WO2017049754A1 - 一种纳米晶体制备方法、纳米晶体及气体溶液的制备和保存装置 - Google Patents

一种纳米晶体制备方法、纳米晶体及气体溶液的制备和保存装置 Download PDF

Info

Publication number
WO2017049754A1
WO2017049754A1 PCT/CN2015/095369 CN2015095369W WO2017049754A1 WO 2017049754 A1 WO2017049754 A1 WO 2017049754A1 CN 2015095369 W CN2015095369 W CN 2015095369W WO 2017049754 A1 WO2017049754 A1 WO 2017049754A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
doped
sulphide
zinc
selenide
Prior art date
Application number
PCT/CN2015/095369
Other languages
English (en)
French (fr)
Inventor
王允军
王军佐
Original Assignee
苏州星烁纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州星烁纳米科技有限公司 filed Critical 苏州星烁纳米科技有限公司
Priority to US15/761,524 priority Critical patent/US10519038B2/en
Publication of WO2017049754A1 publication Critical patent/WO2017049754A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/04Binary compounds including binary selenium-tellurium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/043Drying and spraying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/06Hydrogen phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/082Other phosphides of boron, aluminium, gallium or indium
    • C01B25/087Other phosphides of boron, aluminium, gallium or indium of gallium or indium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/574Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Definitions

