WO2016104347A1 - プリント配線板用基板及びプリント配線板用基板の製造方法 - Google Patents

プリント配線板用基板及びプリント配線板用基板の製造方法 Download PDF

Info

Publication number
WO2016104347A1
WO2016104347A1 PCT/JP2015/085454 JP2015085454W WO2016104347A1 WO 2016104347 A1 WO2016104347 A1 WO 2016104347A1 JP 2015085454 W JP2015085454 W JP 2015085454W WO 2016104347 A1 WO2016104347 A1 WO 2016104347A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
base film
printed wiring
layer
wiring board
Prior art date
Application number
PCT/JP2015/085454
Other languages
English (en)
French (fr)
Inventor
元彦 杉浦
春日 隆
岡 良雄
重明 上村
辰珠 朴
上田 宏
宏介 三浦
Original Assignee
住友電気工業株式会社
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工プリントサーキット株式会社 filed Critical 住友電気工業株式会社
Priority to CN201580070303.3A priority Critical patent/CN107113981B/zh
Priority to US15/536,954 priority patent/US10143083B2/en
Priority to JP2016566185A priority patent/JPWO2016104347A1/ja
Publication of WO2016104347A1 publication Critical patent/WO2016104347A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0269Non-uniform distribution or concentration of particles

Definitions

  • the present invention relates to a printed wiring board substrate and a method for manufacturing a printed wiring board substrate.
  • a printed wiring board substrate that has a metal layer on the surface of an insulating base film and forms a conductive pattern by etching the metal layer to obtain a printed wiring board is widely used.
  • the ten-point average roughness (Rz) of the adhesive surface of the copper foil to the base film is 0.7-2.
  • a technique of increasing the peel strength between the base film and the metal layer by setting the thickness to 2 ⁇ m has been proposed (see Patent Document 1).
  • the convex portion on the surface of the copper foil is in a state of biting into the base film.
  • the portion that has digged into the base film has low removability by etching, so the concentration of the etching solution is increased or the etching time is lengthened to remove the metal that has digged into the base film.
  • the conductive pattern is formed by etching at a high concentration or for a long time, the taper of the circuit shape is increased by side etching, so that the substrate disclosed in the above publication is inferior in the formability of the conductive pattern.
  • the metal layer of the substrate disclosed in the above publication has irregularities on the adhesion surface to the base film, when the high frequency is propagated to the conductive pattern formed by etching this metal layer, the surface effect is caused by the skin effect. A current concentrated on the surface flows along the unevenness of the bonding surface. For this reason, the substantial current transmission path becomes longer, and there is a disadvantage that the loss increases accordingly. For this reason, the method of improving the peeling strength of a base film and a metal layer by the structure different from the board
  • the present invention has been made based on the above-mentioned circumstances, and has a good etching property, and has a high peel strength between the base film and the metal layer, and such a printed wiring board. It is an object of the present invention to provide a method for manufacturing a manufacturing substrate.
  • a printed wiring board which has been made to solve the above-described problems, is a printed wiring board including an insulating base film and a metal layer laminated on at least one surface side of the base film. A plurality of fine particles are interposed between the base film and the metal layer, and the fine particles are formed of the same metal as the main metal of the metal layer or a metal compound thereof.
  • formed in order to solve the said subject is laminated
  • a method for producing a printed wiring board substrate comprising a metal layer, the step of coating a conductive composition containing nano metal particles on one surface side of the base film, and the coated conductive composition And firing the product, and the firing step includes a step of interposing a plurality of fine particles formed of the same metal as the main metal of the metal layer or a metal compound thereof between the base film and the metal layer.
  • the printed wiring board substrate according to one embodiment of the present invention has high peel strength between the base film and the metal layer while having good etching properties.
  • substrate which concerns on another aspect of this invention can manufacture the printed wiring board board
  • FIG. 1 is a schematic cross-sectional view showing a printed wiring board substrate according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for manufacturing the printed wiring board substrate of FIG. 3A is a cross-sectional electron micrograph of prototype 1.
  • FIG. 3B is a cross-sectional electron micrograph of prototype 2.
  • FIG. 3C is a cross-sectional electron micrograph of prototype 3.
  • FIG. 4A is a diagram in which the copper element content in the cross section of the prototype 1 is mapped.
  • FIG. 4B is a diagram in which the copper element content in the cross section of the prototype 2 is mapped.
  • FIG. 4C is a diagram in which the copper element content in the cross section of the prototype 3 is mapped.
  • FIG. 4A is a diagram in which the copper element content in the cross section of the prototype 1 is mapped.
  • FIG. 4B is a diagram in which the copper element content in the cross section of the prototype 2 is mapped.
  • FIG. 4C is
  • FIG. 5A is a diagram in which the carbon content of the cross section of the prototype 1 is mapped.
  • FIG. 5B is a diagram in which the carbon content of the cross section of the prototype 2 is mapped.
  • FIG. 5C is a diagram in which the carbon content of the cross section of the prototype 3 is mapped.
  • FIG. 6A is a diagram in which the oxygen content in the cross section of prototype 1 is mapped.
  • FIG. 6B is a diagram in which the oxygen content in the cross section of prototype 2 is mapped.
  • FIG. 6C is a diagram in which the oxygen content in the cross section of the prototype 3 is mapped.
  • a printed wiring board substrate is a printed wiring board substrate comprising a base film having insulating properties and a metal layer laminated on at least one surface side of the base film, A plurality of fine particles are interposed between the base film and the metal layer, and the fine particles are formed of the same metal as the main metal of the metal layer or a metal compound thereof.
  • the substrate for the printed wiring board has a peel strength between the base film and the metal layer by interposing a plurality of fine particles formed of the same metal as the main metal of the metal layer or a metal compound between the base film and the metal layer. Has improved. Although the detailed reason is not clear, since the fine particles can be bonded to the metal constituting the metal layer and are also easily bonded to the resin constituting the base film, so as to fill the gap between the metal layer and the base film. By interposing, it is estimated that the peel strength between the metal layer and the base film is improved. Moreover, since the structure which raises peeling strength by interposition of a fine particle does not reduce the etching property of a metal layer, the said board
  • the average particle size of the plurality of fine particles is preferably 0.1 nm or more and 20 nm or less.
  • the peeling strength of a base film and a metal layer can be improved more reliably by making the average particle diameter of said several fine particle into the said range.
  • the plurality of fine particles may be a metal oxide or a metal hydroxide. As described above, since the plurality of fine particles are metal oxides or metal hydroxides, the bondability between the fine particles and the metal layer is increased, so that the peel strength between the base film and the metal layer is more reliably ensured. Can be improved.
  • the plurality of fine particles may be present in layers between the base film and the metal layer.
  • the peel strength between the base film and the metal layer can be improved evenly.
  • the metal layer preferably has a metal particle layer formed by firing nano metal particles.
  • the metal layer has a metal particle layer formed by firing the nano metal particles, the formation of the metal layer is facilitated.
  • the nano metal particle has a large surface area and easily reacts with surrounding substances, it is easy to generate fine particles.
  • the metal layer may further include a plating layer formed on one surface side of the metal particle layer by electroless plating or electroplating. As described above, the metal layer further includes a plating layer formed by electroless plating or electroplating on one surface side of the metal particle layer, thereby easily and inexpensively increasing the thickness or strength of the metal layer. can do.
  • the main metal may be copper.
  • a metal layer having a small electric resistance can be formed at low cost.
  • the oxygen content in the region from the surface on the metal layer side of the base film to a depth of 50 nm is preferably 20 atm% or more and 60 atm% or less.
  • the peel strength from the metal layer can be further improved.
  • a printed wiring board substrate manufacturing method is a printed wiring board substrate comprising an insulating base film and a metal layer laminated on at least one surface side of the base film.
  • a method of manufacturing comprising: a step of applying a conductive composition containing nano metal particles to one side of the base film; and a step of baking the applied conductive composition,
  • a process has the process of interposing the several fine particle formed from the same metal as the main metal of this metal layer, or its metal compound between the said base film and metal layers.
  • the printed wiring board substrate manufacturing method includes the base film in the firing step in which the nanometal particles are fired in the presence of a small amount of oxygen after the coating step of the conductive composition containing the nanometal particles. Since a plurality of fine particles formed from the same metal as the main metal of the metal layer or a metal compound thereof are interposed between the metal layers, the peel strength between the base film and the metal layer can be improved by the plurality of fine particles.
  • the plurality of fine particles are presumed to be formed by the nano metal particles diffusing into the base film by heat and reacting with a small amount of oxygen in the firing step. Further, since the plurality of fine particles do not deteriorate the etching property of the metal layer, the moldability of the conductive pattern can be ensured. For this reason, according to the method for manufacturing a printed wiring board substrate, it is possible to manufacture a printed wiring board substrate having a high peel strength between the base film and the metal layer while having good etching properties.
  • fine particles means particles whose particle shape is confirmed by observing with an electron microscope, and may be those in which a plurality of particles are connected.
  • the “main metal” of the metal layer means a metal having the largest atomic number content among the metals forming the metal layer in the vicinity of the fine particles (the distance from the fine particles is 10 times or less of the average particle diameter of the fine particles).
  • the “average particle diameter” refers to a value obtained by measuring and averaging 10 or more particles in a cross-sectional image taken with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • oxygen content refers to the atomic number content measured by energy dispersive X-ray analysis (EDX).
  • the surface of the base film means a boundary surface of a region where a molecular structure (for example, a carbon chain in the case of a resin) serving as a skeleton of the base fill exists.
  • the printed wiring board substrate of FIG. 1 includes a base film 1 having insulating properties and a metal layer 2 laminated on at least one surface side of the base film 1.
  • the printed wiring board substrate is used for obtaining a printed wiring board by forming a conductive pattern by a method including a step of etching the metal layer 2.
  • Specific methods for forming the conductive pattern include, for example, a subtractive method and a semi-additive method.
  • a plurality of fine particles 3 are interposed between the base film 1 and the metal layer 2.
  • the plurality of fine particles 3 are present in layers between the base film 1 and the metal layer 2.
  • a flexible resin such as polyimide, liquid crystal polymer, fluororesin, polyethylene terephthalate, polyethylene naphthalate, paper phenol, paper epoxy, glass composite, glass epoxy, Teflon (registered trademark), It is possible to use a rigid material such as a glass substrate, a rigid flexible material in which a hard material and a soft material are combined.
  • polyimide is preferable because it produces a large amount of fine particles 3 and has high bonding strength with metal oxides and the like.
  • non-thermoplastic polyimide that is difficult to flow even in the nano metal particle firing step and can hold the fine particles 3 in a layered form is particularly preferable.
  • the thickness of the said base film 1 is set according to the specification of the printed wiring board manufactured using the said board
  • the average thickness of the said base film 1 is set. As a minimum, 5 micrometers is preferred and 12 micrometers is more preferred.
  • the upper limit of the average thickness of the base film 1 is preferably 2 mm, more preferably 1.6 mm. When the average thickness of the base film 1 is less than the lower limit, the strength of the base film 1 may be insufficient. Conversely, when the average thickness of the base film 1 exceeds the above upper limit, it may be difficult to make the printed wiring board thinner.
  • the lower limit of the oxygen content in the region from the surface on the metal layer 2 side of the base film 1 to a depth of 50 nm is preferably 20 atm%, more preferably 22 atm%.
  • the upper limit of the oxygen content in the region from the surface on the metal layer 2 side of the base film 1 to a depth of 50 nm is preferably 60 atm%, more preferably 50 atm%.
  • the base film 1 is preferably subjected to a hydrophilic treatment on the surface on which the metal layer 2 is laminated.
  • a hydrophilic treatment for example, plasma treatment for irradiating plasma to make the surface hydrophilic, alkali treatment for making the surface hydrophilic with an alkaline solution, or the like can be employed.
  • the metal layer 2 includes a metal particle layer 4 formed by firing nano metal particles, and a plating formed on one surface side (the side opposite to the base film 1) of the metal particle layer 4 by electroless plating or electroplating. Layer 5.
  • the metal particle layer 4 is formed by heat-treating one surface of the base film 1 coated with a conductive composition containing nanometal particles, that is, by firing the nanometal particles. When the metal particle layer 4 is observed by a transmission electron microscope, a crystal grain derived from nano metal particles is confirmed. These grains are connected to each other by sintering and are no longer independent particles.
  • the lower limit of the average thickness of the metal particle layer 4 is preferably 0.05 ⁇ m, more preferably 0.1 ⁇ m.
  • the upper limit of the average thickness of the metal particle layer 4 is preferably 2 ⁇ m, and more preferably 1.5 ⁇ m.
  • the metal particle layer 4 may be cut and the conductivity may be lowered.
  • the average thickness of the metal particle layer 4 exceeds the above upper limit, it may be difficult to reduce the thickness of the metal layer 2, or metal is filled in the pores of the metal particle layer 4 when the plating layer 5 described later is formed. This is not possible, and there is a risk that the conductivity and strength of the metal particle layer 4 and thus the metal layer 2 will be insufficient.
