WO2017047565A1 - ウレタン変性(メタ)アクリルアミド化合物及びそれを含有する活性エネルギー線硬化性樹脂組成物 - Google Patents

ウレタン変性(メタ)アクリルアミド化合物及びそれを含有する活性エネルギー線硬化性樹脂組成物 Download PDF

Info

Publication number
WO2017047565A1
WO2017047565A1 PCT/JP2016/076913 JP2016076913W WO2017047565A1 WO 2017047565 A1 WO2017047565 A1 WO 2017047565A1 JP 2016076913 W JP2016076913 W JP 2016076913W WO 2017047565 A1 WO2017047565 A1 WO 2017047565A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
urethane
acrylamide
modified
active energy
Prior art date
Application number
PCT/JP2016/076913
Other languages
English (en)
French (fr)
Inventor
美希 竹之内
広司 寺本
祐輔 足立
Original Assignee
Kjケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kjケミカルズ株式会社 filed Critical Kjケミカルズ株式会社
Priority to US15/754,160 priority Critical patent/US10759897B2/en
Priority to KR1020187009431A priority patent/KR101924553B1/ko
Priority to CN201680051078.3A priority patent/CN108291001B/zh
Priority to JP2017518367A priority patent/JP6232599B2/ja
Priority to EP16846436.0A priority patent/EP3333208A4/en
Publication of WO2017047565A1 publication Critical patent/WO2017047565A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/675Low-molecular-weight compounds
    • C08G18/677Low-molecular-weight compounds containing heteroatoms other than oxygen and the nitrogen of primary or secondary amino groups
    • C08G18/678Low-molecular-weight compounds containing heteroatoms other than oxygen and the nitrogen of primary or secondary amino groups containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8164Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers, e.g. poly (methyl vinyl ether-co-maleic anhydride)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q3/00Manicure or pedicure preparations
    • A61Q3/02Nail coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3212Polyhydroxy compounds containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7875Nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring
    • C08G18/7893Nitrogen containing heterocyclic rings having at least one nitrogen atom in the ring having three nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08J2475/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0625Polyacrylic esters or derivatives thereof
    • C09K2200/0627Nitrogen-containing polymers, e.g. polyacrylamide

Definitions

  • the present invention is excellent in compatibility with organic solvents, general-purpose acrylic monomers and oligomers, has a number average molecular weight of 250 to less than 4,500 having a high curing rate with respect to active energy rays, and a (meth) acrylic equivalent of 250.
  • Active energy ray curing having a urethane-modified (meth) acrylamide compound in the range of from above to less than 3,000 and a surface-curing property, heat resistance and scratch resistance containing the compound, and low curing shrinkage and high transparency.
  • the present invention relates to a conductive resin composition and a molded product thereof.
  • Urethane resin can be structurally designed from soft to hard by combining raw material polyol and polyisocyanate, and is used in a wide range of industries and fields.
  • the active energy ray-curable resin that is cured by ultraviolet rays (UV) or electron beams (EB) has characteristics such as productivity, energy saving, and low environmental load as compared with thermosetting compositions and solvent-based resin compositions.
  • UV ultraviolet rays
  • EB electron beams
  • applications have expanded.
  • active energy ray-curable urethane acrylates in which unsaturated groups such as acrylates are bonded to the ends of urethane resins, especially applied technologies are being actively conducted.
  • Urethane acrylate is expected to be widely used as an active energy ray-curable resin, such as coating on various substrates, hard coat agents, adhesives, adhesives, sealants, inks, etc.
  • the structural design of the compounds and adjustment of the composition for the expected properties are not sufficiently advanced, which is a big problem. That is, physical properties such as toughness, extensibility, high hardness, and high adhesion of urethane structure, the speed of curing related to active energy ray curing, surface drying property and surface hardness after curing, scratch resistance, curing shrinkage, etc.
  • Patent Document 1 discloses a cured coating that has a tack-free surface and is excellent in hardness, scratch resistance, and chemical resistance by using a photocurable resin composition containing a urethane acrylate having 6 or more functions as an essential component.
  • a membrane is disclosed.
  • Patent Document 2 proposed adduct type urethane acrylamide obtained by reacting hydroxyl-containing acrylamide and polyisocyanate, and oligomer type urethane acrylamide having a polyol skeleton obtained by reacting with polyol.
  • Patent Document 2 by changing the polymerizable group from an acrylate group to an acrylamide group, the curing rate of the adduct type is improved more than twice, and the oligomer type curability and the stickiness of the cured film surface are improved. Improved. Furthermore, Patent Document 3 discloses a molding hard coat film that can be rolled up with less uncured tack and blocking by using an active energy ray-curable resin obtained from a reaction between a hydroxyl group-containing acrylamide and an isocyanate compound.
  • Patent Document 4 discloses an in-mold molded film having excellent surface hardness and flexibility by using a curable resin composition comprising a hydroxyl group-containing acrylamide, trimethylolpropane, a polyvalent isocyanate compound and a reaction catalyst.
  • a hard coat layer is disclosed.
  • Patent Documents 5 and 6 use urethane acrylamide oligomers and polymers obtained by reacting hydroxyl group-containing acrylamide, polyol, and isocyanate, the former is an optical film with excellent heat stability, and the latter is crack prevention by improving strength.
  • Possible electrophotographic equipment materials are disclosed.
  • Patent Document 5 describes that since it is a urethane acrylamide polymer obtained by using a specific polyol and a specific isocyanate, an optical film having a specific structural unit and its heat resistance characteristics can be realized.
  • Patent Document 6 the breaking strength is improved by the inclusion of the acrylamide group, the curability is improved, and the results can provide crack prevention.
  • the first problem is to provide a urethane-modified (meth) acrylamide compound that has excellent compatibility with organic solvents, general-purpose acrylic monomers and oligomers, and has high curability and low cure shrinkage with respect to active energy rays.
  • it contains the urethane-modified (meth) acrylamide compound and has excellent surface dryness (tack resistance), scratch resistance, bending resistance, and curing shrinkage resistance (curl resistance), but also high transparency and high adhesion.
  • It is a second problem to provide an active energy ray-curable resin having a property.
  • the present inventors have a number average molecular weight of 250-4, having one or more urethane bonds and one or more (meth) acrylamide groups in the molecule.
  • the present inventors have found that the above-mentioned goal can be achieved by using a urethane-modified (meth) acrylamide compound having a 500 and a (meth) acrylic equivalent in the range of 250 to 3,000.
  • the present invention relates to (1) an alcohol compound having one or more hydroxyl groups per molecule, an isocyanate compound having two or more isocyanate groups per molecule, and a general formula [1] (wherein R 1 is a hydrogen atom or a methyl group) R 2 and R 3 are the same or different and are a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted with a hydroxyl group, or an aliphatic group having 3 to 6 carbon atoms A ring or an aromatic ring, and R 2 and R 3 together with a nitrogen atom carrying them, a saturated or unsaturated 5- to 7-membered ring which may further contain an oxygen atom or a nitrogen atom.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 and R 3 are the same or different and are a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted with a hydroxyl
  • R 2 and R 3 are simultaneously a hydrogen atom, and R 2 and R 3 are simultaneously an alkyl group, and the total number of hydroxyl groups in R 2 and R 3 is 1 or more.
  • the urethane-modified (meta-methacrylate) according to (1) above, wherein the number average molecular weight is 250 or more and less than 4,500, and the (meth) acryl equivalent is in the range of 250 or more and less than 3,000.
  • the alcohol compound is a compound having one or more skeletons selected from an ether skeleton, an ester skeleton, a carbonate skeleton, a silicone skeleton, an olefin skeleton, and an acrylic skeleton.
  • the urethane-modified (meth) acrylamide compound according to any one of (2), (4) The urethane according to any one of (1) to (3) above, which has a number average molecular weight of 250 to 1,500 having an ether skeleton and an acrylic equivalent of 250 to less than 750 Modified (meth) acrylamide compounds, (5) 1 to 100% by weight of the urethane-modified (meth) acrylamide compound (A) according to any one of (1) to (4), 0 to 90% by weight of the polyfunctional (meth) acrylic compound (B) And an active energy ray-curable resin composition containing 0 to 90% by weight of the monofunctional (meth) acrylic compound (C), (6) An active energy ray-curable pressure-sensitive adhesive composition comprising the composition according to (5), (7) An active energy ray-curable adhesive composition comprising the composition according to (5), (8) An active energy ray-curable inkjet ink composition comprising the composition according to (5), (9) An active energy ray-curable coating composition
  • the urethane-modified (meth) acrylamide compound having one or more urethane bonds and one or more (meth) acrylamide groups in the molecule is excellent in compatibility with organic solvents, general-purpose acrylic monomers and oligomers, It has high curability and low cure shrinkage with respect to active energy rays.
  • the urethane-modified (meth) acrylamide compound By containing the urethane-modified (meth) acrylamide compound, it has excellent surface curability, bending resistance, scratch resistance, and cure shrinkage resistance.
  • the urethane-modified (meth) acrylamide compound of the present invention has one or more urethane bonds and one or more (meth) acrylamide groups in the molecule, and an alcohol compound having one or more hydroxyl groups per molecule, per molecule. It is obtained by an addition reaction with an isocyanate compound having two or more isocyanate groups and an N-substituted (meth) acrylamide containing a hydroxyl group.
  • the urethane-modified (meth) acrylamide compound preferably has a number average molecular weight of 250 or more and less than 4,500 and an acrylic equivalent of 250 or more and less than 3,000.
  • the alcohol compound used for the synthesis of the urethane-modified (meth) acrylamide compound of the present invention is an alcohol compound having one or more skeletons selected from an ether skeleton, an ester skeleton, a carbonate skeleton, a silicone skeleton, an olefin skeleton, and an acrylic skeleton. It is.
  • the alcohol compound having an ether skeleton is one having one or more hydroxyl groups at the terminal or side chain containing an ether skeleton in the molecule.
  • Examples of commercially available products include diethylene glycol, dipropylene glycol, dibutylene glycol, and PTMG series, such as , PTMG650 (manufactured by Mitsubishi Chemical Corporation), Sanniks PP, GP, GOP series, for example, Sanniks PP-1000, GP-250, GOP-600 (manufactured by Sanyo Chemical Industries), PEG series, for example, PEG300, UNIOX series, UNIOR D, TG, HS, PB series series, such as UNIOR D-700, TG-1000, HS-1600D, PB-700, UNILOVE DGP series, Polyserine DC, DCB series (NOF Corporation )))
  • the alcohol compound having an ester skeleton has one or more hydroxyl groups at the terminal or side chain containing the ester skeleton in the molecule
  • commercially available products include Kuraray polyols P, F, N, and PMNA series such as Kuraray.
  • Polyol P-1010, N-2010, PMNA-2016 manufactured by Kuraray Co., Ltd.
  • Plaxel series such as Plaxel 205 (manufactured by Daicel Corp.)
  • Preplast series such as Preplast 1900 (Croda Japan Co., Ltd.) And Teslac series, for example, Tesrack 2456 (manufactured by Hitachi Chemical Co., Ltd.) and the like.
