WO2017051527A1 - 抵抗変化素子とその製造方法および半導体装置 - Google Patents
抵抗変化素子とその製造方法および半導体装置 Download PDFInfo
- Publication number
- WO2017051527A1 WO2017051527A1 PCT/JP2016/004240 JP2016004240W WO2017051527A1 WO 2017051527 A1 WO2017051527 A1 WO 2017051527A1 JP 2016004240 W JP2016004240 W JP 2016004240W WO 2017051527 A1 WO2017051527 A1 WO 2017051527A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrodes
- insulating film
- resistance change
- copper
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title description 28
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 238000009792 diffusion process Methods 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims description 147
- 229910052802 copper Inorganic materials 0.000 claims description 147
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 146
- 230000008859 change Effects 0.000 claims description 137
- 238000001465 metallisation Methods 0.000 claims description 12
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052946 acanthite Inorganic materials 0.000 claims description 5
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 claims description 5
- 229940056910 silver sulfide Drugs 0.000 claims description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 230000004888 barrier function Effects 0.000 description 50
- 229910052751 metal Inorganic materials 0.000 description 35
- 239000002184 metal Substances 0.000 description 35
- 239000011229 interlayer Substances 0.000 description 23
- 239000010410 layer Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 15
- 238000001459 lithography Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
- H10N70/023—Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/063—Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/253—Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8416—Electrodes adapted for supplying ionic species
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8822—Sulfides, e.g. CuS
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
Definitions
- the present invention relates to a metal deposition type resistance change element utilizing metal ion movement and electrochemical reaction, and a semiconductor device using the same.
- the resistance change element utilizing metal ion migration and electrochemical reaction in the resistance change film is composed of three layers of a copper electrode, a resistance change film, and an indifferent electrode.
- the copper electrode serves to supply metal ions to the resistance change film.
- the material of the indifferent electrode is a metal that does not supply metal ions into the variable resistance film.
- the indifferent electrode means an electrode that does not contribute to the reaction.
- Non-Patent Document 1 It has been proposed in Non-Patent Document 1 to use the variable resistance element for a wiring changeover switch of a programmable device.
- the switch area is reduced to 1/30 and the switch resistance is reduced to 1/40 compared to other types of switches, and the variable resistance element is built into the wiring layer. Is possible. Therefore, reduction of the chip area and improvement of wiring delay are expected.
- Patent Document 1 A method for manufacturing the variable resistance element in an integrated circuit is disclosed in Patent Document 1 and Patent Document 2.
- Patent Document 1 discloses a method of integrating resistance change elements in a copper multilayer wiring.
- one copper wiring of the copper multilayer wiring is used as a copper electrode of a resistance change element, and the copper wiring also serves as a copper electrode of the resistance change element.
- the resistance change element can be mounted only by adding a process using two photomasks to a normal copper damascene wiring process, and cost reduction can be achieved at the same time.
- a resistance change element can also be mounted inside a state-of-the-art device composed of copper wiring to improve the performance of the apparatus.
- the insulating barrier film is dry-etched to form an opening that leads to a part of the first wiring, and the resistance change element film covers the exposed first wiring. Is deposited. Next, the first upper electrode and the second upper electrode are formed, and the configuration of the resistance change element is formed.
- Patent Document 2 similarly discloses a method of integrating resistance change elements in a copper multilayer wiring.
- an opening is provided in the insulating barrier film, a part of the upper surface of the copper wiring (first wiring 5a, 5b) is exposed, and the resistance change element film and the first upper electrode are formed on the copper wiring.
- a second upper electrode is formed.
- an opening is provided so that one end of the copper wiring is exposed, and this end is in contact with the resistance change element film.
- FIG. 12 shows a cross-sectional structure of the variable resistance element disclosed in FIG. 11 of Patent Document 2.
- the first resistance change element includes a first copper wiring 5a ', a resistance change film 9', and an upper electrode 10 '.
- the second variable resistance element includes a first copper wiring 5b ', a variable resistance film 9', and an upper electrode 10 '.
- the first copper wirings 5a 'and 5b' are covered with barrier metals 6a 'and 6b' except for the upper surface, and are embedded in the first interlayer insulating film 4 '.
- the upper surfaces of the first copper wirings 5a ′ and 5b ′ are covered with the first barrier insulating film 7 ′, and the resistance change film 9 is formed through an opening 26 ′ (described in FIG. 13) provided in the first barrier insulating film 7 ′. Touching '
- the resistance change film 9 ′ covers the opening 26 ′ of the first barrier insulating film 7 ′, and a part thereof is in contact with the upper surface of the first barrier insulating film 7 ′.
- the resistance change film 9 ' is in contact with the upper electrode 10'.
- the upper electrode 10 ' is in contact with a copper plug 19' whose surface is covered with a barrier metal 20 '.
- the plug 19 ' is in contact with the second copper wiring 18'.
- the plug 19 'and the second copper wiring 18' are embedded in the second interlayer insulating film 15 ', and the upper surface of the second copper wiring 18' is covered with the second barrier insulating film 21 '.
- FIG. 13 is a cross-sectional view and a plan view of the process of opening the first barrier insulating film 7 ′ in the process of manufacturing the structure of FIG. 12.
- the contact area between the resistance change film 9 ′ and the first copper wiring 5 a ′ is equal to the contact area between the resistance change film 9 ′ and the first copper wiring 5 b ′.
- Non-Patent Document 2 discloses electrical characteristics and a photograph of the opening due to the structure of FIG.
- the two resistance change elements are called complementary resistance change elements (Complementary Atom Switch, CAS), and are capable of reducing the program voltage and obtaining high off-time reliability.
