an imino group, it is easy to disperse the metal fine particles more uniformly in the dispersion medium while preventing aggregation of the metal fine particles easily and reliably.
  • the polymer compound may be polyethyleneimine or a polyethyleneimine-ethylene oxide adduct. As described above, when the polymer compound is polyethyleneimine or a polyethyleneimine-ethylene oxide adduct, the metal fine particles can be more uniformly dispersed in the dispersion medium while preventing aggregation of the metal fine particles easily and reliably. .
  • the average particle diameter D 50 which is calculated from the cumulative distribution measured by laser diffraction, of the metal fine particles is preferably 1nm or more 500nm or less. According to the coating liquid for forming a conductive layer, the metal fine particles can be uniformly dispersed in the dispersion medium even if the average particle diameter D 50 of the metal fine particles is relatively small as in the above range. Therefore, the average particle diameter D 50 of the metal particles by the above range, it is possible to form a dense conductive layer easily and reliably.
  • the “average particle diameter D 50 ” refers to a value calculated from the cumulative volume distribution.
  • the viscosity at 25 ° C. of the conductive layer forming coating solution is preferably 100 mPa ⁇ s or less.
  • paintability of the said coating liquid for conductive layer formation can be improved because the viscosity in 25 degreeC is below the said upper limit.
  • the main component of the metal fine particles is preferably copper or a copper alloy.
  • the main component of the metal fine particles is copper or a copper alloy, a conductive layer having excellent conductivity can be formed.
  • a method for producing a conductive layer according to another aspect of the present invention is a method for producing a conductive layer using a coating liquid for forming a conductive layer containing metal fine particles, a dispersion medium, and a dispersing agent.
  • a coating step of coating the coating solution; and a heating step of heating the coating solution for forming the conductive layer after coating is 4 to 8, and the electrical conductivity is 100 ⁇ S / cm or more and 800 ⁇ S / cm or less, and the content of the metal fine particles is 20% by mass or more and 80% by mass or less.
  • the coating liquid for forming a conductive layer contains a dispersion medium and a dispersing agent, the pH and electrical conductivity of the coating liquid for forming a conductive layer at the time of coating are within the above ranges. Even if the content of the metal fine particles is within the above range, the metal particles are excellent in uniform dispersibility during coating. Therefore, the manufacturing method of the said conductive layer can form the conductive layer which has fixed thickness and a metal fine particle is arrange
  • the manufacturing method of the said conductive layer does not need to use a vacuum installation, it can prevent that the magnitude
  • electrical conductivity refers to a value measured in accordance with JIS-K0130: 2008.
  • “Viscosity” refers to a value measured according to JIS-Z8803: 2011.
  • “Main component” refers to a component having the highest content, for example, a component having a content of 50% by mass or more, and preferably a component having a content of 80% by mass or more.
  • the said coating liquid for conductive layer formation is for printed wiring board base material formation, for example. Specifically, the coating liquid for forming the conductive layer is applied to the surface of the base film constituting the printed wiring board, and then dried and heated to be laminated on the surface of the base film, so that the metal fine particles To form a conductive layer (metal fine particle sintered layer).
  • the conductive layer forming coating solution contains fine metal particles, a dispersion medium, and a dispersant.
  • the conductive layer forming coating solution has a pH of 4 or more and 8 or less, an electrical conductivity of 100 ⁇ S / cm or more and 800 ⁇ S / cm or less, and a metal fine particle content of 20% by mass or more and 80% by mass or less.
  • the conductive layer forming coating solution contains a dispersion medium and a dispersant, and the pH and electrical conductivity are within the above ranges, so that even if the content of the metal fine particles is as large as within the above range, the dispersion medium. It is excellent in the uniform dispersibility of the metal fine particles.
  • the conductive layer forming coating solution is applied and heated, for example, on the surface of the base film, thereby easily and reliably forming a conductive layer having a certain thickness and finely arranged metal fine particles. can do.
  • the said coating liquid for conductive layer formation can form a conductive layer at comparatively low cost, without using the expensive vacuum equipment required for physical vapor deposition, such as sputtering.
  • the conductive layer forming coating solution does not require the use of vacuum equipment when forming the conductive layer, the size of the conductive layer can be prevented from being limited by the size of the vacuum equipment.
  • the coating liquid for forming a conductive layer it is easy to form a conductive layer having a large outer dimension.
  • the dispersion medium contained in the conductive layer forming coating solution is not particularly limited, but water is typically used.
  • Examples of the main component of the fine metal particles contained in the conductive layer forming coating solution include copper (Cu), nickel (Ni), aluminum (Al), gold (Au), silver (Ag), and alloys thereof. Can be mentioned. Among these, copper or a copper alloy is preferable because it is excellent in conductivity and easily increases the adhesion with the base film.
  • the lower limit of the content of the metal fine particles in the conductive layer forming coating solution is 20% by mass, and more preferably 25% by mass.
  • the upper limit of the content of the metal fine particles is 80% by mass, more preferably 50% by mass, and further preferably 35% by mass. If the content of the metal fine particles is less than the lower limit, it may be difficult to form a conductive layer having a sufficient thickness and density. Conversely, if the content of the metal fine particles exceeds the upper limit, it may be difficult to uniformly disperse the metal fine particles in the dispersion medium.
  • the lower limit of the average particle diameter D 50 calculated from the volume cumulative distribution measured by the laser diffraction method of the metal fine particles is preferably 1 nm, and more preferably 30 nm.
  • the upper limit of the average particle diameter D 50, 500 nm is preferred, 200 nm, and still more preferably 100 nm.
  • the average particle diameter D 50 is less than the above lower limit, the dispersibility and stability of the fine metal particles in a dispersion medium may be lowered.
  • the average particle diameter D 50 exceeds the upper limit, the density of the metal fine particles when the conductive layer forming coating solution is applied tends to be uneven, and as a result, a sufficiently dense conductive layer is formed. May be difficult.
  • the average particle diameter D50SEM As a minimum of average particle diameter D50SEM computed based on the measurement by the scanning electron microscope (SEM) of the said metal microparticle, 1 nm is preferable and 30 nm is more preferable.
  • the upper limit of the average particle diameter D50SEM is preferably 550 nm, more preferably 250 nm, and even more preferably 150 nm. If the average particle diameter D50SEM is less than the lower limit, the dispersibility and stability of the metal fine particles in the dispersion medium may be reduced.
  • the average particle diameter D 50 SEM means that the surface of the metal fine particles was observed with a scanning electron microscope (SEM), and 100 arbitrarily extracted metal fine particles were measured and the volumes were integrated in ascending order of the particle diameter. The particle diameter at which the cumulative volume is 50%.
  • the ratio of the average particle diameter D 50SEM calculated based on the measurement by a scanning electron microscope of the metallic fine particles to the average particle diameter D 50 which is calculated from the cumulative distribution measured by laser diffraction, of the metal fine particles is preferably 1.5, more preferably 1.3.
  • the ratio (D 50 SEM / D 50 ) exceeds the upper limit, the shape of individual metal fine particles tends to be non-uniform. As a result, the smoothness of the surface of the coating film formed by applying the conductive layer forming coating solution becomes insufficient, which may make it difficult to form a sufficiently dense conductive layer.
  • the lower limit of the ratio (D 50SEM / D 50) is not particularly limited, it may be 1, for example.
  • the dispersant is not particularly limited as long as it can disperse the metal fine particles well in the dispersion medium, but a polymer compound is preferably used.
  • the dispersing agent is a polymer dispersing agent, the metal fine particles can be easily dispersed uniformly in the dispersion medium while preventing the aggregation of the metal fine particles. Therefore, when the dispersant is a polymer dispersant, it is easy to form a dense and unbroken conductive layer using the conductive layer forming coating solution.
  • the polymer compound preferably does not contain sulfur, phosphorus, boron, halogen elements and alkali metals.
  • polyalkyleneimine such as polyethyleneimine, polypropyleneimine, polyhexamethyleneimine
  • Amine polymer compounds such as pyrrolidone
  • hydrocarbon polymer compounds having a carboxylic acid group in the molecule such as polyacrylic acid and carboxymethylcellulose
  • poval polyvinyl alcohol
  • styrene-maleic acid copolymer olefin-maleic acid A copolymer
  • a polyethyleneimine-ethylene oxide adduct having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule.
  • the polymer compound a compound having an imino group is preferable, and a polyethyleneimine and a polyethyleneimine-ethylene oxide adduct are particularly preferable.
  • the metal fine particles can be uniformly dispersed in the dispersion medium while preventing aggregation of the metal fine particles easily and reliably.
  • the coating liquid for forming a conductive layer can increase the content of nitrogen atoms in the polymer compound because the polymer compound is polyethyleneimine or a polyethyleneimine-ethylene oxide adduct.
  • the metal fine particles can be more uniformly dispersed in the dispersion medium while preventing the aggregation of the particles more easily and reliably.
  • the lower limit of the weight average molecular weight of the polymer compound is preferably 2,000, and more preferably 5,000.
  • the upper limit of the weight average molecular weight of the polymer compound is preferably 750,000, and more preferably 100,000. If the weight average molecular weight of the polymer compound is less than the lower limit, there is a risk that the effect of preventing the aggregation of the metal fine particles and maintaining the dispersion of the metal fine particles may not be obtained. It may be difficult to form a conductive layer that does not exist.
  • the weight average molecular weight of the polymer compound exceeds the upper limit, the bulk of the dispersant is too large and inhibits sintering of the metal fine particles in the heat treatment performed after application of the conductive layer forming coating solution. May cause voids.
  • the bulk of the dispersant is too large, the denseness of the conductive layer may decrease, or the conductivity of the conductive layer may decrease due to the decomposition residue of the dispersant.
  • the lower limit of the content of the dispersant in the conductive layer forming coating solution is preferably 0.01% by mass, and more preferably 0.02% by mass.
  • the upper limit of the content of the dispersant is preferably 2% by mass, and more preferably 1% by mass. If the content of the dispersant is less than the lower limit, the metal fine particles cannot be sufficiently surrounded by the dispersant, and aggregation of the metal fine particles may not be sufficiently prevented.
  • the content of the dispersant exceeds the upper limit, an excessive dispersant inhibits firing including sintering of the metal fine particles during the heat treatment after the application of the coating liquid for forming the conductive layer, resulting in voids. May occur. Further, the decomposition residue of the dispersant may remain in the conductive layer as an impurity, and the conductivity of the conductive layer may be reduced.
  • the conductive layer forming coating solution may contain an organic solvent as required.
  • organic solvent various water-soluble organic solvents can be used.
  • methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert- Examples include alcohols such as butyl alcohol; ketones such as acetone and methyl ethyl ketone; polyhydric alcohols such as ethylene glycol and glycerin and other esters; glycol ethers such as ethylene glycol monoethyl ether and diethylene glycol monobutyl ether.
  • the lower limit of the content of the organic solvent in the conductive layer forming coating solution is preferably 25% by mass, more preferably 30% by mass.
  • the upper limit of the content of the organic solvent is preferably 75% by mass, and more preferably 70% by mass. If the content of the organic solvent is less than the lower limit, the effects such as viscosity adjustment and vapor pressure adjustment by the organic solvent may not be sufficiently obtained. Conversely, if the content of the organic solvent exceeds the upper limit, the swelling effect of the dispersant due to water becomes insufficient, and the metal fine particles may aggregate in the conductive layer forming coating solution.
  • the pH of the conductive layer forming coating solution is 4 or more and 8 or less as described above. Moreover, as a minimum of pH of the said coating liquid for conductive layer formation in case the said dispersing agent is a polyethyleneimine, 6 is preferable and 6.5 is more preferable. On the other hand, as the upper limit of the pH of the coating liquid for forming a conductive layer when the dispersant is polyethyleneimine, 7.5 is preferable. Further, when the dispersant is a polyethyleneimine-ethylene oxide adduct, the lower limit of the pH of the conductive layer forming coating solution is preferably 4.5 and more preferably 5.
  • the upper limit of the pH of the conductive layer forming coating solution is preferably 7, and more preferably 6.0. If the pH is less than the lower limit, the metal fine particles may be easily dissolved. On the contrary, when the pH exceeds the upper limit, the uniform dispersibility of the metal fine particles may be lowered by the action of hydroxide ions.
  • the lower limit of the electrical conductivity of the conductive layer forming coating solution is 100 ⁇ S / cm, preferably 150 ⁇ S / cm, and more preferably 200 ⁇ S / cm.
  • the upper limit of the electric conductivity is 800 ⁇ S / cm, preferably 700 ⁇ S / cm, and more preferably 600 ⁇ S / cm. If the electrical conductivity is less than the lower limit, the metal fine particles may be easily aggregated. On the other hand, when the electrical conductivity exceeds the upper limit, decomposition residues such as a dispersant easily remain as impurities in the conductive layer formed from the coating liquid for forming the conductive layer. May decrease.
  • the upper limit of the viscosity at 25 ° C. of the conductive layer forming coating solution is preferably 100 mPa ⁇ s, more preferably 30 mPa ⁇ s, and even more preferably 2 mPa ⁇ s.
  • the lower limit of the viscosity is preferably 1 mPa ⁇ s. If the viscosity exceeds the upper limit, applicability may be reduced. Conversely, if the viscosity is less than the lower limit, the moldability of the coating film may be reduced.
  • the conductive layer forming coating liquid manufacturing method includes a metal fine particle manufacturing process for manufacturing metal fine particles, a cleaning process for cleaning the metal fine particles manufactured in the metal fine particle manufacturing process, and the metal fine particles cleaned in the cleaning process are dispersed. A dispersion step of dispersing in a medium.
  • the metal fine particle production step can be performed by a high temperature treatment method, a liquid phase reduction method, a gas phase method, or the like. Below, the method by a liquid phase reduction method is demonstrated as a preferable aspect of the said metal microparticle manufacturing process.
  • a water-soluble metal compound that is a source of metal ions that form fine metal particles in water and the dispersant are dissolved, and a reducing agent and A complexing agent as an optional component may be added and the metal ion may be reduced for a certain time.
  • the produced metal fine particles have a spherical or granular shape and can be made into fine particles.
  • copper copper (II) nitrate (Cu (NO 3 ) 2 ), copper (II) sulfate pentahydrate (CuSO 4 .5H 2 ) as the water-soluble metal compound that is the basis of the metal ions.
  • the reducing agent various reducing agents capable of reducing and precipitating metal ions in a liquid phase (aqueous solution) reaction system can be used.
  • the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, transition metal ions such as trivalent titanium ions and divalent cobalt ions, reducing sugars such as ascorbic acid, glucose and fructose, ethylene Examples thereof include polyhydric alcohols such as glycol and glycerin.
  • the titanium redox method is a method in which metal ions are reduced by redox action when trivalent titanium ions are oxidized to tetravalent, and metal fine particles are precipitated.
  • the metal fine particles obtained by the titanium redox method have a small and uniform particle size, and the titanium redox method can make the metal fine particles spherical or granular. Therefore, by using the titanium redox method, it is possible to promote densification of the conductive layer formed from the conductive layer forming coating solution.