  • the alcohol compound having a carbonate skeleton has one or more hydroxyl groups at the terminal or side chain containing the carbonate skeleton in the molecule.
  • Plaxel CD series for example, Plaxel CD210 (manufactured by Daicel Corporation) , ETERNACOLL UH, UHC, UC and UM series, such as ETERNACOLL UH-100, UHC50-100, UC-100, UM-90 (3/1) (manufactured by Ube Industries), Duranol T and G series, such as Duranol T6001 (manufactured by Asahi Kasei Chemicals Corporation), NIPPOLLAN series, for example, NIPPOLLAN981 (manufactured by Tosoh Corporation), Kuraray polyol C series, for example, Kuraray polyol C-590 (manufactured by Kuraray Co., Ltd.), and the like.
  • the alcohol compound having a silicone skeleton contains a siloxane bond in the main chain skeleton in the molecule and has one or more hydroxyl groups at both ends or side chains
  • commercially available products include KF-6000, X-21. -5841 (manufactured by Shin-Etsu Chemical Co., Ltd.), BY 16-201 (manufactured by Dow Corning Toray), XF42-B0970 (manufactured by Momentive Performance Materials), Silaplane series, for example, Silaplane FM -0411 (manufactured by JNC Corporation) and the like.
  • the alcohol compound having an olefin skeleton includes a conjugated or non-conjugated olefin skeleton in the molecule or a hydrogenated skeleton thereof, and has one or more hydroxyl groups at the terminals or side chains.
  • -PB series such as NISSO-PB G-1000, GI-1000 (manufactured by Nippon Soda Co., Ltd.), Poly bd series (made by Idemitsu Kosan Co., Ltd.), Krasol series such as Krasol LBH2000, HLBH-P2000 (Clay Valley) Co., Ltd.), Pre-Pole series (made by Croda Japan Co., Ltd.) and the like.
  • the alcohol compound having an acrylic skeleton is a polymer obtained by polymerizing one or more acrylic monomers, and has one or more hydroxyl groups at the end or side chain of the molecule.
  • the homopolymer using the acrylic monomer which has hydroxyl groups such as hydroxyacryl (meth) acrylate and hydroxyacryl (meth) acrylamide, or the copolymer with the monomer which has another unsaturated group is mentioned.
  • Commercially available products include UMM-1001 and UT-1001 (manufactured by Soken Chemical Co., Ltd.).
  • the alcohol compounds having various skeletons can be used alone. Alternatively, two or more alcohol compounds having the same skeleton or alcohol compounds having different skeletons may be used in combination.
  • the isocyanate compound used for the synthesis of the urethane-modified (meth) acrylamide compound of the present invention has two or more isocyanate groups in one molecule, such as trimethylene diisocyanate, hexamethylene diisocyanate, 1,2-butylene.
  • Aliphatic isocyanates such as diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, aromatic isocyanates such as 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate Cyclohexylene diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 2,5-norbornane diisocyanate, 2,6-norbornane Alicyclic isocyanates such as diisocyanate, allophanate group-containing isocyanates such as “Desmodur XP2565” (manufactured by Sumika Biurethane Co., Ltd.), or multimers such as adduct type, isocyanurate type, burette type, etc.
  • Coronate L, HL, HX manufactured by Nippon Polyurethane Industry Co., Ltd.
  • Duranate 24A-100 manufactured by Asahi Kasei Kogyo Co., Ltd.
  • isocyanate compounds can be used individually by 1 type or in combination of 2 or more types.
  • the N-substituted (meth) acrylamide containing a hydroxyl group used for the synthesis of the urethane-modified (meth) acrylamide compound of the present invention is a compound represented by the general formula [1], wherein R 1 is a hydrogen atom or methyl R 2 and R 3 are the same or different and are a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted with a hydroxyl group, or a fatty acid having 3 to 6 carbon atoms Represents a group ring or an aromatic ring, and R 2 and R 3 are a saturated or unsaturated 5- to 7-membered group which may contain an oxygen atom or a nitrogen atom together with a nitrogen atom supporting them. A ring may be formed. However, when R 2 and R 3 are simultaneously hydrogen atoms, and R 2 and R 3 are simultaneously alkyl groups, the total number of hydroxyl groups in R 2 and R 3 is 1 or more.
  • N-substituted (meth) acrylamide containing a hydroxyl group specifically N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxyisopropyl (meth) Acrylamide, N-methylhydroxymethyl (meth) acrylamide, N-methylhydroxyethyl (meth) acrylamide, N-ethylhydroxymethyl (meth) acrylamide, N-ethylhydroxyethyl (meth) acrylamide, N-ethylhydroxyisopropyl (meth) Acrylamide, N-propylhydroxymethyl (meth) acrylamide, N-propylhydroxyisopropyl (meth) acrylamide, N-isopropylhydroxyethyl (meth) acrylamide, , N-dihydroxymethyl (meth) acrylamide, N, N-dihydroxyethyl (meth) acrylamide, N
  • acrylamide containing a hydroxyl group is particularly preferred because the effect of improving the curability of the resulting urethane-modified acrylamide compound and improving the stickiness of the coating film surface formed therefrom are high.
  • (Meth) acrylamide containing these hydroxyl groups can be used alone or in combination of two or more.
  • the urethane-modified acrylamide compound synthesis method of the present invention is not particularly limited, and can be synthesized by a known urethanization reaction technique.
  • the total number of hydroxyl groups is preferably equal to or more than the total number of isocyanate groups.
  • the hydroxyl group of alcohol compound / isocyanate group / hydroxyl group in (meth) acrylamide 1/1 / 0.5 ⁇ It is particularly preferable to react at a ratio of 1/3 / 2.5. If the blending ratio of isocyanate groups exceeds this range, the urethane-modified acrylamide compound may increase in viscosity and color over time. On the other hand, if the hydroxyl group of the (meth) acrylamide compound exceeds this range, the water resistance and moisture resistance of the resulting urethane-modified acrylamide compound may be reduced.
  • the urethanization reaction of the present invention can be carried out by a known method by mixing raw materials alcohol compound, isocyanate compound and N-substituted (meth) acrylamide containing a hydroxyl group, raising the temperature if desired. This reaction is carried out at a temperature of 10 to 160 ° C., preferably 20 to 140 ° C.
  • the mixing of the raw materials may be performed in a lump or may be performed in several stages.
  • the reaction can be carried out without a solvent, but can be carried out in an organic solvent or a reactive diluent as required.
  • Solvents that can be used include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethyl acetate, butyl acetate, tetrahydrofuran, hexane, cyclohexane, benzene, toluene, xylene, aliphatic hydrocarbons
  • the reaction can be performed in the presence of a solvent (petroleum ether or the like).
  • the reactive diluent that can be used is not particularly limited as long as it does not react with isocyanate and does not react with hydroxyl group, but methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, long chain aliphatic acrylate , Allyl acrylate, cyclohexyl acrylate, 1,6-hexane diacrylate, tetraethylene glycol diacrylate, dipentaerythritol hexaacrylate, trimethylolpropane triacrylate, isobornyl acrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, dimethylacrylamide , Diethylacrylamide, N-acryloylmorpholine and the like.
  • the amount of the organic solvent or reactive diluent used is 0 to 400% by weight, preferably 0 to 200% by weight, based on the iso
  • a catalyst can be added for the purpose of promoting the reaction.
  • the catalyst include metal salts such as sodium, potassium, nickel, cobalt, cadmium, barium, calcium, and zinc of fatty acids having 8 to 20 carbon atoms such as potassium or sodium salt of alkylphosphonic acid, dibutyltin dilaurate, dioctyl Organotin compounds such as tin maleate, dibutyldibutoxytin, bis (2-ethylhexyl) tin oxide, 1,1,3,3-tetrabutyl-1,3-diacetoxydistanoxane and N, N, N ′, N '-Tetramethylguanidine, 1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, 1,8-diazabicyclo [5.4.0] undecene-7, N, N'-dimethyl Piperaz
  • a radical polymerization inhibitor may be used as necessary. it can.
  • radical polymerization inhibitor examples include quinone polymerization inhibitors such as hydroquinone, methoxyhydroquinone, benzoquinone, and p-tert-butylcatechol; 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, Alkylphenol polymerization inhibitors such as 2-tert-butyl 4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol; alkylated diphenylamine; Amine polymerization inhibitors such as N, N'-diphenyl-p-phenylenediamine and phenothiazine; N-oxyls such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl; dimethyldithiocarbamic acid Copper, copper diethyldithiocarbamate, dibu They include Le copper dithiocarbamate copper dithiocarbamate,
  • the addition amount of these polymerization inhibitors may be set as appropriate according to the type and blending amount of the N-substituted (meth) acrylamide containing a hydroxyl group. From the viewpoint of properties, it is usually preferably 0.001 to 5% by weight, more preferably 0.01 to 1% by weight, based on the urethane-modified (meth) acrylamide obtained.
  • the number average molecular weight of the urethane-modified (meth) acrylamide of the present invention is 250 or more and less than 4,500, and more preferably 250 or more and less than 3,000.
  • the number average molecular weight is less than 250, the proportion of monofunctional low-molecular components is high, and the resulting urethane-modified (meth) acrylamide may have reduced curability and solubility in organic solvents and general-purpose acrylic monomers.
  • the number average molecular weight exceeds 4,500, curability and tack resistance cannot be sufficiently satisfied due to a decrease in crosslinking density, which is not preferable.
  • the acrylic equivalent of the urethane-modified (meth) acrylamide of the present invention is 250 or more and less than 3,000, and more preferably 250 to 2,500.
  • the acrylic equivalent is less than 250, the density of the polymerizable group (meth) acrylamide group is high, and troubles such as polymerization in the production process of urethane-modified (meth) acrylamide and subsequent storage are likely to occur.
  • An equivalent weight exceeding 3,000 is not preferable because curability and tack resistance cannot be sufficiently satisfied due to a decrease in the crosslinking density.
  • the acrylic equivalent of the urethane-modified (meth) acrylamide having an ether skeleton of the present invention is preferably in the range of 250 to 750.
  • the acrylic equivalent of the urethane-modified (meth) acrylamide having an ether skeleton is less than 250, it is not preferable as described above.
  • the acrylic equivalent exceeds 750, a hydrogen bond is formed in the molecule or between the molecules of the urethane-modified (meth) acrylamide. It may become difficult to cause a decrease in the curing rate.
  • urethane-modified (meth) acrylamide system of the present invention is used alone, depending on the alcohol-derived skeleton and (meth) acrylamide group type, acrylic equivalent and molecular weight, active energy ray curability, and surface drying of the obtained cured film Properties (tack resistance) and physical properties such as adhesion to various substrates and performance are different, but it is preferably within the following range.
  • the urethane-modified (meth) acrylamide of the present invention can be completely cured by irradiation with active energy rays.