- the program voltage is a voltage when the resistance of the variable resistance element changes from the high resistance state to the low resistance state, and is preferably 2 V or less. Further, when the variable resistance element is applied to the programmable logic disclosed in Non-Patent Document 1, it is necessary that the resistance does not change even when an operating voltage (for example, 1 V) of the integrated circuit is applied.
- an operating voltage for example, 1 V
- the complementary element solves this problem by the following method.
- the metal deposition type resistance change element has bipolar characteristics.
- two resistance change elements in a high resistance state are connected in series in opposite directions and a voltage is applied to both ends.
- two resistance change elements connected in series in opposite directions means that two indifferent electrodes of each resistance change element or two copper electrodes are connected.
- the upper electrode 10 ' which is an indifferent electrode, is shared, that is, connected.
- Non-patent Document 2 when programming the devices connected in series, it has been reported that the resistance changes at a low voltage of about 2 V by independently applying a voltage to each variable resistance device (Non-patent Document 2).
- FIG. 9A The reduction of the program voltage also contributes to the fact that the ends of the first copper wiring 5a 'and the first copper wiring 5b' are in contact with the resistance change film 9 '.
- the structure of FIG. 12 in contact with the end portion has a lower program voltage.
- the shape of copper is sharpened. When the electrode is sharpened in this way, electric field concentration occurs. That is, the sharpened structure enhances the electric field, activates the generation and movement of copper ions, and realizes a low program voltage.
- Patent Document 3 The technology related to the resistance change element and the semiconductor device using the variable resistance element is also disclosed in Patent Document 3, Patent Document 4, and Patent Document 5.
- the program voltage also depends on the contact area between the copper wiring and the resistance change film. The larger the contact area, the higher the probability that the copper bridge will be connected, so the program voltage will be lower. Further, the leakage current in the high resistance state also depends on the contact area. From these things, it is calculated
- FIG. 14 shows an example in which the opening 26 ′ is shifted to the left side as viewed in the drawing. As the resistance change element is miniaturized, the influence of this shift becomes larger, and thus there is a problem of variation in the program voltage and the leakage current in the high resistance state.
- Patent Documents 1 to 5 and Non-Patent Documents 1 and 2 do not disclose or suggest a structure or method for solving this variation. For this reason, it is not possible to reduce the variation of the leakage current in the program voltage or the high resistance state.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a metal-deposited resistance change element in which variation in a program voltage and a leakage current in a high resistance state is reduced while reducing a program voltage. It is to be able to manufacture the used semiconductor device.
- the variable resistance element of the present invention includes a first insulating film provided on a semiconductor substrate on which a transistor is formed, first and second electrodes embedded in the first insulating film and supplying metal ions.
- the first insulating film, the second insulating film covering the first and second electrodes, and a part of the upper surface including the end portions of the first and second electrodes have translational symmetry.
- the first and second openings exposed from the second insulating film and the first and second openings are respectively covered, and the first and second openings are used to cover the first and second openings.
- Metal deposition-type first and second resistance change films connected to a part of the upper surface including the end of the electrode, and third and third surfaces connected to the upper surfaces of the first and second resistance change films, respectively.
- a fourth electrode; and a fifth electrode connected to the third and fourth electrodes and connected to the diffusion layer of the transistor.
- a first insulating film is formed on a semiconductor substrate on which a transistor is formed, and first and second electrodes for supplying metal ions are embedded in the first insulating film.
- Forming third and fourth electrodes respectively connected to the upper surface of the film; connecting to the third and fourth electrodes; and connecting to the diffusion layer of the transistor Forming the electrode.
- the semiconductor device of the present invention is a semiconductor device in which the variable resistance element of the present invention is incorporated in the multilayer copper wiring of the semiconductor integrated circuit having the multilayer copper wiring.
- the present invention it is possible to manufacture a metal deposition type resistance change element and a semiconductor device using the same, in which the program voltage and the variation in the leakage current in the high resistance state are reduced while the program voltage is reduced.
- FIG. 1 It is a block diagram which shows the structure of the semiconductor device using the resistance change element of the 2nd Embodiment of this invention. It is a schematic diagram which shows the structure of the complementary resistance change element of the 2nd Embodiment of this invention. It is a figure which shows the structure of the crossbar switch using the complementary resistance change element of the 2nd Embodiment of this invention. It is sectional drawing which shows the structure of the resistance change element disclosed by patent document 2. FIG. It is sectional drawing and a top view for demonstrating the structure of the resistance change element disclosed by patent document 2. FIG. It is a top view for demonstrating the structure of the resistance change element disclosed by patent document 2. FIG.
- FIG. 1 is a cross-sectional view showing the structure of the variable resistance element according to the first embodiment of the present invention.
- the resistance change element 1 according to the present embodiment includes a first insulating film 11 provided on a semiconductor substrate on which a transistor is formed, and a first electrode 12a that is embedded in the first insulating film 11 and supplies metal ions. And a second electrode 12b.
- the second insulating film 13 covering the first insulating film 11, the first electrode 12a, and the second electrode 12b, and the upper surface including the end portions of the first electrode 12a and the second electrode 12b.
- the first opening 14 a and the second opening 14 b are exposed from the second insulating film 13 with translational symmetry. Further, the first opening 14a and the second opening 14b are respectively covered, and the first opening 14a and the second opening 14b include the end portions of the first electrode 12a and the second electrode 12b.
- a metal deposition type first variable resistance film 15a and a second variable resistance film 15b connected to a part of the upper surface are provided.
- a fifth electrode 17 connected to the diffusion layer of the transistor.