  • the invention relates to a method for preparing nanocrystals and a nanocrystal obtained by the method.
  • the invention also relates to a device for preparing and preserving a gas solution.
  • Nanocrystals also known as nanocrystals, are materials having a size of a few nanometers, typically in the range of 1-20 nanometers, and having a crystalline structure.
  • a nanocrystal refers to a structure in which a spherical or nearly spherical crystalline core is encased in one or more layers.
  • nanocrystals also include structures without shells.
  • Luminescent nanocrystals or fluorescent nanocrystals refer to structures having nanocrystals that illuminate when excited by a suitable source or voltage.
  • the light emission characteristics of fluorescent nanocrystals can be controlled by controlling the composition of the nanocrystals, the size of the nanocrystals, and the structure of the surface of the nanocrystal shells. Therefore, a fluorescent nanocrystal relative to an organic material can provide excellent color purity, color diversity, photon and thermal stability.
  • the luminescent core may be in the shape of a sphere, a strip, a rectangle, or less other multifaceted shapes, and its total volume is no more than 20 nm x 20 nm x 20 nm.
  • the growth of the outer shell or the plurality of shells in the nanocrystal core can improve the luminescence stability of the nanocrystals.
  • the composition of the core of the fluorescent nanocrystal may be a metal, a metal oxide, and a semiconductor including the II-IV and III-V structures. Varying the composition of the fluorescent nanocrystals can also alter the luminescent wavelength and other luminescent properties of the nanocrystals by doping the cations of one or more transition metals.
  • Fluorescent nanocrystals have been extensively studied over the past two decades due to their special properties, such as dimensionally tunable optical properties, high quantum efficiency, relatively narrow half-width and photodegradation resistance. Compared to organic dyes, fluorescent nanocrystals are used in a wider range of applications in many applications, such as luminescent displays, photovoltaic devices and biomarkers, as a new generation of luminescent materials.
  • fluorescent nanocrystals can be synthesized by pyrolyzing a metal complex in a hydrophobic solvent at a temperature of 200-350 degrees Celsius.
  • Fluorescent nanocrystals can also be prepared using water, ethylene glycol, and other hydrophilic solvents as the reaction solvent at room temperature or at elevated temperatures.
  • the reactants are usually dissolved in a solvent at normal temperature or elevated temperature.
  • Insoluble inorganic or gaseous reactants can also be used to make semiconductor nanocrystals.
  • non-uniform reactions and non-equilibrium chemistry generally result in poor repeatability and quality of nanocrystal synthesis.
  • Gaseous reactants such as hydrogen sulfide, phosphine and arsine, can also be used to make nanocrystals due to their high reactivity.
  • the prepared gas precursor is directly introduced into the metal precursor, so that nanocrystals can also be obtained.
  • the use of the above-mentioned in-situ gaseous precursors for the synthesis of nanocrystals has the following problems: (1) the reaction is uncontrollable and difficult to repeat: because the amount of gaseous precursors cannot be precisely controlled, the reaction may be non-reproducible, and Uniform nucleation and nanocrystal growth. (2) Treatment of unreacted excess gas requires additional equipment and cleaning processes: additional gas forming and drying systems are necessary because oxygen/moisture can affect the quality of the nanocrystals. (3) Very toxic, difficult to handle: gases such as phosphine and arsine are highly toxic and require strict procedures, and only trained professionals can handle them safely.
  • the technical problem to be solved by the invention is to provide a preparation method of nano crystals, which can precisely control the amount of gaseous precursors and uniformly react with other precursors to obtain uniform volume distribution, controllable particle size, and luminescence quantum. High yield nanocrystals.
  • the present invention provides a method for preparing a nanocrystal, comprising the steps of: dissolving a first precursor in a gaseous state at normal temperature and normal pressure in a first selected solvent to form a first precursor solution; and dissolving the second precursor In a second selected solvent, a second precursor solution is formed, the second precursor being a precursor of a Group I, Group II, Group III or Group IV metal element; in an inert gas atmosphere, The first precursor solution is added to a reaction vessel containing the second precursor solution, and the first precursor chemically reacts with the second precursor to form nanocrystals.
  • the dissolution of the first precursor in the first selected solvent is a physical change.
  • the first precursor is deoxygenated by water removal prior to dissolving in the first selected solvent.
  • the first precursor solution is injected below the liquid level of the second precursor solution at a predetermined rate.
  • the temperature of the first selected solvent is set to be within a range of 0-5 ° C near the melting point of the first selected solvent. .
  • the first selected solvent has a melting point below 25 ° C and a boiling point above 150 ° C.
  • the amount of dissolution of the first precursor in the first selected solvent is controlled by adjusting the temperature.
  • the first precursor solution is added to the second precursor solution at a predetermined rate and volume by manual or mechanical control.
  • the second precursor solution further comprises a surfactant, the surfactant comprising at least one of the following: a trialkylphosphine, a trialkylphosphine oxide, an alkylamine, an enamine, an alkane A thiol, an aryl thiol, an alkyl aryl thiol, a fatty acid.
  • a surfactant comprising at least one of the following: a trialkylphosphine, a trialkylphosphine oxide, an alkylamine, an enamine, an alkane A thiol, an aryl thiol, an alkyl aryl thiol, a fatty acid.
  • the alkylamine is at least one of a monosubstituted alkylamine, a disubstituted alkylamine, and a trisubstituted alkylamine
  • the fatty acid is at least one of tetradecanoic acid, oleic acid, and stearic acid.
  • the temperature of the second precursor solution ranges from 50 to 300 ° C
  • the first precursor solution is added to the second After the precursor solution
  • the temperature of the mixture of the first precursor solution and the second precursor solution ranges from 150 to 350 ° C
  • the retention time ranges from 1 minute to 1 week.
  • the reaction temperature of the chemical reaction ranges from 150 to 350 ° C, and the reaction time ranges from 1 minute to 1 week.
  • the first precursor comprises at least one of hydrogen sulfide, hydrogen selenide, hydrogen halide, ammonia, phosphine, arsine, and hydrogen telluride.
  • the second precursor comprises at least one of the group consisting of an alkyl metal, a metal oxide, a metal halide, a metal carboxylate, a metal phosphonate, a metal phosphinate, a metal phosphate, Metal sulfonate, metal borate.
  • the metal element in the second precursor comprises one of zinc, manganese, indium, cadmium, and lead.
  • the first selected solvent and the second selected solvent are the same solvent.
  • the first selected solvent is similar in polarity to the first precursor.
  • the first selected solvent and the second selected solvent respectively comprise at least one of the following: a long chain alkane, a long chain olefin, a long chain alkyl alcohol, a long chain alkyl amine, a long chain alkyl ester , long-chain alkyl fatty acids, long-chain alkyl mercaptans, trialkyl phosphines, trialkyl phosphine oxides, water, aqueous solutions.
  • the long-chain alkane comprises at least one of the following: 1-octadecane, 1-pentadecane, 1-16 Alkane, 1 - dodecane, 1 -tetradecane, 1 - tridecane, 1-decane, 1-phytane, 1-pentadecane, paraffin, 1 - eicosane, 1 - 28 An alkane, 1 -tetracosane;
  • the long-chain olefin comprises at least one of the following: 1 - octadecene, 1 - dodecene, 1 - hexadecene, 1 - decene , 1-17 hepene, 1-19-nonene, 1 -eicoene, 1-tridecene, 1-pentadecene;
  • the long-chain alkylamine comprises at least one of the following Species: hexadecylamine, octadec
  • the preparation method further includes a third precursor solution in which the third precursor is dissolved, and before or after the first precursor solution is added to the second precursor solution, the third front is A body solution is added to the reaction vessel.
  • the third precursor is capable of chemically reacting with the first precursor or the second precursor to form nanocrystals.
  • the third precursor spontaneously reacts to form nanocrystals at a certain temperature.
  • the preparation method further includes a fourth precursor solution in which the fourth precursor is dissolved, and after the third precursor solution is added to the reaction vessel, the fourth precursor solution is added to the In the reaction vessel.
  • the first precursor is phosphine
  • the second precursor is an indium precursor or a mixture of an indium precursor and a zinc precursor
  • the third precursor is a sulfur precursor or a zinc sulfide precursor.
  • the first precursor is phosphine
  • the second precursor is an indium precursor or a mixture of an indium precursor and a zinc precursor
  • the other precursor being a sulfur precursor or a zinc sulfide precursor or a mixture of a sulfur precursor and a zinc precursor.
  • the present invention also provides a nanocrystal obtained by any of the above preparation methods.
  • the nanocrystals comprise a core and at least one shell.
  • the core of the nanocrystal is indium phosphide, and the shell is zinc sulfide.
  • the nanocrystal is a nanocrystalline core without a shell.
  • the nanocrystals are semiconductor nanocrystals, including at least one of the group consisting of Group II-VIA compounds, Group IV-VIA compounds, Group III-VA compounds, Group I-VIA compounds, and sulfurization. Copper indium, copper indium selenide.
  • the Group II-VIA compound includes: zinc selenide, zinc telluride, zinc sulfide, cadmium selenide, cadmium sulfide, cadmium telluride, zinc oxide, mercury sulfide, mercury telluride, magnesium oxide, magnesium sulfide, antimony Magnesium, cadmium selenide, cadmium sulphide, sulphide sulphide, sulphur sulphide, sulphide sulphide, sulphide sulphide, sulphide sulphide, sulphide sulphide, cadmium selenide , cadmium zinc telluride, mercury cadmium sulfide, zinc cadmium selenide, cadmium zinc sulphide, cadmium zinc cadmium sulfide, cadmium sulphide cadmium, cadmium sulphide cadmium, cadmium sulphide c
  • the nanocrystal is a semiconductor nanocrystal chemically doped with one or more transition metal cations, the nanocrystal comprising at least one of: Mn 2+ doped zinc selenide, Mn 2+ doped doped zinc sulfide, Mn 2+ doped zinc telluride, Mn 2+ doped cadmium selenide, Mn 2+ doped CdS, Mn 2+ doped cadmium telluride, Mn 2+ doped zinc selenide, Mn 2 + doped zinc sulfide, Mn 2+ doped zinc telluride, Mn 2+ doped cadmium selenide, Mn 2+ doped CdS, Mn 2+ doped cadmium telluride, Co 2+ doped zinc selenide, zinc sulfide doped with Co 2+, Co 2+ doped zinc telluride, Co 2+ doped cadmium selenide, Co 2+ doped cadmium sulfide, Co 2+ doped zinc
  • the nanocrystal is a rare earth doped upconversion nanocrystal
  • the rare earth element comprises at least one of the following elements: lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum.
  • the nanocrystals are metal oxide nanocrystals including at least one of titanium oxide nanocrystals or calcium oxide nanocrystals.
  • the core of the nanocrystal is an inorganic compound, and the nanocrystal has a cubic volume of less than 100 nm ⁇ 100 nm ⁇ 100 nm.
  • the invention also discloses a display device comprising a display panel and a backlight module, wherein the backlight module comprises nanocrystals prepared by the above preparation method.
  • the present invention also discloses a lighting device comprising the nanocrystals produced by the above-described preparation method.
  • the invention also discloses an anti-counterfeit label comprising nanocrystals prepared by the above preparation method.
  • the invention also discloses a preparation and storage device for a gas solution, comprising a storage device and an exhaust gas absorption device connected to the storage device, wherein the storage device comprises a low temperature circulation pump providing a low temperature, a stirrer, A heat preservation liquid and a storage bottle containing a solvent for dissolving a gas.
  • the storage device comprises a low temperature circulation pump providing a low temperature, a stirrer, A heat preservation liquid and a storage bottle containing a solvent for dissolving a gas.
  • the apparatus further comprises a gas treatment device for deaeration and water removal connected to the storage device, the gas treatment device comprising a drying tube containing a desiccant.
  • the preparation method of the invention has the following beneficial effects: the amount of gaseous precursor can be precisely controlled, the formation reaction of nanocrystals is more uniform, the size of the nanocrystals is more controllable and repeatable; by dissolving the gaseous precursor in a solvent Participating in the reaction, no additional equipment or steps are required to clean the unreacted gas; the preparation process is simplified compared to the preparation method in which the gas directly participates in the reaction, and the difficulty in the preparation process is reduced.
  • the nanocrystals prepared by the invention have a uniform volume distribution, a small half-peak width, no red shift or red shift of the emission peak, and a higher luminescence quantum yield.
  • the device for preparing and preserving a gas solution of the invention integrates preparation and storage, avoids the influence of temperature on the gas solution during the transfer of the gas solution, and is convenient to take.
  • Figure 1 is a flow chart showing an exemplary embodiment of a method of preparing nanocrystals of the present invention.
  • Example 2 is a spectrum diagram of ultraviolet-visible absorption (ABS) and photoluminescence (PL, excitation at 330 nm) of the nanocrystal of Example 7.
  • ABS ultraviolet-visible absorption
  • PL photoluminescence
  • ABS ultraviolet-visible absorption
  • PL photoluminescence
  • ABS ultraviolet-visible absorption
  • PL photoluminescence
  • Example 5 is a spectrum diagram of ultraviolet-visible absorption (ABS) and photoluminescence (PL, excitation at 450 nm) of the nanocrystal of Example 10.
  • ABS ultraviolet-visible absorption
  • PL photoluminescence
  • Example 6 is a spectrum diagram of ultraviolet-visible absorption (ABS) and photoluminescence (PL, excitation at 450 nm) of the nanocrystal of Example 11.
  • ABS ultraviolet-visible absorption
  • PL photoluminescence
  • Example 7 is a spectrum diagram of ultraviolet-visible absorption (ABS) and photoluminescence (PL, excitation at 450 nm) of the nanocrystal of Example 12.
  • ABS ultraviolet-visible absorption
  • PL photoluminescence
  • ABS ultraviolet-visible absorption
  • PL photoluminescence
  • ABS 9 is an ultraviolet-visible absorption (ABS) spectrum of the nanocrystal of Example 15.
  • the invention discloses a method for preparing nanocrystals, comprising the steps of: dissolving a first precursor which is gaseous at normal temperature and normal pressure in a first selected solvent to form a first precursor solution; and dissolving the second precursor In a second selected solvent, a second precursor solution is formed, the second precursor being a precursor of a Group I, Group II, Group III or Group IV metal element; in an inert gas atmosphere, The first precursor solution is added to the reaction vessel containing the second precursor solution, and the first precursor chemically reacts with the second precursor to form nanocrystals.
  • Nanocrystals prepared by the present invention refer to nanoparticles in which the size of each dimension in the three-dimensional volume is within 100 nm.
  • Nanocrystals of the invention include, but are not limited to, the following names: nanocrystals, nanoparticles, fluorescent nanoparticles, fluorescent nanoparticles, luminescent nanoparticles, luminescent nanoparticles, quantum dots, upconverting particles, upconverting particles, upconverting luminescent materials, etc. .
  • the nanocrystals described in the present invention are quantum dots having a particle size of 1-20 nm. More preferably, the nanocrystals described in the present invention have a particle diameter of 2 to 10 nm.
  • the invention also includes the step of preparing a first precursor by a chemical reaction.
  • the specific steps of this embodiment are shown in FIG. 1.
  • the prepared first precursor of the gas is deoxidized and dehydrated, and then dissolved in the first solvent.
  • the invention also includes a purification step by nanocrystals. Specifically, after the first precursor and the second precursor chemically react to form nanocrystals, the nanocrystal solid is obtained by centrifugation, and the nanocrystal solid is dispersed by the dispersing agent, so that it can be repeated a plurality of times. Finally, the nanocrystals are stored in a dispersant.
  • the dispersant selects an organic solvent that is less toxic.
  • the dispersing agent is selected from n-hexane or acetone.
  • the invention dissolves the gaseous reactants which are difficult to control the reaction amount in the solution by physical means, and changes the gaseous reactants into a liquid state, thereby precisely controlling the amount of the gaseous reactants to be added, and finely controlling the reaction to make the reaction more complete. Uniformity, nanocrystals with uniform volume distribution and better luminescence properties are obtained.
  • the first precursor solution is prepared under the protection of argon or other inert gas, and the first precursor is dissolved to the first selection.
  • the solvent is dried before it is dried.
  • the first precursor is dissolved in the first selected solvent and is a physical change.
  • the dissolution process involves the diffusion of the first precursor molecule in the first selected solvent and the solvation of the first precursor by the first selected solvent, without changing the chemical structure of the first precursor itself, without affecting the first The chemical reaction between the precursor and the second precursor.
  • the first precursor solution is formed by passing a gaseous first precursor to the first selected solvent at a rate for a period of time. During the introduction process, it may or may not be stirred.
  • the first precursor solution can be saturated or unsaturated.
  • the amount of dissolution of the first precursor in the first selected solvent can be controlled by changes in temperature. Different temperatures correspond to different solubility. In general, the lower the temperature, the more favorable the dissolution of the gas in the solvent. The amount of dissolution of the first precursor in the first selected solvent is increased by lowering the temperature. However, in order to avoid solvent solidification, the temperature cannot be arbitrarily lowered.
  • the temperature of the first selected solvent when the first precursor is dissolved in the first selected solvent, is set to be within a range of 0-5 ° C near the melting point of the first selected solvent to obtain The largest gaseous first precursor absorption.
  • the temperature of the first selected solvent is set to be higher than the melting point of the first selected solvent by 0-2 °C. The larger the absorption amount of the first precursor, the less solvent is required, and the less solvent is added when the second precursor solution is added to participate in the reaction, the more favorable the reaction between the first precursor and the second precursor is. Produce better quality nanocrystals.