  • the necessary active energy ray irradiation amount (integrated light amount) varies depending on the type of (meth) acrylamide group and the acrylic equivalent, but is preferably 0.1 to 2,000 mJ / cm 2 , and more preferably 1 to 1,000 mJ / cm 2. About cm 2 is particularly preferable. If the integrated light quantity is less than 0.1 mJ / cm 2 , a portion that is insufficiently cured remains, and the overall hardness, water resistance, and durability of the cured product may be reduced. Further, when the integrated light amount exceeded 2,000 mJ / cm 2 , side reactions such as decomposition due to excessive energy occurred, and the cured film tended to be colored easily.
  • the water absorption of the cured film made of the urethane-modified (meth) acrylamide of the present invention is preferably 2% or less, more preferably 1% or less. If the water absorption is greater than 2%, the cured film will absorb water over time when used in a high-humidity environment for a long time, and the shape due to expansion may be distorted, which may reduce adhesion and transparency. is there.
  • the height of the lift is preferably 1 cm or less, Moreover, it is especially preferable that it is 0.5 cm or less.
  • the lift of the cured film is larger than 1 cm, the adhesion to the substrate due to the distortion of the film is reduced, and as a result, a curable resin composition containing urethane-modified (meth) acrylamide and a molded product using the composition
  • the water resistance, durability, bending resistance and the like are likely to be lowered, and the shape may not be stably maintained.
  • the polyfunctional (meth) acrylic compound (B) used in the present invention is polyfunctional (meth) acrylate or polyfunctional (meth) acrylamide.
  • alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol Tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, cyclohexanedimethanol di (Meth) acrylate, acrylate ester (dioxane glycol diacrylate),
  • the monofunctional (meth) acrylic compound (C) used in the present invention is monofunctional (meth) acrylate or monofunctional (meth) acrylamide. Moreover, a polymerizable quaternary salt ionic compound can be contained as needed. Furthermore, monofunctional (meth) acrylic compounds may be used alone or in combination of two or more.
  • Monofunctional (meth) acrylate is, for example, methyl (meth) acrylate alkyl (meth) acrylate, hydroxyethyl acrylate, alkoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, 2- (2-ethoxyethoxy) ethyl acrylate , Phenoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl acrylate, 2-methyl -2-Hydroxyalkyl (meth) acrylates such as adamantyl (meth) acrylate, allyl (meth) acrylate, and hydroxyethyl (meth) acrylate
  • Examples of the monofunctional (meth) acrylamide used in the present invention include N-alkyl (meth) acrylamide, N-alkoxyacrylic (meth) acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N- [3- (dimethylamino). )] Propyl acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-acryloylmorpholine, hydroxyethyl acrylamide and the like hydroxyalkyl (meth) acrylamide.
  • the urethane-modified (meth) acrylamide compound (A) of the present invention preferably contains 1% by weight or more in the active energy ray-curable resin composition. If it is less than 1% by weight, good surface curability, bending resistance, scratch resistance, etc. may not be obtained. Moreover, it is preferable that content of the polyfunctional (meth) acryl compound (B) in curable resin composition is 90 weight% or less. If the content of (B) exceeds 90% by weight, the liquid viscosity of the curable resin composition increases, mixing and coating are difficult, and handling problems occur, which is not preferable. Further, when the monofunctional (meth) acrylic compound (C) is blended in the curable resin composition, it is preferably 90% by weight or less in order to maintain sufficient scratch resistance and curability.
  • a polymerizable quaternary salt ionic compound can be added to the active energy ray-curable resin composition of the present invention.
  • examples thereof include ionic vinyl monomers and / or oligomers and polymers containing them as constituent components.
  • the ionic vinyl monomer is an onium salt that combines a cation and an anion.
  • the cation is a (meth) acrylate or (meth) acrylamide ammonium ion or imidazolium ion
  • the anion is Cl ⁇ , Hal ion such as Br ⁇ and I ⁇ or OH ⁇ , CH 3 COO ⁇ , NO 3 ⁇ , ClO 4 ⁇ , PF 6 ⁇ , BF 4 ⁇ , HSO 4 ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇
  • examples thereof include inorganic acid anions or organic acid anions such as CH 3 C 6 H 6 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ and SCN ⁇ .
  • the ions of the quaternary salt ionic compound easily form hydrogen bonds and ionic bonds with the coating substrate, and can impart conductivity and antistatic properties, thus improving wettability and more uniform.
  • the film can be formed more stably.
  • the polymerizable quaternary salt ionic compound itself is an active energy ray curable compound, it is permanently conductive and antistatic without bleed out by copolymerizing with the active energy ray curable resin composition. This can provide an auxiliary effect of imparting the property and an effect of improving the adhesion. Since the compounding quantity of these ionic compounds can be adjusted with the functional group number and molecular weight of an ion pair, there is no restriction
  • 0 to 50% by weight, particularly 0 to 10% by weight is preferably added to the active energy ray-curable resin composition. If the blending amount of the ionic compound exceeds 50% by weight, the permeability of the cured film may be lowered, depending on the type.
  • the active energy ray of the present invention is defined as an energy ray capable of generating active species by decomposing a compound (photopolymerization initiator) that generates active species.
  • active energy rays include optical energy rays such as visible light, electron rays, ultraviolet rays, infrared rays, X rays, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a photopolymerization initiator is added in advance.
  • the photopolymerization initiator is not particularly required when an electron beam is used as the active energy ray, but is required when ultraviolet rays are used.
  • the photopolymerization initiator may be appropriately selected from ordinary ones such as acetophenone, benzoin, benzophenone, and thioxanthone.
  • photopolymerization initiators include trade names Irgacure ⁇ 1173, Irgacure 184, Irgacure 369, Irgacure 500, Irgacure 651, Irgacure 754, Irgacure 2919, Irgacure 819, Irgacure 2919 TPO, the product name Ubekrill P36 made from UCB, etc. can be used. These photopolymerization initiators can be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator used is not particularly limited, but generally 0 to 10% by weight, particularly 1 to 5% by weight is preferably added to the active energy ray-curable resin composition. If it exceeds 10% by weight, the strength of the cured film may be lowered or yellowed.
  • pigments, dyes, surfactants, antiblocking agents, leveling agents, dispersants, antifoaming agents, and antioxidants pigments, dyes, surfactants, antiblocking agents, leveling agents, dispersants, antifoaming agents, and antioxidants
  • Other optional components such as an agent, an ultraviolet sensitizer and a preservative may be used in combination.
  • the active energy ray-curable resin composition of the present invention is made of paper, cloth, nonwoven fabric, glass, polyethylene terephthalate, diacetate cellulose, triacetate cellulose, acrylic polymer, polyvinyl chloride, cellophane, celluloid, polycarbonate, polyimide, and other metals and metals. It is possible to obtain a high-performance coating layer, ink layer, pressure-sensitive adhesive layer or adhesive layer by applying it on the surface of a substrate such as UV and curing it by irradiation with active energy rays such as ultraviolet rays.
  • the active energy ray-curable resin composition of the present invention has a highly transparent urethane oligomer, it is officially used as an optical resin composition such as an optical pressure-sensitive adhesive, an optical adhesive, and an optical film coating material.
  • an optical resin composition such as an optical pressure-sensitive adhesive, an optical adhesive, and an optical film coating material.
  • a coating formation method can be used.
  • coating between base materials, the laminating method, the roll-to-roll method, etc. are mentioned.
  • Synthesis Example 1 Synthesis of urethane-modified (meth) acrylamide UY-1 44.4 g (0.2 mol) of isophorone diisocyanate (IPDI) was added to a 300 mL four-necked flask equipped with a stirrer, a thermometer, a condenser, and a dry gas introduction tube.
  • IPDI isophorone diisocyanate
  • ETERNACOLL UC-100 polycarbonate polyol, manufactured by Ube Industries, Ltd., quantity average molecular weight: 1,000) 90 g (0.09 mol), Pripol 2033 (dimer diol, manufactured by Croda Japan Co., Ltd., quantity average molecular weight: 540) 5.4 g (0.01 mol), 48.6 g of methyl ethyl ketone (MEK), 0.08 g of dibutylhydroxytoluene (BHT) were added, the temperature was raised to 70 ° C. while passing dry nitrogen, and then 16.2 mg of dibutyltin dilaurate was added dropwise. The reaction was carried out at 70 ° C. for 4 hours.
  • MEK methyl ethyl ketone
  • BHT dibutylhydroxytoluene
  • Synthesis Example 2 Synthesis of Urethane Modified (Meth) acrylamide UY-2 Using the same apparatus as in Synthesis Example 1, Uniluve DGP-700F (polyether polyol, tetrafunctional, manufactured by NOF Corporation, quantity average molecular weight: 700) 17.5 g ( 0.025 mol), ETERNACOLL UH-50 (polycarbonate polyol, Ube Industries, quantity average molecular weight: 500) 50 g (0.1 mol), hexamethylene diisocyanate (HDI) 52.4 g (0.2 mol), MEK 39.4 g Then, 0.07 g of BHT was charged and the temperature was raised to 65 ° C.
  • DGP-700F polyether polyol, tetrafunctional, manufactured by NOF Corporation, quantity average molecular weight: 700 17.5 g ( 0.025 mol)
  • ETERNACOLL UH-50 polycarbonate polyol, Ube Industries, quantity average molecular weight: 500
  • HDI hex
  • Synthesis Example 3 Synthesis of Urethane Modified (Meth) acrylamide UY-3 Using the same apparatus as in Synthesis Example 1, 16.8 g (0.1 mol) of dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), UMMA- 1001 (acryl polyol (methyl acrylate main skeleton, monofunctional, manufactured by Soken Chemicals, quantity average molecular weight: 1,000) 50 g (0.05 mol), UH-100 (polycarbonate polyol, manufactured by Ube Industries, quantity average molecular weight: 1000 50 g (0.05 mol) and 0.06 g of BHT were charged, and the temperature was raised to 65 ° C.
  • dicyclohexylmethane-4,4′-diisocyanate hydrogenated MDI
  • UMMA- 1001 acryl polyol (methyl acrylate main skeleton, monofunctional, manufactured by Soken Chemicals, quantity average molecular weight: 1,000) 50 g (0.05 mol)
  • Synthesis Example 4 Synthesis of Urethane Modified (Meth) acrylamide UY-4 Using the same apparatus as in Synthesis Example 1, 16.7 g (0.025 mol) of IPDI isocyanurate (IPDI nurate), Kuraray polyol P-530 (polyester polyol, Kuraray Co., Ltd., quantity average molecular weight 500) 37.5 g (0.075 mol), MEK 24.2 g, BHT 0.04 g, dibutyltin dilaurate 8.1 mg were charged, and then IPDI 16.7 g ( 0.075 mol) was added dropwise while adjusting the dropping rate so as to maintain the temperature at 65 ° C., and the mixture was reacted at 65 ° C. for 2 hours.
  • IPDI isocyanurate
  • Kuraray polyol P-530 polyyester polyol, Kuraray Co., Ltd., quantity average molecular weight 500
  • Synthesis Example 5 Synthesis of Urethane Modified (Meth) acrylamide UY-5 Using the same apparatus as in Synthesis Example 1, GI-1000 (both terminal hydroxyl butadiene, Nippon Soda Co., Ltd., quantity average molecular weight 1,500) 75 g (0.05 mol) , 34.2 g of MEK, 0.06 g of BHT, and 0.11 g of pentamethyldiethylenetriamine were added, and then the dropping rate was adjusted so as to maintain hydrogenated MDI 26.2 (0.1 mol) at 70 ° C. while passing dry nitrogen. The solution was added dropwise while preparing and reacted at 70 ° C. for 4 hours.