- the first insulating film 11 is formed on the semiconductor substrate on which the transistor is formed, and the first electrode 12a and the second electrode 12b that supply metal ions are formed on the first substrate. 1 is embedded in the insulating film 11. Further, a second insulating film 13 that covers the first insulating film 11, the first electrode 12a, and the second electrode 12b is formed. Further, the first opening portion 14a and the second opening portion are exposed from the second insulating film 13 with translational symmetry, part of the upper surface including the end portions of the first electrode 12a and the second electrode 12b. The opening 14b is formed.
- first opening 14a and the second opening 14b are respectively covered, and the first opening 14a and the second opening 14b include the end portions of the first electrode 12a and the second electrode 12b.
- a metal deposition type first resistance change film 15a and second resistance change film 15b connected to a part of the upper surface are formed.
- a third electrode 16a and a fourth electrode 16b connected to the upper surfaces of the first resistance change film 15a and the second resistance change film 15b, respectively, are formed.
- a fifth electrode 17 connected to the third electrode 16a and the fourth electrode 16b and connected to the diffusion layer of the transistor is formed.
- FIG. 2 is a block diagram showing the structure of a semiconductor device in which the variable resistance element 1 according to this embodiment is incorporated.
- the semiconductor device 3 of the present embodiment is a semiconductor device in which the resistance change element 1 is incorporated in the multilayer copper wiring of the semiconductor integrated circuit 2 having the multilayer copper wiring.
- FIG. 3 is a cross-sectional view showing the structure of the variable resistance element according to the second embodiment of the present invention.
- the first copper wirings 23a and 23b which are electrodes for supplying metal ions to the resistance change films 26a and 26b, the first barrier insulating film 24, and the resistance change films 26a and 26b.
- upper electrodes 27a and 27b which are indifferent electrodes that do not supply metal ions.
- the resistance change element 2 has a complementary resistance change element structure.
- the first copper wirings 23a and 23b are embedded in the first interlayer insulating film 21 formed on the semiconductor substrate (not shown) on which the transistors are formed, and the side and bottom surfaces of the first copper wirings 23a and 23b are the first barrier metals 22a and 22b. Covered with.
- the first copper wirings 23a and 23b can be part of a multilayer copper wiring of a semiconductor integrated circuit. Each of a part of the upper surface including the end portions of the first copper wiring 23a and the first copper wiring 23b has translational symmetry due to the opening 25a and the opening 25b of the first barrier insulating film 24. It is exposed from the first barrier insulating film 24 and connected to the resistance change films 26a and 26b.
- Resistance change films 26a and 26b are connected to upper electrodes 27a and 27b.
- the upper electrodes 27a and 27b are connected to plugs 30a and 30b whose bottom and side surfaces are covered with the second barrier metal 29.
- the plugs 30 a and 30 b are connected to the second copper wiring 31.
- the side surfaces of the second copper wiring 31 and the bottom surfaces not connected to the plugs 30 a and 30 b are covered with the second barrier metal 29.
- the second copper wiring 31 is connected to the diffusion layer of the transistor (not shown).
- the diffusion layer is, for example, a drain electrode of a transistor. As another form, you may connect to the electrode of the diode formed in the semiconductor substrate.
- the second copper wiring 31, the plugs 30a and 30b, the upper electrodes 27a and 27b, and the resistance change films 26a and 26b are embedded in the second interlayer insulating film 28.
- Second interlayer insulating film 28 and second copper interconnection 31 are covered with second barrier insulating film 32.
- the second copper wiring 31 and the plugs 30a and 30b can be part of a multilayer copper wiring of a semiconductor integrated circuit.
- FIG. 4 is a cross-sectional view (A-A ′ cross section) and a plan view for explaining the positions of the openings 25 a and 25 b of the first barrier insulating film 24 of the resistance change element 2.
- a part of the first barrier insulating film 24 covering the first copper wirings 23a, 23b, the first barrier metals 22a, 22b, and the first interlayer insulating film 21 is removed by etching, and openings 25a, 25b are formed. Is provided.
- the openings 25a and 25b are provided so as to expose a part of the upper surface including the ends of the first copper wirings 23a and 23b.
- each part of the upper surface including the end portions of the first copper wiring 23a and the first copper wiring 23b exposed from the openings 25a and 25b has translational symmetry.
- the areas of a part of the upper surface including the end portions of the first copper wiring 23a and the first copper wiring 23b connected to the resistance change film 26a and the resistance change film 26b become equal.
- variations in the program voltage and the leakage current in the high resistance state can be reduced.
- the program voltage can be reduced.
- FIG. 4 shows the case where the wiring termination portions of the first copper wirings 23a and 23b are exposed, but the end portions (line edges) of the wiring intermediate portions of the first copper wirings 23a and 23b are exposed. It may be a case.
- FIG. 5A is a diagram showing a pattern layout of the first copper wirings 23a and 23b of the reticle used in the lithography process of the resistance change element 2 of the present embodiment.
- FIG. 5B is a diagram showing a pattern layout of the openings 25 a and 25 b of the reticle used in the lithography process of the resistance change element 2.
- FIG. 5C is a diagram illustrating the superposition of the pattern of the first copper wirings 23a and 23b and the pattern of the openings 25a and 25b.
- the exposed portions a and b (a part of the upper surface including the end portions of the first copper wirings 23a and 23b) by the superposition shown in FIG. 5C are connected to the resistance change films 26a and 26b,
- the connection area with the resistance change films 26a and 26b that determines the characteristics is defined.
- the positional relationship between the first copper wiring 23a and the first copper wiring 23b and the positional relationship between the opening 25a and the opening 25b are each accurately defined by the reticle layout of FIGS. 5A and 5B. .