  • the main metal of the nano metal particles that form the metal particle layer 4 is not particularly limited. However, since the metal element constituting the fine particles 3 to be described later is supplied to the interface with the base film 1, A metal oxide based on a metal or a group derived from the metal oxide and a metal hydroxide based on the metal or a group derived from the metal hydroxide are preferably generated. Examples of the preferable metal include copper, nickel, aluminum, gold, and silver. Among them, copper that is inexpensive and excellent in conductivity and excellent in adhesion to the base film 1 is particularly preferable.
  • the lower limit of the average particle diameter of the nano metal particles forming the metal particle layer 4 is preferably 1 nm, more preferably 10 nm, still more preferably 20 nm, and particularly preferably 30 nm.
  • the upper limit of the average particle diameter of the nano metal particles is preferably 500 nm, and more preferably 100 nm.
  • the average particle diameter of the nano metal particles is less than the lower limit, the dispersibility and stability of the nano metal particles in the conductive composition may be reduced.
  • the average particle diameter of the nano metal particles exceeds the upper limit, the nano metal particles may be easily precipitated and the density of the nano metal particles becomes uniform when the conductive composition is applied. It becomes difficult.
  • the plating layer 5 is laminated on the surface of the metal particle layer 4 opposite to the base film 1 by electroless plating. Thus, since the plating layer 5 is formed by electroless plating, the space between the nano metal particles forming the metal particle layer 4 is filled with the metal of the plating layer 5. If voids remain in the metal particle layer 4, the void portion becomes a starting point of breakage and the metal particle layer 4 is easily peeled off from the base film 1, but the void portion is filled with the plating layer 5. This prevents the metal particle layer 4 from peeling off.
  • the metal used for the electroless plating copper, nickel, silver or the like having good conductivity can be used.
  • the metal particle layer 4 and the metal particle layer 4 and the metal particle layer 4 and the adhesion copper or nickel is preferably used.
  • the lower limit of the average thickness of the plating layer 5 formed by electroless plating is preferably 0.2 ⁇ m, and more preferably 0.3 ⁇ m.
  • the upper limit of the average thickness of the plating layer 5 formed by the electroless plating is preferably 1 ⁇ m, and more preferably 0.5 ⁇ m.
  • the average thickness of the plating layer 5 formed by the electroless plating is less than the lower limit, the plating layer 5 may not be sufficiently filled in the void portion of the metal particle layer 4 and the conductivity may be lowered.
  • the average thickness of the plating layer 5 formed by the electroless plating exceeds the upper limit, the time required for the electroless plating becomes longer and the productivity may be lowered.
  • a thick plating layer 5 by further electroplating after forming a thin layer by electroless plating.
  • the thickness of the conductive layer can be adjusted easily and accurately, and a conductive layer having a thickness necessary for forming a printed wiring in a relatively short time can be formed. it can.
  • the metal used for the electroplating copper, nickel, silver or the like having good conductivity can be used.
  • the thickness of the plated layer 5 after the electroplating is set according to what kind of printed circuit is created and is not particularly limited.
  • the lower limit of the average thickness of the plated layer 5 after the electroplating 1 ⁇ m is preferable, and 2 ⁇ m is more preferable.
  • the upper limit of the average thickness of the plated layer 5 after the electroplating is preferably 100 ⁇ m, and more preferably 50 ⁇ m.
  • the average thickness of the plated layer 5 after the electroplating is less than the lower limit, the strength of the metal layer 2 may be insufficient.
  • the average thickness of the plated layer 5 after the electroplating exceeds the upper limit, it is difficult to reduce the thickness of the printed wiring board substrate and thus the printed wiring board manufactured using the printed wiring board substrate. There is a fear.
  • a plurality of fine particles 3 are interposed between the base film 1 and the metal layer 2 to improve the peel strength between the base film 1 and the metal layer 2, that is, the bonding strength.
  • the presence of the fine particles 3 in layers can improve the peel strength between the base film 1 and the metal layer 2 without any deviation.
  • the fine particles 3 are confirmed as fine particles different from the base film 1 and the metal layer 2 when the cross section of the printed wiring board substrate is observed with a transmission electron microscope.
  • the fine particles 3 are formed of the same metal as the main component of the nano metal particles forming the main metal of the metal layer 2, that is, the metal particle layer 4 in the vicinity of the fine particles of the metal layer 2, or a metal compound thereof.
  • Particularly preferable fine particles 3 are formed of a metal oxide or hydroxide which is a main component of the nano metal particles forming the metal particle layer 4.
  • Metal oxides and hydroxides are easily bonded to the base film 1.
  • the nano metal particle which forms the metal particle layer 4 has copper as a main component, it is desirable that the fine particle 3 is formed of copper oxide or copper hydroxide.
  • the lower limit of the average particle diameter of the fine particles 3 is preferably 0.1 nm, more preferably 0.5 nm, and even more preferably 1 nm.
  • the upper limit of the average particle diameter of the fine particles 3 is preferably 20 nm, and more preferably 10 nm.
  • the thickness of the fine particle 3 layer is preferably not less than the average particle diameter of the fine particle 3 and not more than the average particle diameter of the metal particle layer 4.
  • the lower limit of the average thickness of the layer of fine particles 3 is preferably 0.1 nm, and more preferably 0.5 nm.
  • the upper limit of the average thickness of the layer of fine particles 3 is preferably 100 nm, and more preferably 50 nm.
  • the number of fine particles 3 decreases on the base film 1 side, that is, the density of the fine particles 3 may gradually decrease toward the base film 1 side.
  • the fine particles 3 can be more firmly bonded to the base film 1 by being present so as to enter between the fine recesses or polymer chains on the surface of the resin constituting the base film 1. It is possible to improve the peel strength between the base film 1 and the metal layer 2 more effectively.
  • the method for manufacturing the printed wiring board substrate in FIG. 2 is a method for manufacturing the printed wiring board substrate in FIG. 1.
  • step S1 preparation process
  • step S2 preparation process
  • step S3 drying process
  • step S5 Plating step
  • step S4 firing process
  • step S5 Plating step
  • step S4 includes a step of interposing a plurality of fine particles 3 formed of the same metal as the main metal of the metal layer 2 or a metal compound thereof between the base film 1 and the metal layer 2.
  • a dispersing agent is dissolved in a dispersion medium, and the above-mentioned nano metal particles are dispersed in the dispersion medium.
  • the dispersing agent surrounds the nano metal particles, thereby preventing aggregation and dispersing the nano metal particles in the dispersion medium.
  • the dispersant can also be added to the reaction system in the form of a solution dissolved in water or a water-soluble organic solvent.
  • the nano metal particles can be produced by a high-temperature treatment method, a liquid phase reduction method, a gas phase method, or the like, but preferably by a liquid phase reduction method that can produce particles having a uniform particle diameter at a relatively low cost.
  • a water-soluble metal compound and a dispersant that are the source of metal ions that form nano metal particles in water are dissolved, and a reducing agent is added.
  • the metal ions may be reduced for a certain time.
  • the produced nano metal particles have a spherical or granular shape and can be made into fine particles.
  • copper copper (II) nitrate (Cu (NO 3 ) 2 ), copper (II) sulfate pentahydrate (CuSO 4 .5H 2 ) as the water-soluble metal compound that is the basis of the metal ions.
  • reducing agents capable of reducing and precipitating metal ions in a liquid phase (aqueous solution) reaction system
  • the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, transition metal ions such as trivalent titanium ions and divalent cobalt ions, reducing sugars such as ascorbic acid, glucose and fructose, ethylene
  • polyhydric alcohols such as glycol and glycerin.
  • the titanium redox method is a method in which metal ions are reduced by the oxidation-reduction action when trivalent titanium ions are oxidized to tetravalent and nano metal particles are deposited.
  • the nano metal particles obtained by the titanium redox method have small and uniform particle diameters, and the titanium redox method can make the nano metal particles spherical or granular. Therefore, by using the titanium redox method, the nano metal particles are filled with higher density, and the metal particle layer 4 can be formed into a denser layer.
  • the pH of the reaction system is preferably 7 or more and 13 or less in order to obtain nano metal particles having a minute particle size.
  • the pH of the reaction system can be adjusted to the above range by using a pH adjuster.
  • a general acid or alkali such as hydrochloric acid, sulfuric acid, sodium hydroxide, sodium carbonate or the like is used.
  • alkali metal or alkaline earth metal Nitric acid and ammonia which do not contain halogen elements such as chlorine and impurity elements such as sulfur, phosphorus and boron are preferable.
  • the nano metal particles deposited in the liquid phase (aqueous solution) reaction system are once powdered through steps such as filtration, washing, drying, and crushing.
  • a conductive composition can be prepared using the above.
  • a conductive composition containing nano-metal particles by blending powder-like nano-metal particles, water as a dispersion medium, a dispersant, and a water-soluble organic solvent as necessary, at a predetermined ratio. It can be.
  • the liquid phase (aqueous solution) containing the deposited nano metal particles is subjected to treatments such as ultrafiltration, centrifugation, washing and electrodialysis to remove impurities, and if necessary, concentrated to remove water.
  • the electrically conductive composition containing a nano metal particle is prepared by mix
  • Dispersion medium As a dispersion medium for the conductive composition, water, a highly polar solvent, or a mixture of two or more of these can be used. What mixed the polar solvent is used suitably.
  • the content rate of the water used as the main component of the dispersion medium in an electroconductive composition 20 mass parts is preferable per 100 mass parts of nano metal particles, and 50 mass parts is more preferable.
  • the upper limit of the content ratio of water as the main component of the dispersion medium in the conductive composition is preferably 1,900 parts by mass, more preferably 1,000 parts by mass per 100 parts by mass of the nanometal particles.
  • the water of the dispersion medium sufficiently swells the dispersing agent to disperse the nano metal particles surrounded by the dispersing agent well, but if the water content is less than the lower limit, the swelling of the dispersing agent by water The effect may be insufficient.
  • organic solvent blended into the conductive composition as necessary, various water-soluble organic solvents can be used.
  • specific examples thereof include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol, ketones such as acetone and methyl ethyl ketone,
  • polyhydric alcohols such as ethylene glycol and glycerin and other esters
  • glycol ethers such as ethylene glycol monoethyl ether and diethylene glycol monobutyl ether.
  • the lower limit of the content ratio of the water-soluble organic solvent is preferably 30 parts by mass and more preferably 80 parts by mass per 100 parts by mass of the nanometal particles.
  • an upper limit of the content rate of a water-soluble organic solvent 900 mass parts is preferable per 100 mass parts of nano metal particles, and 500 mass parts is more preferable.
  • the content rate of the said water-soluble organic solvent is less than the said minimum, there exists a possibility that the effect of the viscosity adjustment and vapor pressure adjustment of the electrically conductive composition by the said organic solvent may not fully be acquired.
  • the content ratio of the water-soluble organic solvent exceeds the above upper limit, the swelling effect of the dispersant due to water becomes insufficient, and the aggregation of the nano metal particles may occur in the conductive composition.
  • the dispersant contained in the conductive composition is preferably one containing no sulfur, phosphorus, boron, halogen and alkali from the viewpoint of preventing deterioration of the printed wiring board substrate.
  • Such preferred dispersants include amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone, hydrocarbon-based polymer dispersants having a carboxylic acid group in the molecule such as polyacrylic acid and carboxymethylcellulose, and poval.
  • Polyvinyl alcohol styrene-maleic acid copolymer, olefin-maleic acid copolymer, a polymer dispersant having a polar group, such as a copolymer having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule, etc. Can be mentioned.
  • the lower limit of the molecular weight of the dispersant is preferably 2,000, and more preferably 5,000.
  • the upper limit of the molecular weight of the dispersant is preferably 300,000, more preferably 100,000. If the molecular weight of the dispersant is less than the lower limit, the effect of preventing the aggregation of the nano metal particles and maintaining the dispersion may not be obtained sufficiently. As a result, the metal particle layer laminated on the base film 1 There is a possibility that 4 cannot be made dense with few defects.
  • the molecular weight of the dispersant exceeds the upper limit, the bulk of the dispersant is too large, and in the heat treatment performed after application of the conductive composition, the nano metal particles are inhibited from sintering and voids are generated. There is a risk that the film quality of the metal particle layer 4 may be reduced, and the dissociation residue of the dispersant may reduce the conductivity.
  • the content rate of a dispersing agent in a conductive composition As a minimum of the content rate of a dispersing agent in a conductive composition, 1 mass part is preferred per 100 mass parts of nano metal particles, and 5 mass parts is more preferred. On the other hand, as an upper limit of the content rate of the dispersing agent in an electroconductive composition, 60 mass parts is preferable per 100 mass parts of nano metal particles, and 40 mass parts is more preferable.
  • the content ratio of the dispersant is less than the lower limit, the aggregation preventing effect may be insufficient.
  • the content ratio of the dispersant exceeds the upper limit, a void may be generated due to the excessive dispersant inhibiting firing including sintering of the nanometal particles during the heat treatment after the coating of the conductive composition.
  • the decomposition residue of the polymer dispersant may remain as impurities in the metal particle layer 4 to reduce the conductivity.
  • Step S2 a conductive composition containing nano metal particles is applied to at least one surface of the base film 1.
  • a coating method of the conductive composition As a coating method of the conductive composition, a conventionally known coating method such as a spin coating method, a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, or a dip coating method can be used. .