  • GI-1000 both terminal hydroxyl butadiene, Nippon Soda Co., Ltd., quantity average molecular weight 1,500
  • Synthesis Example 6 Synthesis of Urethane Modified (Meth) acrylamide UY-6 Using the same apparatus as in Synthesis Example 1, KF-6000 (both ends carbinol-modified silicone, manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight: 1,000) 50 g (0 .05 mol), 21.0 g (0.1 mol) of trimethylhexamethylene diisocyanate (TMHDI) and 0.04 g of BHT were added, and the temperature was raised to 70 ° C. while passing dry nitrogen, and then 8.3 mg of dibutyltin dilaurate was added dropwise. , And reacted at 70 ° C. for 5 hours.
  • KF-6000 both ends carbinol-modified silicone, manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight: 1,000
  • TMHDI trimethylhexamethylene diisocyanate
  • BHT trimethylhexamethylene diisocyanate
  • Synthesis Example 7 Synthesis of Urethane Modified (Meth) acrylamide UY-7 Using the same apparatus as in Synthesis Example 1, Uniol D-250 (polypropylene glycol, manufactured by NOF Corporation, quantity average molecular weight: 250) 25 g (0.1 mol), BHT 0.04 was charged and the temperature was raised to 75 ° C. while passing dry nitrogen, and then 8.2 mg of dibutyltin dilaurate was added dropwise and reacted at 33.6 g (0.2 mol) of HDI at 75 ° C. for 3 hours. Next, 23.0 g (0.2 mol) of “HEAA” was charged, and stirring was continued for 3 hours while maintaining the system temperature at 75 ° C. under a stream of dry air.
  • Uniol D-250 polypropylene glycol, manufactured by NOF Corporation, quantity average molecular weight: 250
  • BHT 0.04 was charged and the temperature was raised to 75 ° C. while passing dry nitrogen, and then 8.2 mg of dibutyltin
  • UY-7 81.6 g was obtained as a viscous liquid, and the production of the desired urethane-modified (meth) acrylamide UY-7 was confirmed by IR analysis in the same manner as in Synthesis Example 1.
  • the obtained UY-7 had a number average molecular weight of 820, an acrylic equivalent of 400, and a solution viscosity at 25 ° C. of 8 mPa ⁇ s.
  • UA-1 had a number average molecular weight of 7,700, an acrylic equivalent of 2,600, and a solution viscosity at 25 ° C. of 250 mPa ⁇ s.
  • UA-2 As a viscous liquid, 121.0 g of UA-2 was obtained, and in the same manner as in Synthesis Example 1, the formation of urethane acrylic oligomer UA-2 was confirmed by IR analysis.
  • the obtained UA-2 had a number average molecular weight of 1,900, an acrylic equivalent of 950, and a solution viscosity at 25 ° C. of 24 mPa ⁇ s.
  • urethane acrylic oligomer UA-3 As a viscous liquid, 100.6 g was obtained, and in the same manner as in Synthesis Example 1, the formation of urethane acrylic oligomer UA-3 was confirmed by IR analysis.
  • the obtained UA-3 had a number average molecular weight of 1,500, an acrylic equivalent of 850, and a solution viscosity at 25 ° C. of 10 mPa ⁇ s.
  • urethane acrylic oligomer UA-4121.0 g was obtained by IR analysis.
  • the obtained UA-4 had a number average molecular weight of 3,000, an acrylic equivalent of 500, and a solution viscosity at 25 ° C. of 23 mPa ⁇ s.
  • Synthesis Example 8 Synthesis of Reactive Urethane Polymer UP-1 Using the same apparatus as in Synthesis Example 1, 75 g (0.075 mol) of ETERNACOLL UC-100, 51.5 g of MEK, 0.06 g of BHT, and 11.1 mg of dibutyltin dilaurate were charged. Then, the temperature was raised to 65 ° C. while passing dry nitrogen, and then 26.2 g (0.12 mol) of IPDI was added dropwise and reacted at 65 ° C. for 4 hours.
  • Synthesis Example 9 Synthesis of Reactive Urethane Polymer UP-2 Using the same apparatus as in Synthesis Example 1, TDI 8.7 g (0.05 mol), PTMG2000 (polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation, quantity average molecular weight: 2, 000) 90 g (0.045 mol), MEK 50.0 g, and BHT 0.05 g were added, and the temperature was raised to 75 ° C. while passing dry nitrogen, and then 10.0 mg of dibutyltin dilaurate was added dropwise, and the mixture was added dropwise at 75 ° C. for 3 hours. Reacted.
  • UP-2 hydroxyethyl methacrylate
  • Synthesis Example 1 formation of the desired reactive urethane polymer UP-2 was confirmed by IR analysis.
  • the obtained UP-2 had a number average molecular weight of 20,000, an acrylic equivalent of 10,000, and a solution viscosity at 25 ° C. of 180 mPa ⁇ s.
  • Synthesis Example 10 Synthesis of Reactive Urethane Polymer UP-3 Using the same apparatus as in Synthesis Example 1, 11.1 g (0.05 mol) of IPDI, ETERRNACOLL UHC-50-200 (polycarbonate polyol, Ube Industries, Ltd., quantity average molecular weight: 2,000) 80 g (0.04 mol), MEK 46.7 g, and BHT 0.05 g were charged. After passing through dry nitrogen, the temperature was raised to 70 ° C., and then 9.3 mg of dibutyltin dilaurate was added dropwise at 70 ° C. The reaction was performed for 4 hours.
  • Synthesis Example 11 Synthesis of Reactive Urethane Polymer UP-4 Using the same apparatus as in Synthesis Example 1, 1.11 g (2 mmol) of IPDI, 11.1 g (50 mmol) of IPDI, Uniol D-2000 (polypropylene glycol, manufactured by NOF Corporation) , Quantity average molecular weight: 2,000) 91 g (0.045 mol), MEK 51.8 g, BHT 0.05 g were charged, and the temperature was raised to 70 ° C. while passing dry nitrogen, and then 10.4 mg of dibutyltin dilaurate was added dropwise. And reacted at 70 ° C. for 3 hours.
  • UP-4 had a number average molecular weight of 68,000, an acrylic equivalent of 22,500, and a solution viscosity at 25 ° C. of 1200 mPa ⁇ s.
  • IPA isopropanol
  • MEK methyl ethyl ketone
  • THF tetrahydrofuran
  • ACMO N-acryloylmorpholine (trademark registration “ACMO”)
  • HDDA 1,6-hexanediol diacrylate
  • BA butyl acrylate
  • IBOA isobornyl acrylate 2EHA; 2-ethylhexyl acrylate THFA; tetrahydrofurfuryl acrylate
  • adduct-type urethane acrylamide has poor solubility in general-purpose solvents and acrylic monomers, in particular it cannot be dissolved in hydrophobic solvents and monomers, and is active energy ray curable. It was difficult to handle as a resin composition. This is because the intramolecular and intermolecular hydrogen bonds of adduct-type urethane acrylamide are very strong, and dispersion into solvents and other types of monomers by self-aggregation was difficult.
  • An active energy ray-curable resin composition was prepared using the urethane-modified (meth) acrylamide obtained in Synthesis Examples 1 to 6 and the urethane acrylic oligomer obtained in Comparative Synthesis Examples 1 to 4. And using these resin compositions, preparation of an ultraviolet curable film and characteristic evaluation of a cured film were performed, and the results are shown in Table 2.
  • Example A-1 100 parts by weight of urethane-modified (meth) acrylamide UY-1 obtained in Synthesis Example 1 and 100 parts by weight of MEK and 3 parts by weight of Darocur 1173 as a photopolymerization initiator are uniformly mixed to obtain an active energy ray-curable resin composition. Prepared. Then, the ultraviolet curable film was produced with the following method using the obtained curable resin composition.
  • a dry coating film having a thickness of 10 ⁇ m was prepared in the same manner as described above, and irradiated with ultraviolet rays having an illuminance of 2 mW / cm 2 at a temperature of 70 ° C. for 120 seconds (integrated light amount 240 mJ / cm 2 ).
  • Adhesiveness A fully cured film having a thickness of 10 ⁇ m was prepared on substrates of various materials in the same manner as described above. In accordance with JIS K 5600, 100 squares of 1 mm square were prepared, cellophane tape was applied, and the number of squares on which the coating film remained on the substrate side when peeled off at a stretch was evaluated.
  • Examples A-2 to A-7, Comparative Examples A-8 to A-11 An ultraviolet curable resin composition was prepared in the same manner as in Example A-1 except that the composition shown in Table 2 was used, and a cured film was prepared and evaluated by the above method. The results are shown in Table 2.
  • the urethane-modified (meth) acrylamide of the present invention has a high active energy ray curability because the molecular weight and acrylic equivalent are within a specific range, and the obtained curing is obtained.
  • the surface dryness (tack resistance), curl resistance and water resistance of the film are good, and the transparency and adhesion to various substrates are all satisfactory.
  • the molecular weight or acrylic equivalent is out of the specific range of the present invention, it will not be possible to obtain all the curability, tack resistance and curl resistance, and as a result, the transparency and adhesion of the cured film will be lost. Water resistance has also decreased.
  • the urethane-modified (meth) acrylamide of the present invention has a molecular weight and an acrylic equivalent within a specific range, and despite the high curability, a cured film having excellent curl resistance could be obtained. This is because hydrogen bonds between amide groups or between amide groups and urethane bonds are strong, and the urethane-modified (meth) acrylamide of the present invention exists in an aggregated state before curing, and as a result, between molecules before and after curing. The inventors speculate that the distance did not significantly shrink and that the shrinkage of the entire cured film could be suppressed.
  • HEAA hydroxyethylacrylamide
  • DMAA N-dimethylacrylamide
  • DEA N-diethylacrylamide
  • ACMO N-diethylacrylamide
  • DMAPAA N-acryloylmorpholine
  • dimethylaminopropylacrylamide manufactured by KJ Chemicals
  • HEA hydroxyethyl acrylate 2EHA
  • tetrahydrofurfuryl acrylate IBOA isobornyl acrylate IBMA; isobornyl methacrylate VEEA; 2- (2-vinyloxy Ethoxy) ethyl acrylate CHA; cyclohex
  • Evaluation Example B-1 8 parts by weight of urethane-modified (meth) acrylamide UY-1 synthesized in Synthesis Example 1, 30 parts by weight of reactive urethane polymer synthesized in Synthesis Example 12, 10 parts by weight of “HEAA”, 30 parts by weight of “DEAA”, 4 parts by weight of CHA, 15 parts by weight of EEA and 3 parts by weight of DMAPAA-TFSIQ were mixed, 1 part by weight of Irgacure 184 was added as a photopolymerization initiator and mixed uniformly to prepare an ultraviolet curable adhesive. Thereafter, using the obtained pressure-sensitive adhesive, a pressure-sensitive adhesive sheet was prepared by UV curing and evaluated by the following method.