- the positional relationship between the first copper wiring 23a and the opening 25a and the positional relationship between the first copper wiring 23b and the opening 25b depend on the overlay accuracy of lithography, and use an immersion exposure apparatus. In such a case, an error of about 10 nm to 30 nm occurs.
- an error of about 10 nm to 30 nm occurs.
- the pattern of the first copper wiring 23a and the first copper wiring 23b is simultaneously exposed with the reticle of FIG. 5A
- the pattern of the opening 25a and the opening 25b is simultaneously exposed with the reticle of FIG. 5B. Exposure.
- the exposed part a and the exposed part b obtained by superimposing these have translational symmetry in the in-plane direction, and the areas of both are equal.
- the pattern of the first copper wirings 23a and 23b can be 100 nm
- the pattern of the openings 25a and 25b can be a square with a side length of 200 nm
- the overlap can be 50 nm
- the margin can be 50 nm.
- first copper wirings 23a and 23b and the pattern of the openings 25a and 25b after manufacture are rounded due to the proximity effect of light during lithography, so this correction (proximity effect correction) is performed. May do. However, even if this correction is performed, the corners remain rounded. This is why the first copper wirings 23a and 23b and the openings 25a and 25b are drawn round in the plan view of FIG.
- the layout of the pattern of the first copper wirings 23a and 23b and the pattern of the openings 25a and 25b can be as shown in FIGS. 6A and 6B and FIGS. 7A and 7B in addition to FIGS. 6A and 6B and FIGS. 7A and 7B, as shown in FIGS. 6C and 7C, the exposed portion a and the exposed portion b obtained by overlapping the reticles have translational symmetry in the in-plane direction. The areas of the exposed part a and the exposed part b are equal.
- the structure of the resistance change element 2 can be manufactured by using the following materials.
- a first interlayer insulating film 21 is formed on a substrate (not shown) including a semiconductor element such as a transistor formed on a silicon substrate using a semiconductor manufacturing process.
- the first interlayer insulating film 21 and the second interlayer insulating film 28 may be a compound of silicon and oxygen, and more preferably a low level in which an arbitrary amount of hydrogen, fluorine, or carbon is added to the compound of silicon and oxygen.
- a dielectric constant insulating film is preferred.
- the first barrier insulating film 24 and the second barrier insulating film 32 include a first interlayer insulating film 21 including first copper wirings 23 a and 23 b and a second barrier insulating film 32 including a second copper wiring 31, respectively. It is formed on the interlayer insulating film 28.
- the first barrier insulating film 24 and the second barrier insulating film 28 not only prevent the copper contained in the copper wiring from being oxidized during and after the manufacturing, but also prevent the copper from diffusing into the interlayer insulating film. Have.
- As the first barrier insulating film 24 and the second barrier insulating film 32 for example, silicon carbide, silicon carbonitride, silicon nitride, and a laminated structure thereof can be used.
- the first barrier metals 22a and 22b and the second barrier metal 29 may be, for example, tantalum nitride, tantalum, or a laminated film thereof.
- the first barrier metals 22a and 22b and the second barrier metal 29 have an effect of preventing the wiring and plug copper from diffusing into the interlayer insulating film.
- the thickness of tantalum nitride or tantalum may be about 5 nm to 30 nm.
- the material of the first copper wirings 23a and 23b is a metal that can supply metal ions to the resistance change films 26a and 26b, and is preferably copper which is a wiring material of a semiconductor integrated circuit.
- the material of the plugs 30a and 30b and the second copper wiring 31 is preferably copper.
- the resistance change films 26a and 26b can be made of an oxide such as tantalum oxide or titanium oxide, or a chalcogenide material such as copper sulfide or silver sulfide.
- an oxide is preferable as a switching element for programmable logic, and tantalum oxide is particularly preferable.
- the oxide is suitable because the voltage at the time of switching is higher than the logic voltage. Further, tantalum oxide is preferable because it has durability with 1000 times or more of switching and has high reliability.
- the thickness of the resistance change films 26a and 26b which are ion conductive layers is preferably about 5 nm to 20 nm.
- the thickness is 5 nm or less, a leak current is generated at the time of OFF because of a tunnel current or a Schottky current.
- the thickness is 20 nm or more, the switching voltage becomes 10 V or more and the required voltage increases.
- the upper electrodes 27a and 27b a metal that is difficult to diffuse and ion-conduct in the resistance change element films 26a and 26b is used.
- the upper electrodes 27a and 27b are preferably made of a metal material having an absolute value of free energy of oxidation smaller than that of the metal component (for example, tantalum) of the resistance change element films 26a and 26b.
- the metal component for example, tantalum
- ruthenium, platinum, and a ruthenium alloy can be used.
- the structure of the resistance change element 2 can be manufactured by the following manufacturing process (FIGS. 8A to 8F).
- Step 1 (Formation of interlayer insulating film: FIG. 8A)
- a substrate (not shown) including a semiconductor element such as a transistor formed on a silicon substrate using a semiconductor manufacturing process is prepared.
- a silicon nitride film is formed as a first interlayer insulating film 21 by a chemical vapor deposition (hereinafter abbreviated as CVD) method.
- CVD chemical vapor deposition
- Step 2 (Wiring Formation: FIG. 8B) Openings in which the first copper wirings 23a and 23b are embedded are formed in the first interlayer insulating film 21 using photolithography technology and etching technology.
- First barrier metals 22a and 22b and a copper seed layer are formed in the formed opening by a CVD method.