  • the complexing agent examples include sodium citrate, sodium gluconate, sodium acetate, sodium propionate, malic acid, lactic acid, Rochelle salt, sodium thiosulfate, sodium tartrate, ethylenediaminetetraacetic acid, ammonia and the like.
  • the types and blending ratios of the metal compound, dispersant, reducing agent, complexing agent are adjusted, and when the metal compound is reduced, the stirring speed, temperature, time, pH Etc. may be adjusted.
  • the pH of the reaction system is preferably 7 or more and 13 or less in order to obtain metal fine particles having a minute particle size as in this embodiment.
  • the pH of the reaction system can be adjusted to the above range by using a pH adjuster.
  • a general acid or alkali such as hydrochloric acid, sulfuric acid, sodium hydroxide, sodium carbonate or the like is used.
  • alkali metal or alkaline earth metal Nitric acid or ammonia that does not contain a halogen element such as chlorine, or an impurity element such as sulfur, phosphorus, or boron may be used.
  • the metal fine particles deposited in the metal fine particle production step are washed with water.
  • the metal fine particles and the liquid are separated by centrifugation, and the metal fine particles are washed by adding water to the separated metal fine particles and stirring.
  • count of performing water washing For example, it can be 1 to 3 times, and 2 times is more preferable.
  • the manufacturing method of the said coating liquid for conductive layer formation can reduce pH of the said coating liquid for conductive layer formation, electrical conductivity, and content of a dispersing agent by increasing the frequency
  • the conductive layer forming coating solution adjusts the pH, electrical conductivity, and dispersant content of the conductive layer forming coating solution to the above ranges by setting the number of water washings within the above range. easy.
  • the manufacturing method of the said coating liquid for conductive layer formation uses the metal fine particle of this powder form in the below-mentioned dispersion
  • the metal fine particles after the washing step are dispersed in a dispersion medium.
  • the dispersion step can be performed, for example, by containing powdered metal fine particles obtained by drying after the washing step in water as a dispersion medium.
  • the fine metal particles after the washing step exist in a state surrounded by the dispersing agent, it is not always necessary to add the dispersing agent to the dispersion medium in the dispersing step, but it is necessary in the dispersing step. Accordingly, the dispersant may be added to the dispersion medium.
  • the method for producing the coating liquid for forming a conductive layer can easily and reliably produce the coating liquid for forming a conductive layer capable of easily and reliably forming a conductive layer at a relatively low cost.
  • the method for producing the conductive layer includes a coating process for coating the conductive layer forming coating liquid and a heating process for heating the conductive layer forming coating liquid after coating.
  • the method for producing a conductive layer may further include a metal plating layer forming step of forming a metal plating layer on the outer surface of the metal fine particle sintered layer formed by sintering the metal fine particles by the heating.
  • the pH at the time of application of the coating liquid for forming the conductive layer is 4 or more and 8 or less
  • the electric conductivity is 100 ⁇ S / cm or more and 800 ⁇ S / cm or less
  • the content of the metal fine particles is 20% by mass or more. 80% by mass or less.
  • a laminate of the metal fine particle sintered layer and the metal plating layer is formed as a conductive layer.
  • the coating liquid for forming a conductive layer contains a dispersion medium and a dispersing agent, and the pH and electric conductivity of the coating liquid for forming a conductive layer at the time of coating are within the above ranges. Therefore, even if the content of the metal fine particles is increased within the above range, the uniform dispersibility of the metal fine particles during coating is excellent. Therefore, the manufacturing method of the said conductive layer can form the conductive layer which has fixed thickness and a metal fine particle is arrange
  • the manufacturing method of the said conductive layer does not need to use a vacuum installation, it can prevent that the magnitude
  • the conductive layer forming application liquid is applied to one surface of the base film 1.
  • a flexible resin such as polyimide, liquid crystal polymer, fluororesin, polyethylene terephthalate, polyethylene naphthalate, paper phenol, paper epoxy, glass composite, glass epoxy, Teflon (registered trademark) And rigid materials such as glass substrates, rigid flexible materials composed of hard materials and soft materials, and the like.
  • polyimide is preferred because of its high bonding strength with metal oxides and the like.
  • the surface of the base film 1 on which the coating liquid for forming the conductive layer is applied is subjected to a hydrophilic treatment.
  • a hydrophilic treatment for example, plasma treatment for irradiating plasma to make the coated surface hydrophilic, or alkali treatment for hydrophilizing the coated surface with an alkaline solution can be employed.
  • plasma treatment is preferable as the hydrophilic treatment.
  • Examples of the method for applying the conductive layer forming coating solution on one surface of the base film 1 include spin coating, spray coating, bar coating, die coating, slit coating, roll coating, and dip coating. Conventionally known coating methods can be used. Alternatively, the conductive layer forming coating solution may be applied to only a part of one surface of the base film 1 by screen printing, a dispenser, or the like.
  • the coating film 3 containing the metal fine particles 2 is formed, for example, by drying at a temperature of room temperature or higher. As an upper limit of drying temperature, 100 degreeC is preferable and 40 degreeC is more preferable. When the drying temperature exceeds the above upper limit, a crack may occur in the coating film 3 due to rapid drying of the coating film 3.
  • the lower limit of the average thickness of the coating film 3 (the average thickness when the conductive layer forming coating solution is applied once) is preferably 0.1 ⁇ m, and more preferably 0.2 ⁇ m.
  • the upper limit of the average thickness of the coating film 3 is preferably 0.5 ⁇ m, more preferably 0.4 ⁇ m. If the average thickness of the coating film 3 is less than the above lower limit, there is a possibility that the thickness of the metal fine particle sintered layer 4 obtained by the heating step described later cannot be sufficiently increased.
  • the “average thickness” refers to an average value obtained by measuring the thickness of the portion where the metal fine particles are present in the coating film with a fluorescent X-ray film thickness meter. Moreover, the said average value can be calculated
  • the upper limit of the surface roughness Sa of the coating film 3 is preferably 0.12 ⁇ m, and more preferably 0.08 ⁇ m. If the surface roughness Sa of the coating film 3 exceeds the above upper limit, it may be difficult to form a sufficiently dense metal fine particle sintered layer 4. In addition, as a minimum of surface roughness Sa of the coating film 3, it does not specifically limit, For example, it can be set as 0.01 micrometer. “Surface roughness Sa” refers to a value based on ISO25178.
  • the metal fine particle sintered layer 4 is formed by firing the coating film 3.
  • the metal fine particles 2 are sintered together by firing the coating film 3, and the sintered body of the metal fine particles 2 is fixed to one surface of the base film 1.
  • the dispersant and other organic substances contained in the coating film 3 are volatilized or decomposed by this baking.
  • the metal fine particles are oxidized by heating to generate a metal hydroxide based on the metal of the metal fine particles or a group derived from the metal hydroxide.
  • a metal oxide based on the above metal or a group derived from the metal oxide is generated.
  • copper oxide and copper hydroxide are generated in the vicinity of the interface between the metal fine particle sintered layer 4 and the base film 1, but more copper oxide is generated.
  • the adhesion between the metal fine particle sintered layer 4 and the base film 1 is strong. Becomes larger.
  • the above heating process is performed in an atmosphere containing a certain amount of oxygen.
  • the oxygen concentration of the atmosphere at the time of heat processing 1 ppm is preferable and 10 ppm is more preferable.
  • the upper limit of the oxygen concentration is preferably 10,000 ppm, more preferably 1,000 ppm. If the oxygen concentration is less than the lower limit, the amount of copper oxide produced in the vicinity of the interface of the metal fine particle sintered layer 4 is reduced, and sufficient adhesion between the metal fine particle sintered layer 4 and the base film 1 cannot be obtained. There is a fear. On the other hand, when the oxygen concentration exceeds the upper limit, the metal fine particles are excessively oxidized, and the conductivity of the metal fine particle sintered layer 4 may be lowered.
  • the lower limit of the heating temperature is preferably 150 ° C, more preferably 200 ° C.
  • an upper limit of heating temperature 500 degreeC is preferable and 400 degreeC is more preferable. If the heating temperature is less than the lower limit, the amount of copper oxide produced in the vicinity of the interface of the metal fine particle sintered layer 4 is reduced, and the adhesion between the metal fine particle sintered layer 4 and the base film 1 may not be sufficiently obtained. There is. Conversely, if the heating temperature exceeds the upper limit, the base film 1 may be deformed when the base film 1 is an organic resin such as polyimide.
  • the metal plating layer forming step includes a first metal plating layer forming step and a second metal plating layer forming step.
  • First metal plating layer forming step In the first metal plating layer forming step, as shown in FIG. 3, the first metal plating layer 5 is formed on the outer surface of the metal fine particle sintered layer 4. Specifically, in the first metal plating layer forming step, the voids of the metal fine particle sintered layer 4 are filled with the plating metal, and the plated metal is laminated on one surface of the metal fine particle sintered layer 4.
  • the manufacturing method of the said conductive layer can improve the adhesive force of a conductive layer and the base film 1 by having the said 1st metal plating layer formation process.
  • the plating method for forming the first metal plating layer 5 is not particularly limited, and may be electroless plating or electroplating, but the space between the metal fine particles forming the metal fine particle sintered layer 4 Electroless plating that can easily and reliably improve the peel strength of the metal fine particle sintered layer 4 and the base film 1 is preferable by filling in more accurately.
  • the procedure in the case of adopting the above electroless plating is not particularly limited. What is necessary is just to perform electroless plating by a well-known means.
  • the procedure is not particularly limited, and may be appropriately selected from known electrolytic plating baths and plating conditions, for example.
  • the copper oxide in the vicinity of the interface between the metal fine particle sintered layer 4 and the base film 1 is further increased, so that the adhesion between the metal fine particle sintered layer 4 and the base film 1 can be further improved.
  • the second metal plating layer forming step In the second metal plating layer forming step, the second metal plating layer 6 is formed on the outer surface of the first metal plating layer 5 as shown in FIG.
  • the manufacturing method of the said conductive layer can adjust the thickness of a conductive layer easily and reliably by having the said 2nd metal plating layer formation process.
  • the plating method for forming the second metal plating layer 6 is not particularly limited and may be electroless plating or electroplating, but the thickness can be adjusted easily and accurately. In addition, electroplating capable of forming the second metal plating layer 6 in a relatively short time is preferable.
  • the procedure in the case of employing the above electroless plating is not particularly limited, and can be performed by the same procedure as that for forming the first metal plating layer 5 described above. Moreover, also when employ
  • the conductive layer manufactured with the manufacturing method of the said conductive layer is formed as a conductive pattern laminated
  • stacked on one surface of the base film 1 and the base film 1 is manufactured.
  • the conductive layer forming coating solution is not necessarily used for forming a printed wiring board substrate.
  • the manufacturing method of the said conductive layer does not necessarily need to be implemented as a manufacturing method of the conductive layer of the base material for printed wiring boards.
  • the manufacturing method of the said conductive layer is a case where it implements as a manufacturing method of the conductive layer of the base material for printed wiring boards, it does not necessarily need to provide a metal plating layer formation process.
  • the manufacturing method of the said conductive layer may manufacture a conductive layer by performing the above-mentioned application
  • the manufacturing method of the said conductive layer is equipped with a metal plating layer formation process, it does not necessarily need to have both a 1st metal plating layer formation process and a 2nd metal plating layer formation process, and a 1st metal plating layer formation process You may have only. Furthermore, the manufacturing method of the said conductive layer does not need to form a conductive layer only in one side of a base film, and may form a conductive layer in both surfaces of a base film.
  • No. 6-No. 9 No. 1 except that the content of the copper fine particles in the coating liquid for forming the conductive layer was as shown in Table 1. No. 1 as in No. 1. 6-No. Nine conductive layer forming coating solutions were obtained. No. 6-No. No. 9 conductive layer forming coating solution is No. 9. In the same manner as in No. 1, each was applied by a bar coating method onto a polyimide film (10 cm square) subjected to a hydrophilic treatment.
  • No. 10 No. 1 except that 1 g of polyethyleneimine-ethylene oxide adduct was used as a dispersant. No. 1 as in No. 1.
  • Ten conductive layer forming coating solutions were obtained.
  • No. No. 10 conductive layer forming coating solution was prepared as No. 10; 1 was applied onto a polyimide film (10 cm square) that had been subjected to a hydrophilic treatment by a bar coating method.
  • No. 11 No. 1 except that 1 g of polyethyleneimine-ethylene oxide adduct was used as a dispersant and the amount of water per washing step was as shown in Table 1. No. 1 as in No. 1. Eleven conductive layer forming coating solutions were obtained. No. No. 11 conductive layer forming coating solution. 1 was applied onto a polyimide film (10 cm square) that had been subjected to a hydrophilic treatment by a bar coating method.
  • the coating thickness was measured using a fluorescent X-ray film thickness meter “FT9500” manufactured by Hitachi High-Tech Science Co., Ltd.
  • the thickness of the coating film was determined by measuring the thickness of the copper fine particles at 10 locations at a rate of 1 location per 10 cm 2 area and averaging the thickness at these 10 locations. The measurement results are shown in Table 1.
  • ⁇ Average particle diameter D 50> The average particle diameter D 50 [nm] of the metal fine particles (copper fine particles) calculated from the volume cumulative distribution was measured using a particle size distribution measuring device “Nanotrac Wave-EX150” manufactured by Microtrack Bell Co., Ltd. The measurement results are shown in Table 1.
  • the conductive layer forming coating solution No. 11 has a pH of 4 or more and 8 or less, an electric conductivity of 100 ⁇ S / cm or more and 800 ⁇ S / cm or less, and a content of metal fine particles (copper fine particles) of 20 mass% or more and 80 mass% or less.
  • a relatively small coating film having a thickness of 0.1 ⁇ m or more and a relatively large thickness and a surface roughness Sa of 0.12 ⁇ m or less can be formed.
  • Conductive layer forming coating liquid 11 since the ratio of the average particle diameter D 50SEM / average particle diameter D 50 of 1.1 or less and small, the shape of the individual metal particles (copper particles) are aligned in a substantially spherical shape As a result, it was found that the surface roughness Sa of the coating film can be reduced to 0.063 ⁇ m or less because these metal fine particles are easily dispersed uniformly at high density in the coating film. In contrast, no. 12-No.
  • the coating liquid for forming a conductive layer 16 has a relatively large thickness and a relatively small surface roughness Sa because the pH, electrical conductivity, and content of metal fine particles (copper fine particles) are not adjusted to the above ranges. It turned out that it was difficult to form a coating film.
  • the average particle diameter D 50SEM is relatively large, and since the ratio of the average particle diameter D 50SEM / average particle diameter D 50 is as large as 2.1 or more, the surface roughness of the coating film It was found that Sa could not be kept sufficiently small and it was difficult to form a sufficiently dense conductive layer. Furthermore, no.
  • the coating liquid for forming the conductive layer 15 has a viscosity of 123 mPa ⁇ s and a high viscosity exceeding 100 mPa ⁇ s, so the coating film is difficult to spread uniformly on the polyimide film, and the coating film is found to be faint. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本発明の一態様に係る導電層形成用塗布液は、金属微粒子、分散媒及び分散剤を含有する導電層形成用塗布液であって、pHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である。本発明の他の一態様に係る導電層の製造方法は、金属微粒子、分散媒及び分散剤を含有する導電層形成用塗布液を用いた導電層の製造方法であって、導電層形成用塗布液を塗布する塗布工程と、塗布後の導電層形成用塗布液を加熱する加熱工程とを備え、塗布時の導電層形成用塗布液のpHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である。