  • UV curable pressure sensitive adhesive sheet The UV curable pressure sensitive adhesive prepared above is applied to a heavy release separator (silicone coated PET film), and the table is placed so that air bubbles are not chewed by the light release separator (silicone coated PET film).
  • the adhesive layer was bonded to a thickness of 25 ⁇ m and irradiated with ultraviolet rays (Equipment: Inverter type conveyor device ECS-4011GX manufactured by Eye Graphics, metal halide lamp) : M04-L41 manufactured by Eye Graphics, ultraviolet illuminance: 700 mW / cm 2 , integrated light quantity: 2000 mJ / cm 2 ) to produce an optical transparent adhesive sheet.
  • ultraviolet rays ECS-4011GX manufactured by Eye Graphics, metal halide lamp
  • M04-L41 manufactured by Eye Graphics
  • ultraviolet illuminance 700 mW / cm 2
  • integrated light quantity 2000 mJ / cm 2
  • a yellowing-resistant adhesive sheet is attached to a glass substrate, set in a xenon fade meter (SC-700-WA: manufactured by Suga Test Instruments Co., Ltd.), and irradiated with ultraviolet light having an intensity of 70 mW / cm 2 for 120 hours. The discoloration of the adhesive sheet was observed visually.
  • X Obvious yellowing can be confirmed visually.
  • the wet and heat resistant adhesive sheet is attached to a glass substrate in the same manner as in the yellowing resistance test described above, and after being held for 100 hours at a temperature of 85 ° C.
  • a stepped glass substrate was bonded with a black tape having a thickness of 20 ⁇ m to produce a glass with a step.
  • the adhesive sheet is transferred to a stepped glass, and is applied with one reciprocation (pressure bonding speed: 300 mm / min) with a roller of 2 kg load in an atmosphere of a temperature of 23 ° C. and a relative humidity of 50%, and left at a temperature of 80 ° C. for 24 hours. After that, the state of the stepped portion was confirmed with an optical microscope.
  • Evaluation Examples B-2 to 7 and Evaluation Comparative Examples B-8 to 11 An ultraviolet curable resin composition was prepared in the same manner as in Evaluation Example B-1 except that the composition shown in Table 3 was used, and an adhesive sheet was prepared and evaluated by the above method. The results are shown in Table 3.
  • the adhesive strength and heat-and-moisture resistance tend to decrease, and the cured adhesive sheet is also poor in stain resistance and punching workability, so that it is difficult to use.
  • the urethane-modified (meth) acrylamide of the present invention it is possible to obtain a pressure-sensitive adhesive sheet excellent in stain resistance and punching workability while having transparency and adhesive strength.
  • Evaluation Example C-1 22 parts by weight of urethane-modified (meth) acrylamide UY-1 synthesized in Synthesis Example 1, 15 parts by weight of the reactive urethane polymer UP-3 synthesized in Synthesis Example 10, 18 parts by weight of “ACMO”, 9 parts by weight of “HEAA” 14 parts by weight of “DMAA”, 10 parts by weight of THFA and 12 parts by weight of IBOA were mixed, and 3 parts by weight of Irgacure 1173 as a photopolymerization initiator was added and mixed uniformly to prepare an ultraviolet curable adhesive. Thereafter, using the obtained adhesive, a polarizing plate was prepared by ultraviolet curing and physical properties of the polarizing plate were evaluated by the following methods.
  • polarizing plate by UV irradiation Using a desktop roll laminator (RSL-382S manufactured by Royal Sovereign), a polarizing film is sandwiched between two transparent films (protective film, retardation film or optical compensation film), Between the transparent film and the polarizing film, the adhesives of Examples or Comparative Examples were bonded so as to have a thickness of 10 ⁇ m.
  • Ultraviolet rays were irradiated from the upper surface of the bonded transparent film (ultraviolet illuminance: 700 mW / cm 2 , integrated light amount: 2000 mJ / cm 2 ), and a polarizing plate having a transparent film on both sides of the polarizing film was produced.
  • a tensile tester Autograph AGXS-X 500N, manufactured by Shimadzu Corporation
  • a piece of the transparent protective film and the polarizing film, to which the double-sided adhesive tape is not applied, is peeled off in advance by about 20 to 30 mm, chucked to the upper gripping tool, and peeled at 90 ° peel strength (N / N) at a peel speed of 300 mm / min. 25 mm).
  • Evaluation Examples C-2 to 7 and Evaluation Comparative Examples C-8 to 11 An ultraviolet curable resin was prepared in the same manner as in Evaluation Example C-1 except that the composition shown in Table 4 was used, and a polarizing plate was prepared and evaluated by the above method. The results are shown in Table 4.
  • it is used because it has high flexibility derived from the main skeleton such as ether and ester, tends to decrease peel strength and water resistance, and has low peel strength and durability due to incomplete curing of the adhesive. It was difficult.
  • the adhesive using the urethane-modified (meth) acrylamide of the present invention was found to have high peel strength and durability due to its high crosslinking density, a good balance between flexibility and strength, and excellent water resistance.
  • Evaluation Example D-1 48 parts by weight of urethane-modified (meth) acrylamide UY-1 synthesized in Synthesis Example 1, 15 parts by weight of HDDA, 24 parts by weight of TPGDA, 8 parts by weight of “DEAA”, 5 parts by weight of IBOA, 3 parts by weight of pigment, pigment dispersant 3 2 parts by weight of Irgacure 819 and 3 parts by weight of Irgacure 127 were added as a photopolymerization initiator and mixed uniformly to prepare a photocurable ink composition. Thereafter, inkjet printing was performed by the following method, and the obtained printed matter was evaluated.
  • Viscosity The viscosity of the obtained ink composition was measured using a cone plate viscometer (device name: RE550 viscometer manufactured by Toki Sangyo Co., Ltd.) according to JIS K5600-2-3.
  • the viscosity of the ink composition at 20 ° C. is preferably 3 to 20 mPa ⁇ s, more preferably 5 to 18 mPa ⁇ s. If it is less than 3 mPa ⁇ s, bleeding after printing is observed, and the discharge followability is deteriorated due to printing misalignment, and if it is 20 mPa ⁇ s or more, discharge stability is reduced due to clogging of the discharge nozzle, it is not preferable.
  • the obtained ink composition was applied to a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m with a bar coater (RDS 12) and irradiated with ultraviolet rays (apparatus: LED type UV irradiation system H-made by HOYA). 10MAH20-1T18, 385 nm) to produce a printed matter.
  • PET polyethylene terephthalate
  • RDS 12 bar coater
  • ultraviolet rays Appatus: LED type UV irradiation system H-made by HOYA
  • Evaluation Examples D-2 to 7, Evaluation Comparative Examples D-8 to 11 An ink composition was prepared in the same manner as in Evaluation Example D-1 except that the composition shown in Table 5 was used, and a printed material was prepared by the above method and evaluated by the above method. The results are shown in Table 5.
  • the viscosity after preparation of the ink composition is high, the ejection stability is low, and the curability and the surface drying property tend to be low.
  • the stickiness derived from the main skeleton and the low curability of (meth) acrylate blur was observed in the printed matter after the discharge curing.
  • the urethane-modified (meth) acrylamide of the present invention it was possible to obtain an excellent ink composition having high curability and curing density, and having both surface dryness, sharpness and water resistance.
  • Evaluation Example E-1 15 parts by weight of urethane-modified (meth) acrylamide UY-1 synthesized in Synthesis Example 1, 20 parts by weight of reactive urethane polymer UP-1 synthesized in Synthesis Example 8, and reactive urethane polymer UP-3 30 synthesized in Synthesis Example 10 Part by weight, 25 parts by weight of PETA and 10 parts by weight of IBOA were mixed, 3 parts by weight of Darocur 1173 as a photopolymerization initiator was added, and mixed uniformly to prepare a photocurable coating composition.
  • Preparation of coating film by ultraviolet irradiation The obtained coating composition was applied to a 100 ⁇ m thick PET film on a bar coater (RDS 12) and irradiated with ultraviolet rays (ultraviolet illuminance: 700 mW / cm 2 ) to form a coating film ( 10 ⁇ m in thickness) was prepared and evaluated by the following method. The results are shown in Table 6. Moreover, when using a solvent, after application
  • a curable coating agent composition was applied, and the obtained coating film was irradiated with an ultraviolet illuminance of 700 mW / cm 2 in a room temperature of 23 ° C. environment, and an integrated light amount until the resin composition was completely cured was measured. .
  • Complete curing is a state in which no trace is left when the surface of the cured film is traced with silicon rubber.
  • Completely cured with an integrated light quantity of 1000 mJ / cm 2 to 2000 mJ / cm 2 .
  • completely cured in the cumulative amount of light 2000mJ / cm 2 ⁇ 5000mJ / cm 2.
  • X An accumulated light amount of 5000 mJ / cm 2 or more is required until complete curing. (32) Tack resistance The surface of the coating film obtained by the above method was touched with a finger to evaluate the stickiness. A: There is no stickiness. ⁇ : There is a slight stickiness, but no finger marks are left on the surface. ⁇ : there is stickiness, and a finger mark remains on the surface. X: Stickiness is severe and fingers stick to the surface.
  • the coated film obtained by the above method was irradiated with ultraviolet rays (ultraviolet illuminance: 700 mW / cm 2 , accumulated light quantity: 2000 mJ / cm 2 ), cut into 10 cm squares, and the average of the lifts at the four corners was measured.
  • X The lifting height is 3 mm or more.
  • Transparency is maintained even under high temperature and high humidity, but there is a slight decrease in adhesion.
  • Transparency is maintained even under high temperature and high humidity, but the adhesiveness is greatly reduced.
  • X Decrease in transparency and adhesion are observed under high temperature and high humidity.
  • Evaluation Examples E-2 to 7, Evaluation Comparative Examples E-8 to 11 A coating composition was prepared in the same manner as in Evaluation Example E-1, except that the composition shown in Table 6 was used. A cured film was prepared by the above method and evaluated by the above method. The results are shown in Table 6.
  • the curability of the coating agent and the surface drying property (tack resistance) of the resulting coating film are low, and the scratch resistance and self-healing property tend to be reduced.
  • the urethane-modified (meth) acrylamide of the present invention is used, a cured film having both scratch resistance and self-repairing property in addition to curability and surface drying property is prepared because the crosslinking density inside the cured film is high. Was possible.
  • Evaluation Example F-1 32 parts by weight of urethane-modified (meth) acrylamide UY-1 synthesized in Synthesis Example 1, 5 parts by weight of urethane-modified (meth) acrylamide UY-6 synthesized in Synthesis Example 6, and the reactive urethane polymer UP synthesized in Synthesis Example 9 -22 parts by weight, "ACMO" 5 parts by weight, IBMA 21 parts by weight, CHMA 15 parts by weight, Irgacure 184 3 parts by weight as a photopolymerization initiator, and mixed uniformly, coating composition for nail decoration A product was prepared.
  • Nail decoration method The coating composition for nail decoration is uniformly applied on the nail using a flat brush, and irradiated for 20 seconds using a gel nail LED light (12W). Formed.