- the first barrier metals 22a and 22b can be tantalum nitride having a thickness of 10 nm.
- the copper seed layer has a thickness of about 10 nm to 100 nm and contains a small amount of impurities such as aluminum.
- copper electroplating is performed on the copper seed layer.
- the thickness of copper may be about 800 nm to 1200 nm. Further, unnecessary barrier metal and copper outside the opening are scraped off by a chemical mechanical polishing (CMP) method.
- CMP chemical mechanical polishing
- silicon carbonitride having a thickness of 50 nm is sputtered as the first barrier insulating film 24 covering the first interlayer insulating film 21, the first barrier metals 11a and 22b, and the first copper wirings 23a and 23b. It is formed by the method or CVD method.
- heat treatment is performed to diffuse the impurities in the copper seed layer throughout the first copper wirings 23a and 23b. This heat treatment improves the electromigration resistance of the first copper wirings 23a and 23b. Further, since the first copper wirings 23a and 23b and the first barrier metals 22a and 22b are covered with the first barrier insulating film 24, it is possible to prevent oxidation of copper contained in the copper wiring during the heat treatment. The manufacturing yield can be increased.
- Openings 25a and 25b of the first barrier insulating film 24 are formed using photolithography technology and etching technology.
- the openings 25a and 25b expose part of the upper surface including the ends of the first copper wirings 23a and 23b from the openings 25a and 25b with translational symmetry.
- the areas of the upper surfaces including the respective ends of the first copper wirings 23a and 23b connected to the resistance change films 26a and 26b are equalized. Variations in leakage current can be reduced and manufacturing yield can be increased. Further, since the end portions of the first copper wirings 23a and 23b are connected to the resistance change films 26a and 26b, the program voltage can be reduced.
- Tantalum oxide is 15 nm thick as variable resistance films 26a, 26b
- ruthenium is 50 nm thick as upper electrodes 27a, 27b
- sputtering method or CVD method To form.
- the resistance change films 26a and 26b and the upper electrodes 27a and 27b are processed into a shape that covers the openings 25a and 25b and covers a part of the first barrier insulating film 24 by using a photolithography technique and an etching technique.
- Step 5 (Formation of interlayer insulating film: FIG. 8E)
- a silicon oxide film is formed by a CVD method.
- the step is flattened by the CMP method.
- the thickness of the second interlayer insulating film 28 may be about 600 nm.
- Step 6 (Connection Plug and Wiring Formation: FIG. 8F)
- the openings where the plugs 30a and 30b and the second copper wiring 31 are embedded are formed in the second interlayer insulating film 28.
- a second barrier metal 29 and a copper seed layer that becomes a part of copper are formed in the formed opening by sputtering or CVD.
- the second barrier metal 29 can be tantalum nitride having a thickness of 10 nm.
- the thickness of the copper seed layer may be about 10 nm to 100 nm.
- copper plating is performed on the copper seed layer.
- the thickness of copper may be about 800 nm to 1200 nm.
- silicon carbonitride with a thickness of 50 nm to be the second barrier insulating film 32 is formed by sputtering or CVD.
- each layer can be variously modified within a range having a function as a resistance change element.
- FIG. 9 is a block diagram showing a configuration of a semiconductor device using the resistance change element of the present embodiment.
- the semiconductor device 100 of this embodiment is a semiconductor device having a crossbar switch 20 in which the variable resistance element 10 is incorporated in the multilayer copper wiring of a semiconductor integrated circuit having a multilayer copper wiring.
- the semiconductor integrated circuit may be a programmable logic circuit including a crossbar switch 20 or the like.
- the semiconductor device 100 may have a package that protects the semiconductor integrated circuit.
- FIG. 10 is a schematic diagram showing a configuration of the complementary resistance change element 10 of the present embodiment used for the crossbar switch 20.
- the first electrode 101 corresponds to the first copper wiring 23a
- the second electrode 102 corresponds to the first copper wiring 23b.
- the control electrode 103 includes an upper electrode 27a, a second barrier metal 32, a plug 30a, a second copper wiring 31, a plug 30b, a second barrier metal 32, and an upper electrode 27b in this order.
- the control electrode 103 controls the switching of the variable resistance element 10 by connecting the second copper wiring 31 to the diffusion layer of the transistor.
- the first resistance change film 104 corresponds to the resistance change film 26a
- the second resistance change film 105 corresponds to the resistance change film 26b.
- FIG. 11 is a diagram showing a configuration of the crossbar switch 20 using the complementary resistance change element 10 of the present embodiment.
- the unit cell 201 has one resistance change element 202 and one tunnel transistor 203.
- the first electrode 101 is connected to the first wiring 204
- the second electrode 102 is connected to the second wiring 205
- the control electrode 103 is connected to the drain of the transistor 203.
- the gate of the transistor 203 is connected to the third wiring 206
- the source is connected to the fourth wiring 207.
- the crossbar switch 20 enables signal routing in the programmable logic circuit.
- variable resistance element wherein the third and fourth electrodes include at least one of ruthenium and platinum.
- Appendix 6 Forming a first insulating film on the semiconductor substrate on which the transistor is formed; Forming first and second electrodes for supplying metal ions, embedded in the first insulating film; Forming a second insulating film covering the first insulating film and the first and second electrodes; Forming a first opening and a second opening, each of which exposes a part of an upper surface including end portions of the first and second electrodes from the second insulating film with translational symmetry; A metal deposition type first covering each of the first and second openings and connecting to a part of the upper surface including the end portions of the first and second electrodes by the first and second openings.
- Appendix 7 The resistance change element according to appendix 6, wherein the first and second electrodes are exposed with a pattern on the same photomask, and the first and second openings are exposed with a pattern on another same photomask. Manufacturing method.