  • the first precursor solution obtained under one temperature condition should be kept under this temperature condition or lower temperature to prevent the temperature from changing and the first precursor is eluted.
  • the thermostatic seal is stored.
  • the exact concentration of the first precursor can be determined by titration.
  • the amount of the first precursor to be added can be precisely controlled by adding a volume.
  • the first precursor gas is H 2 S
  • the solubility in a solvent and a polar solvent depends on the temperature. At 20 ° C, H 2 S solubility n- hexadecane and 1-hexadecane were 0.07M and 0.24M.
  • the first precursor is hydrogen sulfide
  • 1-hexadecane is used as the first selected solvent.
  • the concentration of hydrogen sulfide in the hydrogen sulfide solution can be determined by titrating the AgNO 3 alcohol solution.
  • the first precursor is phosphine, and the dissolved concentrations of phosphine in cyclohexane and benzene are 0.1 M and 0.3 M, respectively.
  • the excess first precursor is absorbed by another solvent or waste treatment solution.
  • Selective solvent absorption is the primary method used to remove unwanted impurities to purify the gas.
  • the selective solvent is an aqueous solution of methyldiethanolamine and sulfolane for absorbing hydrogen sulfide gas.
  • the gas in the first precursor solution easily overflows at a high temperature, when the first precursor solution is added to the second precursor solution, the first precursor solution is injected below the liquid level of the second precursor solution to avoid The first precursor overflows.
  • the reaction temperature at which the first precursor and the second precursor are chemically reacted preferably ranges from 150 ° C to 350 ° C, and more preferably ranges from 200 ° C to 350 ° C.
  • the reaction time is preferably in the range of 0.1 minute to 1 week, and further preferably in the range of 1 minute. -1 hour.
  • the reaction temperature and reaction time are the temperature and time during which the first precursor solution is added to the second precursor solution until the completion of the preparation of the nanocrystal.
  • the reaction temperature on the one hand promotes the reaction to occur, and on the other hand does not exceed the boiling point of the first selected solvent or the second selected solvent.
  • the temperature range of the second precursor solution is controlled to be 50 ° C - 300 ° C before the first precursor solution is added to the second precursor solution.
  • the temperature range of the second precursor solution is controlled to be 50 ° C - 300 ° C, preferably 100 - 300 ° C.
  • the temperature range of the mixed solution of the first precursor solution and the second precursor solution is controlled to be 150 ° C -350 ° C, and the holding time ranges from 1 minute to 1 week.
  • a further preferred range is from 1 minute to 1 hour.
  • the chemical reaction between the first precursor and the second precursor is instantaneous, and the speed at which the first precursor solution is added to the second precursor solution should be as fast as possible, and the reaction solution is continuously stirred to avoid excessively long time. The precursor overflowed and did not participate in the reaction.
  • the present invention can be set to different reaction temperatures at different reaction stages.
  • the first precursor solution is added to the second precursor solution within 30 minutes to 2 hours, and the reaction temperature is controlled at 200-350 ° C. Thereafter, the reaction temperature is controlled at 200-350 ° C. Another reaction temperature.
  • the first precursor of the present invention may be purchased directly or may be prepared by self-synthesis.
  • the first precursor of the present invention is a compound mainly composed of a second group and a third group element.
  • the first precursor comprises at least one of the following: hydrogen sulfide, hydrogen selenide, hydrogen telluride, ammonia, phosphine, arsine, hydrogen telluride.
  • the first precursor is phosphine.
  • the first precursor is hydrogen sulfide; the hydrogen sulfide gas is formed by reaction of Na 2 S and HCl solution under argon.
  • the first precursor is phosphine; the phosphine gas is formed by reacting a solution of Zn 3 P 2 and H 2 SO 4 under argon.
  • the second precursor includes all precursors that synthesize nanocrystals from a chemically and gaseous first precursor.
  • the second precursor comprises at least one of the group consisting of an alkyl metal, a metal oxide, a metal halide, a metal carboxylate, a metal phosphonate, a metal phosphinate, a metal phosphate, a metal sulfonate. Acid salt, metal borate.
  • the second precursor comprises a metal element selected from the group consisting of Group II, Group III or Group IV elements. More preferably, the second precursor comprises a metal element selected from the group consisting of zinc, manganese, indium, cadmium, and lead. In a preferred embodiment, the second precursor is a zinc salt precursor selected from the group consisting of zinc stearate, zinc acetate, zinc phosphate, zinc hypophosphite, zinc sulfonate, zinc borate, zinc halide, and zinc oxide.
  • a metal element selected from the group consisting of Group II, Group III or Group IV elements More preferably, the second precursor comprises a metal element selected from the group consisting of zinc, manganese, indium, cadmium, and lead.
  • the second precursor is a zinc salt precursor selected from the group consisting of zinc stearate, zinc acetate, zinc phosphate, zinc hypophosphite, zinc sulfonate, zinc borate, zinc halide, and zinc oxide.
  • the present invention synthesizes a core-shell nanocrystal, the first precursor being phosphine and the second precursor being a zinc salt precursor and an indium salt precursor.
  • the purpose of the first selected solvent is to dissolve the first precursor and convert the gaseous first precursor into a liquid form, thereby better controlling the first precursor to participate in the reaction and making the reaction more uniform.
  • the first selected solvent is selected to be any solvent or solution that will dissolve the first precursor.
  • the purpose of the second selected solvent is to dissolve the second precursor.
  • the selected range or preferred range of the second selected solvent is the same as the first selected solvent.
  • the boiling point of the first selected solvent and the second selected solvent is higher than the minimum temperature required for the nanocrystal formation reaction of the first precursor and the second precursor. Since the minimum temperature of the formation reaction of different nanocrystals is not the same and the minimum temperature also varies with other conditions, the selection of the specific selected solvent needs to be specifically analyzed.
  • the first selected solvent requires a lower melting point, by lowering the temperature to near the melting point to obtain a higher first precursor dissolved amount, and on the other hand, the first selected solvent has a higher boiling point than the nanocrystal formation.
  • the choice of the first selected solvent requires balancing the two aspects above.
  • the first selected solvent has a melting point below 25 ° C and a high boiling point At 150 ° C.
  • the first selected solvent is one of 1-octadecenene, 1-hexadecene, and oleylamine.
  • the first selected solvent is the same as the second selected solvent.
  • the first precursor solution reacts with the second precursor solution
  • contact and sufficient reaction of the first precursor with the second precursor are more favored.
  • the first selected solvent is different from the second selected solvent, it does not prevent the first precursor from reacting with the second precursor.
  • the first precursor and the second precursor can be brought into contact by an external force such as stirring, and the chemical reaction between the two can be promoted to generate nanocrystals.
  • the first selected solvent may be water or an aqueous solution including other solutes, or may be an organic solvent or an organic solution.
  • the first selected solvent is an organic substance, including at least one of the following: a long chain alkane, a long chain olefin, a long chain alkyl alcohol, a long chain alkyl amine, a long chain alkyl ester, a long chain alkyl fatty acid Long chain alkyl mercaptan, trialkyl phosphine, trialkyl phosphine oxide.
  • the above long chain includes, but is not limited to, a linear chain having 8 to 30 carbon atoms.
  • Long-chain alkanes include at least one of the following: 1-octadecane, 1-cysteine, 1-hexadecane, 1-dodecane, 1-tetradecane, 1-tridecane, 1 ⁇ , 1 - phytane, 1 - pentadecane, paraffin, 1 - eicosane, 1 - octacosane, 1 - pentane.
  • Long-chain olefins include at least one of the following: 1-octadecene, 1-dodecene, 1-hexadecene, 1-tetradecene, 1-pentadecene, 1-ten N-carbene, 1 - eicosene, 1-tridecene, 1-pentadecene.
  • the long-chain alkylamine includes at least one of the following: hexadecylamine, octadecylamine, tetradecylamine, nonylalkylamine, dodecylamine, undecylamine, ten Trialkylamine, 1,12-diaminododecane, 1,18-diaminooctadecane, 1,16-diaminohexadecane, 1,14-diaminotetradecylamine, oleylamine, octyl amine.
  • Long-chain alkanols include at least one of the following: 1-octadecanol, 1-hexadecanol, 1-eicosanol, 1-dodecanol, 1-tridecyl alcohol, 1 ⁇ Myristyl alcohol, 1 - behenyl alcohol, 1 -pentadecanol, 1 -heptadecanol, 1 - decadecanol, 1 - eicosyl alcohol.
  • the long-chain alkyl ester includes at least one of the following: stearyl ester, dodecyl acetate, cetyl acetate, eicosyl acetate, pentadecyl ester, heptadecyl ester.
  • the long-chain alkyl fatty acid includes at least one of the following: fatty acids including, but not limited to, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid , heptadecanoic acid, stearic acid, eicosanoic acid.
  • the long-chain alkyl mercaptan includes at least one of the following: 1 - undecanethiol, 1 - dodecanethiol, 1 -tetradecyl mercaptan, 1 - pentadecyl mercaptan, 1 - ten Hexadecanethiol, 1-octadecanethiol.
  • a surfactant may be added in addition to the second precursor and the second selected solvent.
  • the surfactant can activate the second precursor to promote the growth of the nanocrystals.
  • Surfactants can also be referred to as ligands.
  • the surfactant is very important for the stability after the formation of the nanocrystals, and the nanocrystals can be stably dispersed in the solvent after formation.
  • the surfactant comprises at least one of the following: a trialkylphosphine, a trialkylphosphine oxide, an alkylamine, an alkylthiol, an arylthiol, a fatty acid.
  • the surfactant is an alkylamine comprising at least one of a monosubstituted alkylamine, a disubstituted alkylamine, and a trisubstituted alkylamine.
  • the alkylamine is octadecylamine.
  • the surfactant is oleylamine.
  • the volume ratio of surfactant to second selected solvent ranges from 0.1 to 10.
  • the molar ratio of the second precursor to the surfactant ranges from 1:0 to 1:5.
  • the second precursor is reacted with a stabilizer to maintain a certain stability in the second selected solvent prior to the addition of the second selected solvent.
  • the second precursor is reacted with a stabilizer at a vacuum elevated temperature to provide a second precursor coated with a stabilizer.
  • the stabilizer is a metal complexing agent selected from the group consisting of saturated or unsaturated fatty acids such as myristic acid, oleic acid, stearic acid.
  • the first precursor is phosphine and the second precursor is an indium precursor.
  • the first selected solvent includes, but is not limited to, at least one of 1-octadecenene, 1-hexadecene, oleylamine, and octylamine.
  • the second selected solvent is 1-octadecene, and the second precursor solution further includes a surfactant, and the surfactant includes, but is not limited to, myristic acid, oleic acid, and stearic acid.
  • the oleylamine is also included in the second precursor solution.
  • the step of adding the first precursor solution to the second precursor solution is a step of generating a chemical reaction.
  • the addition method is manual addition or mechanical control.
  • a method of mechanically controlling the addition such as using a mechanical pump to inject a first precursor solution into the second precursor solution.
  • the first precursor solution needs to be stored at a certain temperature, and the reaction temperature is in the range of 150-350 ° C, if not properly controlled, the first precursor is likely to overflow from the solvent before reacting with the second precursor. . Therefore, the time point, volume, velocity and temperature of the first precursor solution added to the second precursor solution have an important influence on the nanocrystal, which determines the luminescence intensity of the nanocrystal, the width, stability and emission wavelength of the emission band.
  • the second precursor solution should be heated to the desired reaction temperature prior to the addition of the first precursor solution.
  • the temperature of the second precursor should be controlled at 150 ° C - 350 ° C.
  • the rate of addition of the first precursor solution is as fast as possible so that after the first precursor solution is added, the first precursor rapidly reacts with the second precursor and forms nanocrystals.
  • the rate of addition of the first precursor solution has an effect on the purity of the nanocrystals. If the amount of the first precursor solution to be added to the second precursor solution at one time is too large, the first precursor solution may be added in small portions to the second precursor solution.
  • the purpose is to enable the reaction to occur sufficiently when the first precursor solution is added to the second precursor solution to avoid dissolution of the first precursor at the current reaction temperature when the reaction is insufficient.
  • the amount of the first precursor solution added to the second precursor solution each time does not exceed 2 ml.
  • the addition of the first precursor solution is carried out at a predetermined speed in the range of 0.1 ml/h to 100 ml/h, preferably in the range of 0.5 ml/h to 5 ml/h.
  • the time at which the first precursor solution is added to the second precursor solution may be before the nucleation reaction of the nanocrystal synthesis, during the growth reaction of the shell, or after the growth reaction of the shell during the nucleation reaction.
  • the specific choice of time points should be set according to the specific reaction requirements and product requirements.
  • the volume of the first precursor solution added to the second precursor solution depends on the ratio of the first precursor to the second precursor.
  • the molar ratio of the first precursor to the second precursor may be any ratio, any concentration.
  • the concentration of the first precursor, the concentration of the second precursor, and the molar ratio of the first precursor to the second precursor have an effect on the quality of the resulting nanocrystals.
  • the molar ratio of the first precursor to the second precursor ranges from 0.1 to 5
  • the concentration of the first precursor preferably ranges from 0.01 to 10 M
  • the concentration of the second precursor preferably ranges from 0.01 to 10 M. More preferably, the concentration of the first precursor preferably ranges from 0.1 to 1 M.
  • the preparation method of the present invention further comprises a third precursor solution in which the third precursor is dissolved, and the third precursor is before or after the first precursor solution is added to the second precursor solution.
  • the solution is added to the reaction vessel.
  • the third precursor may be a precursor of a Group I, Group II, Group III or Group IV metal element, or may be a precursor of Group V, Group VI elements.
  • the present invention discloses a method for preparing a nanocrystal whose core is an indium phosphide shell as zinc sulfide.
  • the specific steps are: preparing a phosphine gas; and removing the phosphine gas by removing oxygen and removing water. It is introduced into an organic solvent of an inert gas atmosphere to form a phosphine gas solution; a certain amount of an indium salt precursor, a zinc salt precursor, a 1-octadecene (ODE), and a surfactant are added.
  • ODE 1-octadecene
  • surfactant are added in the reaction vessel.
  • the molar ratio of the indium salt precursor to the zinc salt precursor is 1:1 - 1:10.
  • the reaction solvent is heated to 100 ° C -150 ° C, and the temperature is further increased to 200 ° C - 270 ° C in an inert gas atmosphere, and a certain amount of phosphine gas solution is injected into the reaction vessel under stirring for a time of 0.1 min - 2 h. Then, a sulfur precursor, a sulfur precursor solution, a zinc sulfide precursor or a zinc sulfide precursor solution is injected into the reaction vessel, and then the temperature is maintained at 150-350 ° C for 0.5 min - 24 h.
  • the surfactant is preferably oleylamine
  • the organic solvent for dissolving phosphine is preferably one of 1-octadecene, 1-hexadecene, oleylamine, and octylamine
  • the sulfur precursor is preferably a hydrogen sulfide gas solution or dodecyl group.
  • Mercaptan is preferably a hydrogen sulfide gas solution or dodecyl group.
  • the indium salt precursor and the zinc salt precursor are mixed with the fatty acid, ODE under an inert gas atmosphere prior to being added to the reaction vessel, and reacted at 110-120 ° C to form a fatty acid-coated indium or zinc precursor.
  • the molar ratio of zinc salt precursor to fatty acid ranges from 1:0 to 1:5.
  • the fatty acid is preferably myristic acid, oleic acid or stearic acid.
  • the nanocrystals produced by the preparation method of the present invention may be of various structures.
  • the nanocrystals are a single nanocrystalline core, and the outer layer has no shell in addition to the functional groups.
  • the nanocrystals comprise a core and at least one shell.
  • the nanocrystals comprise a core and a shell, and have a core-shell structure.
  • the nanocrystals comprise a core and two shells in a core-shell structure.
  • the core of the nanocrystal is manganese sulfide and the shell is zinc sulfide.
  • the manganese precursor and the zinc precursor are simultaneously added to the second selected solvent.
  • the zinc precursor can also be added to the second selected solvent after formation of the manganese sulfide nanocrystal core.
  • the core of the nanocrystal is indium phosphide and the shell is zinc sulfide.
  • semiconductor nanocrystals can be prepared, including at least one of the following substances: Group II-VIA compounds (specifically, compounds composed of Group II elements and Group VIA elements), Group IV-VIA compounds (specifically, a compound consisting of a group IV element and a group VIA element), a group III-VA compound (specifically, a compound composed of a group III element and a group VA element), and a group I-VIA compound (specifically, a group I) a compound consisting of an element and a group VIA element).
  • Group II-VIA compounds specifically, compounds composed of Group II elements and Group VIA elements
  • Group IV-VIA compounds specifically, a compound consisting of a group IV element and a group VIA element
  • a group III-VA compound specifically, a compound composed of a group III element and a group VA element
  • a group I-VIA compound specifically, a group I
  • the Group I element comprises a Group IA element and a Group IB element
  • the Group II element comprises a Group IIA element and a Group IIB element