  • Evaluation Examples F-2 to 7 Evaluation Comparative Examples F-8 to 11 A coating composition for nail decoration was prepared in the same manner as in Evaluation Example F-1, except that the composition shown in Table 7 was used. Nail decoration was prepared by the above method, and evaluated by the above method. The results are shown in Table 7.
  • the curability of the composition, the gloss of the resulting decorative film is low, the flexibility derived from the main skeleton, and the stickiness is imparted.
  • brush marks of the flat brush remain.
  • the stickiness of the decorative film after curing is suppressed, and since the lift from the nail at the time of curing is low, there is no lift from the nail and high adhesion is achieved. It was possible to form a nail decoration with high removability.
  • Evaluation Example G-1 24 parts by weight of urethane-modified (meth) acrylamide UY-1 synthesized in Synthesis Example 1, 12 parts by weight of urethane-modified (meth) acrylamide UY-2 synthesized in Synthesis Example 2, and the reactive urethane polymer UP- synthesized in Synthesis Example 8 1 25 parts by weight, reactive urethane polymer UP-2 synthesized in Synthesis Example 9 5 parts by weight, “ACMO” 10 parts by weight, “DEAA” 4 parts by weight, 4-HBA 10 parts by weight and A-LEN-10 10 parts by weight 2 parts by weight of Irgcure 184 and 2 parts by weight of Irgacure TPO were added as a photopolymerization initiator and mixed uniformly to prepare a photocurable sealant.
  • Preparation method of photo-curing encapsulant resin cured product Set a spacer made of silicon (length 30mm x width 15mm x thickness 3mm) on a glass plate (length 50mm x width 50mm x thickness 5mm), inside the spacer The photocurable sealant prepared above was injected. After sufficiently deaerated, ultraviolet ray irradiation (ultraviolet ray illuminance: 700 mW / cm 2 , integrated light amount: 2000 mJ / cm 2 ) was performed to prepare a cured encapsulant resin. The characteristics of the obtained cured product were evaluated by the following methods, and the results are shown in Table 8.
  • the transmittance is 90% or more ⁇ : The transmittance is 85% or more and less than 90% ⁇ : The transmittance is 50% or more and less than 85% ⁇ : The transmittance is less than 50% (44)
  • Light resistance The obtained cured product was attached to a glass substrate, and the yellowness was measured with a spectrocolorimeter (CM-3600d: manufactured by Konica Minolta). After that, it was set in a xenon fade meter (SC-700-WA: manufactured by Suga Test Instruments Co., Ltd.), irradiated with ultraviolet rays having an intensity of 4 W / cm 2 at 30 ° C. for 100 hours. Yellowness was measured, and the discoloration of the cured product was observed visually.
  • CM-3600d manufactured by Konica Minolta
  • The incidence is less than 0.1% ⁇ : The incidence is 0.1% or more and less than 0.3% ⁇ : The incidence is 0.3% or more and less than 1.0% 0.0% or more (47) Heat cycle resistance The obtained cured product was repeated 10 times with one cycle of standing at ⁇ 40 ° C. for 30 minutes and then at 100 ° C. for 30 minutes, and the state of the cured product was visually observed. A: No change is observed. O: Bubbles are slightly generated, but no cracks are observed. It is transparent. ⁇ : Some bubbles or cracks are observed, and it is slightly cloudy. X: Bubbles or cracks are generated over the entire surface, and the film is translucent.
  • Evaluation Examples G-2 to 7 and Evaluation Comparative Examples G-8 to 12 An ultraviolet curable resin was prepared in the same manner as in Evaluation Example G-1 except that the composition shown in Table 8 was used, and a cured sealant was prepared and evaluated by the above method. The results are shown in Table 8.
  • the urethane-modified (meth) acrylamide of the present invention was used, although some of the light resistance was low, the curability of the sealant was high and the crosslink density inside the cured product was high, so the water resistance was also high. Outgassing can be sufficiently suppressed, and heat cycle resistance is high.
  • Evaluation Example H-1 3 parts by weight of urethane-modified (meth) acrylamide UY-1 synthesized in Synthesis Example 1, 5 parts by weight of urethane-modified (meth) acrylamide UY-2 synthesized in Synthesis Example 2, and the reactive urethane polymer UP- synthesized in Synthesis Example 8 1 28 parts by weight, 50 parts by weight of the reactive urethane polymer UP-3 synthesized in Synthesis Example 10, 10 parts by weight of DPHA, 4 parts by weight of IBOA and 50 parts by weight of MEK were mixed, and 3 parts by weight of Irgacure 184 was used as a photopolymerization initiator. In addition, they were mixed uniformly to prepare a resin composition for a decorative film.
  • the obtained resin composition for a decorative film is applied to a PET film having a thickness of 125 ⁇ m (“Soft Shine TA009” manufactured by Toyobo Co., Ltd.) with a bar coater (RDS 30) and a dry film thickness of 20 ⁇ m. Then, it was dried at 100 ° C. for 1 minute to produce a pre-ultraviolet-cured molded film. Then, the decoration film was produced by irradiating with ultraviolet rays (ultraviolet illuminance: 700 mW / cm 2 , integrated light quantity: 2000 mJ / cm 2 ), and each of the molded film before ultraviolet curing and the decorative film was evaluated by the following methods. . The results are shown in Table 9.
  • Blocking resistance is obtained
  • the uncured PET (thickness: 100 ⁇ m, “Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., uncoated anchor coat surface) is stacked on the pre-cured UV-cured molded film, and pressure applied by reciprocating twice using a 2 kg pressure roller. And left for 30 minutes in an atmosphere at a temperature of 23 ° C. and a humidity of 50%. Thereafter, untreated PET was removed, and blocking resistance was evaluated by visual observation.
  • Complete curing is a state in which no trace is left when the surface of the cured film is traced with silicon rubber.
  • A Complete curing at an integrated light quantity of 1000 mJ / cm 2 .
  • Completely cured with an integrated light quantity of 1000 mJ / cm 2 to 2000 mJ / cm 2 .
  • completely cured in the cumulative amount of light 2000mJ / cm 2 ⁇ 5000mJ / cm 2.
  • X An accumulated light amount of 5000 mJ / cm 2 or more is required until complete curing.
  • Pencil hardness is 2H or more
  • Pencil hardness is 3B to B
  • Pencil hardness of 4B or less (4) Abrasion resistance Using a steel wool of # 0000, the decorative film was reciprocated 10 times while applying a load of 200 g / cm 2 , and the presence or absence of scratches was visually evaluated. . (Double-circle): The peeling
  • Slight thin scratches are observed on a part of the film.
  • Evaluation Examples H-2 to 7, Evaluation Comparative Examples H-8 to 11 A resin composition for a decorative film was prepared in the same manner as in Evaluation Example H-1 except that the composition shown in Table 9 was used, and a decorative film was prepared by the above method and evaluated by the above method. The results are shown in Table 9.
  • the aggregation of amide groups and urethane bonds forms a pseudo hard segment, which shows high blocking resistance and molding processability, and before UV curing without cracks.
  • a molded membrane was obtained.
  • the pseudo hard segment is temporarily dispersed at a high temperature that is equal to or higher than the Tg of the urethane polymer or urethane-modified (meth) acrylamide, it exhibits a high elongation at break. A decorative film having scratch resistance could be obtained.
  • the urethane-modified (meth) acrylamide of the present invention has a urethane bond and one or more (meth) acrylamide groups in the molecule, and has a molecular weight and an acrylic equivalent within a specific range.
  • This is characterized by the fact that the cross-linking density inside the cured product is increased by UV curing, and it is possible to form pseudo hard segments by agglomeration of amide groups and urethane bonding sites.
  • Not only has excellent tackiness, but also exhibits hardness, shrinkage resistance, durability, etc., flexibility, water resistance, and slipperiness brought into the main skeleton parts derived from alcohol compounds other than urethane bonds and (meth) acrylamide also shows performance.
  • the urethane-modified (meth) acrylamide of the present invention has a balance of hydrophilicity and hydrophobicity, hardness and flexibility, and by using this, a curable resin having high transparency, adhesion to various substrates, and high scratch resistance.
  • a composition could be obtained.