Description

導電層形成用塗布液及び導電層の製造方法
 本発明は、導電層形成用塗布液及び導電層の製造方法に関する。
 本出願は、2015年9月30日出願の日本出願第2015-193141号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
 近年、電子機器の小型化及び高性能化に伴い、プリント配線板の高密度化が要求されている。
 このような要求に対し、耐熱性絶縁ベースフィルムに接着剤層を介することなく銅薄層を積層したプリント配線板用基材が提案されている(特開平9-136378号公報参照)。この公報に記載のプリント配線板用基材は、耐熱性絶縁ベースフィルムの表面にスパッタリング法を用いて厚み0.25~0.30μmの銅薄膜層を形成している。このプリント配線板用基材は、この銅薄膜層の外面に電気めっき法を用いて銅厚膜層を積層することで、ベースフィルム及び銅薄膜層との接着強度を十分に確保しつつ、高密度化を図ることができるとされている。
特開平9-136378号公報
 本発明の一態様に係る導電層形成用塗布液は、金属微粒子、分散媒及び分散剤を含有する導電層形成用塗布液であって、pHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である。
 本発明の他の一態様に係る導電層の製造方法は、金属微粒子、分散媒及び分散剤を含有する導電層形成用塗布液を用いた導電層の製造方法であって、上記導電層形成用塗布液を塗布する塗布工程と、塗布後の導電層形成用塗布液を加熱する加熱工程とを備え、上記塗布時の上記導電層形成用塗布液のpHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である。
本発明の一実施形態に係る導電層の製造方法の塗布工程を示す模式的断面図である。 本発明の一実施形態に係る導電層の製造方法の加熱工程を示す模式的断面図である。 本発明の一実施形態に係る導電層の製造方法の第1金属めっき層形成工程を示す模式的断面図である。 本発明の一実施形態に係る導電層の製造方法の第2金属めっき層形成工程を示す模式的断面図である。
[本開示が解決しようとする課題]
 上記公報に記載のプリント配線板用基材は、ベースフィルムに銅薄膜層を直接積層できる点において高密度プリント配線の要求に沿うといえる。しかしながら、このプリント配線板用基材は、銅薄膜層をスパッタリング法によって形成しているため、真空設備を必要とし、設備の建設、維持、運転等、設備コストが高くなるという不都合を有する。また、このプリント配線板用基材は、真空設備を用いた真空条件下で形成する必要があるため、基材のサイズを大きくすることに限界がある。
 本発明は、このような事情に基づいてなされたものであり、一定の厚みを有する導電層を比較的低コストで容易かつ確実に形成可能な導電層形成用塗布液及びこの導電層形成用塗布液を用いた導電層の製造方法の提供を目的とする。
[本開示の効果]
 本発明の導電層形成用塗布液及び導電層の製造方法は、一定の厚みを有する導電層を比較的低コストで容易かつ確実に形成することができる。
[本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 本発明の一態様に係る導電層形成用塗布液は、金属微粒子、分散媒及び分散剤を含有する導電層形成用塗布液であって、pHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である。
 当該導電層形成用塗布液は、分散媒及び分散剤を含有し、かつpH及び電気伝導率が上記範囲内とされていることによって、金属微粒子の含有量が上記範囲内と多くても分散媒中におけるこの金属微粒子の均一分散性に優れる。そのため、当該導電層形成用塗布液は、例えばプリント配線板用基材を構成するベースフィルムの表面に塗布及び加熱されることで、一定の厚みを有しかつ金属微粒子が高密度で配設される導電層を容易かつ確実に形成することができる。また、当該導電層形成用塗布液は、スパッタリング等の物理的蒸着に必要な高価な真空設備を用いることなく比較的低コストで導電層を形成することができる。さらに、当該導電層形成用塗布液は、導電層を形成する際に真空設備を用いる必要がないので、この真空設備のサイズによって導電層の大きさが制限されることを防止することができる。その結果、当該導電層形成用塗布液によると、外寸の大きい導電層を形成し易い。
 上記分散剤が、高分子化合物であるとよい。このように、上記分散剤が高分子分散剤であることによって、金属微粒子の凝集を防止しつつこの金属微粒子を分散媒中に均一に分散させ易い。これにより、緻密でかつ裂け目のない導電層を形成し易い。
 上記高分子化合物がイミノ基を有するとよい。このように、上記高分子化合物がイミノ基を有することによって、金属微粒子の凝集を容易かつ確実に防止しつつこの金属微粒子を分散媒中により均一に分散させ易い。
 上記高分子化合物が、ポリエチレンイミン又はポリエチレンイミン-エチレンオキサイド付加物であるとよい。このように、上記高分子化合物がポリエチレンイミン又はポリエチレンイミン-エチレンオキサイド付加物であることによって、金属微粒子の凝集を容易かつ確実に防止しつつこの金属微粒子を分散媒中にさらに均一に分散させ易い。
 上記金属微粒子のレーザ回折法で測定した累積分布から算出される平均粒子径D50としては、1nm以上500nm以下が好ましい。当該導電層形成用塗布液によると、金属微粒子の平均粒子径D50が上記範囲内のように比較的小さくてもこの金属微粒子を分散媒中に均一に分散させることができる。そのため、上記金属微粒子の平均粒子径D50を上記範囲内とすることによって、緻密な導電層を容易かつ確実に形成することができる。なお、上記「平均粒子径D50」とは、体積累積分布から算出される値をいう。
 当該導電層形成用塗布液の25℃における粘度としては、100mPa・s以下が好ましい。このように、25℃における粘度が上記上限以下であることによって、当該導電層形成用塗布液の塗布性を向上することができる。
 上記金属微粒子の主成分が銅又は銅合金であるとよい。このように、上記金属微粒子の主成分が銅又は銅合金であることによって、導電性に優れる導電層を形成することができる。
 本発明の他の一態様に係る導電層の製造方法は、金属微粒子、分散媒及び分散剤を含有する導電層形成用塗布液を用いた導電層の製造方法であって、上記導電層形成用塗布液を塗布する塗布工程と、塗布後の導電層形成用塗布液を加熱する加熱工程とを備え、上記塗布時の上記導電層形成用塗布液のpHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である。
 当該導電層の製造方法は、導電層形成用塗布液が分散媒及び分散剤を含有しており、塗布時の導電層形成用塗布液のpH及び電気伝導率が上記範囲内とされているので、金属微粒子の含有量が上記範囲内と多くても塗布時におけるこの金属微粒子の均一分散性に優れる。そのため、当該導電層の製造方法は、一定の厚みを有しかつ金属微粒子が高密度で配設される導電層を容易かつ確実に形成することができる。また、当該導電層の製造方法は、スパッタリング等の物理的蒸着に必要な高価な真空設備を用いることなく比較的低コストで導電層を形成することができる。さらに、当該導電層の製造方法は、真空設備を用いる必要がないので、この真空設備のサイズによって導電層の大きさが制限されることを防止することができる。その結果、当該導電層の製造方法は、外寸の大きい導電層を製造し易い。
 なお、本明細書において、「電気伝導率」とは、JIS-K0130:2008に準拠して測定される値をいう。「粘度」とは、JIS-Z8803:2011に準拠して測定した値をいう。「主成分」とは、最も含有量の多い成分をいい、例えば含有量が50質量%以上の成分をいい、好ましくは80質量%以上の成分をいう。
[本発明の実施形態の詳細]
<導電層形成用塗布液>
 当該導電層形成用塗布液は、例えばプリント配線板基材形成用である。具体的には、当該導電層形成用塗布液は、プリント配線板を構成するベースフィルムの表面に塗布された上、乾燥及び加熱処理されることで、このベースフィルムの表面に積層され、金属微粒子が焼結された導電層(金属微粒子焼結層)を形成する。
 当該導電層形成用塗布液は、金属微粒子、分散媒及び分散剤を含有している。また、当該導電層形成用塗布液は、pHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、金属微粒子の含有量が20質量%以上80質量%以下である。当該導電層形成用塗布液は、分散媒及び分散剤を含有し、かつpH及び電気伝導率が上記範囲内とされていることによって、金属微粒子の含有量が上記範囲内と多くても分散媒中におけるこの金属微粒子の均一分散性に優れる。そのため、当該導電層形成用塗布液は、例えばベースフィルムの表面に塗布及び加熱されることで、一定の厚みを有しかつ金属微粒子が高密度で配設される導電層を容易かつ確実に形成することができる。また、当該導電層形成用塗布液は、スパッタリング等の物理的蒸着に必要な高価な真空設備を用いることなく比較的低コストで導電層を形成することができる。さらに、当該導電層形成用塗布液は、導電層を形成する際に真空設備を用いる必要がないので、この真空設備のサイズによって導電層の大きさが制限されることを防止することができる。その結果、当該導電層形成用塗布液によると、外寸の大きい導電層を形成し易い。
 当該導電層形成用塗布液に含有される分散媒としては、特に限定されるものではないが、典型的には水が用いられる。
 当該導電層形成用塗布液に含有される金属微粒子の主成分としては、例えば銅(Cu)、ニッケル(Ni)、アルミニウム(Al)、金(Au)、銀(Ag)及びこれらの合金等が挙げられる。中でも、導電性に優れると共に、ベースフィルムとの密着力を高め易い銅又は銅合金が好ましい。
 当該導電層形成用塗布液における上記金属微粒子の含有量の下限としては、20質量%であり、25質量%がより好ましい。一方、上記金属微粒子の含有量の上限としては、80質量%であり、50質量%がより好ましく、35質量%がさらに好ましい。上記金属微粒子の含有量が上記下限に満たないと、十分な厚み及び密度を有する導電層を形成し難くなるおそれがある。逆に、上記金属微粒子の含有量が上記上限を超えると、上記金属微粒子を分散媒中に均一に分散させ難くなるおそれがある。
 上記金属微粒子のレーザ回折法で測定した体積累積分布から算出される平均粒子径D50の下限としては、1nmが好ましく、30nmがより好ましい。一方、上記平均粒子径D50の上限としては、500nmが好ましく、200nmがより好ましく、100nmがさらに好ましい。上記平均粒子径D50が上記下限に満たないと、分散媒中における金属微粒子の分散性及び安定性が低下するおそれがある。逆に、上記平均粒子径D50が上記上限を超えると、当該導電層形成用塗布液を塗布した際の金属微粒子の密度が不均一になり易く、その結果十分に緻密な導電層を形成し難くなるおそれがある。