  • the Group III element comprises a Group IIIA element and a Group IIIB element
  • the Group IV element comprises a Group IVA element and a Group IVB element.
  • Group II-VIA compounds include: zinc selenide, zinc telluride, zinc sulfide, cadmium selenide, cadmium sulfide, cadmium telluride, zinc oxide, mercury sulfide, mercury telluride, magnesium oxide, magnesium sulfide, magnesium telluride, Cadmium sulfide selenide, cadmium sulphide sulphide, zinc sulphide sulphide, sulphur sulphide sulphide, selenium bismuth sulphide, sulphur sulphide sulphide, sulphur sulphur sulphide, sulphide sulphide Zinc cadmium, mercury cadmium sulfide, zinc cadmium selenide, cadmium zinc cadmium sulfide, cadmium zinc cadmium sulfide, cadmium sulphide cadmium, cadmium sulphide c
  • Group IV-VIA compounds include: lead sulfide, lead selenide, lead telluride, tin sulfide, tin selenide, antimony telluride, tin antimony sulfide, tin selenide, selenium telluride, lead antimonide, Lead sulphide selenide, lead selenide telluride, lead sulphide sulphide, lead bismuth bismuth tin, lead sulphide selenide, lead sulphide sulphide, lead sulphide sulphide; in a preferred embodiment, the nanocrystals include the above-mentioned group IV At least one of the VIA compounds.
  • Group III-VA compounds include: indium phosphide, indium arsenide, gallium nitride, gallium phosphide, gallium arsenide, gallium antimonide, aluminum nitride, aluminum phosphide, aluminum arsenide, aluminum telluride, nitriding Indium, indium antimonide, gallium arsenide, gallium arsenide, gallium arsenide, gallium arsenide, gallium arsenide, aluminum phosphide, aluminum arsenide, aluminum gallium arsenide, nitrogen arsenide Aluminum gallium, aluminum gallium phosphide, aluminum gallium arsenide, aluminum gallium phosphide, indium gallium arsenide, indium gallium arsenide, indium gallium arsenide, indium aluminum nitride, Indium phosphide, arsenic Indium aluminum and indium aluminum telluride; the Group I-VI compound
  • the nanocrystals are copper indium sulfide (CuInS 2 ) or copper indium selenide (CuInSe).
  • the first precursor is hydrogen sulfide or hydrogen selenide
  • the second precursor is a copper salt precursor and an indium salt precursor.
  • a semiconductor nanocrystal chemically doped with one or more transition metal cations can be prepared by adding a precursor of the doped transition metal cation to the second precursor solution, and then adding The first precursor solution reacts the first precursor with the second precursor and the doped transition metal cation precursor to form nanocrystals.
  • a semiconductor nanocrystal doped with one or more transition metal cations includes at least one of the following:
  • the rare earth doped upconverting nanocrystals can be prepared by the preparation method of the present invention, and the nanocrystals generate fluorescence by the up-conversion process of the nanoparticles.
  • the nanocrystals comprise rare earth doped NaYF 4 nanocrystals, and the rare earth element comprises at least one of the following elements: lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum.
  • the nanocrystals are rare earth doped upconverting nanocrystals of a core-shell structure.
  • the preparation method of the present invention is suitable for preparing all nanocrystals that require a gaseous precursor to participate in the reaction.
  • a display device can also be prepared by the nanocrystals prepared by the preparation method of the present invention.
  • the display device comprises a display panel and a backlight module, and the backlight module comprises a quantum dot film.
  • the luminescent nanocrystals prepared by the present invention are included in the quantum dot film.
  • the illuminating device can also be prepared by the nanocrystals prepared by the preparation method of the present invention.
  • the illumination device includes a light source and a quantum dot diaphragm.
  • the luminescent nanocrystals prepared by the present invention are included in the quantum dot film.
  • Anti-counterfeit labels can also be prepared by the nanocrystals prepared by the preparation method of the present invention.
  • the security label includes the luminescent nanocrystals prepared by the present invention.
  • the invention also discloses a preparation and storage device for a gas solution, comprising a storage device and an exhaust gas absorption device connected to the storage device.
  • the storage device includes a cryogenic circulating pump that provides a low temperature, a stirrer, a refrigerant, and a storage bottle containing a solvent for dissolving the gas.
  • the agitator is placed in a storage bottle.
  • the low temperature circulation pump includes a pump and a circulation pipe, and the refrigerant is located in the circulation pipe, a part of the circulation pipe is disposed in the storage bottle, and the other part is disposed outside the storage bottle.
  • the refrigerant flows through the circulation pipe by the action of the pump, and controls the temperature inside the bottle.
  • the exhaust gas absorbing means is composed of a U-shaped tube containing an indicator and an absorption bottle containing an alkaline substance.
  • the indicator can indicate whether a gas is present to know if the gas is excessive.
  • the gas is passed into a storage device that is set to a temperature until saturation, and excess exhaust gas is absorbed by the exhaust gas absorption device to avoid contamination.
  • the gas solution preparation and storage device further includes a gas treatment device coupled to the storage device.
  • the gas treatment device removes water or removes oxygen or simultaneously removes water to remove oxygen.
  • the gas treatment device includes a drying tube containing a desiccant.
  • the gas solution preparation and storage device further comprises a gas system connected to the gas treatment device. Equipment.
  • the first precursor solution is prepared by using phosphine as the first precursor and 1-octadeene (ODE) as the first selected solvent.
  • ODE 1-octadeene
  • the storage device comprises a low temperature circulating pump, a stirrer, a refrigerant and a storage bottle containing a solvent for dissolving gas
  • the ODE is installed in the storage bottle
  • the storage device is connected with an exhaust gas treatment device with a phosphine indicator copper sulfate.
  • the exhaust gas treatment device is provided with a sodium hydroxide solution.
  • a first precursor solution was prepared using phosphine as the first precursor and 1-hexadecene as the first selected solvent.
  • the specific method is the same as that of the first embodiment except that 10 ml of 1 -hexadecene is contained in the storage bottle of the storage device, and the temperature is controlled at 5 °C.
  • a hexadecene solution of phosphine was obtained, which was designated as the first precursor solution A2.
  • the first precursor solution is prepared by using phosphine as the first precursor and oleylamine as the first selected solvent.
  • the specific method was the same as in Example 1, except that 10 ml of oleylamine was contained in the storage bottle of the storage device, and the temperature was controlled at 18 °C.
  • An oleylamine solution of phosphine was obtained, which was designated as the first precursor solution A3.
  • a first precursor solution was prepared using phosphine as the first precursor and octylamine as the first selected solvent.
  • the specific method was the same as in Example 1, except that 10 ml of octylamine was placed in the storage bottle of the storage device, and the temperature was controlled at 0 °C.
  • An octylamine solution of phosphine was obtained, which was designated as the first precursor solution A4.
  • the first precursor solution is prepared by using hydrogen sulfide as the first precursor and ODE as the first selected solvent.
  • the specific method is the same as in Example 1, except that hydrogen sulfide (H 2 S) gas is produced by reacting Na 2 S and HCl solution under argon gas protection.
  • An ODE solution of hydrogen sulfide was obtained, which was designated as the first precursor solution A5.
  • A5 was titrated by an alcohol solution of silver nitrate (AgNO 3 ), and the concentration was found to be 0.2 M.
  • the first precursor solution was prepared by using hydrogen sulfide as the first precursor and 1-hexadecene as the first selected solvent.
  • the specific method is the same as that of the embodiment 5, except that 10 ml of 1 -hexadecene is contained in the storage bottle of the storage device, and the temperature is controlled at 5 °C.
  • a solution of hydrogen sulfide in the 1-hexadecene was obtained, which was designated as the first precursor solution A6.
  • a preparation method of Mn 2+ doped core-shell structure ZnS nanocrystal (abbreviated as ZnS-Mn 2+ ) comprises the following steps: adding 6 ml of solvent ODE and 0.67 g of octadecylamine in a three-necked round bottom flask ), 100 mg of zinc acetate and 125 mg of manganese acetate were added to the flask, evacuated and argon gas was introduced, and the cycle was repeated several times to form an inert gas atmosphere for removing water and oxygen; the flask was heated to 220 ° C, and the cylinder was passed through the syringe during the stirring process.
  • Example 5 To the second precursor solution, 10 ml of the A5 solution prepared in Example 5 was injected subsurface, and the reaction temperature was gradually increased to 240 ° C, and 5 ml of a 0.2 M zinc stearate ODE/oleic acid solution was injected. Then, 6 ml of the A5 solution was injected into the liquid surface, and then 10 ml of a 0.1 M zinc sulfide precursor was injected through an automatic syringe pump at an injection rate of 2 ml/hr for 24 hours to obtain a nanocrystal dispersion.
  • a method for preparing nanocrystals (InP/ZnS) having a core-shell structure in which the core is indium phosphide and the shell is zinc sulfide comprises the following steps: in a three-necked round bottom flask, 8 ml of solvent ODE and 77 mg of palmitoleic acid are added. Then, 36.8 mg of zinc acetate and 58.2 mg of indium acetate were added to the flask, and gradually heated to 210 ° C under argon gas protection for 30 minutes, and then, during the stirring process, the second precursor solution was divided into 6 times by an automatic injection pump.
  • Example 2 6 ml of the A1 solution prepared in Example 1 was injected submerged, each injection was not more than 2 ml, and the injection rate was 2 ml/hour; then, 4 ml of a 0.1 M zinc sulfide precursor was injected through an automatic syringe pump at an injection rate of 2 ml/hour. And further reacted for 12 h to obtain nanocrystals.
  • a method for preparing nanocrystals having a core-shell structure in which the core is indium phosphide and the shell is zinc sulfide comprises the following steps: in a three-necked round bottom flask, 4 ml of solvent ODE and 2.93 mg of oleic acid are added, and then 36.8 mg of acetic acid is added.
  • Zinc and 29.4 mg of indium acetate were added to the flask, gradually heated to 210 ° C under argon gas protection, and 1 ml of PH 3 /ODE solution was injected into the surface of the second precursor solution by an automatic syringe pump at an injection rate of 2 ml / hour; Thereafter, 4 ml of a 0.1 M zinc sulfide precursor was injected through a mechanical pump at an injection rate of 2 ml/hour, and further reacted for 16 hours to obtain nanocrystals.
  • a method for preparing nanocrystals having a core-shell structure of indium phosphide and a shell of zinc sulfide comprises the steps of: adding 1 mM indium acetate, 1 mM tetradecanoic acid and 10 ml of ODE to a three-necked round bottom flask, and heating to 120 °C, vacuum pump vacuum, then argon gas, cycle multiple times, hold for 1h, get 0.1M indium precursor; add 5mM zinc acetate, 5mM oleic acid and 10ml ODE to the new three-neck round bottom flask, Heat to 120 ° C, vacuum pump vacuum, then argon gas, cycle multiple times, hold 1h, get a zinc precursor with a concentration of 0.5M; in a new three-neck round bottom flask, add 1ml indium precursor, 1ml zinc Precursor, 0.5ml oleylamine and 3ml ODE, heated to 120 ° C, vacuum pump vacuum, then arg
  • a method for preparing a nanocrystal having a core-shell structure in which the core is indium phosphide and the shell is zinc sulfide is the same as the preparation step of the embodiment 10, except that after injecting 0.2 ml of the A1 solution prepared in the first embodiment, Immediately, 1 ml of dodecyl mercaptan was quickly added, and the temperature was raised to 300 ° C, and the temperature was kept for 30 minutes, and the temperature was lowered to room temperature.
  • a method for preparing a nanocrystal having a core-shell structure in which the core is indium phosphide and the shell is zinc sulfide is the same as the preparation step of the embodiment 10, except that 0.2 ml of the solution prepared in Example 3 is injected under the liquid surface. A3 solution.
  • a method for preparing nanocrystals having a core-shell structure in which the core is indium phosphide and the shell is zinc sulfide is different from that in Example 10: in a new three-necked round bottom flask, 1 ml of indium precursor and 1 ml of zinc are added.
  • Body 0.5ml oleylamine and 3ml ODE, heated to 120 ° C, vacuum pump vacuum, then argon gas, cycle multiple times, reaction for 20min, then warm to 240 ° C, quickly into the liquid surface into the 0.2ml
  • A3 solution Stir for 10min, add 1ml of dodecyl mercaptan dropwise, heat to 260 ° C, add 0.5ml zinc precursor, keep warm for 10min, add 0.5ml of dodecyl mercaptan, keep warm for 10min, then heat up to 280 °C, 0.5 ml of zinc precursor was added dropwise, kept for 10 min, and then heated to 300 ° C, kept for 30 min, and cooled to room temperature to obtain a nanocrystal dispersion. The dispersion is centrifuged in an organic solvent and washed with an organic solvent, and finally the nanocrystals are redispersed in an organic solvent.
  • a method for preparing nanocrystals having a core-shell structure of indium phosphide and a shell of zinc sulfide comprises the steps of: adding 30 mg of indium acetate, 20 mg of zinc acetate, 120 mg of oleic acid, and 8 ml of ODE to a 50 ml three-necked flask, evacuating And heated to 110 ° C -130 ° C 1h. Argon gas was introduced into the three-necked flask. At 230 ° C, 0.2 ml of A3 solution was first injected under the liquid surface, and 0.2 ml of tributylphosphine was further injected.
  • the temperature was maintained at 230 ° C for 10 min and then lowered to 200 ° C.
  • a further 1.5 ml of A1 solution was injected into the three-necked flask at an injection rate of 2 ml/h. Heat to 230 ° C, and then add 8 ml of zinc sulfide precursor solution every 3 minutes for a total of 3 times, after which the precursor solution was kept at 190 ° C for 12 h.
  • the reaction solution was centrifuged and purified by washing with acetone twice, and finally the nanocrystals were redispersed in an organic solvent.
  • a method for preparing copper indium sulfide (CuInS 2 ) nanoparticles comprises the steps of: adding 29 mg of indium acetate, 19 mg of cuprous iodide, 340 mg of octadecylamine and 8 ml of ODE to a 50 ml three-necked flask, vacuuming and heating to 110 ° C 1h. Argon gas was introduced into the three-necked flask. At 110 ° C, firstly inject 0.3 ml of A5 solution into the liquid surface, place the reaction vessel in the dark, heat the temperature to 180 ° C, and then add 1 ml of A5 solution every 20 min for three times, and keep the reaction solution at 180 ° C for 4 h. A dispersion of copper indium sulfide nanoparticles is obtained. The dispersion was centrifuged and washed with an organic solvent, and the precipitate was redispersed in an organic solvent.
  • Example 2 is a spectrum diagram of ultraviolet-visible absorption (ABS) and photoluminescence (PL, excitation at 330 nm) of a Mn 2+ doped core-shell structure ZnS nanocrystal synthesized in Example 7.
  • the nanocrystal of Example 7 has an emission peak at 580 nm and a full width at half maximum of about 30 nm.
  • the quantum yield of the nanocrystals prepared in this example was 32%, and no red shift occurred.
  • the volume distribution of the ZnS-Mn 2+ nanocrystal particles prepared by the preparation method of the present invention is relatively uniform.
  • Example 3 is a graph showing the ultraviolet-visible absorption (ABS) and photoluminescence (PL, excitation at 450 nm) of the core-shell nanocrystals in which the core synthesized in Example 8 is indium phosphide and the shell is zinc sulfide.
  • the nanocrystal of Example 7 has an emission peak at 615 nm and a full width at half maximum of about 60 nm.
  • the quantum yield of the nanocrystals prepared in this example was 33%.
  • the volume distribution of the InP/ZnS nanocrystal particles prepared by the preparation method of the present invention is relatively uniform.
  • Example 4 is a spectrum diagram of ultraviolet-visible absorption (ABS) and photoluminescence (PL, excitation at 450 nm) of the nanocrystals synthesized in Example 9.
  • the nanocrystals that are synthesized 3 are greenish.
  • the emission peak of the nanocrystal of Example 9 was at 523 nm, and the half width was about 50 nm.
  • the quantum yield of the nanocrystals prepared in this example was 10%.
  • Examples 8 and 9 that by controlling the amount of the first precursor of the gaseous state, the ratio of the first precursor to the second precursor can be adjusted, and nanocrystals having different emission peaks can be prepared.
  • core-shell nanocrystals having an emission peak between 480 nm and 750 nm and having a core of indium phosphide and a shell of zinc sulfide can be prepared.
  • Example 11 Compared with Example 10, in Example 11, since the growth time of indium phosphide is short, the growth size of indium phosphide is small, and the nanocrystals produced have a shorter emission wavelength. As shown in FIG. 5, the indium phosphide nanocrystal prepared in Example 10 had an emission peak wavelength of 550 nm and a half width of about 60 nm. As shown in FIG. 6, the indium phosphide nanocrystal prepared in Example 11 had an emission peak wavelength of 500 nm and a half width of about 50 nm. Example 12 In contrast to Example 10-11, an oleylamine solution of phosphine was used.
  • nanocrystals can be produced at a lower temperature of 240 ° C.
  • the formation reaction of the body As shown in FIG. 7, the indium phosphide nanocrystal prepared in Example 12 had an emission peak wavelength of 550 nm and a half width of about 60 nm. According to the nanocrystals prepared in Example 13, the zinc sulfide of the shell layer is more fine and has fewer defects. As shown in FIG. 8, the indium phosphide nanocrystal prepared in Example 10 had an emission peak wavelength of 540 nm and a half width of about 60 nm.
  • the InP/ZnS nanocrystal obtained in Example 14 had an emission peak of 570 nm, a luminescence quantum yield of 53%, and a half width of about 59 nm.
  • ABS 9 is an ultraviolet-visible absorption (ABS) of copper indium sulfide nanocrystals synthesized in Example 15. As can be seen from the figure, the absorption peak of the copper indium sulfide nanocrystal synthesized in Example 15 was about 700 nm.
  • the data of the above examples show that, by the preparation method of the present invention, the amount of gas precursor added and the rate of addition can be controlled, thereby better regulating the growth of the nanocrystals, and preparing nanocrystals with controllable emission wavelengths.
  • the volume distribution of the nanocrystals prepared by the invention is relatively uniform, the half width is narrow, and no red shift occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种纳米晶体制备方法,包括以下步骤:将常温和常压下为气态的第一前体溶解在第一选定溶剂中,形成第一前体溶液;将第二前体溶解在第二选定溶剂中,形成第二前体溶液,所述第二前体为第I族、第II族、第III族或者第IV族金属元素的前体;在惰性气体氛围中,将所述第一前体溶液加入到装有所述第二前体溶液的反应容器中,所述第一前体与所述第二前体发生化学反应,生成纳米晶体。还提供一种由上述方法制备的纳米晶体以及一种气体溶液的制备和保存装置。通过所述制备方法,气态的第一前体的量可被精确控制,反应更均匀,更可控的,所制得的纳米晶体体积分布均匀,发光量子产率更高。