  • the conductive composition may be applied to only a part of one surface of the base film 1 by screen printing, a dispenser, or the like.
  • step S3 the dispersion medium in the conductive composition applied to the base film 1 is evaporated, and the conductive composition is dried.
  • step S4 the dispersion medium is thermally decomposed by heating and the nano metal particles are integrated to form the metal particle layer 4.
  • the metal particle layer 4 and thus the metal layer 2 can be formed relatively easily on the surface of the base film 1.
  • this firing step includes a step of forming a plurality of fine particles 3 and interposing between the base film 1 and the metal layer 2. That is, in the baking step, at least a part of the plurality of fine particles 3 interposed between the base film 1 and the metal layer 2 is formed in parallel with the integration of the nano metal particles. Nano metal particles have a large surface area and are easy to react with surrounding materials, so that fine particles are easily generated.
  • the fine particles 3 are formed from the main metal of the nano metal particles or an oxide or hydroxide of the main metal. Since the fine particles 3 have high affinity with the resin base film 1, they are mainly formed at the interface between the base film 1 and the nano metal particle layer. For this reason, when a large number of fine particles 3 are formed, the fine particles 3 are present in layers between the metal particle layer 4 formed by firing the nano metal particles and the base film 1. The fine particles 3 thus formed and interposed between the base film 1 and the metal particle layer 4 (and thus the metal layer 2) have relatively high adhesion to both the base film 1 and the metal particle layer 4. Therefore, the peel strength between the base film 1 and the metal layer 2 is increased.
  • fine particles 3 of copper oxide and fine particles 3 of copper hydroxide are formed mainly in the vicinity of the interface of the nanometal particle layer with the base film 1. It is preferable that there are more fine copper particles 3. Among these, the fine particles of copper oxide easily bind to the resin constituting the base film 1, and thus increase the adhesion between the metal particle layer 4 and the base film 1.
  • the treatment temperature in this firing step is selected according to the types of the nano metal particles and the dispersant.
  • the lower limit of the sintering temperature of the nanometal particles is preferably 260 ° C, and more preferably 300 ° C.
  • the upper limit of the sintering temperature of the nano metal particles is preferably 400 ° C. and more preferably 380 ° C.
  • the heat treatment in the firing step is preferably performed in an atmosphere containing a certain amount of oxygen.
  • the oxygen concentration of the atmosphere at the time of heat processing 10 volume ppm is preferable and 100 volume ppm is more preferable.
  • the upper limit of the oxygen concentration of the atmosphere during the heat treatment is preferably 500 volume ppm, more preferably 400 volume ppm.
  • the oxygen concentration in the atmosphere during the heat treatment is less than the lower limit, the amount of fine particles 3 produced is reduced, and the effect of improving the adhesion between the base film 1 and the metal layer 2 may be insufficient.
  • the oxygen concentration in the atmosphere during the heat treatment exceeds the above upper limit, the nano metal particles are oxidized and fine particles 3 cannot be generated, and the adhesion between the base film 1 and the metal layer 2 is insufficient. There is a risk.
  • the plating layer 5 is formed by electroless plating or electroplating on the surface opposite to the base film 1 of the metal particle layer 4 formed in the firing step of step S4.
  • the plating layer 5 when the plating layer 5 is formed by electroless plating, as described above, copper, nickel, silver or the like can be used as a metal used for electroless plating.
  • a copper plating solution containing a small amount of nickel is used as a copper plating solution used in electroless plating.
  • the low stress plating layer 5 can be formed.
  • said copper plating solution what contains 0.1 mol or more and 60 mol or less of nickel with respect to 100 mol copper is preferable, for example.
  • palladium may be used as a plating metal deposition catalyst.
  • palladium ions are adsorbed on the surface of the metal particle layer 4 by contacting the surface of the metal particle layer 4 with the palladium chloride solution in the activator step, and adsorbed on the metal particle layer 4 in the reduction step. Reduced palladium ions to metallic palladium.
  • a copper film is formed on the surface of the metal particle layer 4 using palladium as a catalyst by immersing in an aqueous solution containing copper sulfate and formalin, for example, in the chemical copper process.
  • the surface of the metal particle layer 4 is coated with nickel by using palladium as a catalyst. Is formed.
  • the metal layer 2 is required to have an average thickness of, for example, 1 ⁇ m or more
  • the plating layer 5 is formed by electroplating or after electroless plating, the required thickness of the conductive layer is reached. Further electroplating is performed.
  • a known electroplating bath according to a metal to be plated such as copper, nickel, silver, etc. is used, and an appropriate condition is selected, so that a conductive layer having a predetermined thickness is quickly formed without defects. Can be done as follows.
  • the printed wiring board is manufactured by forming a conductive pattern on the printed wiring board substrate of FIG.
  • the conductive pattern is formed using the subtractive method or the semi-additive method based on the metal layer 2 of the printed wiring board substrate.
  • a photosensitive resist is coated on the surface of the printed wiring board substrate on which the metal layer 2 is formed, and patterning corresponding to the conductive pattern is performed on the resist by exposure, development, or the like. Subsequently, the metal layer 2 other than the conductive pattern is removed by etching using the patterned resist as a mask. Finally, the remaining resist is removed to obtain a printed wiring board having a conductive pattern formed on the base film.
  • a photosensitive resist coating is formed on the surface of the printed wiring board substrate on which the metal layer 2 is formed, and an opening corresponding to the conductive pattern is patterned on the resist by exposure, development, or the like. To do. Subsequently, by plating using the patterned resist as a mask, a conductor layer is selectively laminated on the metal layer 2 exposed in the opening of the mask. Thereafter, after removing the resist, the surface of the conductor layer and the metal layer 2 on which the conductor layer is not formed are removed by etching to obtain a printed wiring board having a conductive pattern formed on the base film.
  • a printed wiring board formed using the printed wiring board substrate can be formed thin enough to satisfy the demand for high-density printed wiring, has excellent etching properties, and has a base film 1 and a metal layer 2.
  • the adhesion strength of the conductive pattern is large, and the conductive pattern is difficult to peel from the base film 1.
  • the printed wiring board substrate manufactured by the method for manufacturing a printed wiring board substrate has a high adhesiveness between the base film 1 and the metal layer 2 and both the base film 1 and the metal layer 2. Therefore, the peel strength between the base film 1 and the metal layer 2 is large.
  • the printed wiring board substrate improves the peel strength between the base film 1 and the metal layer 2 by the plurality of fine particles 3 without causing the base film 1 to bite the metal. Good etchability. Therefore, the printed wiring board substrate can easily remove the metal layer 2 and the fine particles 3 by etching, and enables the production of a highly accurate printed wiring board.
  • the fine particles in the printed wiring board substrate may be a compound containing an element other than a metal element, oxygen, and hydrogen.
  • fine particles may not be clearly formed between layers, and may be discontinuously interposed between the base film and the metal layer.
  • the printed wiring board substrate may not have a plating layer. Therefore, the plating step in the method for manufacturing the printed wiring board substrate can be omitted.
  • the thickness of the metal layer may be small, so that the omission of the plating layer is considered.
  • the method for manufacturing a printed wiring board substrate may include an annealing step after the plating step.
  • an annealing step By providing an annealing step, fine particles can be grown. Therefore, the particle diameter of the fine particles can be adjusted by the treatment temperature and time in the annealing process.
  • the lower limit of the treatment temperature in such an annealing step is preferably 260 ° C, more preferably 300 ° C.
  • the upper limit of the annealing temperature is preferably 400 ° C., more preferably 380 ° C.
  • the annealing temperature is less than the lower limit, fine particles may not be grown.
  • the processing temperature of the annealing process exceeds the above upper limit, the base film or the like may be damaged.
  • the lower limit of the annealing process time is preferably 10 minutes, more preferably 30 minutes.
  • the upper limit of the annealing process time is preferably 720 minutes, and more preferably 360 minutes. If the processing time of the annealing step is less than the lower limit, fine particles may not be grown sufficiently. On the contrary, when the processing time of the annealing process exceeds the above upper limit, there is a risk that fine particles may erode the metal layer and the manufacturing cost of the printed wiring board substrate may increase unnecessarily.
  • a metal layer may be formed regardless of nano metal particles.
  • Prototype 1 uses Kaneka's 25 ⁇ m-thick polyimide film “APICAL (registered trademark) 25NPI” as a base film, and copper particles having an average particle diameter of 64 nm as nano metal particles dispersed in water at a concentration of 26% by mass. The metal particle layer and the fine particles were formed using the conductive composition. Specifically, the conductive composition is applied to the surface of the base film (coating process), dried in the air, and then in an atmosphere of nitrogen gas at an oxygen concentration of 100 vol ppm and a temperature of 350 ° C. for 30 minutes. Heating heat treatment (firing process) was performed.
  • the nano metal particles were fired to form a metal particle layer, and fine particles interposed between the base film and the metal particle layer were formed.
  • the electroless plating (plating process) of copper with an average thickness of 0.4 ⁇ m was performed on the surface of the formed metal particle layer, and further a metal layer with an average total thickness of 18 ⁇ m was formed by electroplating of copper.
  • the base film on which the metal layer was formed was annealed at a temperature of 350 ° C. for 30 minutes to obtain prototype 1.
  • Prototype 2 was manufactured under the same conditions as prototype 1 above, except that copper particles having an average particle diameter of 102 nm were used as the nanometal particles.
  • Prototype 3 was manufactured under the same conditions as prototype 1 above, except that copper particles having an average particle diameter of 38 nm were used as the nanometal particles.
  • Prototype 4 was manufactured under the same conditions as in Prototype 1 except that copper particles having an average particle diameter of 455 nm were used as the nanometal particles.
  • Prototype 5 was manufactured under the same conditions as prototype 1 except that the firing time was 600 minutes.
  • Figures 3A to 3C show images taken with a transmission electron microscope of cross sections of the printed wiring board substrates of prototypes 1 to 3.
  • the dark portion at the bottom is the base film
  • the light portion at the top is the metal particle layer.
  • Crystal grains having a diameter of about several tens to several hundreds of nanometers can be confirmed in the metal grain layer. Further, it can be confirmed that fine particles having a particle diameter of about several nanometers are present in a layer form between the base film and the metal particle layer in the middle of the upper and lower sides of these images. That is, in each of the prototypes 1 to 3, fine particles interposed between the base film and the metal layer are formed.
  • the average particle diameter was calculated by averaging the values obtained by measuring the diameters of 10 or more fine particles.
  • FIGS. 4A to 4C show two-dimensional mapping of the analysis results of the copper content in the cross sections of the printed wiring board substrates of prototypes 1 to 3.
  • FIG. 4A to 4C show two-dimensional mapping of the analysis results of the copper content in the cross sections of the printed wiring board substrates of prototypes 1 to 3.
  • mappings of copper content indicate the existence range of metal layers or fine particles in prototypes 1 to 3.
  • FIGS. 5A to 5C show two-dimensional mapping of the analysis results of the carbon content in the cross section of the printed wiring board substrates of prototypes 1 to 3.
  • FIG. 5A to 5C show two-dimensional mapping of the analysis results of the carbon content in the cross section of the printed wiring board substrates of prototypes 1 to 3.
  • mappings of carbon content show the range of base film in prototypes 1-3.
  • FIGS. 6A to 6C are diagrams in which the analysis results of the oxygen content in the cross sections of the printed wiring board substrates of the prototypes 1 to 3 are two-dimensionally mapped.
  • the fine particles contain oxygen, are metal oxides or metal hydroxides, and near the surface of the base film. It turns out that oxygen is contained.
  • peel strength Furthermore, for the printed wiring board substrates of Prototypes 1 to 5, the peel strength of the metal layer from the base film was drawn in a 180 ° direction with respect to the polyimide film in accordance with JIS-C6471 (1995). It measured by the method of peeling. In addition, if peeling strength is 700 gf / cm or more, it is thought that it is a sufficient value as a board
  • the printed wiring board substrates of Prototypes 1 to 5 have a peel strength between the base film and the metal layer of 740 gf / min when fine particles are formed between the base film and the metal layer. It is a sufficiently large value of cm or more.
  • the same conditions as in Prototype 1 except that the sintering temperature and the oxygen concentration in the atmosphere were adjusted so as not to form fine particles between the base film and the metal layer.
  • the peel strength between the base film and the metal layer showed a low value of less than 700 gf / cm. From this, it is considered that the peel strength between the base film and the metal layer is improved by the presence of a plurality of fine particles between the base film and the metal layer.
  • the average particle diameter of the fine particles formed between the base film and the metal layer was 1 nm to 18 nm.
  • the average particle diameter of a plurality of fine particles interposed between the base film and the metal layer is 0.1 nm or more and 20 nm or less, and it is considered that the peel strength of the metal layer is improved.
  • the printed wiring board substrates of Prototypes 1 to 5 have an oxygen content in the vicinity of the surface of the base film (range from the surface to a depth of 50 nm) of 20 atm% or more and 60 atm% or less, which allows fine particles and It is thought that the adhesiveness of the is further improved.
  • the printed wiring board substrate and the printed wiring board substrate manufacturing method of the present invention are excellent in etching property and high peel strength of the metal layer, so that a printed wiring board requiring high density printed wiring is manufactured. Preferably used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