 上記金属微粒子の走査型電子顕微鏡(SEM)による測定に基づいて算出される平均粒子径D50SEMの下限としては、1nmが好ましく、30nmがより好ましい。一方、上記平均粒子径D50SEMの上限としては、550nmが好ましく、250nmがより好ましく、150nmがさらに好ましい。上記平均粒子径D50SEMが上記下限に満たないと、分散媒中における金属微粒子の分散性及び安定性が低下するおそれがある。逆に、上記平均粒子径D50SEMが上記上限を超えると、当該導電層形成用塗布液を塗布した際の金属微粒子の密度が不均一になり易く、その結果十分に緻密な導電層を形成し難くなるおそれがある。なお、「平均粒子径D50SEM」とは、金属微粒子の表面を走査型電子顕微鏡(SEM)で観察し、任意に抽出した金属微粒子100個を測長して粒子径の小さい順に体積を積算した際の累積体積が50%となる粒子径をいう。
 上記金属微粒子のレーザ回折法で測定した累積分布から算出される平均粒子径D50に対する上記金属微粒子の走査型電子顕微鏡による測定に基づいて算出される平均粒子径D50SEMの比(D50SEM/D50)の上限としては、1.5が好ましく、1.3がより好ましい。上記比(D50SEM/D50)が上記上限を超えると、個々の金属微粒子の形状が不均一となり易い。その結果、当該導電層形成用塗布液を塗布して形成される塗膜表面の平滑性が不十分となり、ひいては十分に緻密な導電層を形成し難くなるおそれがある。なお、上記比(D50SEM/D50)の下限としては、特に限定されるものではなく、例えば1とすることができる。
 上記分散剤としては、上記分散媒中で金属微粒子を良好に分散させることができるものである限り特に限定されるものではないが、好ましくは高分子化合物が用いられる。当該導電層形成用塗布液は、上記分散剤が高分子分散剤であることによって、上記金属微粒子の凝集を防止しつつこの金属微粒子を分散媒中に均一に分散させ易い。そのため、上記分散剤が高分子分散剤であることによって、当該導電層形成用塗布液を用いて緻密でかつ裂け目のない導電層を形成し易い。
 上記高分子化合物としては、部品劣化防止の観点から、硫黄、リン、ホウ素、ハロゲン元素及びアルカリ金属を含まないものが好ましく、例えばポリエチレンイミン、ポリプロピレンイミン、ポリヘキサメチレンイミン等のポリアルキレンイミン;ポリビニルピロリドン等のアミン系高分子化合物;ポリアクリル酸、カルボキシメチルセルロース等の分子中にカルボン酸基を有する炭化水素系高分子化合物;ポバール(ポリビニルアルコール);スチレン-マレイン酸共重合体;オレフィン-マレイン酸共重合体;あるいは1分子中にポリエチレンイミン部分とポリエチレンオキサイド部分とを有するポリエチレンイミン-エチレンオキサイド付加物等が挙げられる。中でも、上記高分子化合物としては、イミノ基を有する化合物が好ましく、ポリエチレンイミン及びポリエチレンイミン-エチレンオキサイド付加物が特に好ましい。当該導電層形成用塗布液は、上記高分子化合物がイミノ基を有することによって、金属微粒子の凝集を容易かつ確実に防止しつつこの金属微粒子を分散媒中により均一に分散させることができる。特に、当該導電層形成用塗布液は、上記高分子化合物がポリエチレンイミン又はポリエチレンイミン-エチレンオキサイド付加物であることによって、上記高分子化合物の窒素原子の含有量を高めることができるので、金属微粒子の凝集をさらに容易かつ確実に防止しつつこの金属微粒子を分散媒中にさらに均一に分散させることができる。
 上記高分子化合物の重量平均分子量の下限としては、2,000が好ましく、5,000がより好ましい。一方、上記高分子化合物の重量平均分子量の上限としては、750,000が好ましく、100,000がより好ましい。上記高分子化合物の重量平均分子量が上記下限に満たないと、上記金属微粒子の凝集を防止してこの金属微粒子の分散を維持する効果が十分に得られないおそれがあり、その結果緻密で裂け目のない導電層を形成し難くなるおそれがある。逆に、上記高分子化合物の重量平均分子量が上記上限を超えると、分散剤の嵩が大きすぎ、当該導電層形成用塗布液の塗布後に行う加熱処理において、上記金属微粒子同士の焼結を阻害してボイドを生じさせるおそれがある。また、分散剤の嵩が大きすぎると、導電層の緻密性が低下したり、分散剤の分解残渣に起因して導電層の導電性が低下するおそれがある。
 当該導電層形成用塗布液における上記分散剤の含有量の下限としては、0.01質量%が好ましく、0.02質量%がより好ましい。一方、上記分散剤の含有量の上限としては、2質量%が好ましく、1質量%がより好ましい。上記分散剤の含有量が上記下限に満たないと、上記金属微粒子を分散剤によって十分に取り囲むことができず、上記金属微粒子の凝集を十分に防止することができないおそれがある。逆に、上記分散剤の含有量が上記上限を超えると、当該導電層形成用塗布液の塗布後の加熱処理時に、過剰の分散剤が上記金属微粒子の焼結を含む焼成を阻害してボイドが発生するおそれがある。また、上記分散剤の分解残渣が不純物として導電層中に残存してこの導電層の導電性が低下するおそれがある。
 当該導電層形成用塗布液は、必要に応じて有機溶媒を含有してもよい。上記有機溶媒としては、水溶性である種々の有機溶媒が使用可能であり、例えばメチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;エチレングリコール、グリセリン等の多価アルコールやその他のエステル類;エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のグリコールエーテル類等が挙げられる。
 当該導電層形成用塗布液が有機溶媒を含有する場合、当該導電層形成用塗布液における上記有機溶媒の含有量の下限としては、25質量%が好ましく、30質量%がより好ましい。一方、上記有機溶媒の含有量の上限としては、75質量%が好ましく、70質量%がより好ましい。上記有機溶媒の含有量が上記下限に満たないと、上記有機溶媒による粘度調整、蒸気圧調整等の効果が十分に得られないおそれがある。逆に、上記有機溶媒の含有量が上記上限を超えると、水による分散剤の膨潤効果が不十分となり、当該導電層形成用塗布液中で上記金属微粒子の凝集が生じるおそれがある。
 当該導電層形成用塗布液のpHとしては、上述のように4以上8以下とされている。また、上記分散剤がポリエチレンイミンである場合における当該導電層形成用塗布液のpHの下限としては、6が好ましく、6.5がより好ましい。一方、上記分散剤がポリエチレンイミンである場合における当該導電層形成用塗布液のpHの上限としては、7.5が好ましい。また、上記分散剤がポリエチレンイミン-エチレンオキサイド付加物である場合における当該導電層形成用塗布液のpHの下限としては、4.5が好ましく、5がより好ましい。一方、上記分散剤がポリエチレンイミン-エチレンオキサイド付加物である場合における当該導電層形成用塗布液のpHの上限としては、7が好ましく、6.0がより好ましい。上記pHが上記下限に満たないと、金属微粒子が溶けやすくなるおそれがある。逆に、上記pHが上記上限を超えると、水酸化物イオンの作用によって金属微粒子の均一分散性が低下するおそれがある。
 当該導電層形成用塗布液の電気伝導率の下限としては、100μS/cmであり、150μS/cmが好ましく、200μS/cmがより好ましい。一方、上記電気伝導率の上限としては、800μS/cmであり、700μS/cmが好ましく、600μS/cmがより好ましい。上記電気伝導率が上記下限に満たないと、金属微粒子が凝集し易くなるおそれがある。逆に、上記電気伝導率が上記上限を超えると、当該導電層形成用塗布液から形成される導電層中に分散剤等の分解残渣が不純物として残存し易くなり、その結果この導電層の導電性が低下するおそれがある。
 当該導電層形成用塗布液の25℃における粘度の上限としては、100mPa・sが好ましく、30mPa・sがより好ましく、2mPa・sがさらに好ましい。一方、上記粘度の下限としては、1mPa・sが好ましい。上記粘度が上記上限を超えると、塗布性が低下するおそれがある。逆に、上記粘度が上記下限に満たないと、塗膜の成形性が低下するおそれがある。
<当該導電層形成用塗布液の製造方法>
 当該導電層形成用塗布液の製造方法は、金属微粒子を製造する金属微粒子製造工程と、上記金属微粒子製造工程で製造した金属微粒子を洗浄する洗浄工程と、上記洗浄工程で洗浄した金属微粒子を分散媒中に分散させる分散工程とを備える。
(金属微粒子製造工程)
 上記金属微粒子製造工程は、高温処理法、液相還元法、気相法等によって行うことができる。以下では、上記金属微粒子製造工程の好ましい態様として、液相還元法による方法について説明する。
 上記液相還元法によって上記金属微粒子を製造するためには、例えば水に金属微粒子を形成する金属のイオンのもとになる水溶性の金属化合物と上記分散剤とを溶解すると共に、還元剤及び任意成分としての錯化剤を加えて一定時間金属イオンを還元反応させればよい。液相還元法の場合、製造される金属微粒子は形状が球状又は粒状で揃っており、しかも微細な粒子とすることができる。上記金属イオンのもとになる水溶性の金属化合物として、例えば銅の場合は、硝酸銅(II)(Cu(NO)、硫酸銅(II)五水和物(CuSO・5HO)等が挙げられる。また銀の場合は硝酸銀(I)(AgNO)、メタンスルホン酸銀(CHSOAg)等、金の場合はテトラクロロ金(III)酸四水和物(HAuCl・4HO)、ニッケルの場合は塩化ニッケル(II)六水和物(NiCl・6HO)、硝酸ニッケル(II)六水和物(Ni(NO・6HO)等が挙げられる。他の金属微粒子についても、塩化物、硝酸化合物、硫酸化合物等の水溶性の化合物を用いることができる。
 上記還元剤としては、液相(水溶液)の反応系において、金属イオンを還元及び析出させることができる種々の還元剤を用いることができる。この還元剤として、例えば水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、3価のチタンイオンや2価のコバルトイオン等の遷移金属のイオン、アスコルビン酸、グルコースやフルクトース等の還元性糖類、エチレングリコールやグリセリン等の多価アルコールなどが挙げられる。このうち、3価のチタンイオンが4価に酸化する際の酸化還元作用によって金属イオンを還元し、金属微粒子を析出させる方法がチタンレドックス法である。チタンレドックス法で得られる金属微粒子は、粒子径が小さくかつ揃っており、さらにチタンレドックス法は金属微粒子の形状を球形又は粒状にすることができる。そのため、チタンレドックス法を用いることで、当該導電層形成用塗布液から形成される導電層の緻密化を促進することができる。