- Appendix 8) 8. The variable resistance element manufacturing method according to appendix 6 or 7, wherein the variable resistance film includes at least one of tantalum oxide, titanium oxide, copper sulfide, silver sulfide, and silicon oxide.
- Second electrode 11 First insulating film 12a First electrode 12b Second electrode 13 Second insulating film 14a First opening 14b Second opening Part 15a First variable resistance film 15b Second variable resistance film 16a Third electrode 16b Fourth electrode 17 Fifth electrode 21 First interlayer insulating film 22a, 22b First barrier metal 23a, 23b First Copper wiring 24 First barrier insulating film 25a, 25b Openings 26a, 26b Resistance change films 27a, 27b Upper electrode 28 Second interlayer insulating film 29 Second barrier metal 30a, 30b Plug 31 Second copper wiring 101 First electrode 102 Second electrode 103 Control electrode 104 First variable resistance film 105 Second variable resistance film 20 Crossbar switch 01 unit cell 202 resistance variable element 203 transistor 204 first wiring 205 second wiring 206 third wire 207 fourth wire
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
(第1の実施形態)
図1は、本発明の第1の実施形態の抵抗変化素子の構造を示す断面図である。本実施形態の抵抗変化素子1は、トランジスタの形成された半導体基板上に設けられた第1の絶縁膜11と、第1の絶縁膜11に埋め込まれ、金属イオンを供給する第1の電極12aと第2の電極12bとを有する。さらに、第1の絶縁膜11と第1の電極12aと第2の電極12bとを覆う第2の絶縁膜13と、第1の電極12aと第2の電極12bの端部を含む上面の一部を、並進対称性を有して第2の絶縁膜13から露出させる第1の開口部14aと第2の開口部14bと、を有する。さらに、第1の開口部14aと第2の開口部14bを各々覆い、第1の開口部14aと第2の開口部14bで第1の電極12aと第2の電極12bの前記端部を含む前記上面の一部に接続する金属析出型の第1の抵抗変化膜15aと第2の抵抗変化膜15bとを有する。さらに、第1の抵抗変化膜15aと第2の抵抗変化膜15bの上面に各々接続する第3の電極16aと第4の電極16bと、第3の電極16aと第4の電極16bとに接続し、前記トランジスタの拡散層に接続する第5の電極17と、を有する。
(第2の実施形態)
図3は、本発明の第2の実施形態の抵抗変化素子の構造を示す断面図である。本実施形態の抵抗変化素子2は、抵抗変化膜26a、26bに金属イオンを供給する電極である第1の銅配線23a、23bと、第1のバリア絶縁膜24と、抵抗変化膜26a、26bと、金属イオンを供給しない不関電極である上部電極27a、27bとを含む。抵抗変化素子2は、相補型抵抗変化素子の構造を有する。
(付記1)
トランジスタの形成された半導体基板上に設けられた第1の絶縁膜と、
前記第1の絶縁膜に埋め込まれ、金属イオンを供給する第1と第2の電極と、
前記第1の絶縁膜と前記第1と第2の電極とを覆う第2の絶縁膜と、
前記第1と第2の電極の端部を含む上面の一部を、並進対称性を有して前記第2の絶縁膜から露出させる第1と第2の開口部と、
前記第1と第2の開口部を各々覆い、前記第1と第2の開口部で前記第1と第2の電極の前記端部を含む前記上面の一部に接続する金属析出型の第1と第2の抵抗変化膜と、
前記第1と第2の抵抗変化膜の上面に各々接続する第3と第4の電極と、
前記第3と第4の電極とに接続し、前記トランジスタの拡散層に接続する第5の電極と、を有する抵抗変化素子。
(付記2)
前記抵抗変化膜は、酸化タンタル、酸化チタン、硫化銅、硫化銀、酸化ケイ素の内の少なくとも一つを含む、付記1記載の抵抗変化素子。
(付記3)
前記第1と第2の電極は、銅を含む、付記1または2記載の抵抗変化素子。
(付記4)
前記第1と第2の電極は、半導体集積回路の多層銅配線内の銅配線を含む、付記1から3の内の1項記載の抵抗変化素子。
(付記5)
前記第3と第4の電極は、ルテニウム、プラチナの内の少なくとも一つを含む、付記1から4の内の1項記載の抵抗変化素子。
(付記6)
トランジスタの形成された半導体基板上に第1の絶縁膜を形成し、
金属イオンを供給する第1と第2の電極を前記第1の絶縁膜に埋め込んで形成し、
前記第1の絶縁膜と前記第1と第2の電極とを覆う第2の絶縁膜を形成し、
前記第1と第2の電極の端部を含む上面の一部を、並進対称性を有して前記第2の絶縁膜から各々露出させる第1と第2の開口部を形成し、
前記第1と第2の開口部を各々覆い、前記第1と第2の開口部で前記第1と第2の電極の前記端部を含む前記上面の一部に接続する金属析出型の第1と第2の抵抗変化膜を形成し、
前記第1と第2の抵抗変化膜の上面に各々接続する第3と第4の電極を形成し、
前記第3と第4の電極とに接続し、前記トランジスタの拡散層に接続する第5の電極を形成する、抵抗変化素子の製造方法。
(付記7)
同一のフォトマスク上のパターンで前記第1と第2の電極を露光し、別の同一のフォトマスク上のパターンで前記第1と第2の開口部を露光する、付記6記載の抵抗変化素子の製造方法。
(付記8)
前記抵抗変化膜は、酸化タンタル、酸化チタン、硫化銅、硫化銀、酸化ケイ素の内の少なくとも一つを含む、付記6または7記載の抵抗変化素子の製造方法。
(付記9)
前記第1と第2の電極は、銅を含む、付記6から8の内の1項記載の抵抗変化素子の製造方法。
(付記10)
前記第1と第2の電極は、半導体集積回路の多層銅配線内の銅配線を含む、付記6から9の内の1項記載の抵抗変化素子の製造方法。
(付記11)
前記第3と第4の電極は、ルテニウム、プラチナの内の少なくとも一つを含む、付記6から10の内の1項記載の抵抗変化素子の製造方法。
(付記12)
付記1から5の内の1項記載の抵抗変化素子を、多層銅配線を有する半導体集積回路の前記多層銅配線内に組み込んだ半導体装置。