  • an adhesive, an electronic material, an optical or It can be suitably used for applications in the semiconductor field, inks, coating agents, gel nails, sealants, decorative films, and photocurable resists.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Sealing Material Composition (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

【課題】有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化性を有し、また紫外線硬化により得られる硬化膜が表面硬化性、耐擦傷性、耐折り曲げ性に優れながらも高透明性を有する、各基板に高密着性な活性エネルギー線硬化性樹脂を提供することが課題である。 【解決手段】分子内にウレタン結合及び1つ以上の(メタ)アクリルアミド基を有するウレタン変性(メタ)アクリルアミド化合物を提供し、それは有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化性を特徴とし、またそれにより得られる表面硬化性、耐擦傷性、耐折り曲げ性に優れ、且つ低硬化収縮性と高透明性、高密着性を有する活性エネルギー線硬化性樹脂を提供することができる。

Description

ウレタン変性(メタ)アクリルアミド化合物及びそれを含有する活性エネルギー線硬化性樹脂組成物
 本発明は、有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化速度を有する数量平均分子量が250以上~4,500未満、かつ(メタ)アクリル当量は250以上~3,000未満の範囲であるウレタン変性(メタ)アクリルアミド化合物およびそれを含有する表面硬化性、耐熱性、耐擦傷性に優れ、且つ低硬化収縮性と高透明性を有する活性エネルギー線硬化性樹脂組成物およびその成形品に関するものである。
 ウレタン樹脂は原料であるポリオールとポリイソシアネートの組み合わせにより軟質から硬質なものまで特性に合わせて構造設計が可能であり、幅広い産業や分野で使用されている。また、紫外線(UV)や電子線(EB)で硬化する活性エネルギー線硬化性樹脂は、熱硬化性組成物や溶剤系樹脂組成物に比べ、生産性、省エネルギー及び低環境負荷などの特徴から、近年、用途が拡大している。そうした技術革新の流れの中で、ウレタン樹脂の末端にアクリレートなどの不飽和基を結び付けた活性エネルギー線硬化性ウレタンアクリレートの研究開発、特に応用技術について盛んに行われている。
 ウレタンアクリレートは活性エネルギー線硬化性樹脂として、各種基材へのコーティング、ハードコート剤、接着剤、粘着剤、シール剤、インキ等広く使用されることが期待されているが、様々なニーズに合わせた化合物の構造設計や期待特性に向けた組成物配合の調整が十分に進まず、大きな問題となっている。即ち、ウレタン構造の強靭性、伸張性、高硬度、高密着性等の物性と、活性エネルギー線硬化に係る硬化の速さ、硬化後の表面乾燥性や表面硬度、耐傷性、硬化収縮性等の物性とのバランスを取ることが極めて困難である。その結果、急成長分野、例えば、ディスプレイやタッチパネル分野での光学フィルム貼り合わせ、加飾分野から光学分野までのフィルム向けハードコーティング、ハードコート分野や光学粘着層分野における薄膜化と高機能化の両立をターゲットとする場合、要求されている高性能には満足できるものがない現状である。
 例えば、特許文献1には、6官能以上のウレタンアクリレートを必須成分とした光硬化性樹脂組成物を用いることにより、表面がタックフリーとなり、かつ、硬度、耐傷性と耐薬品性に優れる硬化塗膜が開示されている。また、特許文献2には、含水酸基アクリルアミドとポリイソシアネートを反応させて得るアダクトタイプのウレタンアクリルアミド及び、ポリオールも含めて反応させることで得られるポリオール骨格を有するオリゴマータイプのウレタンアクリルアミドを提案した。特許文献2に示されるように、重合性基をアクリレート基からアクリルアミド基へ変更することにより、アダクトタイプの硬化速度が2倍以上向上され、また、オリゴマータイプの硬化性と硬化膜表面のべたつきが改善された。さらに、特許文献3には、水酸基含有アクリルアミドとイソシアネート化合物の反応から得られる活性エネルギー線硬化性樹脂を用いることにより、未硬化状態のタックやブロッキングが少なく、巻き取り可能の成形用ハードコートフィルムが開示され、特許文献4には、水酸基含有アクリルアミド、トリメチロールプロパン、多価イソシアネート化合物及び反応触媒からなる硬化性樹脂組成物を用いることにより、優れた表面硬度と屈曲性を有するインモールド成形フィルムのハードコート層が開示されている。
 しかし、これらの特許文献(1~4)のいずれにしても、耐硬化収縮性や耐折り曲げ性については一切言及されず、また汎用モノマーやオリゴマー、樹脂と併用する際の溶解性や得られる硬化層の透明性について記載することがなく、前記課題が解決されていない現状である。
 特許文献5と6は、水酸基含有アクリルアミドとポリオールと、イソシアネートとを反応させることにより得られるウレタンアクリルアミドのオリゴマーやポリマーを用いて、前者は耐熱安定性に優れる光学フィルム、後者は強度向上による割れ防止可能な電子写真機器用材料が開示されている。特許文献5には、特定のポリオール、特定のイソシアネートを用いたことにより得られたウレタンアクリルアミドポリマーであるため、特定の構造単位を有する光学フィルム及びその耐熱特性等を実現できたと記載している。特許文献6には、アクリルアミド基の含有により破断強度が向上され、硬化性が改善され、それらの結果は割れ防止性が提供できた。しかし、これらの特許文献にも耐硬化収縮性や耐折り曲げ性、溶解性、透明性等が記載されておらず、前述したウレタンアクリルアミド系化合物のバランスの取れない課題、急成長分野に要求される高性能に対応できない課題が依然として解決されていない。
特開2005-281412号公報 特開2002-37849号公報 特開2009-244460号公報 特開2010-128417号公報 特開2011-218616号公報 特開2012-82288号公報
 有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化性と低硬化収縮率を有するウレタン変性(メタ)アクリルアミド化合物を提供することが第一の課題である。また、当該ウレタン変性(メタ)アクリルアミド化合物を含有する、表面乾燥性(耐タック性)、耐擦傷性、耐折り曲げ性、耐硬化収縮性(耐カール性)に優れながらも高透明性や高密着性を有する活性エネルギー線硬化性樹脂を提供することが第二の課題である。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、分子内に1つ以上のウレタン結合と1つ以上の(メタ)アクリルアミド基を有する、数平均分子量が250~4,500、かつ(メタ)アクリル当量は250~3,000の範囲であるウレタン変性(メタ)アクリルアミド化合物を用いることで、前記目標を達成しえることを見出し、本発明に至ったものである。
すなわち、本発明は
(1)1分子あたり水酸基を1つ以上有するアルコール化合物、1分子あたりイソシアネート基を2つ以上有するイソシアネート化合物及び一般式[1](式中、Rは水素原子又はメチル基を示し、R及びRは同一又は異なって、水素原子、又は水酸基で置換されていてもよい炭素数1乃至6の直鎖状又は分岐鎖状のアルキル基、炭素3乃至6の脂肪族環又は芳香環を示し、またR及びRはそれらを担持する窒素原子を一緒になって、さらに酸素原子又は窒素原子を含まれていてもよい飽和あるいは不飽和の5~7員環を形成してもよい。ただしR及びRが同時に水素原子の場合及び、R及びRが同時にアルキル基の場合を除き、かつRとRに有する水酸基の合計は1以上である。)で表される水酸基を含有するN-置換(メタ)アクリルアミド化合物との付加反応で得られる、分子内に1つ以上のウレタン結合と1つ以上の(メタ)アクリルアミド基を併せ持つ、ウレタン変性(メタ)アクリルアミド化合物、
Figure JPOXMLDOC01-appb-C000002
(2)数平均分子量は250以上~4,500未満、かつ、(メタ)アクリル当量は250以上~3,000未満の範囲であることを特徴とする前記(1)に記載のウレタン変性(メタ)アクリルアミド化合物、
(3)前記のアルコール化合物はエーテル骨格、エステル骨格、カーボネート骨格、シリコーン骨格、オレフィン骨格、アクリル骨格から選ばれる1種もしくは2種以上の骨格を有する化合物であることを特徴とする前記(1)又は(2)のいずれか1項に記載のウレタン変性(メタ)アクリルアミド化合物、
(4)エーテル骨格を有する数平均分子量250~1,500かつアクリル当量250以上~750未満の範囲であることを特徴とする、前記(1)~(3)のいずれか1項に記載のウレタン変性(メタ)アクリルアミド化合物、
(5)前記(1)~(4)のいずれか1項に記載のウレタン変性(メタ)アクリルアミド化合物(A)1~100重量%、多官能(メタ)アクリル化合物(B)0~90重量%及び単官能(メタ)アクリル化合物(C)0~90重量%を含有する活性エネルギー線硬化性樹脂組成物、
(6)前記(5)に記載の組成物を含有することを特徴とする活性エネルギー線硬化性粘着剤組成物、
(7)前記(5)に記載の組成物を含有することを特徴とする活性エネルギー線硬化性接着剤組成物、
(8)前記(5)に記載の組成物を含有することを特徴とする活性エネルギー線硬化性インクジェットインク組成物、
(9)前記(5)に記載の組成物を含有することを特徴とする活性エネルギー線硬化性コーティング組成物、
(10)前記(5)に記載の組成物を含有することを特徴とする活性エネルギー線硬化性爪装飾用硬化性組成物、
(11)前記(5)に記載の組成物を含有することを特徴とする活性エネルギー線硬化性性封止剤硬化性組成物、
(12)前記(5)に記載の組成物を含有することを特徴とする活性エネルギー線硬化性加飾フィルム用硬化性組成物、
を提供するものである。
 本発明によれば、分子内に1つ以上のウレタン結合と1つ以上の(メタ)アクリルアミド基を有するウレタン変性(メタ)アクリルアミド化合物が有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化性と低硬化収縮性を有し、当該ウレタン変性(メタ)アクリルアミド化合物を含有することにより表面硬化性、耐折り曲げ性、耐擦傷性、耐硬化収縮性に優れ、かつ、高透明性、高密着性を有する活性エネルギー線硬化性樹脂及びそれらの成形品を提供可能である。
 以下に、本発明を詳細に説明する。
 本発明のウレタン変性(メタ)アクリルアミド化合物は、分子内に1つ以上のウレタン結合と1つ以上の(メタ)アクリルアミド基を有し、1分子あたり水酸基を1つ以上有するアルコール化合物、1分子あたりイソシアネート基を2つ以上有するイソシアネート化合物及び水酸基を含有するN-置換(メタ)アクリルアミドとの付加反応で得られるものである。当該ウレタン変性(メタ)アクリルアミド化合物は数平均分子量250以上~4,500未満、かつアクリル当量250以上~3,000未満の範囲であることが好ましい。
 本発明のウレタン変性(メタ)アクリルアミド化合物の合成に用いられるアルコール化合物はエーテル骨格、エステル骨格、カーボネート骨格、シリコーン骨格、オレフィン骨格、アクリル骨格から選ばれる1種もしくは2種以上の骨格を有するアルコール化合物である。
 エーテル骨格を有するアルコール化合物は、分子中にエーテル骨格を含む末端又は側鎖に1つ以上の水酸基を有するものであり、市販品としては、ジエチレングリコール、ジプロピレングリコール、ジブチレングリコール、PTMGシリーズ、例えば、PTMG650(三菱化学(株)製)、サンニックスPP、GP、GOPシリーズ、例えば、サンニックスPP-1000、GP-250、GOP-600(三洋化成工業(株)製)、PEGシリーズ、例えば、PEG300、ユニオックスシリーズ、ユニオールD、TG、HS、PBシリーズシリーズ、例えば、ユニオールD-700、TG-1000、HS-1600D、PB-700、ユニルーブDGPシリーズ、ポリセリンDC、DCBシリーズ(日油(株)製)等が挙げられる。
 エステル骨格を有するアルコール化合物は、分子中にエステル骨格を含む末端又は側鎖に1つ以上の水酸基を有するものであり、市販品としては、クラレポリオールP、F、N、PMNAシリーズ、例えば、クラレポリオールP-1010、N-2010、PMNA-2016(クラレ(株)製)、プラクセルシリーズ、例えば、プラクセル205((株)ダイセル製)、プリプラストシリーズ、例えば、プリプラスト1900(クローダジャパン(株)製)、テスラックシリーズ、例えば、テスラック2456(日立化成(株)製)等が挙げられる。
 カーボネート骨格を有するアルコール化合物は、分子中にカーボネート骨格を含む末端又は側鎖に1つ以上の水酸基を有するものであり、市販品としては、プラクセルCDシリーズ、例えばプラクセルCD210((株)ダイセル製)、ETERNACOLL UH、UHC、UCおよびUMシリーズ、例えばETERNACOLL UH-100、UHC50-100、UC-100、UM―90(3/1)(宇部興産(株)製)、デュラノールTおよびGシリーズ、例えばデュラノールT6001(旭化成ケミカルズ(株)製)、NIPPOLLANシリーズ、例えば、NIPPOLLAN981(東ソー(株)製)、クラレポリオールCシリーズ、例えば、クラレポリオールC-590((株)クラレ製)等が挙げられる。