 本発明の一実施形態のプリント配線板用基板は、絶縁性を有するベースフィルムと、このベースフィルムの少なくとも一方の面側に積層される金属層とを備えるプリント配線板用基板であって、上記ベースフィルム及び金属層間に複数の微細粒子が介在し、この微細粒子が上記金属層の主金属と同じ金属又はその金属化合物から形成されている。上記複数の微細粒子の平均粒子径としては、0.1nm以上20nm以下が好ましい。上記複数の微細粒子が、金属酸化物又は金属水酸化物であるとよい。上記複数の微細粒子が、上記ベースフィルム及び金属層間に層状に存在するとよい。上記金属層が、ナノ金属粒子の焼成により形成される金属粒層を有しているとよい。

Description

プリント配線板用基板及びプリント配線板用基板の製造方法
 本発明は、プリント配線板用基板及びプリント配線板用基板の製造方法に関する。
 絶縁性のベースフィルムの表面に金属層を有し、この金属層をエッチングすることで導電パターンを形成してプリント配線板を得るためのプリント配線板用基板が広く使用されている。
 このようなプリント配線板用基板を使用して形成したプリント配線板に曲げ折力が作用した際にベースフィルムから金属層が剥離しないよう、ベースフィルムと金属層との剥離強度が大きいプリント配線板用基板が求められている。
 そこで、ポリイミド製のベースフィルムの表面に金属層を構成する銅箔を積層して形成される基板において、銅箔のベースフィルムに対する接着面の十点平均粗さ(Rz)を0.7~2.2μmとすることによって、ベースフィルムと金属層との剥離強度を大きくする技術が提案されている(特許文献1参照)。
特開2014-141083号公報
 上記公報に開示される基板では、銅箔の接着面に凹凸があるので、銅箔表面の凸部がベースフィルムの内部に食い込んだ状態となる。このようにベースフィルムの内部に食い込んだ部分は、エッチングによる除去性が小さいので、このベースフィルム内に食い込んだ金属を除去するためにエッチング液の濃度を高くしたり、エッチング時間を長くしたりする必要がある。しかしながら、高濃度又は長時間のエッチングにより導電パターンを形成するとサイドエッチによって回路形状のテーパーが大きくなるため、上記公報に開示される基板は、導電パターンの形成性に劣る。
 また、上記公報に開示される基板の金属層は、ベースフィルムに対する接着面に凹凸を有するので、この金属層をエッチングして形成した導電パターンに高周波を伝搬させた際に、表皮効果により表面近傍に集中する電流が、接着面の凹凸に沿って流れる。このため、実質的な電流の伝送経路が長くなり、その分だけ損失が大きくなるという不都合も生じる。このため、上記公報に開示される基板とは異なる構成で、ベースフィルムと金属層との剥離強度を向上させる方法が望まれている。
 本発明は、上述のような事情に基づいてなされたものであり、良好なエッチング性を有しながら、ベースフィルムと金属層との剥離強度が大きいプリント配線板用基板及びそのようなプリント配線板用基板の製造方法を提供することを課題とする。
 上記課題を解決するためになされた本発明の一態様に係るプリント配線板は、絶縁性を有するベースフィルムと、このベースフィルムの少なくとも一方の面側に積層される金属層とを備えるプリント配線板用基板であって、上記ベースフィルム及び金属層間に複数の微細粒子が介在し、この微細粒子が上記金属層の主金属と同じ金属又はその金属化合物から形成されている。
 また、上記課題を解決するためになされた本発明の別の態様に係るプリント配線板用基板の製造方法は、絶縁性を有するベースフィルムと、このベースフィルムの少なくとも一方の面側に積層される金属層とを備えるプリント配線板用基板の製造方法であって、上記ベースフィルムの一方の面側に、ナノ金属粒子を含む導電性組成物を塗工する工程と、上記塗工した導電性組成物を焼成する工程とを備え、上記焼成工程が、上記ベースフィルム及び金属層間にこの金属層の主金属と同じ金属又はその金属化合物から形成される複数の微細粒子を介在させる工程を有する。
 本発明の一態様に係るプリント配線板用基板は、良好なエッチング性を有しながら、ベースフィルムと金属層との剥離強度が大きい。また、本発明の別の態様に係るプリント配線板用基板の製造方法は、良好なエッチング性を有しながら、ベースフィルムと金属層との剥離強度が大きいプリント配線板用基板を製造できる。
図1は、本発明の一実施形態のプリント配線板用基板を示す模式的断面図である。 図2は、図1のプリント配線板用基板の製造方法を示す流れ図である。 図3Aは、試作品1の断面電子顕微鏡写真である。 図3Bは、試作品2の断面電子顕微鏡写真である。 図3Cは、試作品3の断面電子顕微鏡写真である。 図4Aは、試作品1の断面の銅元素含有量をマッピングした図である。 図4Bは、試作品2の断面の銅元素含有量をマッピングした図である。 図4Cは、試作品3の断面の銅元素含有量をマッピングした図である。 図5Aは、試作品1の断面の炭素含有量をマッピングした図である。 図5Bは、試作品2の断面の炭素含有量をマッピングした図である。 図5Cは、試作品3の断面の炭素含有量をマッピングした図である。 図6Aは、試作品1の断面の酸素含有量をマッピングした図である。 図6Bは、試作品2の断面の酸素含有量をマッピングした図である。 図6Cは、試作品3の断面の酸素含有量をマッピングした図である。
[本発明の実施形態の説明]
 本発明の一態様に係るプリント配線板用基板は、絶縁性を有するベースフィルムと、このベースフィルムの少なくとも一方の面側に積層される金属層とを備えるプリント配線板用基板であって、上記ベースフィルム及び金属層間に複数の微細粒子が介在し、この微細粒子が上記金属層の主金属と同じ金属又はその金属化合物から形成されている。
 当該プリント配線板用基板は、ベースフィルム及び金属層間に、金属層の主金属と同じ金属又はその金属化合物から形成される複数の微細粒子が介在することによって、ベースフィルムと金属層との剥離強度が向上している。その詳細な理由は定かではないが、微細粒子は、金属層を構成する金属と結合できると共に、ベースフィルムを構成する樹脂等とも結合し易いので、金属層とベースフィルムとの隙間を埋めるように介在することによって金属層とベースフィルムとの剥離強度を向上させるものと推定される。また、微細粒子の介在により剥離強度を高める構成は金属層のエッチング性を低下させないので、当該プリント配線板用基板は導電パターンの成形性に優れる。
 上記複数の微細粒子の平均粒子径としては、0.1nm以上20nm以下が好ましい。このように、上記複数の微細粒子の平均粒子径を上記範囲内とすることによって、ベースフィルムと金属層との剥離強度をより確実に向上することができる。
 上記複数の微細粒子が、金属酸化物又は金属水酸化物であるとよい。このように、上記複数の微細粒子が、金属酸化物又は金属水酸化物であることによって、微細粒子と金属層との結合性が高くなるため、ベースフィルムと金属層との剥離強度をより確実に向上することができる。
 上記複数の微細粒子が、上記ベースフィルム及び金属層間に層状に存在するとよい。このように、上記複数の微細粒子が、上記ベースフィルム及び金属層間に層状に存在することによって、ベースフィルムと金属層との剥離強度を偏りなく向上することができる。
 上記金属層が、ナノ金属粒子の焼成により形成される金属粒層を有しているとよい。このように、上記金属層が、ナノ金属粒子の焼成により形成される金属粒層を有していることによって、この金属層の形成が容易となる。また、ナノ金属粒子は、表面積が大きく、周囲の物質と反応し易いので、微細粒子を生成し易い。
 上記金属層が、上記金属粒層の一方の面側に無電解メッキ又は電気メッキにより形成されるメッキ層をさらに有するとよい。このように、上記金属層が、上記金属粒層の一方の面側に無電解メッキ又は電気メッキにより形成されるメッキ層をさらに有することによって、金属層の厚さ又は強度を容易かつ安価に大きくすることができる。
 上記主金属が銅であるとよい。このように、上記主金属が銅であることによって、電気抵抗が小さい金属層を安価に形成することができる。
 上記ベースフィルムの金属層側の表面から深さ50nmまでの領域における酸素含有量としては、20atm%以上60atm%以下が好ましい。このように、上記ベースフィルムの金属層側の表面から深さ50nmまでの領域における酸素含有量が上記範囲内であることによって、金属層との剥離強度をより向上することができる。
 本発明の別の態様に係るプリント配線板用基板の製造方法は、絶縁性を有するベースフィルムと、このベースフィルムの少なくとも一方の面側に積層される金属層とを備えるプリント配線板用基板の製造方法であって、上記ベースフィルムの一方の面側に、ナノ金属粒子を含む導電性組成物を塗工する工程と、上記塗工した導電性組成物を焼成する工程とを備え、上記焼成工程が、上記ベースフィルム及び金属層間にこの金属層の主金属と同じ金属又はその金属化合物から形成される複数の微細粒子を介在させる工程を有する。
 当該プリント配線板用基板の製造方法は、ナノ金属粒子を含む導電性組成物の塗工工程後にナノ金属粒子を微量の酸素存在下で焼成して金属層を形成する焼成工程において、上記ベースフィルム及び金属層間にこの金属層の主金属と同じ金属又はその金属化合物から形成される複数の微細粒子を介在させるので、この複数の微細粒子によりベースフィルムと金属層との剥離強度を向上できる。この複数の微細粒子は焼成工程において、ナノ金属粒子が熱によりベースフィルム中に拡散し、微量の酸素と反応することで形成されていると推定される。また、この複数の微細粒子は、金属層のエッチング性を低下させないので、導電パターンの成形性を担保できる。このため、当該プリント配線板用基板の製造方法によれば、良好なエッチング性を有しながら、ベースフィルムと金属層との剥離強度が大きいプリント配線板用基板を製造することができる。
 ここで、「微細粒子」とは、電子顕微鏡で観察することにより粒子形状が確認されるものをいい、複数の粒子状のものが接続されたものであってもよい。金属層の「主金属」とは、微細粒子近傍(微細粒子からの距離が微細粒子の平均粒子径の10倍以下)の金属層を形成する金属のうち最も原子数含有率が大きい金属を意味する。「平均粒子径」とは、透過型電子顕微鏡(TEM)により撮影される断面画像において10以上の粒子を測定して平均した値をいう。また、「酸素含有量」とは、エネルギー分散型X線分析(EDX)により測定される原子数含有率をいう。また、ベースフィルムの表面とは、ベースフィルの骨格となる分子構造(例えば樹脂の場合には炭素鎖)が存在する領域の境界面を意味する。
[本発明の実施形態の詳細]
 以下、本発明に係るプリント配線板用基板の各実施形態について図面を参照しつつ詳説する。
〔プリント配線板用基板〕
 図1のプリント配線板用基板は、絶縁性を有するベースフィルム1と、このベースフィルム1の少なくとも一方の面側に積層される金属層2とを備える。当該プリント配線板用基板は、金属層2をエッチングする工程を含む方法により導電パターンを形成してプリント配線板を得るために使用される。導電パターンを形成する具体的方法としては、例えばサブトラクティブ法、セミアディティブ法等が挙げられる。
 また、当該プリント配線板用基板は、ベースフィルム1及び金属層2間に複数の微細粒子3が介在している。この複数の微細粒子3は、ベースフィルム1及び金属層2間に層状に存在する。
<ベースフィルム>
 ベースフィルム1の材料としては、例えばポリイミド、液晶ポリマー、フッ素樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の可撓性を有する樹脂、紙フェノール、紙エポキシ、ガラスコンポジット、ガラスエポキシ、テフロン(登録商標)、ガラス基材等のリジッド材、硬質材料と軟質材料とを複合したリジッドフレキシブル材などを用いることが可能である。これらの中でも、微細粒子3の生成量が多く、金属酸化物等との結合力が大きいことから、ポリイミドが好ましい。さらに、ナノ金属粒子焼成工程でも流動しにくく、微細粒子3を層状に保持することができる非熱可塑性ポリイミドが特に好ましい。