 上記錯化剤としては、例えばクエン酸ナトリウム、グルコン酸ナトリウム、酢酸ナトリウム、プロピオン酸ナトリウム、リンゴ酸、乳酸、ロシェル塩、チオ硫酸ナトリウム、酒石酸ナトリウム、エチレンジアミン四酢酸、アンモニア等が挙げられる。
 金属微粒子の粒子径を調整するには、金属化合物、分散剤、還元剤、錯化剤の種類及び配合割合を調整すると共に、金属化合物を還元反応させる際に、攪拌速度、温度、時間、pH等を調整すればよい。例えば反応系のpHは、本実施形態のように微小な粒子径の金属微粒子を得るには、7以上13以下とするのが好ましい。このときpH調整剤を用いることで、反応系のpHを上記範囲に調整することができる。このpH調整剤としては、塩酸、硫酸、水酸化ナトリウム、炭酸ナトリウム等の一般的な酸又はアルカリが使用されるが、特に周辺部材の劣化を防止するために、アルカリ金属やアルカリ土類金属、塩素等のハロゲン元素、硫黄、リン、ホウ素等の不純物元素を含まない硝酸やアンモニアを用いてもよい。
(洗浄工程)
 上記洗浄工程では、上記金属微粒子製造工程で析出させた金属微粒子を水洗浄する。具体的には、上記洗浄工程では、遠心分離により上記金属微粒子と液体とを分離した上、分離後の上記金属微粒子に水を添加して撹拌することで金属微粒子を洗浄する。水洗浄を行う回数としては、特に限定されるものではないが、例えば1回以上3回以下とすることができ、2回がより好ましい。当該導電層形成用塗布液の製造方法は、水洗浄回数を増加させることで当該導電層形成用塗布液のpH、電気伝導率及び分散剤の含有量を低下させることができる。この点に関し、当該導電層形成用塗布液は、水洗浄回数を上記範囲内とすることによって、当該導電層形成用塗布液のpH、電気伝導率及び分散剤の含有量を上記範囲に調整し易い。
 なお、当該導電層形成用塗布液の製造方法は、上記洗浄工程後に金属微粒子を乾燥させて粉末状とした上、この粉末状の金属微粒子を後述の分散工程で用いることが好ましい。
(分散工程)
 上記分散工程では、上記洗浄工程後の金属微粒子を分散媒中に分散させる。上記分散工程は、例えば上記洗浄工程後に乾燥して得られた粉末状の金属微粒子を分散媒である水に含有させることで行うことができる。なお、上記洗浄工程後の金属微粒子は、分散剤によって取り囲まれた状態で存在しているため、上記分散工程では必ずしも分散媒中に分散剤を添加する必要はないが、上記分散工程では必要に応じて分散媒中に上記分散剤を添加してもよい。
 当該導電層形成用塗布液の製造方法は、導電層を比較的低コストで容易かつ確実に形成可能な当該導電層形成用塗布液を容易かつ確実に製造することができる。
<導電層の製造方法>
 次に、図1~図4を参照しつつ、当該導電層形成用塗布液を用いた導電層の製造方法を説明する。なお、以下では、当該導電層形成用塗布液を用いてプリント配線板用基材の導電層を製造する場合について説明する。
 当該導電層の製造方法は、当該導電層形成用塗布液を塗布する塗布工程と、塗布後の導電層形成用塗布液を加熱する加熱工程とを備える。また、当該導電層の製造方法は、上記加熱により金属微粒子が焼結して形成される金属微粒子焼結層の外面に金属めっき層を形成する金属めっき層形成工程をさらに備えてもよい。当該導電層の製造方法は、当該導電層形成用塗布液の塗布時のpHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である。本実施形態における導電層の製造方法では、上記金属微粒子焼結層及び金属めっき層の積層体が導電層として形成される。
 当該導電層の製造方法は、当該導電層形成用塗布液が分散媒及び分散剤を含有しており、塗布時における導電層形成用塗布液のpH及び電気伝導率が上記範囲内とされているので、金属微粒子の含有量を上記範囲内と多くしても塗布時におけるこの金属微粒子の均一分散性に優れる。そのため、当該導電層の製造方法は、一定の厚みを有しかつ金属微粒子が高密度で配設される導電層を容易かつ確実に形成することができる。また、当該導電層の製造方法は、スパッタリング等の物理的蒸着に必要な高価な真空設備を用いることなく比較的低コストで導電層を形成することができる。さらに、当該導電層の製造方法は、真空設備を用いる必要がないので、この真空設備のサイズによって導電層の大きさが制限されることを防止することができる。その結果、当該導電層の製造方法は、外寸の大きい導電層を形成し易い。
(塗布工程)
 上記塗布工程では、図1に示すように、ベースフィルム1の一方の面に当該導電層形成用塗布液を塗布する。
 ベースフィルム1の主成分としては、例えばポリイミド、液晶ポリマー、フッ素樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の可撓性を有する樹脂、紙フェノール、紙エポキシ、ガラスコンポジット、ガラスエポキシ、テフロン(登録商標)、ガラス基材等のリジッド材、硬質材料と軟質材料とを複合したリジッドフレキシブル材等を挙げられる。中でも、金属酸化物等との結合力が大きいことから、ポリイミドが好ましい。
 また、ベースフィルム1の当該導電層形成用塗布液を塗布する面には親水化処理を施すことが好ましい。上記親水化処理としては、例えばプラズマを照射して塗布面を親水化するプラズマ処理や、アルカリ溶液で塗布面を親水化するアルカリ処理を採用することができる。塗布面に親水化処理を施すことにより、塗布面に対する当該導電層形成用塗布液の表面張力が小さくなるので、当該導電層形成用塗布液を塗布面に均一に塗布することができる。中でも、上記親水化処理としてはプラズマ処理が好ましい。
 当該導電層形成用塗布液をベースフィルム1の一方の面に塗布する方法としては、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等の従来公知の塗布法を用いることができる。また、スクリーン印刷、ディスペンサ等によりベースフィルム1の一方の面の一部のみに当該導電層形成用塗布液を塗布するようにしてもよい。当該導電層形成用塗布液の塗布後、例えば室温以上の温度で乾燥することによって金属微粒子2を含有する塗膜3が形成される。乾燥温度の上限としては、100℃が好ましく、40℃がより好ましい。乾燥温度が上記上限を超えると、塗膜3の急激な乾燥により、塗膜3に裂け目が発生するおそれがある。
 塗膜3の平均厚み(当該導電層形成用塗布液を1回塗布した場合の平均厚み)の下限としては、0.1μmが好ましく、0.2μmがより好ましい。一方、塗膜3の平均厚みの上限としては、0.5μmが好ましく、0.4μmがより好ましい。塗膜3の平均厚みが上記下限に満たないと、後述する加熱工程によって得られる金属微粒子焼結層4の厚みを十分に厚くできないおそれがある。逆に、塗膜3の平均厚みが上記上限を超えると、塗膜3における金属微粒子の密度が不均一になり易く、その結果十分に緻密な金属微粒子焼結層を形成し難くなるおそれがある。なお、「平均厚み」とは、塗膜における金属微粒子の存在部分の厚みを蛍光X線膜厚計によって測定した平均値をいう。また、上記平均値は、例えば面積10cm当たり1箇所の割合で10箇所の厚みを測定し、この10箇所の厚みを平均することで求めることができる。
 塗膜3の表面粗さSaの上限としては、0.12μmが好ましく、0.08μmがより好ましい。塗膜3の表面粗さSaが上記上限を超えると、十分に緻密な金属微粒子焼結層4を形成し難くなるおそれがある。なお、塗膜3の表面粗さSaの下限としては、特に限定されるものではなく、例えば0.01μmとすることができる。また、「表面粗さSa」とは、ISO25178に準拠した値をいう。
(加熱工程)
 上記加熱工程では、図2に示すように、塗膜3を焼成することで金属微粒子焼結層4を形成する。上記加熱工程では、塗膜3の焼成によって金属微粒子2同士を焼結すると共に、金属微粒子2の焼結体をベースフィルム1の一方の面に固着させる。なお、塗膜3に含まれる分散剤等やその他の有機物はこの焼成によって揮発又は分解される。
 また、金属微粒子焼結層4のベースフィルム1との界面近傍では、加熱によって金属微粒子が酸化して、この金属微粒子の金属に基づく金属水酸化物又はその金属水酸化物に由来する基の生成を抑えつつ、上記金属に基づく金属酸化物又はその金属酸化物に由来する基が生成される。具体的には、例えば金属微粒子として銅を用いた場合、金属微粒子焼結層4のベースフィルム1との界面近傍に酸化銅及び水酸化銅が生成するが、酸化銅の方が多く生成する。この金属微粒子焼結層4の界面近傍に生成した酸化銅は、例えばベースフィルム1の主成分として含まれるポリイミドと強く結合するため、金属微粒子焼結層4とベースフィルム1との間の密着力が大きくなる。
 上記加熱工程は、一定量の酸素が含まれる雰囲気下で行う。加熱処理時の雰囲気の酸素濃度の下限としては、1ppmが好ましく、10ppmがより好ましい。一方、上記酸素濃度の上限としては、10,000ppmが好ましく、1,000ppmがより好ましい。上記酸素濃度が上記下限に満たないと、金属微粒子焼結層4の界面近傍における酸化銅の生成量が少なくなり、金属微粒子焼結層4とベースフィルム1との密着力が十分に得られないおそれがある。一方、上記酸素濃度が上記上限を超えると、金属微粒子が過剰に酸化してしまい金属微粒子焼結層4の導電性が低下するおそれがある。
 加熱温度の下限としては、150℃が好ましく、200℃がより好ましい。一方、加熱温度の上限としては、500℃が好ましく、400℃がより好ましい。加熱温度が上記下限に満たないと、金属微粒子焼結層4の界面近傍における酸化銅の生成量が少なくなり、金属微粒子焼結層4とベースフィルム1との密着力が十分に得られないおそれがある。逆に、加熱温度が上記上限を超えると、ベースフィルム1がポリイミド等の有機樹脂の場合にベースフィルム1が変形するおそれがある。
(金属めっき層形成工程)
 上記金属めっき層形成工程は、第1金属めっき層形成工程と、第2金属めっき層形成工程とを有する。
(第1金属めっき層形成工程)
 上記第1金属めっき層形成工程では、図3に示すように、金属微粒子焼結層4の外面に第1金属めっき層5を形成する。具体的には、上記第1金属めっき層形成工程では、金属微粒子焼結層4の空隙をめっき金属で充填すると共に、このめっき金属を金属微粒子焼結層4の一方の面に積層する。当該導電層の製造方法は、上記第1金属めっき層形成工程を有することによって、導電層とベースフィルム1との密着力を高めることができる。
 第1金属めっき層5を形成するためのめっき方法は、特に限定されず、無電解めっきであっても電気めっきであってもよいが、金属微粒子焼結層4を形成する金属微粒子間の空隙をより的確に埋めることで、金属微粒子焼結層4及びベースフィルム1の剥離強度を容易かつ確実に向上できる無電解めっきが好ましい。