Description

一种纳米晶体制备方法、纳米晶体及气体溶液的制备和保存装置 技术领域
本发明涉及一种纳米晶体的制备方法以及由该方法制得的一种纳米晶体。本发明还涉及一种气体溶液的制备和保存装置。
背景技术
纳米晶体(nanocrystal),又称为纳米晶,是具有几纳米的尺寸、通常为1-20纳米的范围内、并具有晶体结构的材料。一般而言,纳米晶体是指内部一个球形或近球形的结晶核,外层包裹一层或多层壳的结构。当然,纳米晶体也包括没有壳的结构。发光纳米晶体或者荧光纳米晶体是指具有纳米晶体的结构,当在适当的光源或电压激发下发光的晶体。荧光纳米晶体的光发射特性可以通过控制纳米晶体的组成,纳米晶体的大小,纳米晶体壳表面的结构。因此,相对于有机材料一个荧光纳米晶体可以提供优异的色纯度,色多样性,光子和热稳定性。发光的核可以是球形,条形,矩形的,或更少其它多面的形状的形状,并且其总的体积不大于20nm×20nm×20nm。在纳米晶体核生长外壳或多个壳可以改善纳米晶体的发光稳定性。荧光纳米晶体的核的组成可以是金属、金属氧化物和包括II‐IV和III‐V族结构的半导体。改变荧光纳米晶体的组成还可以通过掺杂一种或多种过渡金属的的阳离子来改变纳米晶体的发光波长和其他发光性能。
荧光纳米晶体由于其特殊的特性,如尺寸可调的光学特性,高量子效率,相对窄的半峰宽和抗光降解性,在过去的二十年中已经被广泛地研究。和有机染料相比较,作为新一代发光材料,荧光纳米晶体在许多应用中,例如发光显示器,光伏器件和生物标记物等领域有更广泛的用途。
在一般情况下,荧光的纳米晶体可以通过在疏水性溶剂,在200‐350摄氏度的温度下热解金属络合物来合成。荧光纳米晶体,也可以在室温下或在升高的温度下使用水、乙二醇以及其它亲水性溶剂作为反应溶剂来制备。为实现均匀的反应,反应物通常是溶解在常温或者升高温度的溶剂中。不溶性无机物或气态反应物也可用于使半导体纳米晶体。然而,不均匀的反应和非平衡化学一般会导致纳米晶体合成的重复性和质量较差。气态反应物,如硫化氢,磷化氢和砷化氢,由于其高反应性也可用于制造纳米晶体。现有技术在利用上述气体制备纳米晶体时,往往直接将制备的气体前体通入到金属前体中,如此也可以得到纳米晶体。
但是,采用上述原位气态前体合成纳米晶体存在以下几个问题:(1)反应不可控和不易重复:因为气态前体的用量不能精确地控制,可能导致反应非可重复,另外会导致非均匀的成核和纳米晶体生长。(2)未反应的多余气体的处理需要额外的设备和清理过程:附加气体形成装置和干燥系统是必需的,因为氧气/水分会影响纳米晶体的质量。(3)剧毒,难以处理:磷化氢和砷化氢等气体属于剧毒,需要严格的操作程序,只有训练有素的专业人员能够安全地处理它们。
发明内容
本发明所要解决的技术问题为:提供一种纳米晶体的制备方法,该方法可以精确控制气态前体的用量,使其与其它前体均匀反应,得到体积分布均匀、粒径可控、发光量子产率高的纳米晶体。
本发明提供了一种纳米晶体制备方法,包括以下步骤:将常温和常压下为气态的第一前体溶解在第一选定溶剂中,形成第一前体溶液;将第二前体溶解在第二选定溶剂中,形成第二前体溶液,所述第二前体为第I族、第II族、第III族或者第IV族金属元素的前体;在惰性气体氛围中,将所述第一前体溶液加入到装有所述第二前体溶液的反应容器中,所述第一前体与所述第二前体发生化学反应,生成纳米晶体。
优选地,所述第一前体溶解在所述第一选定溶剂中是物理变化。
优选地,所述第一前体在溶解在所述第一选定溶剂之前,经过除水除氧。
优选地,将所述第一前体溶液以预定速度注入到所述第二前体溶液的液面以下。
优选地,将所述第一前体溶解在所述第一选定溶剂时,将所述第一选定溶剂的温度设定为所述第一选定溶剂的熔点附近0‐5℃范围内。
优选地,所述第一选定溶剂的熔点低于25℃,沸点高于150℃。
优选地,通过调节温度控制所述第一前体在所述第一选定溶剂中的溶解量。
优选地,所述第一前体溶液通过手工控制或者机械控制的方式以预先设定的速度和体积加入到所述第二前体溶液。
优选地,所述第二前体溶液中还包括表面活性剂,所述表面活性剂包括如下物质中的至少一种:三烷基膦、三烷基氧化膦、烷基胺、烯胺、烷基硫醇、芳基硫醇、烷基芳基硫醇、脂肪酸。
优选地,所述烷基胺为单取代烷基胺、双取代烷基胺、三取代烷基胺中的至少一种,所述脂肪酸为十四酸、油酸、硬脂酸中至少一种
优选地,所述第一前体溶液加入到所述第二前体溶液时,所述第二前体溶液的温度范围为50‐300℃,所述第一前体溶液加入到所述第二前体溶液后,所述第一前体溶液和所述第二前体溶液的混合液的温度范围为150‐350℃,保持时间范围为1分钟‐1周。
优选地,所述化学反应的反应温度范围为150‐350℃,反应时间范围为1分钟‐1周。
优选地,所述第一前体包括如下物质中的至少一种:硫化氢、硒化氢、碲化氢、氨气、磷化氢、砷化氢、锑化氢。
优选地,所述第二前体包括如下物质中的至少一种:烷基金属、金属氧化物、金属卤化物、金属羧酸盐、金属膦酸盐、金属次膦酸盐、金属磷酸盐、金属磺酸盐、金属硼酸盐。
优选地,所述第二前体中的金属元素包括锌、锰、铟、镉、铅中的一种。
优选地,所述第一选定溶剂和所述第二选定溶剂为同一种溶剂。
优选地,所述第一选定溶剂与所述第一前体极性相似。
优选地,所述第一选定溶剂和第二选定溶剂分别包括如下物质中的至少一种:长链烷烃、长链烯烃、长链烷醇、长链烷基胺、长链烷基酯、长链烷基脂肪酸、长链烷基硫醇、三烷基膦、三烷基膦氧化物、水、水溶液。
优选地,所述长链烷烃包括如下物质中的至少一种:包括1‐十八烷、1‐十七烷、1‐十六 烷、1‐十二烷、1‐十四烷、1‐十三烷、1‐姥鲛烷、1‐植烷、1‐十五烷、石蜡、1‐二十烷、1‐二十八烷、1‐二十四烷;所述长链烯烃包括如下物质中的至少一种:1‐十八碳烯、1‐十二碳烯、1‐十六碳烯、1‐十四碳烯、1‐十七碳烯、1‐十九碳烯、1‐二十碳烯、1‐十三碳烯、1‐十五碳烯;所述长链烷基胺包括如下物质中的至少一种:十六烷基胺、十八烷基胺、十四烷基胺、癸烷基胺、十二烷基胺、十一烷基胺、十三烷基胺、1,12‐二氨基十二烷、1,18‐二氨基十八烷、1,16‐二氨基十六烷、1,14‐二氨基十四烷胺、油胺;所述长链烷醇包括如下物质中的至少一种:1‐十八烷醇、1‐十六烷醇、1‐二十烷醇、1‐十二烷醇、1‐十三烷醇、1‐十四烷醇、1‐二十二烷醇、1‐十五烷醇、1‐十七烷醇、1‐十九烷醇、1‐二十烷醇;所述长链烷基酯包括如下物质中的至少一种:硬脂基酯、乙酸十二烷基酯、乙酸十六烷基酯、乙酸二十烷基酯、十五烷基酯、十七烷基酯;所述长链烷基脂肪酸包括如下物质中的至少一种:癸酸、十一烷酸、十二烷酸、十三烷酸、十四烷酸、十五烷酸、十六烷酸、十七烷酸、硬脂酸、二十烷酸;所述长链烷基硫醇包括如下物质中的至少一种:1‐十一烷硫醇、1‐十二烷硫醇、1‐十四烷硫醇、1‐十五烷硫醇、1‐十六烷硫醇、1‐十八烷硫醇。
优选地,所述制备方法中还包括溶解有第三前体的第三前体溶液,在所述第一前体溶液加入到所述第二前体溶液之前或者之后,将所述第三前体溶液加入到所述反应容器中。
优选地,所述第三前体与所述第一前体或者所述第二前体能发生化学反应生成纳米晶体。
优选地,所述第三前体在一定温度下自身发生化学反应生成纳米晶体。
优选地,所述制备方法还包括溶解有第四前体的第四前体溶液,在所述第三前体溶液加入到所述反应容器之后,将所述第四前体溶液加入到所述反应容器中。
优选地,所述第一前体为磷化氢,所述第二前体为铟前体或者铟前体与锌前体的混合物,所述第三前体为硫前体或者硫化锌前体。
优选地,所述第一前体为磷化氢,所述第二前体为铟前体或者铟前体与锌前体的混合物,所述其它前体为硫前体或者硫化锌前体或者硫前体与锌前体的混合物。
本发明还提供了一种纳米晶体,由上述任一制备方法制得。
优选地,所述纳米晶体包括核和至少一层壳。
优选地,所述纳米晶体的核为磷化铟,壳为硫化锌。
优选地,所述纳米晶体为没有壳的纳米晶核。
优选地,所述纳米晶体为半导体纳米晶体,包括如下物质中的至少一种:II族‐VIA族化合物、IV族‐VIA族化合物、III族‐VA族化合物、I族‐VIA族化合物、硫化铜铟、硒化铜铟。所述II族‐VIA族化合物包括:硒化锌、碲化锌、硫化锌、硒化镉、硫化镉、碲化镉、氧化锌、硫化汞、碲化汞、氧化镁、硫化镁、碲化镁、硫硒化镉、硫碲化镉、硫硒化锌、硫碲化锌、硒碲化锌、硫硒化汞、硫碲化汞、硒碲化汞、硒化锌镉、硫化锌镉、碲化锌镉、汞硫化镉、硒碲化锌镉、硫碲化锌镉、硫硒化锌镉、硫碲化汞镉、硫硒化汞镉、硒碲化汞镉、硫碲化汞锌、硫硒化汞锌、硒碲化汞锌、硫化镁锌、碲化镁锌、硒化镁锌、氧化镁锌、氧硫化镁锌、硫硒化镁锌、碲硒化镁锌、硫碲化镁锌;所述IV族‐VIA族化合物包括:硫化铅、硒化铅、碲化铅、硫化锡、硒化锡、碲化锡、硫碲化锡、硫硒化锡、硒碲化锡、硫碲化铅、硫硒化铅、硒碲化铅、硫化锡铅、碲化锡铅、硒化锡铅、硫硒化锡铅、硫碲化锡铅;所述III族‐VA族化 合物包括:磷化铟、砷化铟、氮化镓、磷化镓、砷化镓、锑化镓、氮化铝、磷化铝、砷化铝、锑化铝、氮化铟、锑化铟、氮磷化镓、氮砷化镓、氮锑化镓、磷锑化镓、磷砷化镓、氮磷化铝、氮砷化铝、氮磷化铝镓、氮锑化铝镓、磷锑化铝镓、磷砷化铝镓、氮磷化铟镓、氮砷化铟镓、氮锑化铟镓、磷锑化铟镓、磷砷化铟镓、氮化铟铝、磷化铟铝、砷化铟铝、锑化铟铝;所述I族‐VI族化合物包括:硫化铜、碲化铜、硒化铜、硫化银、硒化银、碲化银。
优选地,所述纳米晶体为化学掺杂一种或多种过渡金属阳离子的半导体纳米晶体,所述纳米晶体包括如下物质中的至少一种:Mn2+掺杂硒化锌、Mn2+掺杂硫化锌、Mn2+掺杂碲化锌、Mn2+掺杂硒化镉、Mn2+掺杂硫化镉、Mn2+掺杂碲化镉、Mn2+掺杂硒化锌、Mn2+掺杂硫化锌、Mn2+掺杂碲化锌、Mn2+掺杂硒化镉、Mn2+掺杂硫化镉、Mn2+掺杂碲化镉、Co2+掺杂硒化锌、Co2+掺杂硫化锌、Co2+掺杂碲化锌、Co2+掺杂硒化镉、Co2+掺杂硫化镉、Co2+掺杂碲化镉、Ni2+掺杂硒化锌、Ni2+掺杂硫化锌、Ni2+掺杂碲化锌、Ni2+掺杂硒化镉、Ni2+掺杂硫化镉、Ni2+掺杂碲化镉、Ag+掺杂硒化锌、Ag+掺杂硫化锌、Ag+掺杂碲化锌、Ag+掺杂硒化镉、Ag+掺杂硫化镉、Ag+掺杂碲化镉、Cu+掺杂磷化铟、Cu+掺杂砷化铟、Ag+掺杂磷化铟、Ag+掺杂砷化铟、Mn2+掺杂磷化铟、Mn2+掺杂砷化铟。
优选地,所述纳米晶体为稀土掺杂的上转换纳米晶体,所述稀土元素包括如下元素中的至少一种:镱、铒、铥、钬、铈、钕、钆、钐、铕。
优选地,所述纳米晶体为金属氧化物纳米晶体,所述金属氧化物纳米晶体包括氧化钛纳米晶体或者氧化钙纳米晶体中的至少一种。
优选地,所述纳米晶体的核为无机化合物,所述纳米晶体的立方体积小于100nm×100nm×100nm。
本发明还公开了一种显示装置,所述显示装置包括显示面板及背光模组,所述背光模组中包括如上述的制备方法制得的纳米晶体。
本发明还公开了一种照明装置,所述照明装置包括如上述的制备方法制得的纳米晶体。
本发明还公开了一种防伪标签,所述防伪标签包括如上述的制备方法制得的纳米晶体。
本发明还公开了一种气体溶液的制备和保存装置,包括储存装置和与所述储存装置相连接的尾气吸收装置,其特征在于,所述储存装置包括提供低温的低温循环泵、搅拌器、导热液体以及装有溶解气体的溶剂的保存瓶。
优选地,所述装置还包括与所述储存装置相连接的用于除氧除水的气体处理装置,所述气体处理装置包括内装干燥剂的干燥管。
本发明的制备方法,具有以下有益效果:气态前体的量可被精确控制,纳米晶体的生成反应更均匀,纳米晶体的尺寸更可控,且可重复;通过将气态前体溶解在溶剂中参与反应,无需额外的设备或者步骤对未反应的气体进行清理;相对于气体直接参与反应的制备方法,制备过程也得到简化,制备过程的难度得到降低。由本发明所制得的纳米晶体体积分布均匀,半峰宽较小,发射峰不会发生红移或者红移很少,发光量子产率更高。本发明的制备和保存气体溶液的装置将制备与保存合为一体,避免了气体溶液转移过程中温度对气体溶液的影响,取用非常方便。
附图说明
图1是表示本发明制备纳米晶体方法的一个示例性实施流程图。
图2是实施例7的纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在330nm处)光谱图。
图3是实施例8的纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在450nm处)光谱图。
图4是实施例9的纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在450nm处)光谱图。
图5是实施例10的纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在450nm处)光谱图。
图6是实施例11的纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在450nm处)光谱图。
图7是实施例12的纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在450nm处)光谱图。
图8是实施例13的纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在450nm处)光谱图。
图9是实施例15的纳米晶体的紫外‐可见吸收(ABS)光谱图。
具体实施方式
下面将结合本发明实施方式,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都属于本发明保护范围。
本发明揭示了一种纳米晶体制备方法,包括以下步骤:将常温和常压下为气态的第一前体溶解在第一选定溶剂中,形成第一前体溶液;将第二前体溶解在第二选定溶剂中,形成第二前体溶液,所述第二前体为第I族、第II族、第III族或者第IV族金属元素的前体;在惰性气体氛围中,将第一前体溶液加入到装有所述第二前体溶液的反应容器中,第一前体与第二前体发生化学反应,生成纳米晶体。
本发明所制备的纳米晶体是指三维体积中每个维度的尺寸均在100nm以内的纳米粒子。本发明的纳米晶体包括但不限于以下名称:纳米晶、纳米颗粒、荧光纳米粒子、荧光纳米颗粒、发光纳米粒子、发光纳米颗粒、量子点、上转换粒子、上转换颗粒、上转换发光材料等。
在一个优选实施方式中,本发明中所述的纳米晶体为粒径1‐20nm的量子点。更优选地,本发明中所述的纳米晶体粒径为2‐10nm。
在一个优选实施方式中,本发明还包括通过化学反应制备第一前体的步骤。本实施例的具体步骤如图1所示。
由于纳米晶体制备过程中,氧气和水分会影响其质量,所以,所制备的气态的第一前体经过除氧除水,再溶解在第一溶剂中。
在一个优选实施方式中,本发明还包括通过纳米晶体的纯化步骤。具体的,在第一前体与第二前体发生化学反应生成纳米晶体后,通过离心得到纳米晶体固体,再通过分散剂将纳米晶体固体分散,如此可重复多次。最后将纳米晶体保存在分散剂中。分散剂选择毒性较小的有机溶剂。优选的,分散剂选用正己烷或者丙酮。