2 半導体集積回路
3、100 半導体装置
11 第1の絶縁膜
12a 第1の電極
12b 第2の電極
13 第2の絶縁膜
14a 第1の開口部
14b 第2の開口部
15a 第1の抵抗変化膜
15b 第2の抵抗変化膜
16a 第3の電極
16b 第4の電極
17 第5の電極
21 第1の層間絶縁膜
22a、22b 第1のバリアメタル
23a、23b 第1の銅配線
24 第1のバリア絶縁膜
25a、25b 開口部
26a、26b 抵抗変化膜
27a、27b 上部電極
28 第2の層間絶縁膜
29 第2のバリアメタル
30a、30b プラグ
31 第2の銅配線
101 第1の電極
102 第2の電極
103 制御電極
104 第1の抵抗変化膜
105 第2の抵抗変化膜
20 クロスバスイッチ
201 単位セル
202 抵抗変化素子
203 トランジスタ
204 第1の配線
205 第2の配線
206 第3の配線
207 第4の配線
Claims (10)
- トランジスタの形成された半導体基板上に設けられた第1の絶縁膜と、
前記第1の絶縁膜に埋め込まれ、金属イオンを供給する第1と第2の電極と、
前記第1の絶縁膜と前記第1と第2の電極とを覆う第2の絶縁膜と、
前記第1と第2の電極の端部を含む上面の一部を、並進対称性を有して前記第2の絶縁膜から露出させる第1と第2の開口部と、
前記第1と第2の開口部を各々覆い、前記第1と第2の開口部で前記第1と第2の電極の前記端部を含む前記上面の一部に接続する金属析出型の第1と第2の抵抗変化膜と、
前記第1と第2の抵抗変化膜の上面に各々接続する第3と第4の電極と、
前記第3と第4の電極とに接続し、前記トランジスタの拡散層に接続する第5の電極と、を有する抵抗変化素子。 - 前記抵抗変化膜は、酸化タンタル、酸化チタン、硫化銅、硫化銀、酸化ケイ素の内の少なくとも一つを含む、請求項1記載の抵抗変化素子。
- 前記第1と第2の電極は、銅を含む、請求項1または2記載の抵抗変化素子。
- 前記第1と第2の電極は、半導体集積回路の多層銅配線内の銅配線を含む、請求項1から3の内の1項記載の抵抗変化素子。
- 前記第3と第4の電極は、ルテニウム、プラチナの内の少なくとも一つを含む、請求項1から4の内の1項記載の抵抗変化素子。
- トランジスタの形成された半導体基板上に第1の絶縁膜を形成し、
金属イオンを供給する第1と第2の電極を前記第1の絶縁膜に埋め込んで形成し、
前記第1の絶縁膜と前記第1と第2の電極とを覆う第2の絶縁膜を形成し、
前記第1と第2の電極の端部を含む上面の一部を、並進対称性を有して前記第2の絶縁膜から各々露出させる第1と第2の開口部を形成し、
前記第1と第2の開口部を各々覆い、前記開口部で前記第1と第2の電極の前記端部を含む前記上面の一部に接続する金属析出型の第1と第2の抵抗変化膜を形成し、
前記第1と第2の抵抗変化膜の上面に各々接続する第3と第4の電極を形成し、
前記第3と第4の電極とに接続し、前記トランジスタの拡散層に接続する第5の電極を形成する、抵抗変化素子の製造方法。 - 同一のフォトマスク上のパターンで前記第1と第2の電極を露光し、別の同一のフォトマスク上のパターンで前記第1と第2の開口部を露光する、請求項6記載の抵抗変化素子の製造方法。
- 前記抵抗変化膜は、酸化タンタル、酸化チタン、硫化銅、硫化銀、酸化ケイ素の内の少なくとも一つを含む、請求項6または7記載の抵抗変化素子の製造方法。
- 前記第1と第2の電極は、銅を含む、請求項6から8の内の1項記載の抵抗変化素子の製造方法。
- 請求項1から5の内の1項記載の抵抗変化素子を、多層銅配線を有する半導体集積回路の前記多層銅配線内に組み込んだ半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017541424A JP7023449B2 (ja) | 2015-09-24 | 2016-09-16 | クロスバスイッチとその製造方法およびクロスバスイッチを有する半導体装置 |
US15/761,191 US10490743B2 (en) | 2015-09-24 | 2016-09-16 | Crossbar switch and method of manufacturing the same and semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015186356 | 2015-09-24 | ||
JP2015-186356 | 2015-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017051527A1 true WO2017051527A1 (ja) | 2017-03-30 |
Family
ID=58386358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004240 WO2017051527A1 (ja) | 2015-09-24 | 2016-09-16 | 抵抗変化素子とその製造方法および半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10490743B2 (ja) |
JP (1) | JP7023449B2 (ja) |
WO (1) | WO2017051527A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018174227A (ja) * | 2017-03-31 | 2018-11-08 | 日本電気株式会社 | 銅配線層内への抵抗変化素子の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009021602A (ja) * | 2007-07-12 | 2009-01-29 | Samsung Electronics Co Ltd | 下部電極を有する相変化記憶素子の形成方法 |
WO2013018842A1 (ja) * | 2011-08-02 | 2013-02-07 | 日本電気株式会社 | 半導体装置及びその製造方法 |
WO2014112365A1 (ja) * | 2013-01-18 | 2014-07-24 | 日本電気株式会社 | スイッチング素子、および半導体スイッチング装置の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7135696B2 (en) * | 2004-09-24 | 2006-11-14 | Intel Corporation | Phase change memory with damascene memory element |
JP5579362B2 (ja) * | 2007-10-19 | 2014-08-27 | ピーエスフォー ルクスコ エスエイアールエル | 縦型相変化メモリ装置の製造方法 |
US7981755B2 (en) * | 2007-10-25 | 2011-07-19 | International Business Machines Corporation | Self aligned ring electrodes |