 上記無電解めっきを採用する場合の手順は特に限定されず、例えばクリーナ工程、水洗工程、酸処理工程、水洗工程、プレディップ工程、アクチベータ工程、水洗工程、還元工程、水洗工程等の処理と共に、公知の手段で無電解めっきを行えばよい。
 上記電気めっきを採用する場合についても、手順は特に限定されず、例えば公知の電解めっき浴及びめっき条件から適宜選択すればよい。
 また、金属微粒子焼結層4の空隙をめっき金属で充填した後、さらに熱処理を行うことが好ましい。この熱処理により、金属微粒子焼結層4とベースフィルム1との界面近傍における酸化銅がさらに増加するため、金属微粒子焼結層4とベースフィルム1との間の密着力をより向上させることができる。
(第2金属めっき層形成工程)
 上記第2金属めっき層形成工程では、図4に示すように、第1金属めっき層5の外面に第2金属めっき層6を形成する。当該導電層の製造方法は、上記第2金属めっき層形成工程を有することによって、導電層の厚みを容易かつ確実に調整することができる。
 第2金属めっき層6を形成するためのめっき方法は、特に限定されるものではなく、無電解めっきであっても電気めっきであってもよいが、厚みの調整を容易かつ正確に行うことができると共に、比較的短時間で第2金属めっき層6を形成することができる電気めっきが好ましい。
 上記無電解めっきを採用する場合の手順は特に限定されず、上述の第1金属めっき層5を形成する場合と同様の手順で行うことができる。また、上記電気めっきを採用する場合についても、手順は特に限定されず、上述の第1金属めっき層5を形成する場合と同様の手順で行うことができる。
 なお、当該導電層の製造方法で製造された導電層は、パターニングによりベースフィルム1の一方の面に積層される導電パターンとして形成される。これにより、ベースフィルム1及びベースフィルム1の一方の面に積層される導電パターンを備えるプリント配線板が製造される。
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、当該導電層形成用塗布液は、必ずしもプリント配線板用基材を形成するために用いられる必要はない。また、当該導電層の製造方法は、必ずしもプリント配線板用基材の導電層の製造方法として実施される必要はない。
 さらに、当該導電層の製造方法は、プリント配線板用基材の導電層の製造方法として実施される場合であっても、必ずしも金属めっき層形成工程を備える必要はない。当該導電層の製造方法は、例えば上述の塗布工程及び加熱工程を複数回行うことで導電層を製造してもよい。当該導電層の製造方法は、当該導電層形成用塗布液における金属微粒子の含有量が多いため、1回の塗布及び乾燥によって比較的厚みの厚い金属微粒子焼結層を形成することができる。そのため、当該導電層の製造方法は、少ない塗布回数で導電層を製造することができる。また、当該導電層の製造方法は、金属めっき層形成工程を備える場合でも、必ずしも第1金属めっき層形成工程及び第2金属めっき層形成工程を共に有する必要はなく、第1金属めっき層形成工程のみを有していてもよい。さらに、当該導電層の製造方法は、ベースフィルムの一方の面にのみ導電層を形成する必要はなく、ベースフィルムの両面に導電層を形成してもよい。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例]
[No.1]
 還元剤としての三塩化チタン溶液80g(0.1M)、pH調整剤としての炭酸ナトリウム50g、錯化剤としてのクエン酸ナトリウム90g、及び分散剤としてのポリエチレンイミン1gをビーカー内で純水1Lに溶解させ、この水溶液を35℃に保温した。また、この水溶液に同温度(35℃)で保温した硝酸銅三水和物10g(0.04M)の水溶液を添加し撹拌させることで銅微粒子を析出させた。さらに、遠心分離により分離した銅微粒子に対し、200mLの純水による洗浄工程を2回繰り返した上、この銅微粒子を乾燥させることで粉末状の銅微粒子を得た。続いて、この粉末状の銅微粒子に純水を加えて含有量調整を行うことでNo.1の導電層形成用塗布液を得た。このNo.1の導電層形成用塗布液300μLを親水化処理を行ったポリイミドフィルム(10cm角)上にバーコート法により塗布した。
[No.2~No.5]
 洗浄工程1回当たりの水量を表1の通りとした以外はNo.1と同様にしてNo.2~No.5の導電層形成用塗布液を得た。また、No.2~No.5の導電層形成用塗布液を、No.1と同様にして、親水化処理を行ったポリイミドフィルム(10cm角)上にそれぞれバーコート法により塗布した。
[No.6~No.9]
 導電層形成用塗布液における銅微粒子の含有量を表1の通りとした以外はNo.1と同様にしてNo.6~No.9の導電層形成用塗布液を得た。また、No.6~No.9の導電層形成用塗布液を、No.1と同様にして、親水化処理を行ったポリイミドフィルム(10cm角)上にそれぞれバーコート法により塗布した。
[No.10]
 分散剤としてポリエチレンイミン-エチレンオキサイド付加物1gを用いた以外はNo.1と同様にしてNo.10の導電層形成用塗布液を得た。また、No.10の導電層形成用塗布液を、No.1と同様にして、親水化処理を行ったポリイミドフィルム(10cm角)上にバーコート法により塗布した。
[No.11]
 分散剤としてポリエチレンイミン-エチレンオキサイド付加物1gを用いると共に洗浄工程1回当たりの水量を表1の通りとした以外はNo.1と同様にしてNo.11の導電層形成用塗布液を得た。また、No.11の導電層形成用塗布液を、No.1と同様にして、親水化処理を行ったポリイミドフィルム(10cm角)上にバーコート法により塗布した。
[比較例]
[No.12,No.13]
 洗浄工程1回当たりの水量を表1の通りとした以外はNo.1と同様にしてNo.12及びNo.13の導電層形成用塗布液を得た。また、No.12及びNo.13の導電層形成用塗布液をNo.1と同様にして、親水化処理を行ったポリイミドフィルム(10cm角)上にそれぞれバーコート法により塗布した。
[No.14,No.15]
 導電層形成用塗布液における銅微粒子の含有量を表1の通りとした以外はNo.1と同様にしてNo.14及びNo.15の導電層形成用塗布液を得た。また、No.14及びNo.15の導電層形成用塗布液をNo.1と同様にして、親水化処理を行ったポリイミドフィルム(10cm角)上にそれぞれバーコート法により塗布した。
[No.16]
 分散剤としてポリエチレンイミン-エチレンオキサイド付加物1gを用い、洗浄工程における1回当たりの水量をNo.11と同様とし、粉末状の銅微粒子に純水を加えた後に塩酸0.2gを添加した以外はNo.1と同様にしてNo.16の導電層形成用塗布液を得た。また、No.16の導電層形成用塗布液をNo.1と同様にして、親水化処理を行ったポリイミドフィルム(10cm角)上にバーコート法により塗布した。
<電気伝導率>
 導電層形成用塗布液の電気伝導率[μS/cm]をJIS-K0130:2008に準拠して、株式会社堀場製作所製のコンパクト電気伝導率計「LAQUAtwin B-771」を用いて測定した。この測定結果を表1に示す。
<粘度>
 導電層形成用塗布液の粘度[mPa・s]を、JIS-Z8803:2011に準拠して、東機産業株式会社製のコーンプレート型粘度計「TV22L」を用いて25℃、20rpmの条件で測定した。この測定結果を表1に示す。
<塗膜厚み>
 株式会社日立ハイテクサイエンス製の蛍光X線膜厚計「FT9500」を用いて塗膜厚みを測定した。この塗膜厚みは、銅微粒子の存在部分の厚みを面積10cm当たり1箇所の割合で10箇所測定し、この10箇所の厚みを平均することで求めた。この測定結果を表1に示す。
<表面粗さ>
 株式会社キーエンス製のレーザ顕微鏡「VK-X150」を用い、対物レンズ100倍、デジタルズーム1倍で、導電層形成用塗布液を塗布して形成される塗膜表面を観察し、高さカットレベル90として30μm×30μmの範囲を分析し、ISO25178に準拠して表面粗さSa[μm]を測定した。この測定結果を表1に示す。
<かすれ>
 導電層形成用塗布液を塗布して形成される塗膜を目視にて観察し、白抜けの有無を確認した。白抜けがある場合はかすれ有り、白抜けがない場合はかすれ無しとして評価した。この評価結果を表1に示す。
<平均粒子径D50SEM
 金属微粒子(銅微粒子)の表面を100k~300k倍の倍率で走査型電子顕微鏡(SEM)にて観察し、任意に抽出した金属微粒子100個を測長して粒子径の小さい順に体積を積算した際の累積体積が50%となる粒子径[nm]を測定した。この測定結果を表1に示す。
<平均粒子径D50
 マイクロトラック・ベル株式会社製の粒子径分布測定装置「Nanotrac Wave-EX150」を用い、体積累積分布から算出される金属微粒子(銅微粒子)の平均粒子径D50[nm]を測定した。この測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
[評価結果]
 表1に示すように、No.1~No.11の導電層形成用塗布液は、pHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、及び金属微粒子(銅微粒子)の含有量が20質量%以上80質量%以下に調整されることで、厚みが0.1μm以上で比較的厚く、かつ表面粗さSaが0.12μm以下の比較的小さい塗膜を形成できることが分かった。特に、No.1,No.10及びNo.11の導電層形成用塗布液は、平均粒子径D50SEM/平均粒子径D50の比が1.1以下と小さいことから、個々の金属微粒子(銅微粒子)の形状が略球状に揃っており、その結果塗膜中でこれらの金属微粒子が高密度で均一分散され易いので、塗膜の表面粗さSaを0.063μm以下と小さくすることができることが分かった。これに対し、No.12~No.16の導電層形成用塗布液は、pH、電気伝導率及び金属微粒子(銅微粒子)の含有量が上記の範囲に調整されていないため、比較的厚みが厚くかつ表面粗さSaが比較的小さい塗膜を形成することが困難であることが分かった。特に、No.12,No.13,No.15及びNo.16の導電層形成用塗布液は、平均粒子径D50SEMが比較的大きく、かつ平均粒子径D50SEM/平均粒子径D50の比が2.1以上と大きいことから、塗膜の表面粗さSaを十分に小さく抑えることができず、十分に緻密な導電層を形成し難いことが分かった。さらに、No.15の導電層形成用塗布液は、粘度が123mPa・sと、100mPa・sを超える高い粘度のため、塗膜がポリイミドフィルム上に均一に広がり難く、塗膜にかすれが生じていることが分かった。
 1 ベースフィルム
 2 金属微粒子
 3 塗膜
 4 金属微粒子焼結層
 5 第1金属めっき層
 6 第2金属めっき層