 上記ベースフィルム1の厚さは、当該プリント配線板用基板を利用して製造するプリント配線板の仕様に応じて設定されるものであり特に限定されないが、例えば上記ベースフィルム1の平均厚さの下限としては、5μmが好ましく、12μmがより好ましい。一方、上記ベースフィルム1の平均厚さの上限としては、2mmが好ましく、1.6mmがより好ましい。上記ベースフィルム1の平均厚さが上記下限に満たない場合、ベースフィルム1の強度が不十分となるおそれがある。逆に、ベースフィルム1の平均厚さが上記上限を超える場合、プリント配線板の薄板化が困難となるおそれがある。
 ベースフィルム1の金属層2側の表面から深さ50nmまでの領域における酸素含有量の下限としては、20atm%が好ましく、22atm%がより好ましい。一方、ベースフィルム1の金属層2側の表面から深さ50nmまでの領域における酸素含有量の上限としては、60atm%が好ましく、50atm%がより好ましい。ベースフィルム1の金属層2側の表面から深さ50nmまでの領域における酸素含有量が上記下限に満たない場合、ベースフィルム1と金属層2との剥離強度を十分に向上できないおそれがある。逆に、ベースフィルム1の金属層2側の表面から深さ50nmまでの領域における酸素含有量が上記上限を超える場合、ベースフィルム1が破断し易くなるおそれがある。
 上記ベースフィルム1には、金属層2が積層される側の表面に親水化処理を施すことが好ましい。上記親水化処理として、例えばプラズマを照射して表面を親水化するプラズマ処理や、アルカリ溶液で表面を親水化するアルカリ処理等を採用することができる。ベースフィルム1に親水化処理を施すことにより、後述する金属層2の形成(具体例として、導電性組成物の塗工)が容易となる。
<金属層>
 金属層2は、ナノ金属粒子の焼成により形成される金属粒層4と、この金属粒層4の一方の面側(ベースフィルム1と反対側)に無電解メッキ又は電気メッキにより形成されるメッキ層5とを有する。
(金属粒層)
 金属粒層4は、ベースフィルム1の一方の面にナノ金属粒子を含む導電性組成物を塗工したものを熱処理することによって、つまり上記ナノ金属粒子の焼成によって形成される。この金属粒層4は、透過型電子顕微鏡で断面を観察すると、ナノ金属粒子に由来する結晶粒が確認される。これらの結晶粒は、焼結によって互いに接続されており、もはや独立した粒子ではない。
 この金属粒層4の平均厚さの下限としては、0.05μmが好ましく、0.1μmがより好ましい。一方、上記金属粒層4の平均厚さの上限としては、2μmが好ましく、1.5μmがより好ましい。上記金属粒層4の平均厚さが上記下限に満たない場合、金属粒層4に切れ目が生じて導電性が低下するおそれがある。逆に、上記金属粒層4の平均厚さが上記上限を超える場合、金属層2の薄膜化が困難となるおそれや、金属粒層4の空孔に後述するメッキ層5形成時に金属を充填できず、金属粒層4ひいては金属層2の導電性及び強度が不十分となるおそれがある。
 上記金属粒層4を形成するナノ金属粒子の主金属としては、特に限定されるものではないが、後述する微細粒子3を構成する金属元素をベースフィルム1との界面に供給するため、その主金属に基づく金属酸化物又はその金属酸化物に由来する基並びにその金属に基づく金属水酸化物又はその金属水酸化物に由来する基が生成されるものが好ましい。この好ましい金属としては、例えば銅、ニッケル、アルミニウム、金、銀等を挙げることができ、中でも、安価で導電性に優れると共に、ベースフィルム1との密着性に優れる銅が特に好ましい。
 上記金属粒層4を形成するナノ金属粒子の平均粒子径の下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましく、30nmが特に好ましい。一方、上記ナノ金属粒子の平均粒子径の上限としては、500nmが好ましく、100nmがより好ましい。上記ナノ金属粒子の平均粒子径が上記下限に満たない場合、導電性組成物中でのナノ金属粒子の分散性及び安定性が低下するおそれがある。逆に、上記ナノ金属粒子の平均粒子径が上記上限を超える場合、ナノ金属粒子が沈殿し易くなるおそれがあると共に、導電性組成物を塗工した際にナノ金属粒子の密度が均一になり難くなる。
(メッキ層)
 上記メッキ層5は、無電解メッキにより金属粒層4のベースフィルム1と反対側の面に積層されている。このように上記メッキ層5が無電解メッキにより形成されているので、金属粒層4を形成するナノ金属粒子間の空隙にはメッキ層5の金属が充填されている。金属粒層4に空隙が残存していると、この空隙部分が破壊起点となって金属粒層4がベースフィルム1から剥離し易くなるが、この空隙部分にメッキ層5が充填されていることにより金属粒層4の剥離が防止される。
 上記無電解メッキに用いる金属として、導通性のよい銅、ニッケル、銀等を用いることができるが、金属粒層4を形成するナノ金属粒子に銅を使用する場合には、金属粒層4との密着性を考慮して、銅又はニッケルを用いることが好ましい。
 無電解メッキにより形成するメッキ層5の平均厚さの下限としては、0.2μmが好ましく、0.3μmがより好ましい。一方、上記無電解メッキにより形成するメッキ層5の平均厚さの上限としては、1μmが好ましく、0.5μmがより好ましい。上記無電解メッキにより形成するメッキ層5の平均厚さが上記下限に満たない場合、メッキ層5が金属粒層4の空隙部分に十分に充填されず導電性が低下するおそれがある。逆に、上記無電解メッキにより形成するメッキ層5の平均厚さが上記上限を超える場合、無電解メッキに要する時間が長くなり生産性が低下するおそれがある。
 また、上記無電解メッキによる薄層を形成した後に、さらに電気メッキを行いメッキ層5を厚く形成することも好ましい。無電解メッキ後に電気メッキを行うことにより、導電層の厚さの調整が容易かつ正確に行え、また比較的短時間でプリント配線を形成するのに必要な厚さの導電層を形成することができる。この電気メッキに用いる金属として、導通性のよい銅、ニッケル、銀等を用いることができる。
 上記電気メッキ後のメッキ層5の厚さは、どのようなプリント回路を作成するかによって設定されるもので特に限定されないが、例えば上記電気メッキ後のメッキ層5の平均厚さの下限としては、1μmが好ましく、2μmがより好ましい。一方、上記電気メッキ後のメッキ層5の平均厚さの上限としては、100μmが好ましく、50μmがより好ましい。上記電気メッキ後のメッキ層5の平均厚さが上記下限に満たない場合、金属層2の強度が不十分となるおそれがある。逆に、上記電気メッキ後のメッキ層5の平均厚さが上記上限を超える場合、当該プリント配線板用基板ひいては当該プリント配線板用基板を用いて製造するプリント配線板の薄板化が困難となるおそれがある。
<微細粒子>
 微細粒子3は、ベースフィルム1と金属層2との間に複数介在して、ベースフィルム1及び金属層2間の剥離強度つまり接合強度を向上させる。特に、微細粒子3が層状に存在することにより、ベースフィルム1及び金属層2間の剥離強度を偏りなく向上できる。この微細粒子3は、当該プリント配線板用基板の断面を透過型電子顕微鏡で観察したときに、ベースフィルム1及び金属層2とは異なる微細な粒子として確認される。
 微細粒子3は、金属層2の主金属、つまり金属層2の微細粒子近傍領域の金属粒層4を形成するナノ金属粒子の主成分と同じ金属又はその金属化合物から形成される。特に好ましい微細粒子3は、金属粒層4を形成するナノ金属粒子の主成分となっている金属の酸化物又は水酸化物で形成される。金属の酸化物及び水酸化物は、ベースフィルム1とも結合し易い。金属粒層4を形成するナノ金属粒子が銅を主成分とする場合、微細粒子3は、酸化銅又は水酸化銅で形成されることが望ましい。
 微細粒子3の平均粒子径の下限としては、0.1nmが好ましく、0.5nmがより好ましく、1nmがさらにより好ましい。一方、微細粒子3の平均粒子径の上限としては、20nmが好ましく、10nmがより好ましい。微細粒子3の平均粒子径が上記下限に満たない場合、ベースフィルム1及び金属層2間の剥離強度向上効果が不十分となるおそれがある。逆に、微細粒子3の平均粒子径が上記上限を超える場合、粒子を成長させるために当該プリント配線板用基板の製造コストが不必要に増大するおそれがある。
 微細粒子3の層の厚さは、微細粒子3の平均粒子径以上、金属粒層4の金属粒の平均径以下とすることが好ましい。具体的には、微細粒子3の層の平均厚さの下限としては、0.1nmが好ましく、0.5nmがより好ましい。一方、微細粒子3の層の平均厚さの上限としては、100nmが好ましく、50nmがより好ましい。微細粒子3の層の平均厚さが上記下限に満たない場合、ベースフィルム1及び金属層2間の剥離強度向上効果が不十分となるおそれがある。逆に、微細粒子3の層の平均厚さが上記上限を超える場合、微細粒子3間の分離によりベースフィルム1及び金属層2間の剥離が生じ易くなるおそれがある。
 また、微細粒子3の層は、ベースフィルム1側において微細粒子3の数が減少、つまりベースフィルム1側に向けて微細粒子3の存在密度が漸減してもよい。具体的には、微細粒子3は、ベースフィルム1を構成する樹脂の表面の微細な凹部又は高分子鎖の間に入り込むようにして存在することにより、ベースフィルム1とより強固に結合することができ、ベースフィルム1と金属層2との剥離強度をより効果的に向上することができる。
〔プリント配線板用基板の製造方法〕
 図2のプリント配線板用基板の製造方法は、図1のプリント配線板用基板を製造する方法である。
 当該プリント配線板用基板の製造方法は、ナノ金属粒子を含む導電性組成物を調製する工程(ステップS1:調製工程)と、ベースフィルム1の一方の面側に、調製工程で調製した導電性組成物を塗工する工程(ステップS2:塗工工程)と、この塗工工程で塗工した導電性組成物を乾燥する工程(ステップS3:乾燥工程)と、この乾燥工程で乾燥した導電性組成物を熱処理してナノ金属粒子を焼結する工程(ステップS4:焼成工程)と、この焼成工程でナノ金属粒子を焼成して形成される層の一方の面側にメッキする工程(ステップS5:メッキ工程)とを備える。上記ステップS4の焼成工程は、ベースフィルム1及び金属層2間にこの金属層2の主金属と同じ金属又はその金属化合物から形成される複数の微細粒子3を介在させる工程を有する。
<調製工程>
 ステップS1の調製工程では、分散媒に分散剤を溶解し、上述のナノ金属粒子を分散媒中に分散させる。つまり、分散剤がナノ金属粒子を取り囲むことで凝集を防止してナノ金属粒子を分散媒中に良好に分散させる。なお、分散剤は、水又は水溶性有機溶媒に溶解した溶液の状態で反応系に添加することもできる。
(ナノ金属粒子の製造方法)
 ここで、導電性組成物に分散させるナノ金属粒子の製造方法について説明する。上記ナノ金属粒子は、高温処理法、液相還元法、気相法等で製造することができるが、粒子径が均一な粒子を比較的安価に製造できる液相還元法によることが好ましい。
 液相還元法によって上記ナノ金属粒子を製造するためには、例えば水にナノ金属粒子を形成する金属のイオンのもとになる水溶性の金属化合物と分散剤とを溶解すると共に、還元剤を加えて一定時間金属イオンを還元反応させればよい。液相還元法の場合、製造されるナノ金属粒子は形状が球状又は粒状で揃っており、しかも微細な粒子とすることができる。上記金属イオンのもとになる水溶性の金属化合物として、例えば銅の場合は、硝酸銅(II)(Cu(NO)、硫酸銅(II)五水和物(CuSO・5HO)等を挙げることができる。また銀の場合は硝酸銀(I)(AgNO)、メタンスルホン酸銀(CHSOAg)等、金の場合はテトラクロロ金(III)酸四水和物(HAuCl・4HO)、ニッケルの場合は塩化ニッケル(II)六水和物(NiCl・6HO)、硝酸ニッケル(II)六水和物(Ni(NO・6HO)等を挙げることができる。他のナノ金属粒子についても、塩化物、硝酸化合物、硫酸化合物等の水溶性の化合物を用いることができる。