WO2010079827A1 (ja) | 2009-01-09 | 2010-07-15 | 日本電気株式会社 | 半導体装置及びその製造方法 |
JP5058277B2 (ja) * | 2010-02-26 | 2012-10-24 | 株式会社東芝 | 半導体装置及びその製造方法 |
WO2011158821A1 (ja) | 2010-06-16 | 2011-12-22 | 日本電気株式会社 | 半導体装置、および半導体装置の製造方法 |
JP5783174B2 (ja) | 2010-06-16 | 2015-09-24 | 日本電気株式会社 | 半導体装置及びその動作方法 |
JP5790660B2 (ja) | 2010-09-28 | 2015-10-07 | 日本電気株式会社 | 半導体装置 |
JP2012204399A (ja) | 2011-03-23 | 2012-10-22 | Toshiba Corp | 抵抗変化メモリ |
WO2014181492A1 (ja) * | 2013-05-09 | 2014-11-13 | 日本電気株式会社 | 半導体装置およびその製造方法 |
FR3027453B1 (fr) * | 2014-10-20 | 2017-11-24 | Commissariat Energie Atomique | Dispositif resistif pour circuit memoire ou logique et procede de fabrication d'un tel dispositif |
-
2016
- 2016-09-16 US US15/761,191 patent/US10490743B2/en active Active
- 2016-09-16 JP JP2017541424A patent/JP7023449B2/ja active Active
- 2016-09-16 WO PCT/JP2016/004240 patent/WO2017051527A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009021602A (ja) * | 2007-07-12 | 2009-01-29 | Samsung Electronics Co Ltd | 下部電極を有する相変化記憶素子の形成方法 |
WO2013018842A1 (ja) * | 2011-08-02 | 2013-02-07 | 日本電気株式会社 | 半導体装置及びその製造方法 |
WO2014112365A1 (ja) * | 2013-01-18 | 2014-07-24 | 日本電気株式会社 | スイッチング素子、および半導体スイッチング装置の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018174227A (ja) * | 2017-03-31 | 2018-11-08 | 日本電気株式会社 | 銅配線層内への抵抗変化素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US10490743B2 (en) | 2019-11-26 |
JP7023449B2 (ja) | 2022-02-22 |
US20180261765A1 (en) | 2018-09-13 |
JPWO2017051527A1 (ja) | 2018-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5218053B2 (ja) | スイッチング素子、半導体装置、書き換え可能な論理集積回路、およびメモリ素子 | |
TWI646646B (zh) | 半導體元件及其製造方法 | |
JP5502320B2 (ja) | スイッチング素子およびスイッチング素子の製造方法 | |
JP5211483B2 (ja) | 固体電解質スイッチング素子およびその製造方法ならびに集積回路 | |
US11239165B2 (en) | Method of forming an interconnect structure with enhanced corner connection | |
KR101413821B1 (ko) | 반도체 장치 및 그 제조 방법 | |
US20180005967A1 (en) | Semiconductor device and method of manufacturing the semiconductor device | |
JP2011238828A (ja) | 半導体装置及びその製造方法 | |
JPWO2009157479A1 (ja) | スイッチング素子およびスイッチング素子の製造方法 | |
US20200161175A1 (en) | Top via back end of the line interconnect integration | |
WO2017051527A1 (ja) | 抵抗変化素子とその製造方法および半導体装置 | |
US20130112462A1 (en) | Metal Alloy Cap Integration | |
US11476417B2 (en) | Phase change memory and method of fabricating the same | |
US11289375B2 (en) | Fully aligned interconnects with selective area deposition | |
JP2011211165A (ja) | 半導体装置及びその製造方法 | |
WO2016084349A1 (ja) | 抵抗変化素子とその製造方法および半導体装置 | |
JP5446238B2 (ja) | 抵抗変化素子及びその動作方法 | |
JP5446869B2 (ja) | スイッチング素子、およびスイッチング素子の製造方法 | |
WO2018123678A1 (ja) | 抵抗変化素子と半導体装置および製造方法 | |
KR100356788B1 (ko) | 반도체 소자의 다층 금속배선 형성방법 | |
JP2011091153A (ja) | 半導体装置及びその製造方法 | |
JP2004179509A (ja) | 半導体装置及びその製造方法 | |
KR20070034398A (ko) | 반도체 장치의 다층 금속 배선 | |
KR20060133791A (ko) | 반도체 소자의 금속배선 형성방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16848318 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017541424 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15761191 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16848318 Country of ref document: EP Kind code of ref document: A1 |