本发明通过物理手段将难以控制反应量的气态反应物溶解在溶液中,使气态反应物变为液态,进而可以精确控制加入的气态反应物的量,对反应进行精细化的控制,使反应更加均匀,得到体积分布均匀,发光性能更好的纳米晶体。
为避免将水分或者氧气带入到第一前体与第二前体的反应中,第一前体溶液是在氩气或其它惰性气体保护下制备,第一前体在溶解到第一选定溶剂之前经过干燥。
第一前体溶解在第一选定溶剂中,是物理变化。溶解过程涉及到第一前体分子在第一选定溶剂中的扩散以及第一选定溶剂对第一前体的溶剂化,并没有改变第一前体本身的化学结构,不会影响第一前体与第二前体的化学反应。
通过向第一选定溶剂中以一定的速率通入气态的第一前体一段时间,形成第一前体溶液。通入过程中,可以搅拌也可以不搅拌。第一前体溶液可以是饱和的或者不饱和的。
通过对温度的改变可以控制第一前体在第一选定溶剂中的溶解量。不同的温度,对应着不同的溶解度。一般情况下,温度越低,越有利于气体在溶剂中的溶解。通过降低温度,增大第一前体在第一选定溶剂中的溶解量。但是为避免溶剂凝固,温度不能任意下降。在一个优选实施方式中,第一前体溶解在第一选定溶剂时,将第一选定溶剂的温度设定为所述第一选定溶剂的熔点附近0‐5℃范围内,以得到最大的气态第一前体吸收量。优选的,将第一选定溶剂的温度设定为高于所述第一选定溶剂的熔点0‐2℃。第一前体的吸收量越大,所需的溶剂越少,在加入到第二前体溶液参与反应时,加入的溶剂越少,越有利于第一前体与第二前体的反应,生成更好质量的纳米晶体。
在一个温度条件下获得的第一前体溶液,应保持在这个温度条件或者更低的温度条件下进行保存,以免温度改变,第一前体溶出。优选地,在制备第一前体溶液后,恒温密封保存。
在制备第一前体溶液后,可通过滴定法确定第一前体的精确浓度。如此,在将第一前体溶液加入到第二前体溶液时,可以通过加入体积精确控制所加入的第一前体的量。
在一个优选实施例中,第一前体为H2S气体,其在溶剂中的溶解性依赖于溶剂极性和温度。在20摄氏度下,H2S在n‐十六烷和1‐十六烷中的溶解度分别是0.07M和0.24M。优选地,第一前体为硫化氢时,使用1‐十六烷为第一选定溶剂。硫化氢溶液中硫化氢的浓度可通过滴定AgNO3酒精溶液的来确定。在另一个实施例中,第一前体为磷化氢,磷化氢在环己烷和苯中的溶解浓度分别为0.1M和0.3M。
制备第一前体溶液时,过量的第一前体,由另一溶剂或废物处理溶液吸收处理。选择性溶剂吸收是用于除去不需要杂质来净化气体的主要方法。在一个优选实施例中,选择性溶剂为甲基二乙醇胺和环丁砜的水溶液,用于吸收硫化氢气体。
由于第一前体溶液中气体在高温下容易溢出,所以在第一前体溶液加入到第二前体溶液时,将第一前体溶液注入到第二前体溶液的液面以下,以避免第一前体溢出。
本发明中,第一前体与第二前体发生化学反应的反应温度优选范围为150℃‐350℃,进一步优选范围200℃‐350℃。反应时间优选范围为0.1分钟‐1周,进一步优选范围为1分钟 ‐1小时。反应温度和反应时间为第一前体溶液加入到第二前体溶液的瞬间开始一直到纳米晶体完成制备的过程中的温度和时间。反应温度一方面要促使反应发生,另一方面不能超过第一选定溶剂或者第二选定溶剂的沸点。
本发明中,在第一前体溶液加入到第二前体溶液前,将第二前体溶液温度范围控制为50℃‐300℃。在第一前体溶液加入到第二前体溶液时,将第二前体溶液温度范围控制为50℃‐300℃,优选100‐300℃。在第一前体溶液加入到第二前体溶液后,将第一前体溶液与第二前体溶液的混合溶液温度范围控制为150℃‐350℃,保持时间范围为1分钟‐1周,进一步优选范围为1分钟‐1小时。
第一前体与第二前体的化学反应是瞬间的,第一前体溶液加入到第二前体溶液的速度应越快越好,并使反应溶液不断搅拌,以避免时间过长第一前体溢出而未参与反应。
本发明在不同反应阶段,可以设置不同的反应温度。在一个优选的实施方式中,第一前体溶液加入到第二前体溶液后的30分钟‐2个小时内,控制反应温度在200‐350℃,在之后,反应温度控制在200‐350℃的另一个反应温度。
本发明的第一前体可以是直接购买得到,也可以通过自己合成制备得到。本发明第一前体主要由第二族和第三族元素组成的化合物。优选地,第一前体包括如下物质中的至少一种:硫化氢、硒化氢、碲化氢、氨气、磷化氢、砷化氢、锑化氢。最优选地,第一前体为磷化氢。
在一个优选实施例中,第一前体为硫化氢;硫化氢气体是通过在氩气保护下Na2S和HCl溶液反应生成。在另一个优选实施例中,第一前体为磷化氢;磷化氢气体通过在氩气保护下Zn3P2和H2SO4溶液反应生成。
第二前体包括所有从一个化学角度能和气态的第一前体合成纳米晶体的前体。优选地,第二前体包括如下物质中的至少一种:烷基金属、金属氧化物、金属卤化物、金属羧酸盐、金属膦酸盐、金属次膦酸盐、金属磷酸盐、金属磺酸盐、金属硼酸盐。
优选地,第二前体所包括得到金属元素选自第II族、第III族或者第IV族元素。更优选地,第二前体所包括得到金属元素为锌、锰、铟、镉、铅中的一种。在一个优选实施方式中,第二前体为锌盐前体,其选自硬脂酸锌、醋酸锌、磷酸锌、次磷酸锌、磺酸锌、硼酸锌、卤化锌、氧化锌中的至少一种。
在一个优选实施方式中,本发明合成的是一种核壳结构的纳米晶体,第一前体为磷化氢,第二前体为锌盐前体和铟盐前体。
第一选定溶剂的目的是溶解第一前体,让气态的第一前体转化为液态形式,从而可以更好的控制第一前体参与反应,使反应更加均匀。第一选定溶剂的选择范围为任何可以溶解第一前体的溶剂或者溶液。第二选定溶剂的目的是溶解第二前体。第二选定溶剂的选择范围或者优选范围与第一选定溶剂一样。第一选定溶剂和第二选定溶剂的沸点要高于第一前体与第二前体发生纳米晶体生成反应所需的最低温度。由于不同纳米晶体的生成反应最低温度不尽相同且最低温度也随其它条件的变化而变化,所以具体的选定溶剂的选择需要具体情况具体分析。
一方面,第一选定溶剂需要较低的熔点,通过将温度降至熔点附近以获得较高的第一前体溶解量,另一方面,第一选定溶剂的沸点要高于纳米晶体生成反应所需的最低温度。第一选定溶剂的选择需要平衡上述两个方面。优选地,第一选定溶剂的熔点低于25℃,沸点高 于150℃。在一个优选实施例中,在制备磷化氢溶液时,第一选定溶剂为1‐十八烯、1‐十六烯、油胺中的一种。
在一个优选实施方式中,第一选定溶剂与第二选定溶剂一样。如此,在第一前体溶液与第二前体溶液反应时,更有利于第一前体与第二前体的接触和充分反应。当然,第一选定溶剂与第二选定溶剂不一样时,并不妨碍第一前体与第二前体发生反应。只要两者在液相环境中混合,借助于搅拌等外力,使第一前体与第二前体能够接触,就能够促使两者发生化学反应,从而生成纳米晶体。
第一选定溶剂可以是水或者包括其它溶质的水溶液,也可以是有机溶剂或者有机溶液。
优选地,第一选定溶剂为有机物,包括如下物质中的至少一种:长链烷烃、长链烯烃、长链烷醇、长链烷基胺、长链烷基酯、长链烷基脂肪酸、长链烷基硫醇、三烷基膦、三烷基膦氧化物。上述长链包括但不限于碳原子个数为8‐30的直链。长链烷烃包括如下物质中的至少一种:1‐十八烷、1‐十七烷、1‐十六烷、1‐十二烷、1‐十四烷、1‐十三烷、1‐姥鲛烷、1‐植烷、1‐十五烷、石蜡、1‐二十烷、1‐二十八烷、1‐二十四烷。长链烯烃包括如下物质中的至少一种:1‐十八碳烯、1‐十二碳烯、1‐十六碳烯、1‐十四碳烯、1‐十七碳烯、1‐十九碳烯、1‐二十碳烯、1‐十三碳烯、1‐十五碳烯。长链烷基胺包括如下物质中的至少一种:十六烷基胺、十八烷基胺、十四烷基胺、癸烷基胺、十二烷基胺、十一烷基胺、十三烷基胺、1,12‐二氨基十二烷、1,18‐二氨基十八烷、1,16‐二氨基十六烷、1,14‐二氨基十四烷胺、油胺、辛胺。长链烷醇包括如下物质中的至少一种:1‐十八烷醇、1‐十六烷醇、1‐二十烷醇、1‐十二烷醇、1‐十三烷醇、1‐十四烷醇、1‐二十二烷醇、1‐十五烷醇、1‐十七烷醇、1‐十九烷醇、1‐二十烷醇。长链烷基酯包括如下物质中的至少一种:硬脂基酯、乙酸十二烷基酯、乙酸十六烷基酯、乙酸二十烷基酯、十五烷基酯、十七烷基酯。长链烷基脂肪酸包括如下物质中的至少一种:脂肪酸包括不限于癸酸、十一烷酸、十二烷酸、十三烷酸、十四烷酸、十五烷酸、十六烷酸、十七烷酸、硬脂酸、二十烷酸。长链烷基硫醇包括如下物质中的至少一种:1‐十一烷硫醇、1‐十二烷硫醇、1‐十四烷硫醇、1‐十五烷硫醇、1‐十六烷硫醇、1‐十八烷硫醇。
第二前体溶液中,除了第二前体和第二选定溶剂,还可以添加表面活性剂。表面活性剂可以对第二前体产生活化作用,促进纳米晶体的生长。表面活性剂也可称为配体。表面活性剂对纳米晶体生成后的稳定性非常重要,可以使纳米晶体在形成后稳定的分散在溶剂中。优选地,表面活性剂包括如下物质中的至少一种:三烷基膦、三烷基氧化膦、烷基胺、烷基硫醇、芳基硫醇、脂肪酸。优选地,表面活性剂为烷基胺,其包括单取代烷基胺、双取代烷基胺、三取代烷基胺中的至少一种。优选地,烷基胺为十八胺。在一个优选实施方式中,表面活性剂为油胺。
表面活性剂与第二选定溶剂的体积比值范围为0.1‐10。第二前体与表面活性剂的摩尔比范围为1:0‐1:5。
在一个优选实施方式中,第二前体加入第二选定溶剂之前,经过与稳定剂的反应,以使其在第二选定溶剂中保持一定的稳定性。在一个具体实施例中,第二前体与稳定剂,在真空高温下发生反应,得到由稳定剂包覆的第二前体。优选地,稳定剂为金属配位剂,选自十四酸、油酸、硬脂酸等饱和或者不饱和的脂肪酸。
在一个优选实施方式中,第一前体为磷化氢,第二前体为铟前体。第一选定溶剂包括但不限于1‐十八烯、1‐十六烯、油胺、辛胺中的至少一种。第二选定溶剂为1‐十八烯,第二前体溶液中还包括表面活性剂,表面活性剂包括但不限于十四酸、油酸、硬脂酸。第二前体溶液中还包括油胺。
第一前体溶液加入到第二前体溶液的步骤是发生化学反应的步骤。加入方式为手工加入或者通过机械控制加入。机械控制加入的方法,如使用机械泵将第一前体溶液注入到第二前体溶液。
由于第一前体溶液需在一定的温度下保存,而反应温度却在150‐350℃范围内,如果控制不当,第一前体很可能在与第二前体发生反应之前就从溶剂中溢出。所以,第一前体溶液加入到第二前体溶液的时间点、体积、速度和温度对纳米晶体的有重要影响,决定了纳米晶体的发光强度,发射带的宽窄,稳定性和发射波长。
为确保第一前体溶液加入到第二前体溶液时,第一前体不溶出,应在加入第一前体溶液之前,将第二前体溶液加热至所需的反应温度。优选地,第一前体溶液加入第二前体溶液时,第二前体的温度应控制在150℃‐350℃。加入第一前体溶液的速度要尽量快,使得第一前体溶液加入后,第一前体迅速和第二前体发生反应,并形成纳米晶体。第一前体溶液的加入速度对纳米晶体的纯度会产生影响。如果一次性加入第二前体溶液的第一前体溶液量过大,可将第一前体溶液分成小份加入到第二前体溶液。目的是使第一前体溶液加入第二前体溶液时能够充分发生反应,避免反应不充分时第一前体在当前反应温度下溶出。在一个优选实施方式中,每次加入到第二前体溶液的第一前体溶液量不超过2ml。第一前体溶液的加入以预定速度进行,预定速度的范围为0.1ml/h‐100ml/h,优选范围为0.5ml/h‐5ml/h。
第一前体溶液加入到第二前体溶液的时间点可以是在纳米晶体合成的成核反应之前,成核反应过程中,壳体的增长反应期间或壳体生长反应之后。时间点的具体选择则要根据具体的反应要求以及产品要求进行设置。
第一前体溶液加入第二前体溶液的体积取决于第一前体与第二前体的配比。理论上,第一前体与第二前体的摩尔比可以是任意比例,任意浓度,在本发明的制备方法中,只要两者混合,相应的就会有纳米晶体的生成。但是,第一前体的浓度、第二前体的浓度以及第一前体与第二前体的摩尔比对所生成的纳米晶体的质量有影响。
优选地,第一前体与第二前体的摩尔比值范围为0.1‐5,第一前体的浓度优选范围为0.01‐10M,第二前体的浓度优选范围为0.01‐10M。更优选地,第一前体的浓度优选范围为0.1‐1M。
在一个优选实施方式中,本发明的制备方法中还包括溶解有第三前体的第三前体溶液,在第一前体溶液加入到第二前体溶液之前或者之后,将第三前体溶液加入到反应容器中。第三前体可以是第I族、第II族、第III族或者第IV族金属元素的前体,也可以是第V族、第VI族元素的前体。
在一个优选实施方式中,本发明公开了一种核为磷化铟壳为硫化锌的纳米晶体的制备方法,具体步骤为:制备磷化氢气体;将磷化氢气体经除氧除水后通入到惰性气体氛围的有机溶剂中,形成磷化氢气体溶液;将一定量的铟盐前体、锌盐前体、1‐十八烯(1‐octadencene,简称ODE)、表面活性剂加入到反应容器中,铟盐前体与锌盐前体的摩尔比为1:1‐1:10。将 反应溶剂加热到100℃‐150℃,在惰性气体氛围中,继续升温到200℃‐270℃,搅拌中向反应容器中液面下注入一定量的磷化氢气体溶液,保持时间0.1min‐2h,之后向反应容器中液面下注入硫前体、硫前体溶液、硫化锌前体或者硫化锌前体溶液,然后保持温度在150‐350℃,保持时间0.5min‐24h。表面活性剂优选油胺,溶解磷化氢的有机溶剂优选1‐十八烯、1‐十六烯、油胺、辛胺中的一种,硫前体优选硫化氢气体溶液或十二烷基硫醇。优选地,铟盐前体和锌盐前体在加入到反应容器之前,惰性气体氛围下与脂肪酸、ODE混合,在110‐120℃反应形成脂肪酸包覆的铟或者锌前体。锌盐前体与脂肪酸的摩尔比范围为1:0‐1:5。脂肪酸优选十四酸、油酸或者硬脂酸。
通过本发明制备方法制得的纳米晶体可以是多种结构。在一个优选实施方式中,纳米晶体为单一的纳米晶核,外层除了功能基团没有壳的存在。在一个优选实施方式中,纳米晶体包括核和至少一层壳。在一个具体实施方式中,纳米晶体包括核和一层壳,呈核壳结构。在另一个具体实施方式中,纳米晶体包括核和两层壳,呈核壳结构。
在一个具体实施例中,纳米晶体的核为硫化锰,壳为硫化锌。在制备本实施例的纳米晶体时,锰前体和锌前体同时加入到第二选定溶剂中。当然,锌前体也可以在形成硫化锰纳米晶核之后,再加入到第二选定溶剂中。
在一个具体实施例中,纳米晶体的核为磷化铟,壳为硫化锌。
通过本发明的制备方法,可以制备半导体纳米晶体,包括如下物质中的至少一种:II族‐VIA族化合物(特指由II族元素与VIA族元素组成的化合物)、IV族‐VIA族化合物(特指由IV族元素与VIA族元素组成的化合物)、III族‐VA族化合物(特指由III族元素与VA族元素组成的化合物)、I族‐VIA族化合物(特指由I族元素与VIA族元素组成的化合物)。其中I族元素包括IA族元素和IB族元素,II族元素包括IIA族元素和IIB族元素,III族元素包括IIIA族元素和IIIB族元素,IV族元素包括IVA族元素和IVB族元素。
II族‐VIA族化合物包括:硒化锌、碲化锌、硫化锌、硒化镉、硫化镉、碲化镉、氧化锌、硫化汞、碲化汞、氧化镁、硫化镁、碲化镁、硫硒化镉、硫碲化镉、硫硒化锌、硫碲化锌、硒碲化锌、硫硒化汞、硫碲化汞、硒碲化汞、硒化锌镉、硫化锌镉、碲化锌镉、汞硫化镉、硒碲化锌镉、硫碲化锌镉、硫硒化锌镉、硫碲化汞镉、硫硒化汞镉、硒碲化汞镉、硫碲化汞锌、硫硒化汞锌、硒碲化汞锌、硫化镁锌、碲化镁锌、硒化镁锌、氧化镁锌、氧硫化镁锌、硫硒化镁锌、碲硒化镁锌、硫碲化镁锌。在一个优选实施方式中,纳米晶体包括上述II族‐VIA族化合物中的至少一种。