Claims (8)

  1.  金属微粒子、分散媒及び分散剤を含有する導電層形成用塗布液であって、
     pHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である導電層形成用塗布液。
  2.  上記分散剤が、高分子化合物である請求項1に記載の導電層形成用塗布液。
  3.  上記高分子化合物がイミノ基を有する請求項2に記載の導電層形成用塗布液。
  4.  上記高分子化合物が、ポリエチレンイミン又はポリエチレンイミン-エチレンオキサイド付加物である請求項3に記載の導電層形成用塗布液。
  5.  上記金属微粒子のレーザ回折法で測定した体積累積分布から算出される平均粒子径D50が1nm以上500nm以下である請求項1から請求項4のいずれか1項に記載の導電層形成用塗布液。
  6.  25℃における粘度が100mPa・s以下である請求項1から請求項5のいずれか1項に記載の導電層形成用塗布液。
  7.  上記金属微粒子の主成分が銅又は銅合金である請求項1から請求項6のいずれか1項に記載の導電層形成用塗布液。
  8.  金属微粒子、分散媒及び分散剤を含有する導電層形成用塗布液を用いた導電層の製造方法であって、
     上記導電層形成用塗布液を塗布する塗布工程と、
     上記塗布後の導電層形成用塗布液を加熱する加熱工程と
     を備え、
     上記塗布時の上記導電層形成用塗布液のpHが4以上8以下、電気伝導率が100μS/cm以上800μS/cm以下、上記金属微粒子の含有量が20質量%以上80質量%以下である導電層の製造方法。
PCT/JP2016/078328 2015-09-30 2016-09-27 導電層形成用塗布液及び導電層の製造方法 WO2017057301A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/756,629 US20180315519A1 (en) 2015-09-30 2016-09-27 Coating liquid for forming conductive layer and method for manufacturing conductive layer
JP2017543277A JP6766057B2 (ja) 2015-09-30 2016-09-27 導電層形成用塗布液及び導電層の製造方法
CN201680050839.3A CN107949607A (zh) 2015-09-30 2016-09-27 导电层形成用涂布液以及导电层的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-193141 2015-09-30
JP2015193141 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057301A1 true WO2017057301A1 (ja) 2017-04-06