 液相還元法によってナノ金属粒子を製造する場合の還元剤としては、液相(水溶液)の反応系において、金属イオンを還元及び析出させることができる種々の還元剤を用いることができる。この還元剤として、例えば水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、3価のチタンイオンや2価のコバルトイオン等の遷移金属のイオン、アスコルビン酸、グルコースやフルクトース等の還元性糖類、エチレングリコールやグリセリン等の多価アルコールなどを挙げることができる。このうち、3価のチタンイオンが4価に酸化する際の酸化還元作用によって金属イオンを還元し、ナノ金属粒子を析出させる方法がチタンレドックス法である。チタンレドックス法で得られるナノ金属粒子は、粒子径が小さくかつ揃っており、さらにチタンレドックス法はナノ金属粒子の形状を球形又は粒状にすることができる。そのため、チタンレドックス法を用いることで、ナノ金属粒子がより高密度に充填され、上記金属粒層4をより緻密な層に形成することができる。
 ナノ金属粒子の粒子径を調整するには、金属化合物、分散剤、還元剤の種類及び配合割合を調整すると共に、金属化合物を還元反応させる際に、攪拌速度、温度、時間、pH等を調整すればよい。例えば反応系のpHは、微小な粒子径のナノ金属粒子を得るには、7以上13以下とすることが好ましい。このときpH調整剤を用いることで、反応系のpHを上記範囲に調整することができる。このpH調整剤としては、塩酸、硫酸、水酸化ナトリウム、炭酸ナトリウム等の一般的な酸又はアルカリが使用されるが、特に周辺部材の劣化を防止するために、アルカリ金属やアルカリ土類金属、塩素等のハロゲン元素、硫黄、リン、ホウ素等の不純物元素を含まない硝酸やアンモニアが好ましい。
 なお、液相還元法でナノ金属粒子を製造する場合、液相(水溶液)の反応系で析出させたナノ金属粒子は、ろ別、洗浄、乾燥、解砕等の工程を経て、一旦粉末状としたものを用いて導電性組成物を調製することができる。この場合は、粉末状のナノ金属粒子と、分散媒である水と、分散剤と、必要に応じて水溶性の有機溶媒とを所定の割合で配合し、ナノ金属粒子を含む導電性組成物とすることができる。このとき、ナノ金属粒子を析出させた液相(水溶液)を出発原料として導電性組成物を調製することが好ましい。具体的には、析出したナノ金属粒子を含む液相(水溶液)を限外ろ過、遠心分離、水洗、電気透析等の処理に供して不純物を除去し、必要に応じて濃縮して水を除去する。又は、逆に水を加えてナノ金属粒子の濃度を調整した後、さらに必要に応じて水溶性の有機溶媒を所定の割合で配合することによってナノ金属粒子を含む導電性組成物を調製する。この方法では、ナノ金属粒子の乾燥時の凝集による粗大で不定形な粒子の発生を防止することができ、緻密で均一な金属粒層4を形成し易い。
(分散媒)
 上記導電性組成物の分散媒としては、水、高極性溶媒、又はこれらの2種若しくは3種以上を混合したものを使用することができ、中でも水を主成分とし、水と相溶する高極性溶媒を混合したものが好適に使用される。
 導電性組成物における分散媒の主成分となる水の含有割合の下限としては、ナノ金属粒子100質量部当たり20質量部が好ましく、50質量部がより好ましい。一方、導電性組成物における分散媒の主成分となる水の含有割合の上限としては、ナノ金属粒子100質量部当たり1,900質量部が好ましく、1,000質量部がより好ましい。分散媒の水は、分散剤を十分に膨潤させて分散剤で囲まれたナノ金属粒子を良好に分散させるが、上記水の含有割合が上記下限に満たない場合、水によるこの分散剤の膨潤効果が不十分となるおそれがある。逆に、上記水の含有割合が上記上限を超える場合、導電性組成物中のナノ金属粒子割合が少なくなり、ベースフィルム1の表面に必要な厚さと密度とを有する良好な金属粒層4を形成できないおそれがある。
 上記導電性組成物に必要に応じて配合する有機溶媒として、水溶性である種々の有機溶媒が使用可能である。その具体例としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、エチレングリコール、グリセリン等の多価アルコールやその他のエステル類、エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のグリコールエーテル類等を挙げることができる。
 水溶性の有機溶媒の含有割合の下限としては、ナノ金属粒子100質量部当たり30質量部が好ましく、80質量部がより好ましい。一方、水溶性の有機溶媒の含有割合の上限としては、ナノ金属粒子100質量部当たり900質量部が好ましく、500質量部がより好ましい。上記水溶性の有機溶媒の含有割合が上記下限に満たない場合、上記有機溶媒による導電性組成物の粘度調整及び蒸気圧調整の効果が十分に得られないおそれがある。逆に、上記水溶性の有機溶媒の含有割合が上記上限を超える場合、水による分散剤の膨潤効果が不十分となり、導電性組成物中でナノ金属粒子の凝集が生じるおそれがある。
(分散剤)
 上記導電性組成物に含まれる分散剤としては、当該プリント配線板用基板の劣化防止の観点より、硫黄、リン、ホウ素、ハロゲン及びアルカリを含まないものが好ましい。このような好ましい分散剤としては、ポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子分散剤、ポリアクリル酸、カルボキシメチルセルロース等の分子中にカルボン酸基を有する炭化水素系の高分子分散剤、ポバール(ポリビニルアルコール)、スチレン-マレイン酸共重合体、オレフィン-マレイン酸共重合体、1分子中にポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等の極性基を有する高分子分散剤等を挙げることができる。
 上記分散剤の分子量の下限としては、2,000が好ましく、5,000がより好ましい。一方、上記分散剤の分子量の上限としては、300,000が好ましく、100,000がより好ましい。上記分散剤の分子量が上記下限に満たない場合、ナノ金属粒子の凝集を防止して分散を維持する効果が十分に得られないおそれがあり、その結果、ベースフィルム1に積層される金属粒層4を緻密で欠陥の少ないものにできないおそれがある。逆に、上記分散剤の分子量が上記上限を超える場合、分散剤の嵩が大きすぎ、導電性組成物の塗工後に行う熱処理において、ナノ金属粒子同士の焼結を阻害してボイドを生じさせたりして金属粒層4の膜質の緻密さが低下するおそれや、分散剤の分解残渣が導電性を低下させるおそれがある。
 導電性組成物における分散剤の含有割合の下限としては、ナノ金属粒子100質量部当たり1質量部が好ましく、5質量部がより好ましい。一方、導電性組成物における分散剤の含有割合の上限としては、ナノ金属粒子100質量部当たり60質量部が好ましく、40質量部がより好ましい。上記分散剤の含有割合が上記下限に満たない場合、この凝集防止効果が不十分となるおそれがある。逆に、上記分散剤の含有割合が上記上限を超える場合、導電性組成物の塗装後の熱処理時に、過剰の分散剤がナノ金属粒子の焼結を含む焼成を阻害してボイドが発生するおそれや、高分子分散剤の分解残渣が不純物として金属粒層4中に残存して導電性を低下させるおそれがある。
<塗工工程>
 ステップS2の塗工工程では、ベースフィルム1の少なくとも一方の面にナノ金属粒子を含む導電性組成物を塗工する。
 導電性組成物の塗工方法としては、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等の従来公知の塗工方法を用いることができる。またスクリーン印刷、ディスペンサ等によりベースフィルム1の一方の面の一部のみに導電性組成物を塗工するようにしてもよい。
<乾燥工程>
 ステップS3の乾燥工程では、ベースフィルム1に塗工した導電性組成物中の分散媒を蒸発させて、この導電性組成物を乾燥する。
 導電性組成物の乾燥方法としては、自然乾燥、加熱による乾燥、温風による乾燥等を適用することができる。但し、乾燥前の導電性組成物にその表面を荒らすような強い風を当てないような方法とされる。
<焼成工程>
 ステップS4の焼成工程では、加熱により、分散媒を熱分解すると共にナノ金属粒子を一体化させ、金属粒層4を形成する。このようにナノ金属粒子を焼結することにより、ベースフィルム1の表面に金属粒層4ひいては金属層2を比較的容易に形成できる。
 また、この焼成工程は、複数の微細粒子3を形成してベースフィルム1及び金属層2間に介在させる工程を有する。つまり、焼成工程では、上記ナノ金属粒子を一体化させるのと並行して、ベースフィルム1及び金属層2間に介在する複数の微細粒子3の少なくとも一部を形成する。ナノ金属粒子は、表面積が大きく、周囲の物質と反応し易いので、微細粒子を生成し易い。
 微細粒子3は、上記ナノ金属粒子の主金属又はその主金属の酸化物若しくは水酸化物から形成される。この微細粒子3は、樹脂製のベースフィルム1との親和性が高いため、主にベースフィルム1とナノ金属粒子の層との界面に形成される。このため、多数の微細粒子3が形成されると、ナノ金属粒子が焼成されて形成する金属粒層4とベースフィルム1との間に微細粒子3が層状に存在する状態となる。このようにして形成され、ベースフィルム1と金属粒層4(ひいては金属層2)との間に介在する微細粒子3は、ベースフィルム1及び金属粒層4の双方に対して比較的高い密着性を有するので、ベースフィルム1と金属層2との間の剥離強度を増大させる。
 具体例として、ナノ金属粒子として銅を用いた場合、主にナノ金属粒子の層のベースフィルム1との界面近傍に酸化銅の微細粒子3及び水酸化銅の微細粒子3が生成するが、酸化銅の微細粒子3の方が多いことが好ましい。中でも酸化銅の微細粒子は、ベースフィルム1を構成する樹脂と結合し易いため、金属粒層4とベースフィルム1との間の密着力を増大させる。
 この焼成工程における処理温度、つまりナノ金属粒子の焼結温度は、ナノ金属粒子及び分散剤の種類に応じて選択される。具体的には、ナノ金属粒子の焼結温度の下限としては、260℃が好ましく、300℃がより好ましい。一方、ナノ金属粒子の焼結温度の上限としては、400℃が好ましく、380℃がより好ましい。ナノ金属粒子の焼結温度が上記下限に満たない場合、微細粒子3の生成が起こらないおそれがある。逆に、ナノ金属粒子の焼結温度が上記上限を超える場合、ベースフィルム1が変形又は損傷するおそれがある。
 上記焼成工程における熱処理は、一定量の酸素が含まれる雰囲気下で行うことが好ましい。熱処理時の雰囲気の酸素濃度の下限としては、10体積ppmが好ましく、100体積ppmがより好ましい。一方、熱処理時の雰囲気の酸素濃度の上限としては、500体積ppmが好ましく、400体積ppmがより好ましい。熱処理時の雰囲気の酸素濃度が上記下限に満たない場合、微細粒子3の生成量が少なくなり、ベースフィルム1と金属層2との間の密着力の向上効果が不十分となるおそれがある。逆に、熱処理時の雰囲気の酸素濃度が上記上限を超える場合、ナノ金属粒子が酸化して微細粒子3の生成ができず、ベースフィルム1と金属層2との間の密着力が不十分となるおそれがある。
<メッキ工程>
 ステップS5のメッキ工程では、ステップS4の焼成工程において形成した金属粒層4のベースフィルム1と反対側の面に無電解メッキ又は電気メッキにより、メッキ層5を形成する。
 このメッキ工程において、メッキ層5を無電解メッキにより形成する場合、上述したように、無電解メッキに用いる金属として、銅、ニッケル、銀等を用いることができる。例えば銅メッキを行う場合、無電解メッキで用いる銅メッキ液として、微量のニッケルを含有する銅メッキ液を用いる。ニッケル又はニッケル化合物を含有させた銅メッキ液を用いることにより、低応力のメッキ層5を形成することができる。上記銅メッキ液として、例えば100モルの銅に対し0.1モル以上60モル以下のニッケルを含有するものが好ましい。また、上記銅メッキ液に、錯化剤、還元剤、pH調整剤等の他の成分を適宜配合させてもよい。