IV族‐VIA族化合物包括:硫化铅、硒化铅、碲化铅,硫化锡、硒化锡、碲化锡、硫碲化锡、硫硒化锡、硒碲化锡、硫碲化铅、硫硒化铅、硒碲化铅、硫化锡铅、碲化锡铅、硒化锡铅、硫硒化锡铅、硫碲化锡铅;在一个优选实施方式中,纳米晶体包括上述IV族‐VIA族化合物中的至少一种。
III族‐VA族化合物包括:磷化铟、砷化铟、氮化镓、磷化镓、砷化镓、锑化镓、氮化铝、磷化铝、砷化铝、锑化铝、氮化铟、锑化铟、氮磷化镓、氮砷化镓、氮锑化镓、磷锑化镓、磷砷化镓、氮磷化铝、氮砷化铝、氮磷化铝镓、氮锑化铝镓、磷锑化铝镓、磷砷化铝镓、氮磷化铟镓、氮砷化铟镓、氮锑化铟镓、磷锑化铟镓、磷砷化铟镓、氮化铟铝、磷化铟铝、砷 化铟铝、锑化铟铝;所述I族‐VI族化合物包括:硫化铜、碲化铜、硒化铜、硫化银、硒化银、碲化银。在一个优选实施方式中,纳米晶体包括上述III族‐VIA族化合物中的至少一种。
在一个优选实施方式中,纳米晶体为硫化铜铟(CuInS2)或者硒化铜铟(CuInSe)。其制备方法中,第一前体为硫化氢或者硒化氢,第二前体为铜盐前体和铟盐前体。
通过本发明的制备方法,可以制备化学掺杂一种或多种过渡金属阳离子的半导体纳米晶体,具体方法为,在第二前体溶液中加入所掺杂的过渡金属阳离子的前体,再加入第一前体溶液,使第一前体与第二前体以及所掺杂的过渡金属阳离子前体发生反应,生成纳米晶体。
掺杂一种或者多种的过渡金属阳离子的半导体纳米晶体包括如下物质中的至少一种:
Mn2+掺杂硒化锌、Mn2+掺杂硫化锌、Mn2+掺杂碲化锌、Mn2+掺杂硒化镉、Mn2+掺杂硫化镉、Mn2+掺杂碲化镉、Mn2+掺杂硒化锌、Mn2+掺杂硫化锌、Mn2+掺杂碲化锌、Mn2+掺杂硒化镉、Mn2+掺杂硫化镉、Mn2+掺杂碲化镉、Co2+掺杂硒化锌、Co2+掺杂硫化锌、Co2+掺杂碲化锌、Co2+掺杂硒化镉、Co2+掺杂硫化镉、Co2+掺杂碲化镉、Ni2+掺杂硒化锌、Ni2+掺杂硫化锌、Ni2+掺杂碲化锌、Ni2+掺杂硒化镉、Ni2+掺杂硫化镉、Ni2+掺杂碲化镉、Ag+掺杂硒化锌、Ag+掺杂硫化锌、Ag+掺杂碲化锌、Ag+掺杂硒化镉、Ag+掺杂硫化镉、Ag+掺杂碲化镉、Cu+掺杂磷化铟、Cu+掺杂砷化铟、Ag+掺杂磷化铟、Ag+掺杂砷化铟、Mn2+掺杂磷化铟、Mn2+掺杂砷化铟。
通过本发明的制备方法,可以制备稀土掺杂的上转换纳米晶体,此种纳米晶体通过纳米粒子的上转换过程产生荧光。在一个优选实施方式中,纳米晶体包括稀土元素掺杂的NaYF4纳米晶体,稀土元素包括如下元素中的至少一种:镱、铒、铥、钬、铈、钕、钆、钐、铕。在一个优选实施方式中,纳米晶体为核壳结构的稀土掺杂的上转换纳米晶体。
本发明的制备方法适合制备所有需要以气态前体参与反应的纳米晶体。
通过本发明制备方法制备的纳米晶体,还可以制备显示装置。显示装置包括显示面板及背光模组,背光模组中包括量子点膜片。量子点膜片中包括本发明制备的发光纳米晶体。
通过本发明制备方法制备的纳米晶体,还可以制备照明装置。照明装置包括光源和量子点膜片。量子点膜片中包括本发明制备的发光纳米晶体。
通过本发明制备方法制备的纳米晶体,还可以制备防伪标签。防伪标签包括本发明制备的发光纳米晶体。
本发明还公开了一种气体溶液的制备和保存装置,包括储存装置和与储存装置相连接的尾气吸收装置。储存装置包括提供低温的低温循环泵、搅拌器、制冷剂以及装有溶解气体的溶剂的保存瓶。搅拌器设置于保存瓶中。低温循环泵包括泵和循环管道,制冷剂位于循环管道中,循环管道一部分设置在保存瓶内,另一部分设置在保存瓶外。制冷剂通过泵的作用在循环管道中流动,控制保存瓶内的温度。优选地,尾气吸收装置由装有指示物的U型管和装有碱性物质的吸收瓶构成。指示物可指示气体是否存在,以知道气体是否过量。
将气体通入设置好温度的储存装置中,直至饱和,多余的尾气通过尾气吸收装置吸收,避免污染。
在一个优选实施方式中,气体溶液制备和保存装置还包括与储存装置相连接的气体处理装置。通过气体处理装置除水或者除氧或者同时除水除氧。气体处理装置包括内装干燥剂的干燥管。
在一个优选实施方式中,气体溶液制备和保存装置还包括与气体处理装置相连的气体制 备装置。
实施例1
以磷化氢为第一前体,1‐十八烯(1‐octadencene,简称ODE)为第一选定溶剂,制备第一前体溶液。具体方法如下:
向100ml两口烧瓶中加入16g磷化钙(Ca3P2),利用自动注射泵向其中缓慢注入40ml浓度为6M的盐酸,生成的磷化氢气体通入干燥管后,再通入装有10ml ODE、温度控制在18℃、经过除水除氧的储存装置中。储存装置包括提供低温的低温循环泵、搅拌器、制冷剂以及装有溶解气体的溶剂的保存瓶,ODE装在保存瓶中,储存装置连接有设有磷化氢指示物硫酸铜的尾气处理装置,尾气处理装置中装有氢氧化钠溶液。当尾气处理装置中指示物显示时,说明磷化氢的ODE溶液已经饱和,停止向两口烧瓶中加入盐酸。得到磷化氢的ODE溶液,记为第一前体溶液A1。将A1保存在储存装置的保存瓶中备用。
实施例2
以磷化氢为第一前体,1‐十六烯为第一选定溶剂,制备第一前体溶液。具体方法同实施例1,所不同的在于:储存装置的保存瓶中装有10ml 1‐十六烯,将温度控制在5℃。得到磷化氢的十六烯溶液,记为第一前体溶液A2。将A2保存在储存装置的保存瓶中备用。
实施例3
以磷化氢为第一前体,油胺为第一选定溶剂,制备第一前体溶液。具体方法同实施例1,所不同的在于:储存装置的保存瓶中装有10ml油胺,将温度控制在18℃。得到磷化氢的油胺溶液,记为第一前体溶液A3。将A3保存在储存装置的保存瓶中备用。
实施例4
以磷化氢为第一前体,辛胺为第一选定溶剂,制备第一前体溶液。具体方法同实施例1,所不同的在于:储存装置的保存瓶中装有10ml辛胺,将温度控制在0℃。得到磷化氢的辛胺溶液,记为第一前体溶液A4。将A4保存在储存装置的保存瓶中备用。
实施例5
以硫化氢为第一前体,ODE为第一选定溶剂,制备第一前体溶液。具体方法同实施例1,所不同的在于:通过在氩气保护下Na2S和HCl溶液反应生成硫化氢(H2S)气体。得到硫化氢的ODE溶液,记为第一前体溶液A5。将A5保存在储存装置的保存瓶中备用。通过硝酸银(AgNO3)的酒精溶液对A5进行滴定,测得浓度为0.2M。
实施例6
以硫化氢为第一前体,1‐十六烯为第一选定溶剂,制备第一前体溶液。具体方法同实施例5,所不同的在于:储存装置的保存瓶中装有10ml 1‐十六烯,将温度控制在5℃。得到硫化氢的1‐十六烯溶液,记为第一前体溶液A6。将A6保存在储存装置的保存瓶中备用。
实施例7
一种Mn2+掺杂的核壳结构ZnS纳米晶体(简称ZnS‐Mn2+)的制备方法,包括如下步骤:在三颈圆底烧瓶中,加入6ml溶剂ODE和0.67g十八胺(octyldecylamine),将100mg醋酸锌和125mg醋酸锰加入烧瓶,抽真空并通入氩气,循环多次,形成除水除氧的惰性气体氛围;将烧瓶加热到220℃,在搅拌过程中,通过针筒向第二前体溶液的液面下注射10ml实施例5中制备的A5溶液,将反应温度逐渐升高到240℃时,注入5ml浓度为0.2M的硬 脂酸锌的ODE/油酸溶液,再向液面下注入6ml A5溶液,之后通过自动注射泵再注入10ml 0.1M硫化锌前体,注入速度为2ml/小时,反应24h,得到纳米晶体分散液。
实施例8
一种核为磷化铟、壳为硫化锌的核壳结构的纳米晶体(简称InP/ZnS)的制备方法,包括如下步骤:在三颈圆底烧瓶中,加入8ml溶剂ODE和77mg棕榈油酸,再将36.8mg醋酸锌和58.2mg醋酸铟加入烧瓶,在氩气保护下逐渐加热升温到210℃,保持30min后,在搅拌过程中,通过自动注射泵分6次向第二前体溶液的液面下注入6ml由实施例1制备的A1溶液,每次注入不超过2ml,注入速度为2ml/小时;之后通过自动注射泵再注入4ml 0.1M硫化锌前体,注入速度为2ml/小时,并进一步反应12h,得到纳米晶体。
实施例9
一种核为磷化铟、壳为硫化锌的核壳结构的纳米晶体的制备方法,包括如下步骤:在三颈圆底烧瓶中,加入4ml溶剂ODE和2.93mg油酸,再将36.8mg醋酸锌和29.4mg醋酸铟加入烧瓶,在氩气保护下逐渐加热升温到210℃,通过自动注射泵向第二前体溶液的液面下注入1ml PH3/ODE溶液,注入速度为2ml/小时;之后通过机械泵再注入4ml 0.1M硫化锌前体,注入速度为2ml/小时,并进一步反应16h,得到纳米晶体。
实施例10
一种核为磷化铟、壳为硫化锌的核壳结构的纳米晶体的制备方法,包括如下步骤:向三颈圆底烧瓶中加入1mM醋酸铟、1mM十四酸和10ml ODE,加热至120℃,真空泵抽真空,再通入氩气,循环多次,保持1h,得到浓度为0.1M的铟前体;向新的三颈圆底烧瓶中加入5mM醋酸锌、5mM油酸和10ml ODE,加热至120℃,真空泵抽真空,再通入氩气,循环多次,保持1h,得到浓度为0.5M的锌前体;在新的三颈圆底烧瓶中,加入1ml铟前体、1ml锌前体、0.5ml油胺和3ml ODE,加热至120℃,真空泵抽真空,再通入氩气,循环多次,反应20min,再升温至250℃,搅拌中迅速向液面下注入0.2ml实施例1制备的A1溶液,搅拌10min,再升温至300℃,滴加1ml十二烷基硫醇,保温30min,降至室温,得到纳米晶体分散液。将分散液离心并用有机溶剂洗涤,最后将纳米晶体再分散在有机溶剂中。
实施例11
一种核为磷化铟、壳为硫化锌的核壳结构的纳米晶体的制备方法,与实施例10的制备步骤相同,所不同的在于:在注入0.2ml实施例1制备的A1溶液后,立即迅速加入1ml十二烷基硫醇,再升温至300℃,保温30min,降至室温。
实施例12
一种核为磷化铟、壳为硫化锌的核壳结构的纳米晶体的制备方法,与实施例10的制备步骤相同,所不同的在于:向液面下注入的是0.2ml实施例3制备的A3溶液。
实施例13
一种核为磷化铟、壳为硫化锌的核壳结构的纳米晶体的制备方法,与实施例10不同的是:在新的三颈圆底烧瓶中,加入1ml铟前体、1ml锌前体、0.5ml油胺和3ml ODE,加热至120℃,真空泵抽真空,再通入氩气,循环多次,反应20min,再升温至240℃,搅拌中迅速向液面下注入0.2ml A3溶液,搅拌10min,滴加1ml十二烷基硫醇,升温至260℃,滴加0.5ml锌前体,保温10min,滴加0.5ml十二烷基硫醇,保温10min,再升温至280℃, 滴加0.5ml锌前体,保温10min,再升温至300℃,保温30min,降至室温,得到纳米晶体分散液。将分散液加入有机溶剂离心并用有机溶剂洗涤,最后将纳米晶体再分散在有机溶剂中。
实施例14
一种核为磷化铟、壳为硫化锌的核壳结构的纳米晶体的制备方法,包括如下步骤:在50ml三颈瓶中加入30mg醋酸铟、20mg醋酸锌、120mg油酸以及8mlODE,抽真空并加热到110℃‐130℃1h。向三颈瓶中通入氩气。在230℃,向液面下先注入0.2ml A3溶液,再注入0.2ml三丁基磷。将温度保持在230℃10min,然后降至200℃。向三颈瓶中再注入1.5mlA1溶液,注入速度2ml/h。加热到230℃,再每隔30min加入8ml硫化锌前体溶液,共加入3次,之后将前体溶液在190℃保持12h。将反应液离心并用丙酮洗涤纯化两次,最后将纳米晶体再分散在有机溶剂中。
实施例15
一种硫化铜铟(CuInS2)纳米颗粒的制备方法,包括如下步骤:在50ml三颈瓶中加入29mg醋酸铟、19mg碘化亚铜、340mg十八胺以及8mlODE,抽真空并加热到110℃1h。向三颈瓶中通入氩气。在110℃,向液面下先注入0.3ml A5溶液,将反应容器置入暗处,加热温度到180℃,再每隔20min加入1ml A5溶液,共三次,将反应液保持在180℃4h,得到硫化铜铟纳米颗粒的分散液。将分散液离心并用有机溶剂洗涤,将沉淀再分散在有机溶剂中。
测试结果:
图2为实施例7合成的Mn2+掺杂的核壳结构ZnS纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在330nm处)光谱图。由图可以看出,实施例7的纳米晶体的发射峰在580nm处,半峰宽约为30nm。本实施例制备的纳米晶体的量子产率达32%,且没有出现红移。以上说明通过本发明的制备方法制备的ZnS‐Mn2+纳米晶体颗粒体积分布比较均匀。
图3为实施例8合成的核为磷化铟、壳为硫化锌的核壳结构纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在450nm处)光谱图。由图可以看出,实施例7的纳米晶体的发射峰在615nm处,半峰宽约为60nm。本实施例制备的纳米晶体的量子产率达33%。以上说明通过本发明的制备方法制备的InP/ZnS纳米晶体颗粒体积分布比较均匀。
图4为实施例9合成的纳米晶体的紫外‐可见吸收(ABS)和光致发光(PL,激发在450nm处)光谱图。实施3合成的纳米晶体是发绿光。由图可以看出,实施例9的纳米晶体的发射峰在523nm处,半峰宽约为50nm。本实施例制备的纳米晶体的量子产率达10%。
由实施例8和9表明,通过对气态的第一前体的加入量的控制,可以调控第一前体与第二前体的配比,可以制备不同发射峰的纳米晶体。通过本发明的方法,可以制备发射峰在480nm和750nm之间的核为磷化铟、壳为硫化锌的核壳结构纳米晶体。
实施例11与实施例10相比,由于磷化铟的生长时间较短,因而磷化铟的生长尺寸较小,所制得的纳米晶体发射波长较短。如图5所示,实施例10制备的磷化铟纳米晶体发射峰波长550nm,半峰宽约为60nm。如图6所示,实施例11制备的磷化铟纳米晶体发射峰波长500nm,半峰宽约为50nm。实施例12相比于实施例10‐11,使用了磷化氢的油胺溶液。由于油胺本身对纳米晶体的生成反应有促进作用,因而可以在较低240℃的温度下发生纳米晶 体的生成反应。如图7所示,实施例12制备的磷化铟纳米晶体发射峰波长550nm,半峰宽约为60nm。由实施例13制备的纳米晶体,壳层的硫化锌更加细致,缺陷较少。如图8所示,实施例10制备的磷化铟纳米晶体发射峰波长540nm,半峰宽约为60nm。
实施例14得到的InP/ZnS纳米晶体,发射峰570nm,发光量子产率达53%,半峰宽约为59nm。
图9为实施例15合成的硫化铜铟纳米晶体的紫外‐可见吸收(ABS)。由图可知,实施例15合成的硫化铜铟纳米晶体的吸收峰在700nm左右。
综上,通过上述实施例的数据表明,通过本发明制备方法,可以控制气体前体的加入量以及加入速度,从而更好的调控纳米晶体的生长,制备出发射波长可控的纳米晶体。此外,本发明制备的纳米晶体的体积分布较为均匀,半峰宽较窄,不会发生或者较少发生红移现象。
尽管发明人已经对本发明的技术方案做了较详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例作出修改和/或变通或者采用等同的替代方案是显然的,都不能脱离本发明精神的实质,本发明中出现的术语用于对本发明技术方案的阐述和理解,并不能构成对本发明的限制。