Family

ID=58423582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078328 WO2017057301A1 (ja) 2015-09-30 2016-09-27 導電層形成用塗布液及び導電層の製造方法

Country Status (4)

Country Link
US (1) US20180315519A1 (ja)
JP (1) JP6766057B2 (ja)
CN (1) CN107949607A (ja)
WO (1) WO2017057301A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130691A1 (ja) * 2017-12-25 2019-07-04 住友電気工業株式会社 プリント配線板用基材及びプリント配線板
JP2019140280A (ja) * 2018-02-13 2019-08-22 住友電気工業株式会社 フレキシブルプリント配線板用基板製造方法及びフレキシブルプリント配線板用基板
WO2021193144A1 (ja) * 2020-03-27 2021-09-30 三井金属鉱業株式会社 接合用組成物の製造方法
JP7158819B1 (ja) 2022-06-22 2022-10-24 石原ケミカル株式会社 銅インク、導電膜形成方法、及びrfタグ
WO2024038701A1 (ja) * 2022-08-17 2024-02-22 株式会社ダイセル 積層体および積層体の製造方法
JP7490528B2 (ja) 2020-01-10 2024-05-27 東邦チタニウム株式会社 銅粉体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170617A (ja) * 2020-04-17 2021-10-28 イビデン株式会社 プリント配線板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268774A (ja) * 1987-04-24 1988-11-07 Lion Corp 導電性膜形成材料
JPH03160065A (ja) * 1989-11-16 1991-07-10 Kanae Kagaku Kogyo Kk 導電性塗料
JP2010132967A (ja) * 2008-12-04 2010-06-17 Toyobo Co Ltd 金属微粒子分散体、金属薄膜の製造方法および金属薄膜
JP2011046770A (ja) * 2009-08-25 2011-03-10 Dic Corp 銀ナノ粒子を用いる接合体の製造方法、及び接合体
WO2011040189A1 (ja) * 2009-09-30 2011-04-07 大日本印刷株式会社 金属微粒子分散体、導電性基板の製造方法及び導電性基板
JP2011082025A (ja) * 2009-10-07 2011-04-21 Bando Chemical Industries Ltd 導電性ペースト
JP2014154520A (ja) * 2013-02-13 2014-08-25 Lion Corp 複合粒子の製造方法、複合粒子、導電性塗料組成物および導電性基板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI325739B (en) * 2003-01-23 2010-06-01 Panasonic Corp Electroconductive paste, its manufacturing method, circuit board using the same electroconductive paste, and its manufacturing method
KR101215119B1 (ko) * 2004-03-01 2012-12-24 스미토모덴키고교가부시키가이샤 금속콜로이드용액 및 잉크젯용 금속잉크
KR100860446B1 (ko) * 2006-04-12 2008-09-25 주식회사 엘지화학 금속 나노 입자의 분산 보조제 및 이를 포함하는 금속 나노잉크
WO2008013199A1 (en) * 2006-07-28 2008-01-31 The Furukawa Electric Co., Ltd. Fine particle dispersion and method for producing fine particle dispersion
CN103210452B (zh) * 2010-11-16 2015-06-17 旭硝子株式会社 导电浆料及带导电膜的基材
JP5500237B1 (ja) * 2012-12-05 2014-05-21 住友金属鉱山株式会社 銀粉
JP5505535B1 (ja) * 2012-12-07 2014-05-28 住友金属鉱山株式会社 銀粉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268774A (ja) * 1987-04-24 1988-11-07 Lion Corp 導電性膜形成材料
JPH03160065A (ja) * 1989-11-16 1991-07-10 Kanae Kagaku Kogyo Kk 導電性塗料
JP2010132967A (ja) * 2008-12-04 2010-06-17 Toyobo Co Ltd 金属微粒子分散体、金属薄膜の製造方法および金属薄膜
JP2011046770A (ja) * 2009-08-25 2011-03-10 Dic Corp 銀ナノ粒子を用いる接合体の製造方法、及び接合体
WO2011040189A1 (ja) * 2009-09-30 2011-04-07 大日本印刷株式会社 金属微粒子分散体、導電性基板の製造方法及び導電性基板
JP2011082025A (ja) * 2009-10-07 2011-04-21 Bando Chemical Industries Ltd 導電性ペースト
JP2014154520A (ja) * 2013-02-13 2014-08-25 Lion Corp 複合粒子の製造方法、複合粒子、導電性塗料組成物および導電性基板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114680A (ja) * 2017-12-25 2019-07-11 住友電気工業株式会社 プリント配線板用基材及びプリント配線板
CN111512709A (zh) * 2017-12-25 2020-08-07 住友电气工业株式会社 印刷线路板用基材以及印刷线路板
JP7032126B2 (ja) 2017-12-25 2022-03-08 住友電気工業株式会社 プリント配線板用基材及びプリント配線板
WO2019130691A1 (ja) * 2017-12-25 2019-07-04 住友電気工業株式会社 プリント配線板用基材及びプリント配線板
CN111512709B (zh) * 2017-12-25 2023-07-14 住友电气工业株式会社 印刷线路板用基材以及印刷线路板
US11752734B2 (en) 2017-12-25 2023-09-12 Sumitomo Electric Industries, Ltd. Base material for printed circuit board and printed circuit board
JP2019140280A (ja) * 2018-02-13 2019-08-22 住友電気工業株式会社 フレキシブルプリント配線板用基板製造方法及びフレキシブルプリント配線板用基板
JP7490528B2 (ja) 2020-01-10 2024-05-27 東邦チタニウム株式会社 銅粉体
WO2021193144A1 (ja) * 2020-03-27 2021-09-30 三井金属鉱業株式会社 接合用組成物の製造方法
JP7158819B1 (ja) 2022-06-22 2022-10-24 石原ケミカル株式会社 銅インク、導電膜形成方法、及びrfタグ
JP2024001438A (ja) * 2022-06-22 2024-01-10 石原ケミカル株式会社 銅インク、導電膜形成方法、及びrfタグ
WO2023248485A1 (ja) * 2022-06-22 2023-12-28 石原ケミカル株式会社 銅インク、導電膜形成方法、及びrfタグ
WO2024038701A1 (ja) * 2022-08-17 2024-02-22 株式会社ダイセル 積層体および積層体の製造方法

Also Published As

Publication number Publication date
JPWO2017057301A1 (ja) 2018-07-19
CN107949607A (zh) 2018-04-20
US20180315519A1 (en) 2018-11-01
JP6766057B2 (ja) 2020-10-07

Similar Documents

Publication Publication Date Title
WO2017057301A1 (ja) 導電層形成用塗布液及び導電層の製造方法
JP2020057799A (ja) プリント配線板用基板、プリント配線板、プリント配線板用基板の製造方法、及びプリント配線板の製造方法
WO2016104347A1 (ja) プリント配線板用基板及びプリント配線板用基板の製造方法
JP6400503B2 (ja) プリント配線板用基材及びプリント配線板
JP6484218B2 (ja) プリント配線板用基板及びプリント配線板
US10237976B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
WO2016039314A1 (ja) プリント配線板用基材、プリント配線板及びプリント配線板用基材の製造方法
WO2016121749A1 (ja) 金属粉末、インク、焼結体及びプリント配線板用基材並びに金属粉末の製造方法
JP7400929B2 (ja) プリント配線板用基材、プリント配線板用基材の製造方法およびプリント配線板
JP6466110B2 (ja) プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
WO2019077815A1 (ja) プリント配線板用基材及びプリント配線板
JP6484026B2 (ja) プリント配線板用基板及びプリント配線板並びにプリント配線板用基板の製造方法
JP6675989B2 (ja) プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
JP5267487B2 (ja) プリント配線板用基板、プリント配線板用基板の製造方法
WO2019130690A1 (ja) プリント配線板用基材及びプリント配線板
WO2019130691A1 (ja) プリント配線板用基材及びプリント配線板
WO2019077816A1 (ja) プリント配線板用基材及びプリント配線板
JPWO2019035237A1 (ja) 樹脂フィルム、プリント配線板用基材及びプリント配線板
JP6884669B2 (ja) プリント配線板用基材及びプリント配線板用基材の製造方法
JP6473018B2 (ja) プリント配線板用基材の製造方法、プリント配線板用基材及びプリント配線板
JP2019114679A (ja) プリント配線板用基材
WO2017159704A1 (ja) 導電層形成用塗布液、導電層の製造方法及び導電層

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543277

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15756629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851472

Country of ref document: EP

Kind code of ref document: A1