 また、上記無電解メッキでは、メッキ金属の析出触媒としてパラジウムを用いてもよい。パラジウムを析出触媒として用いる場合、アクチベーター工程において、金属粒層4の表面を塩化パラジウム溶液に接触させることにより金属粒層4表面にパラジウムイオンを吸着させ、上記還元工程において金属粒層4に吸着したパラジウムイオンを金属パラジウムに還元する。そして、例えば無電解銅メッキを行う場合には、化学銅工程において、例えば硫酸銅とホルマリンとを含む水溶液に浸積することにより、パラジウムを触媒として金属粒層4表面に銅の皮膜が形成される。また、例えば無電解ニッケルメッキを行う場合には、化学ニッケル工程において、例えば硫酸ニッケルと次亜リン酸ナトリウムとを含む水溶液に浸漬することにより、パラジウムを触媒として金属粒層4表面にニッケルの皮膜が形成される。
 なお、金属層2として例えば1μm以上の平均厚さが要求される場合には、電気メッキによりメッキ層5を形成するか、無電解メッキをした後、要求される導電層の厚さになるまでさらに電気メッキを行う。この電気メッキは、例えば銅、ニッケル、銀等のメッキする金属に応じた従来公知の電気メッキ浴を用いて、かつ適切な条件を選んで、所定厚の導電層が欠陥なく速やかに形成されるように行うことができる。
〔プリント配線板〕
 プリント配線板は、図1のプリント配線板用基板に導電パターンを形成することにより製造される。上記導電パターンは、当該プリント配線板用基板の金属層2をベースとして、サブトラクティブ法又はセミアディティブ法を用いて形成される。
 例えばサブトラクティブ法では、当該プリント配線板用基板の金属層2が形成された面に、感光性のレジストを被覆形成し、露光、現像等によりレジストに対して導電パターンに対応するパターニングを行う。続いて、パターニングしたレジストをマスクとしてエッチングにより導電パターン以外の部分の金属層2を除去する。そして最後に、残ったレジストを除去することにより、導電パターンがベースフィルム上に形成されたプリント配線板が得られる。
 また、セミアディティブ法では、当該プリント配線板用基板の金属層2が形成された面に、感光性のレジストを被覆形成し、露光、現像等によりレジストに対して導電パターンに対応する開口をパターニングする。続いて、パターニングしたレジストをマスクとしてメッキを行うことにより、このマスクの開口部に露出している金属層2に選択的に導体層を積層する。その後、レジストを剥離してからエッチングにより上記導体層の表面及び導体層が形成されていない金属層2を除去することにより、導電パターンがベースフィルム上に形成されたプリント配線板が得られる。
 当該プリント配線板用基板を用いて形成したプリント配線板は、高密度のプリント配線の要求を満たすべく十分に薄く形成することができると共に、エッチング性に優れ、かつベースフィルム1と金属層2との密着力が大きく、ベースフィルム1から導電パターンが剥離し難い。
〔利点〕
 当該プリント配線板用基板の製造方法によって製造される当該プリント配線板用基板は、ベースフィルム1と金属層2との間に、これらベースフィルム1及び金属層2の双方との密着性が高い複数の微細粒子3が介在するため、ベースフィルム1と金属層2との間の剥離強度が大きい。
 また、当該プリント配線板用基板は、ベースフィルム1に金属を食い込ませることなく複数の微細粒子3によりベースフィルム1と金属層2との剥離強度を向上させるので、金属層2及び微細粒子3のエッチング性が良好である。従って、当該プリント配線板用基板は金属層2及び微細粒子3をエッチングにより容易に除去することができ、高精度のプリント配線板の製造を可能にする。
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 当該プリント配線板用基板における微細粒子は、金属元素、酸素及び水素以外の元素を含む化合物であってもよい。
 当該プリント配線板用基板において、微細粒子が、明確に層を形成せず、ベースフィルムと金属層との間に不連続に介在してもよい。
 また、当該プリント配線板用基板は、メッキ層を有しないものであってもよい。従って、当該プリント配線板用基板の製造方法におけるメッキ工程は省略可能である。当該プリント配線板用基板を例えばセミアディティブ法によりプリント配線板を形成するために使用する場合、金属層の厚さは小さくてよいため、メッキ層の省略が検討される。
 当該プリント配線板用基板の製造方法は、メッキ工程後にアニール工程を有してもよい。アニール工程を設けることによって、微細粒子を成長させられる。従って、アニール工程における処理温度や時間により、微細粒子の粒子径等を調整できる。
 このようなアニール工程の処理温度の下限としては、260℃が好ましく、300℃がより好ましい。一方、アニール工程の処理温度の上限としては、400℃が好ましく、380℃がより好ましい。アニール工程の処理温度が上記下限に満たない場合、微細粒子を成長させられないおそれがある。逆に、アニール工程の処理温度が上記上限を超える場合、ベースフィルム等を損傷するおそれがある。
 また、アニール工程の処理時間の下限としては、10分が好ましく、30分がより好ましい。一方、アニール工程の処理時間の上限としては、720分が好ましく、360分がより好ましい。アニール工程の処理時間が上記下限に満たない場合、微細粒子を十分成長させられないおそれがある。逆に、アニール工程の処理時間が上記上限を超える場合、微細粒子が金属層を浸食するおそれや、当該プリント配線板用基板の製造コストが不必要に増大するおそれがある。
 また、当該プリント配線板用基板の製造方法において、ナノ金属粒子によらず、金属層を形成してもよい。
 以下、プリント配線板用基板を試作した結果に基づいて本発明を詳述するが、この試作品の記載に基づいて本発明が限定的に解釈されるものではない。
<試作品>
 本発明の効果を確認するために、条件が異なるプリント配線板用基板の試作品1~5を製作した。
(試作品1)
 試作品1は、ベースフィルムとしてカネカ社の厚み25μmのポリイミドフィルム「アピカル(登録商標)25NPI」を用い、ナノ金属粒子として平均粒子径64nmの銅粒子を26質量%濃度で水に分散させた導電性組成物を使用して金属粒層及び微細粒子を形成した。具体的には、上記ベースフィルムの表面に上記導電性組成物を塗工し(塗工工程)、大気中で乾燥した後、酸素濃度100体積ppmで温度350℃の窒素ガス雰囲気下で30分間加熱する熱処理(焼成工程)を行った。つまり、この熱処理により、ナノ金属粒子を焼成して金属粒層を形成すると共に、ベースフィルムと金属粒層の間に介在する微細粒子を形成した。そして、形成された金属粒層の表面に平均厚さ0.4μmの銅の無電解メッキ(メッキ工程)を行い、さらに銅の電気メッキにより平均合計厚さ18μmの金属層を形成した。さらに、金属層を形成したベースフィルムを温度350℃で30分間アニール処理することにより、試作品1を得た。
(試作品2)
 試作品2は、ナノ金属粒子として平均粒子径102nmの銅粒子を用いた以外は、上記試作品1と同じ条件で製作した。
(試作品3)
 試作品3は、ナノ金属粒子として平均粒子径38nmの銅粒子を用いた以外は、上記試作品1と同じ条件で製作した。
(試作品4)
 試作品4は、ナノ金属粒子として平均粒子径455nmの銅粒子を用いた以外は、上記試作品1と同じ条件で製作した。
(試作品5)
 試作品5は、焼成時間を600分とした以外は、上記試作品1と同じ条件で製作した。
<評価>
 上記試作品1~5について、以下のように評価を行った。
(断面撮影)
 試作品1~5のプリント配線板用基板の断面を日本電子株式会社の透過型電子顕微鏡「JEM-2100F」を用いて撮影した。
 図3A~3Cに、試作品1~3のプリント配線板用基板の断面を透過型電子顕微鏡で撮影した画像を示す。
 これらの画像において、下部の色の濃い部分がベースフィルムであり、上部の色の薄い部分が金属粒層である。金属粒層には、径が数十nmから数百nm程度の結晶粒が確認できる。また、これらの画像の上下中程には、ベースフィルムと金属粒層との間に粒子径が数nm程度の微細粒子が層状に存在することが確認できる。つまり、試作品1~3は、いずれもベースフィルムと金属層との間に介在する微細粒子が形成されている。
(平均粒子径)
 これらの撮影画像において、10以上の微細粒子の直径を測定した値を平均することにより平均粒子径を算出した。
(元素濃度)
 また、試作品1~5のプリント配線板用基板の断面を、上記断面撮影に用いた透過型電子顕微鏡のエネルギー分散型X線分析機能を用いて、加速電圧3kVで分析することにより、ベースフィルムと金属層との界面近傍領域における銅、炭素及び酸素の含有量を測定した。図4A~6Cに示す2次元マッピング画像において、原子の含有量(atm%)は色の濃淡で段階的に示されている。色が濃いほど含有量が小さく、色が薄くなるほど含有量が大きいことを表す。
 図4A~4Cに、試作品1~3のプリント配線板用基板の断面の銅の含有量の分析結果を2次元マッピングした図を示す。
 これらの銅含有量のマッピングは、試作品1~3における金属層又は微細粒子の存在範囲を示す。
 図5A~5Cに、試作品1~3のプリント配線板用基板の断面の炭素の含有量の分析結果を2次元マッピングした図を示す。
 これらの炭素含有量のマッピングは、試作品1~3におけるベースフィルムの存在範囲を示す。
 図6A~6Cに、試作品1~3のプリント配線板用基板の断面の酸素の含有量の分析結果を2次元マッピングした図を示す。
 この酸素含有量マッピングを上記銅含有量のマッピング及び炭素含有量のマッピングと重ね合わせることにより、微細粒子が酸素を含み、金属酸化物又は金属水酸化物であること、及びベースフィルムの表面近傍に酸素が含まれることが分かる。
(表面近傍領域の酸素含有量)
 上記酸素含有量の分析結果から、試作品1~5のプリント配線板用基板のベースフィルムの表面近傍領域、つまりベースフィルムの表面から深さ50nmまでの範囲の酸素含有量(マッピングデータの平均値)を算出した。
(剥離強度)
 さらに、試作品1~5のプリント配線板用基板について、ベースフィルムからの金属層の剥離強度を、JIS-C6471(1995)に準拠して、金属層をポリイミドフィルムに対して180°方向に引き剥がす方法で測定した。なお、剥離強度は、700gf/cm以上であれば、プリント配線板用基板としては十分な値であると考えられる。
 上記試作品1~5のプリント配線板用基板について、微細粒子の平均粒子径、ベースフィルム表面近傍領域(表面から深さ50nmまでの範囲)の酸素含有量、及びベースフィルムからの金属層の剥離強度の測定結果を次の表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
<評価結果>
 表1に示すように、試作品1~5のプリント配線板用基板は、ベースフィルムと金属層との間に微細粒子が形成されることによって、ベースフィルムと金属層との剥離強度が740gf/cm以上の十分に大きい値となっている。一方、表1には示さないが、ベースフィルムと金属層との間に微細粒子を形成しないように、焼成工程での焼結温度や雰囲気の酸素濃度を調整した以外は試作品1と同じ条件で製作したプリント配線板用基板では、ベースフィルムと金属層との剥離強度は700gf/cm未満の低い値を示した。このことから、ベースフィルムと金属層との間に複数の微細粒子が介在することによりベースフィルムと金属層との剥離強度が向上すると考えられる。
 また、試作品1~5のプリント配線板用基板は、ベースフィルムと金属層との間に形成された微細粒子の平均粒子径が1nm~18nmであった。いずれの試作品でもベースフィルム及び金属層間に介在する複数の微細粒子の平均粒子径が、0.1nm以上20nm以下となっており、金属層の剥離強度が向上していると考えられる。
 さらに、試作品1~5のプリント配線板用基板は、ベースフィルムの表面近傍領域(表面から深さ50nmまでの範囲)における酸素含有量が20atm%以上60atm%以下であり、これによって微細粒子との密着性がさらに向上していると考えられる。
 本発明のプリント配線板用基板及びプリント配線板用基板の製造方法は、エッチング性に優れ、金属層の剥離強度が高いため、高密度のプリント配線が要求されるプリント配線板を製造するために好適に用いられる。
1 ベースフィルム  2 金属層  3 微細粒子  4 金属粒層  5 メッキ層
S1 調製工程  S2 塗工工程  S3 乾燥工程  S4 焼成工程  
S5 メッキ工程