Claims (22)

  1. 一种纳米晶体制备方法,其特征在于,包括以下步骤:
    将常温和常压下为气态的第一前体溶解在第一选定溶剂中,形成第一前体溶液;
    将第二前体溶解在第二选定溶剂中,形成第二前体溶液,所述第二前体为第I族、第II族、第III族或者第IV族金属元素的前体;
    在惰性气体氛围中,将所述第一前体溶液加入到装有所述第二前体溶液的反应容器中,所述第一前体与所述第二前体发生化学反应,生成纳米晶体。
  2. 根据权利要求1所述的制备方法,其特征在于:所述第一前体溶解在所述第一选定溶剂中是物理变化。
  3. 根据权利要求1所述的制备方法,其特征在于:将所述第一前体溶液以预定速度注入到所述第二前体溶液的液面以下。
  4. 根据权利要求1所述的制备方法,其特征在于:将所述第一前体溶解在所述第一选定溶剂时,将所述第一选定溶剂的温度设定为所述第一选定溶剂的熔点附近0‐5℃范围内。
  5. 根据权利要求1所述的制备方法,其特征在于:所述第一选定溶剂的熔点低于25℃,沸点高于150℃。
  6. 根据权利要求1所述的制备方法,其特征在于:所述第二前体溶液中还包括表面活性剂,所述表面活性剂包括如下物质中的至少一种:三烷基膦、三烷基氧化膦、烷基胺、烯胺、烷基硫醇、芳基硫醇、烷基芳基硫醇、脂肪酸。
  7. 根据权利要求6所述的制备方法,其特征在于:所述烷基胺为单取代烷基胺、双取代烷基胺、三取代烷基胺中的至少一种,所述脂肪酸为十四酸、油酸、硬脂酸中至少一种。
  8. 根据权利要求1所述的制备方法,其特征在于:所述第一前体溶液加入到所述第二前体溶液时,所述第二前体溶液的温度范围为50‐300℃,所述第一前体溶液加入到所述第二前体溶液后,所述第一前体溶液和所述第二前体溶液的混合液的温度范围为150‐350℃,保持时间范围为1分钟‐1周。
  9. 根据权利要求1所述的制备方法,其特征在于:所述第一前体包括如下物质中的至少一种:硫化氢、硒化氢、碲化氢、氨气、磷化氢、砷化氢、锑化氢。
  10. 根据权利要求1所述的制备方法,其特征在于:所述第二前体包括如下物质中的至少一种:烷基金属、金属氧化物、金属卤化物、金属羧酸盐、金属膦酸盐、金属次膦酸盐、金属磷酸盐、金属磺酸盐、金属硼酸盐。
  11. 根据权利要求1所述的制备方法,其特征在于:所述第一选定溶剂和第二选定溶剂分别包括如下物质中的至少一种:长链烷烃、长链烯烃、长链醇、长链胺、长链酯、长链脂肪酸、长链硫醇、三烷基膦、三烷基膦氧化物、水、水溶液。
  12. 根据权利要求11所述的制备方法,其特征在于:所述长链烷烃包括如下物质中的至少一种:1‐十八烷、1‐十七烷、1‐十六烷、1‐十二烷、1‐十四烷、1‐十三烷、1‐姥鲛烷、1‐植烷、1‐十五烷、石蜡、1‐二十烷、1‐二十八烷、1‐二十四烷;
    所述长链烯烃包括如下物质中的至少一种:1‐十八碳烯、1‐十二碳烯、1‐十六碳烯、1‐十四碳烯、1‐十七碳烯、1‐十九碳烯、1‐二十碳烯、1‐十三碳烯、1‐十五碳烯;
    所述长链烷基胺包括如下物质中的至少一种:十六烷基胺、十八烷基胺、十四烷基胺、癸烷基胺、十二烷基胺、十一烷基胺、十三烷基胺、1,12‐二氨基十二烷、1,18‐二氨基十八烷、1,16‐二氨基十六烷、1,14‐二氨基十四烷胺、油胺;
    所述长链烷醇包括如下物质中的至少一种:1‐十八烷醇、1‐十六烷醇、1‐二十烷醇、1‐十二烷醇、1‐十三烷醇、1‐十四烷醇、1‐二十二烷醇、1‐十五烷醇、1‐十七烷醇、1‐十九烷醇、1‐二十烷醇;
    所述长链烷基酯包括如下物质中的至少一种:硬脂基酯、乙酸十二烷基酯、乙酸十六烷基酯、乙酸二十烷基酯、十五烷基酯、十七烷基酯;
    所述长链烷基脂肪酸包括如下物质中的至少一种:癸酸、十一烷酸、十二烷酸、十三烷酸、十四烷酸、十五烷酸、十六烷酸、十七烷酸、硬脂酸、二十烷酸;
    所述长链烷基硫醇包括如下物质中的至少一种:1‐十一烷硫醇、1‐十二烷硫醇、1‐十四烷硫醇、1‐十五烷硫醇、1‐十六烷硫醇、1‐十八烷硫醇。
  13. 根据权利要求1所述的制备方法,其特征在于:所述制备方法中还包括溶解有第三前体的第三前体溶液,在所述第一前体溶液加入到所述第二前体溶液之前或者之后,将所述第三前体溶液加入到所述反应容器中。
  14. 根据权利要求13所述的制备方法,其特征在于:所述第三前体与所述第二前体或者所述第一前体能发生化学反应生成纳米晶体。
  15. 根据权利要求13所述的制备方法,其特征在于:所述第三前体在一定温度下自身发生化学反应生成纳米晶体。
  16. 根据权利要求13所述的制备方法,其特征在于:所述制备方法还包括溶解有第四前体的第四前体溶液,在所述第三前体溶液加入到所述反应容器之后,将所述第四前体溶液加入到所述反应容器中。
  17. 根据权利要求13所述的制备方法,其特征在于:所述第一前体为磷化氢,所述第二前体为铟前体或者铟前体与锌前体的混合物,所述第三前体为硫前体或者硫化锌前体。
  18. 一种纳米晶体,由权利要求1‐17中的任一制备方法制得。
  19. 根据权利要求18所述的纳米晶体,其特征在于:所述纳米晶体包括如下物质中的至少一种:II族‐VIA族化合物、IV族‐VIA族化合物、III族‐VA族化合物、I族‐VIA族化合物、硫化铜铟、硒化铜铟;所述II族‐VIA族化合物包括:硒化锌、碲化锌、硫化锌、硒化镉、硫化镉、碲化镉、氧化锌、硫化汞、碲化汞、氧化镁、硫化镁、碲化镁、硫硒化镉、硫碲化镉、硫硒化锌、硫碲化锌、硒碲化锌、硫硒化汞、硫碲化汞、硒碲化汞、硒化锌镉、硫化锌镉、碲化锌镉、汞硫化镉、硒碲化锌镉、硫碲化锌镉、硫硒化锌镉、硫碲化汞镉、硫硒化汞镉、硒碲化汞镉、硫碲化汞锌、硫硒化汞锌、硒碲化汞锌、硫化镁锌、碲化镁锌、硒化镁锌、氧化镁锌、氧硫化镁锌、硫硒化镁锌、碲硒化镁锌、硫碲化镁锌;所述IV族‐VIA族化合物包括:硫化铅、硒化铅、碲化铅、硫化锡、硒化锡、碲化锡、硫碲化锡、硫硒化锡、硒碲化锡、硫碲化铅、硫硒化铅、硒碲化铅、硫化锡铅、碲化锡铅、硒化锡铅、硫硒化锡铅、硫碲化锡铅;所述III族‐VA族化合物包括:磷化铟、砷化铟、氮化镓、磷化镓、砷化镓、锑化镓、氮化铝、磷化铝、砷化铝、锑化铝、氮化铟、锑化铟、氮磷化镓、氮砷化镓、氮锑化镓、磷锑化镓、磷砷化镓、氮磷化铝、氮砷化铝、氮磷化 铝镓、氮锑化铝镓、磷锑化铝镓、磷砷化铝镓、氮磷化铟镓、氮砷化铟镓、氮锑化铟镓、磷锑化铟镓、磷砷化铟镓、氮化铟铝、磷化铟铝、砷化铟铝、锑化铟铝;所述I族‐VI族化合物包括:硫化铜、碲化铜、硒化铜、硫化银、硒化银、碲化银。
  20. 根据权利要求18所述的纳米晶体,其特征在于:所述纳米晶体为化学掺杂一种或多种过渡金属阳离子的半导体纳米晶体,所述纳米晶体包括如下物质中的至少一种:Mn2+掺杂硒化锌、Mn2+掺杂硫化锌、Mn2+掺杂碲化锌、Mn2+掺杂硒化镉、Mn2+掺杂硫化镉、Mn2+掺杂碲化镉、Mn2+掺杂硒化锌、Mn2+掺杂硫化锌、Mn2+掺杂碲化锌、Mn2+掺杂硒化镉、Mn2+掺杂硫化镉、Mn2+掺杂碲化镉、Co2+掺杂硒化锌、Co2+掺杂硫化锌、Co2+掺杂碲化锌、Co2+掺杂硒化镉、Co2+掺杂硫化镉、Co2+掺杂碲化镉、Ni2+掺杂硒化锌、Ni2+掺杂硫化锌、Ni2+掺杂碲化锌、Ni2+掺杂硒化镉、Ni2+掺杂硫化镉、Ni2+掺杂碲化镉、Ag+掺杂硒化锌、Ag+掺杂硫化锌、Ag+掺杂碲化锌、Ag+掺杂硒化镉、Ag+掺杂硫化镉、Ag+掺杂碲化镉、Cu+掺杂磷化铟、Cu+掺杂砷化铟、Ag+掺杂磷化铟、Ag+掺杂砷化铟、Mn2+掺杂磷化铟、Mn2+掺杂砷化铟。
  21. 一种气体溶液的制备和保存装置,包括储存装置和与所述储存装置相连接的尾气吸收装置,所述制备和保存装置将气体溶解在溶剂中并实现保存,其特征在于,所述储存装置包括提供低温的低温循环泵、搅拌器、制冷剂以及装有溶解气体的溶剂的保存瓶。
  22. 根据权利要求21所述的装置,其特征在于:所述装置还包括与所述储存装置相连接的气体处理装置,所述气体处理装置包括内装干燥剂的干燥管。
PCT/CN2015/095369 2015-09-22 2015-11-24 一种纳米晶体制备方法、纳米晶体及气体溶液的制备和保存装置 WO2017049754A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/761,524 US10519038B2 (en) 2015-09-22 2015-11-24 Nanocrystal preparation method, nanocrystals, and apparatus for preparing and storing dissolved gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510607472.8A CN105460903B (zh) 2015-09-22 2015-09-22 一种纳米晶体制备方法、纳米晶体及气体溶液的制备和保存装置
CN201510607472.8 2015-09-22

Publications (1)

Publication Number Publication Date
WO2017049754A1 true WO2017049754A1 (zh) 2017-03-30

Family

ID=55599133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095369 WO2017049754A1 (zh) 2015-09-22 2015-11-24 一种纳米晶体制备方法、纳米晶体及气体溶液的制备和保存装置

Country Status (3)

Country Link
US (1) US10519038B2 (zh)
CN (2) CN105460903B (zh)
WO (1) WO2017049754A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113018A1 (en) * 2018-11-27 2020-06-04 President And Fellows Of Harvard College Photon upconversion nanocapsules for 3d printing and other applications

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435739B (zh) * 2016-02-03 2019-06-28 苏州星烁纳米科技有限公司 一种纳米晶体的制备方法
CN106010499B (zh) * 2016-05-18 2020-06-12 浙江大学 核壳量子点的表面优化方法
CN108690600B (zh) * 2016-08-17 2021-03-02 苏州星烁纳米科技有限公司 高压制备量子点的方法以及量子点
CN109111921A (zh) * 2016-09-07 2019-01-01 苏州星烁纳米科技有限公司 InP量子点及其制备方法
CN106356518B (zh) * 2016-11-08 2019-01-18 上海纳米技术及应用国家工程研究中心有限公司 一种利用可控软模板溶剂热制备超薄MgS@C纳米片的方法
CN106701076B (zh) * 2016-11-23 2019-10-29 苏州星烁纳米科技有限公司 一种InP量子点的制备方法及InP量子点
CN107098324A (zh) * 2017-05-08 2017-08-29 苏州星烁纳米科技有限公司 一种磷化铟量子点的制备方法
US11499096B2 (en) * 2017-12-28 2022-11-15 Shoei Chemical Inc. Semiconductor nanoparticles and core/shell semiconductor nanoparticles
CN110240125B (zh) * 2018-03-08 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 一种空心硒化锌纳米晶、其制备方法与应用
CN108893119B (zh) * 2018-07-18 2021-06-25 纳晶科技股份有限公司 InP基合金量子点的制备方法及量子点、器件及组合物
CN109081317B (zh) * 2018-09-15 2020-12-04 滨州富创科技服务有限公司 一种碲化锌的制备方法
CN111348627A (zh) * 2018-12-24 2020-06-30 上海萃励电子科技有限公司 一种ZnTe纳米颗粒的超临界CO2合成方法
FR3091274B1 (fr) * 2018-12-26 2023-04-28 Commisssariat A Lenergie Atomique Et Aux Energies Alternatives Nanocristaux de semi-conducteurs dopés, leur procédé de préparation et leurs utilisations
CN111378449B (zh) * 2018-12-27 2021-07-27 Tcl科技集团股份有限公司 量子点的后处理方法
CN110759374A (zh) * 2019-12-06 2020-02-07 浙江工业大学 一种Cu2-xS纳米晶的形貌调控方法
CN111044493B (zh) * 2019-12-31 2023-04-21 哈尔滨工业大学 一种基于近红外激发和发射的血清标记物发光检测的侧流试纸条及其制备和使用方法
CN111364095B (zh) * 2020-03-18 2021-04-30 青岛大学 一种合成小尺寸金属纳米晶的方法
CN111960390A (zh) * 2020-08-06 2020-11-20 西安近代化学研究所 一种单分散γ-硒化铟纳米粒子的制备方法
CN112837997B (zh) * 2021-01-06 2022-12-13 河南大学 一种ZnCdS薄膜的制备方法及铜锌锡硫硒太阳电池的制备方法
TWI813976B (zh) * 2021-04-15 2023-09-01 行政院原子能委員會核能研究所 羧酸鹽、其作為製備具奈米結構金屬硫化物之用途、具奈米結構金屬硫化物之製備方法、液態媒介之用途、以及氣態硫源之用途
CN114505046A (zh) * 2022-02-28 2022-05-17 武汉工程大学 一种二氧化铈纳米晶复合材料及其制备方法与应用
CN115924958A (zh) * 2022-11-15 2023-04-07 华北水利水电大学 一种润滑油脂用可分散氧化锌或硫化锌纳米微粒及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1672782A (zh) * 2005-01-04 2005-09-28 太原理工大学 一种高效制备气体水合物的方法及装置
US20080220593A1 (en) * 2005-08-12 2008-09-11 Nanoco Technologies Limited Nanoparticles
CN101332979A (zh) * 2008-08-01 2008-12-31 湖南大学 CdSe及ZnSe量子点纳米颗粒的制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510678A (ja) * 2000-10-04 2004-04-08 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ アーカンソー コロイドナノ結晶の合成
US7582274B2 (en) * 2004-05-21 2009-09-01 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Carbon nanostructure catalyst support
US7405001B2 (en) * 2005-03-24 2008-07-29 3M Innovative Properties Company Surface modified nanoparticle and method of preparing same
DE102006055218A1 (de) * 2006-11-21 2008-05-29 Bayer Technology Services Gmbh Kontinuierliches Verfahren zur Synthese von nanoskaligen metallhaltigen Nanopartikel und Nanopartikeldispersion
CN101294073A (zh) * 2008-06-12 2008-10-29 上海交通大学 磷化铟荧光量子点的合成方法
JP5698679B2 (ja) * 2009-01-16 2015-04-08 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデイション コロイドナノ結晶の低温合成
CN102268253B (zh) * 2011-06-10 2013-11-06 合肥工业大学 一种低成本磷化镉量子点材料的制备方法
EP2599898A1 (en) * 2011-12-01 2013-06-05 Bayer Intellectual Property GmbH Continuous synthesis of high quantum yield InP/ZnS nanocrystals
CN102703082B (zh) * 2012-05-09 2014-01-01 北京化工大学 一种水溶性高荧光性能的CdTe纳米颗粒的制备方法
CN102718248B (zh) * 2012-06-13 2014-03-26 吉林大学 一步水相法制备近红外荧光性质的硫化银纳米晶的方法
KR20140027627A (ko) * 2012-08-23 2014-03-07 삼성정밀화학 주식회사 금속 나노입자의 제조방법 및 이를 이용한 금속 나노입자 잉크의 제조방법
CN102874767B (zh) * 2012-10-15 2014-05-07 吉林大学 油相“一锅法”可控制备小尺寸过渡金属硫化物纳米粒子的方法
CN102925141A (zh) * 2012-10-25 2013-02-13 吉林化工学院 微波法制备水溶性CdS:Ag掺杂纳米晶体
US9517945B2 (en) * 2012-11-28 2016-12-13 University Of Oregon Low-temperature route for precision synthesis of metal oxide nanoparticles
EP2994422B1 (en) * 2013-03-15 2019-04-24 Nanoco Technologies Ltd Proceing cu2xsnq4 nanoparticles
US9343202B2 (en) * 2013-08-07 2016-05-17 The Regents Of The University Of California Transparent metal oxide nanoparticle compositions, methods of manufacture thereof and articles comprising the same
CN103936056B (zh) * 2014-05-07 2016-06-15 吉林大学 一种磷化镉量子点的制备方法
CN103937495A (zh) * 2014-05-07 2014-07-23 吉林大学 一种磷化镉半导体纳米簇的制备方法
CN204416080U (zh) * 2014-12-16 2015-06-24 修建东 一种浸渗剂低温储料装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1672782A (zh) * 2005-01-04 2005-09-28 太原理工大学 一种高效制备气体水合物的方法及装置
US20080220593A1 (en) * 2005-08-12 2008-09-11 Nanoco Technologies Limited Nanoparticles
CN101332979A (zh) * 2008-08-01 2008-12-31 湖南大学 CdSe及ZnSe量子点纳米颗粒的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113018A1 (en) * 2018-11-27 2020-06-04 President And Fellows Of Harvard College Photon upconversion nanocapsules for 3d printing and other applications

Also Published As

Publication number Publication date
US20190055126A1 (en) 2019-02-21
CN105460903B (zh) 2016-11-23
US10519038B2 (en) 2019-12-31
CN105460903A (zh) 2016-04-06
CN106564931A (zh) 2017-04-19
CN106564931B (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2017049754A1 (zh) 一种纳米晶体制备方法、纳米晶体及气体溶液的制备和保存装置
CA2693281C (en) Nanoparticles
Pu et al. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS)
Singh et al. Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential
TWI547540B (zh) 第iii-v族/硫屬化鋅合金化之半導體量子點
TWI619856B (zh) 高量子產率之InP/ZnS奈米結晶的連續合成
CN110506096B (zh) Iii-v族量子点及其制备方法
US20120205598A1 (en) "Green" synthesis of colloidal nanocrystals and their water-soluble preparation
US9790425B2 (en) Synthesis of quantum dots
Brichkin Synthesis and properties of colloidal indium phosphide quantum dots
TW201313877A (zh) 以週期分類第ib、iib、iiia、via族元素為基礎之強螢光半導體核-殼奈米粒子的合成
CN113039257B (zh) 量子点及其制造方法
US20220127155A1 (en) Colloidal ternary group iii-v nanocrystals synthesized in molten salts
KR20170089127A (ko) 양자점 합성 장치 및 양자점 합성 방법
Liu et al. A general and rapid room-temperature synthesis approach for metal sulphide nanocrystals with tunable properties
CN111909682A (zh) 核壳结构量子点的制备方法及由其制备的产品
CN106564928A (zh) 一种Mg掺杂ZnO纳米棒的CBD制备法
WO2018139446A1 (ja) 半導体ナノ粒子製造装置及び半導体ナノ粒子の製造方法
CN108892112A (zh) 金属硒化物纳米晶的制备方法
JPWO2018092639A1 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
JP6651024B2 (ja) 半導体量子ドットの製造方法
JPWO2017169932A1 (ja) 半導体量子ドットの製造方法及び半導体量子ドット
CN114958377B (zh) 合金纳米晶群、核壳纳米晶群及其应用、合成方法
Liu et al. Growth mechanism of hydrophilic CdTe nanocrystals with green to dark red emission
CN108929690B (zh) 一种合金纳米晶的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904629

Country of ref document: EP

Kind code of ref document: A1