Claims (9)

  1.  絶縁性を有するベースフィルムと、
     上記ベースフィルムの少なくとも一方の面側に積層される金属層と
     を備えるプリント配線板用基板であって、
     上記ベースフィルム及び金属層間に複数の微細粒子が介在し、
     上記微細粒子が上記金属層の主金属と同じ金属又はその金属化合物から形成されているプリント配線板用基板。
  2.  上記複数の微細粒子の平均粒子径が、0.1nm以上20nm以下である請求項1に記載のプリント配線板用基板。
  3.  上記複数の微細粒子が、金属酸化物又は金属水酸化物である請求項1又は請求項2に記載のプリント配線板用基板。
  4.  上記複数の微細粒子が、上記ベースフィルム及び金属層間に層状に存在する請求項1、請求項2又は請求項3に記載のプリント配線板用基板。
  5.  上記金属層が、ナノ金属粒子の焼成により形成される金属粒層を有している請求項1から請求項4のいずれか1項に記載のプリント配線板用基板。
  6.  上記金属層が、上記金属粒層の一方の面側に無電解メッキ又は電気メッキにより形成されるメッキ層をさらに有する請求項5に記載のプリント配線板用基板。
  7.  上記主金属が銅である請求項1から請求項6のいずれか1項に記載のプリント配線板用基板。
  8.  上記ベースフィルムの金属層側の表面から深さ50nmまでの領域における酸素含有量が20atm%以上60atm%以下である請求項1から請求項7のいずれか1項に記載のプリント配線板用基板。
  9.  絶縁性を有するベースフィルムと、
     このベースフィルムの少なくとも一方の面側に積層される金属層と
     を備えるプリント配線板用基板の製造方法であって、
     上記ベースフィルムの一方の面側に、ナノ金属粒子を含む導電性組成物を塗工する工程と、
     上記塗工した導電性組成物を焼成する工程と
     を備え、
     上記焼成工程が、上記ベースフィルム及び金属層間にこの金属層の主金属と同じ金属又はその金属化合物から形成される複数の微細粒子を介在させる工程を有するプリント配線板用基板の製造方法。
PCT/JP2015/085454 2014-12-22 2015-12-18 プリント配線板用基板及びプリント配線板用基板の製造方法 WO2016104347A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580070303.3A CN107113981B (zh) 2014-12-22 2015-12-18 印刷线路板用基板以及印刷线路板用基板的制造方法
US15/536,954 US10143083B2 (en) 2014-12-22 2015-12-18 Substrate for printed circuit board and method for producing substrate for printed circuit board
JP2016566185A JPWO2016104347A1 (ja) 2014-12-22 2015-12-18 プリント配線板用基板及びプリント配線板用基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-259518 2014-12-22
JP2014259518 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104347A1 true WO2016104347A1 (ja) 2016-06-30

Family

ID=56150367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085454 WO2016104347A1 (ja) 2014-12-22 2015-12-18 プリント配線板用基板及びプリント配線板用基板の製造方法

Country Status (4)

Country Link
US (1) US10143083B2 (ja)
JP (1) JPWO2016104347A1 (ja)
CN (1) CN107113981B (ja)
WO (1) WO2016104347A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061898A (ja) * 2017-09-27 2019-04-18 日立化成株式会社 積層体の製造方法
JPWO2019208077A1 (ja) * 2018-04-26 2021-05-13 住友電気工業株式会社 プリント配線板用基材及びプリント配線板用基材の製造方法
JPWO2020004624A1 (ja) * 2018-06-29 2021-05-20 株式会社マテリアル・コンセプト 配線基板及びその製造方法、並びに電子部品及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075456A (ja) * 2017-10-16 2019-05-16 住友電気工業株式会社 プリント配線板用基材及びプリント配線板
JP2019075457A (ja) * 2017-10-16 2019-05-16 住友電気工業株式会社 プリント配線板用基材及びプリント配線板
TWI645973B (zh) * 2017-12-15 2019-01-01 律勝科技股份有限公司 聚醯亞胺薄化軟性基板及其製造方法
KR20210000655A (ko) * 2019-06-25 2021-01-05 엘지이노텍 주식회사 회로기판
JP7354944B2 (ja) * 2020-07-06 2023-10-03 トヨタ自動車株式会社 配線基板の製造方法
JP7456330B2 (ja) * 2020-08-21 2024-03-27 トヨタ自動車株式会社 配線基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013002A1 (fr) * 2006-07-28 2008-01-31 Asahi Glass Company, Limited Dispersion contenant de fines particules métalliques, procédé de production de la dispersion et articles dotés de films métalliques
US20100025080A1 (en) * 2008-07-30 2010-02-04 Samsung Electronics Co., Ltd. Printed circuit board with conductive ink/paste, having plating layers, and method for manufacturing the same
WO2010122918A1 (ja) * 2009-04-24 2010-10-28 住友電気工業株式会社 プリント配線板用基板、プリント配線板、及びそれらの製造方法
JP2012114152A (ja) * 2010-11-22 2012-06-14 Sumitomo Electric Ind Ltd プリント配線板用基板およびプリント配線板ならびにプリント配線板用基板の製造方法
JP2013064191A (ja) * 2011-08-30 2013-04-11 Fujifilm Corp コラーゲンペプチド被覆銅ナノ粒子、コラーゲンペプチド被覆銅ナノ粒子分散物、コラーゲンペプチド被覆銅ナノ粒子の製造方法、導電性インク、導電膜の製造方法、及び導体配線

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572764A (en) * 1984-12-13 1986-02-25 E. I. Du Pont De Nemours And Company Preparation of photoformed plastic multistrate by via formation first
JP2802181B2 (ja) * 1991-04-23 1998-09-24 松下電工株式会社 セラミック回路板における導体膜の形成方法
JP2005303090A (ja) * 2004-04-13 2005-10-27 Toshiba Corp 配線基板および配線基板の製造方法
JP4948199B2 (ja) * 2007-02-16 2012-06-06 旭化成イーマテリアルズ株式会社 積層体の製造方法
JP2009049274A (ja) * 2007-08-22 2009-03-05 Konica Minolta Holdings Inc 導電性パターンシートの作製方法、及び導電性パターンシート
JP2011104815A (ja) * 2009-11-13 2011-06-02 Asahi Kasei E-Materials Corp 積層体および積層体の製造方法
JP6320031B2 (ja) 2012-12-28 2018-05-09 新日鉄住金化学株式会社 フレキシブル銅張積層板
WO2015141769A1 (ja) * 2014-03-20 2015-09-24 住友電気工業株式会社 プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013002A1 (fr) * 2006-07-28 2008-01-31 Asahi Glass Company, Limited Dispersion contenant de fines particules métalliques, procédé de production de la dispersion et articles dotés de films métalliques
US20100025080A1 (en) * 2008-07-30 2010-02-04 Samsung Electronics Co., Ltd. Printed circuit board with conductive ink/paste, having plating layers, and method for manufacturing the same
WO2010122918A1 (ja) * 2009-04-24 2010-10-28 住友電気工業株式会社 プリント配線板用基板、プリント配線板、及びそれらの製造方法
JP2012114152A (ja) * 2010-11-22 2012-06-14 Sumitomo Electric Ind Ltd プリント配線板用基板およびプリント配線板ならびにプリント配線板用基板の製造方法
JP2013064191A (ja) * 2011-08-30 2013-04-11 Fujifilm Corp コラーゲンペプチド被覆銅ナノ粒子、コラーゲンペプチド被覆銅ナノ粒子分散物、コラーゲンペプチド被覆銅ナノ粒子の製造方法、導電性インク、導電膜の製造方法、及び導体配線

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061898A (ja) * 2017-09-27 2019-04-18 日立化成株式会社 積層体の製造方法
JP6996193B2 (ja) 2017-09-27 2022-01-17 昭和電工マテリアルズ株式会社 積層体の製造方法
JPWO2019208077A1 (ja) * 2018-04-26 2021-05-13 住友電気工業株式会社 プリント配線板用基材及びプリント配線板用基材の製造方法
JP7215478B2 (ja) 2018-04-26 2023-01-31 住友電気工業株式会社 プリント配線板用基材、プリント配線板用基材の製造方法、及びプリント配線板
JP7400929B2 (ja) 2018-04-26 2023-12-19 住友電気工業株式会社 プリント配線板用基材、プリント配線板用基材の製造方法およびプリント配線板
JPWO2020004624A1 (ja) * 2018-06-29 2021-05-20 株式会社マテリアル・コンセプト 配線基板及びその製造方法、並びに電子部品及びその製造方法
JP7070947B2 (ja) 2018-06-29 2022-05-18 株式会社マテリアル・コンセプト 配線基板及びその製造方法、並びに電子部品及びその製造方法

Also Published As

Publication number Publication date
US20170347449A1 (en) 2017-11-30
CN107113981A (zh) 2017-08-29
JPWO2016104347A1 (ja) 2017-10-05
US10143083B2 (en) 2018-11-27
CN107113981B (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2016104347A1 (ja) プリント配線板用基板及びプリント配線板用基板の製造方法
JP6350971B2 (ja) プリント配線板用基板及びプリント配線板用基板の製造方法
WO2016104420A1 (ja) プリント配線板用基板及びその製造方法、プリント配線板及びその製造方法、並びに、樹脂基材
WO2016117575A1 (ja) プリント配線板用基材、プリント配線板及びプリント配線板の製造方法
JP6484218B2 (ja) プリント配線板用基板及びプリント配線板
JP6766057B2 (ja) 導電層形成用塗布液及び導電層の製造方法
US10237976B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
WO2016039314A1 (ja) プリント配線板用基材、プリント配線板及びプリント配線板用基材の製造方法
JP6466110B2 (ja) プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
JP2014041969A (ja) プリント配線板の製造方法
JP6484026B2 (ja) プリント配線板用基板及びプリント配線板並びにプリント配線板用基板の製造方法
WO2019077815A1 (ja) プリント配線板用基材及びプリント配線板
CN107113970B (zh) 印刷电路板用基板、印刷电路板和制作印刷电路板用基板的方法
JP2017073415A (ja) プリント配線板用基材、プリント配線板及び電子部品
WO2019208077A1 (ja) プリント配線板用基材及びプリント配線板用基材の製造方法
WO2019130690A1 (ja) プリント配線板用基材及びプリント配線板
WO2019077816A1 (ja) プリント配線板用基材及びプリント配線板
JPWO2019035237A1 (ja) 樹脂フィルム、プリント配線板用基材及びプリント配線板
JP6884669B2 (ja) プリント配線板用基材及びプリント配線板用基材の製造方法
JP2016136595A (ja) プリント配線板用基板の製造方法、プリント配線板用基板及びプリント配線板
JP6473018B2 (ja) プリント配線板用基材の製造方法、プリント配線板用基材及びプリント配線板
JPWO2019225269A1 (ja) プリント配線板用基材及びプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566185

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15536954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872916

Country of ref document: EP

Kind code of ref document: A1