 シリコーン骨格を有するアルコール化合物は、分子中にシロキサン結合を主鎖骨格に含み、かつ両末端または側鎖に1つ以上に水酸基を有するものであり、市販品としては、KF-6000、X-21-5841(信越化学工業(株)製)、BY 16-201(東レ・ダウコーニング(株)製)、XF42-B0970(モメンティブ・パフォーマンス・マテリアルズ社製)、サイラプレーンシリーズ、例えば、サイラプレーンFM-0411(JNC(株)製)等が挙げられる。
 オレフィン骨格を有するアルコール化合物は、分子中に共役又は非共役のオレフィン骨格或いはそれらの水素添加骨格を含み、かつ末端又は側鎖に1つ以上の水酸基を有するものであり、市販品としては、NISSO-PBシリーズ、例えば、NISSO-PB G-1000、GI-1000(日本曹達(株)製)、Poly bdシリーズ(出光興産(株)製)、Krasolシリーズ、例えば、KrasolLBH2000、HLBH-P2000(クレイバレー社製)、プリポールシリーズ(クローダジャパン(株)製)等が挙げられる。
 アクリル骨格を有するアルコール化合物は、一種以上のアクリルモノマーを重合させてなるポリマーであり、かつ分子の末端又は側鎖に1つ以上の水酸基を有するものである。例えば、ヒドロキシアクリル(メタ)アクリレートやヒドロキシアクリル(メタ)アクリルアミドなどの水酸基を有するアクリル系モノマーを用いた単独重合体又は他の不飽和基を有するモノマーとの共重合体が挙げられる。市販品としては、UMM-1001、UT-1001(総研化学(株)製)等がある。
 前記の各種骨格を有するアルコール化合物は、1種を単独に用いることができる。または同一骨格のアルコール化合物より、もしくは異なる骨格のアルコール化合物より2種以上を組み合わせて用いることもできる。
本発明のウレタン変性(メタ)アクリルアミド化合物の合成に用いられるイソシアネート化合物は、1分子内に2個以上のイソシアネート基を有するものであり、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族イソシアネート類、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族イソシアネート類、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、4,4'-ジシクロヘキシルメタンジイソシアネート、2,5-ノルボルナンジイソシアネート、2,6-ノルボルナンジイソシアネート等の脂環族イソシアネート類、「デスモジュールXP2565」(住化バイウレタン(株)製)等のアロファネート基含有イソシアネート類又は、これらのアダクトタイプ、イソシアヌレートタイプ、ビュレットタイプ等の多量体、例えばコロネートL、HL、HX(日本ポリウレタン工業(株)製)、デュラネート24A-100(旭化成工業(株)製)等が挙げられる。これらのイソシアネート化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 本発明のウレタン変性(メタ)アクリルアミド化合物の合成に用いられる水酸基を含有するN-置換(メタ)アクリルアミドは一般式[1]で表される化合物であり、ここで、Rは水素原子またはメチル基を示し、R及びRは同一または異なって、水素原子、または水酸基で置換されていてもよい炭素数1乃至6の直鎖状または分岐鎖状のアルキル基、炭素3乃至6の脂肪族環又は芳香環を示し、また、R及びRはそれらを担持する窒素原子を一緒になって、さらに酸素原子または窒素原子を含まれていてもよい飽和あるいは不飽和の5~7員環を形成してもよい。但し、R及びRが同時に水素原子の場合、及びR及びRが同時にアルキル基の場合を除き、かつRとRに有する水酸基の合計は1以上である。
Figure JPOXMLDOC01-appb-C000003
 水酸基を含有するN-置換(メタ)アクリルアミド、具体的に、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシイソプロピル(メタ)アクリルアミド、N-メチルヒドロキシメチル(メタ)アクリルアミド、N-メチルヒドロキシエチル(メタ)アクリルアミド、N-エチルヒドロキシメチル(メタ)アクリルアミド、N-エチルヒドロキシエチル(メタ)アクリルアミド、N-エチルヒドロキシイソプロピル(メタ)アクリルアミド、N-プロピルヒドロキシメチル(メタ)アクリルアミド、N-プロピルヒドロキシイソプロピル(メタ)アクリルアミド、N-イソプロピルヒドロキシエチル(メタ)アクリルアミド、N,N-ジヒドロキシメチル(メタ)アクリルアミド、N,N-ジヒドロキシエチル(メタ)アクリルアミド、N,N-ジヒドロキシプロピル(メタ)アクリルアミド、N,N-ジヒドロキシイソプロピル(メタ)アクリルアミド、N-[2-(3,4-ジヒドロキシフェニル)エチル]アクリルアミド、4-(ヒドロキシ)メタクリルアニリド、N-[1,1-ビス(ヒドロキシメチル)エチル]アクリルアミド、N-[1-(ヒドロキシメチル)プロピル]メタクリルアミド、N-(2-ヒドロキシフェニル)メタクリルアミド、N-(2-ヒドロキシ-5-メチルフェニル)アクリルアミド、1-[4-(2-ヒドロキシエチル)-1-ピペラジニル]-2-プロペン-1-オン、1-アクリロイル-4-ヒドロキシピペリジンが挙げられる。また、水酸基を含有するアクリルアミドを用いることにより、得られるウレタン変性アクリルアミド化合物の硬化性向上やそれから形成される塗膜表面のべた付け改善効果が高いので、特に好ましい。これらの水酸基を含有する(メタ)アクリルアミドは1種を単独、又は2種以上を組み合わせて用いることができる。
 本発明のウレタン変性アクリルアミド化合物合成方法は、特に限定することがなく、公知のウレタン化反応技術により合成することができる。原料の配合比において、水酸基の合計はイソシアネート基の合計に対して当量以上であることが好ましく、中でもアルコール化合物の水酸基/イソシアネート基/(メタ)アクリルアミド中の水酸基=1/1/0.5~1/3/2.5となるような割合で反応させることが特に好ましい。イソシアネート基の配合比はこの範囲を超えると、ウレタン変性アクリルアミド化合物の経時的増粘や着色を招く可能性がある。一方、(メタ)アクリルアミド化合物の水酸基はこの範囲を超えると、得られるウレタン変性アクリルアミド化合物の耐水性、耐湿性が低下する恐れがある。
 本発明のウレタン化反応は、原料であるアルコール化合物、イソシアネート化合物及び水酸基を含有するN-置換(メタ)アクリルアミドを混合し、所望により温度を上げ、公知の方法で実施することができる。この反応は10~160℃、好ましくは20~140℃の温度で行う。原料の混合は、一括で行ってもよく、いくつかの段階に分けて行うこともできる。また、反応は無溶媒でも可能であるが、必要に応じて有機溶剤中、あるいは反応性希釈剤中で実施できる。使用できる溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、酢酸エチル、酢酸ブチル、テトラヒドロフラン、ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン、脂肪族炭化水素系溶剤(石油エーテル等)等の存在下で行うことができる。また、使用できる反応性希釈剤としては、イソシアネートと反応しなく、かつ水酸基と反応しないものであれば特に限定されないが、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、長鎖脂肪族アクリレート、アリルアクレート、シクロヘキシルアクリレート、1,6-ヘキサンジアクリレート、テトラエチレングリコールジアクリレート、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリアクリレート、イソボルニルアクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、ジメチルアクリルアミド、ジエチルアクリルアミド、N-アクリロイルモルホリン等が例示される。有機溶媒又は反応性希釈剤の使用量はイソシアネート化合物に対して0~400重量%、好適には0~200重量%である。
 また、かかるウレタン化反応においては、反応促進の目的で触媒を添加することができる。当該触媒としては、例えば、アルキルホスホン酸のカリウムもしくはナトリウム塩など、炭素数8~20の脂肪酸のナトリウム、カリウム、ニッケル、コバルト、カドミウム、バリウム、カルシウム、亜鉛などの金属塩、ジブチル錫ジラウレート、ジオクチル錫マレエート、ジブチルジブトキシ錫、ビス(2-エチルヘキシル)錫オキサイド、1,1,3,3-テトラブチル-1,3-ジアセトキシジスタノキサンなどの有機錫化合物やN,N,N',N'-テトラメチルグアニジン、1,3,5-トリス(N,N-ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、N,N'-ジメチルピペラジン、N-エチルモルホリン、N,N-ジメチルエタノールアミン、1-メチルイミダゾール、トリエチレンジアミン等の第三級アミン化合物類が挙げられ、これらは単独で又は2種以上組み合わせて使用することができる。触媒の使用量は、原料成分の合計重量に対して通常1重量%以下であることが好ましく、0.1重量%以下であることがさらに好ましい。
 水酸基を含有するN-置換(メタ)アクリルアミドの二重結合及び得られるウレタン変性(メタ)アクリルアミドの二重結合によるラジカル重合を抑制するために、必要に応じてラジカル重合禁止剤を使用することができる。 ラジカル重合禁止剤としては、例えば、ヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p-tert-ブチルカテコール等のキノン系重合禁止剤;2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール等のアルキルフェノール系重合禁止剤;アルキル化ジフェニルアミン、N,N′-ジフェニル-p-フェニレンジアミン、フェノチアジン等のアミン系重合禁止剤、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル等のN-オキシル類;ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅等のジチオカルバミン酸銅系重合禁止剤等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの重合禁止剤の添加量としては、水酸基を含有するN-置換(メタ)アクリルアミドの種類や配合量等に応じて適宜に設定すればよいが、重合抑制効果、生産上の簡便性および経済性の観点から、得られるウレタン変性(メタ)アクリルアミドに対して通常0.001~5重量%であることが好ましく、0.01~1重量%であることがさらに好ましい。
 本発明のウレタン変性(メタ)アクリルアミドの数平均分子量は250以上~4,500未満であり、さらに250以上~3,000未満であることが好ましい。数平均分子量が250未満の場合、単官能の低分子用成分の割合が高く、得られるウレタン変性(メタ)アクリルアミドの硬化性や有機溶媒、汎用アクリルモノマーに対する溶解性が低下する可能性があり、一方、数平均分子量は4,500を超えると架橋密度の低下により、硬化性及び耐タック性が十分に満足できないため、好ましくない。
 本発明のウレタン変性(メタ)アクリルアミドのアクリル当量は250以上~3,000未満であり、さらに250~2,500であることが好ましい。アクリル当量が250未満の場合、重合性基である(メタ)アクリルアミド基の密度が高く、ウレタン変性(メタ)アクリルアミドの製造工程及びその後の貯蔵時における重合等のトラブルが発生しやすく、一方、アクリル当量が3,000を超えると架橋密度の低下により、硬化性及び耐タック性が十分に満足できないため、好ましくない。
 本発明のエーテル骨格を有するウレタン変性(メタ)アクリルアミドのアクリル当量は250~750の範囲であることが好ましい。エーテル骨格を有するウレタン変性(メタ)アクリルアミドのアクリル当量が250未満の場合は前記同様好ましくなく、また、アクリル当量750を超えるとウレタン変性(メタ)アクリルアミドの分子内もしくは分子間の水素結合を形成し難くなり、硬化速度の低下を招いてしまう恐れがある。
 本発明のウレタン変性(メタ)アクリルアミド系が単独で用いられる場合、アルコール由来の骨格や(メタ)アクリルアミド基の種類、アクリル当量及び分子量によって、活性エネルギー線硬化性、得られた硬化膜の表面乾燥性(耐タック性)や各種基材に対する密着性などの物性値や性能が異なるが、概ね下記範囲内であることが好ましい。
 本発明のウレタン変性(メタ)アクリルアミドは活性エネルギー線照射による完全に硬化することができる。必要な活性エネルギー線照射量(積算光量)は(メタ)アクリルアミド基の種類とアクリル当量によって変動するが、0.1~2,000mJ/cmであることが好ましく、さらに1~1,000mJ/cm程度が特に好ましい。積算光量は0.1mJ/cm未満であると、硬化不十分な部位が残存し、硬化物全体的な硬度、耐水性や耐久性が低下する恐れがある。また、積算光量は2,000mJ/cmを超えると過剰のエネルギーによる分解などの副反応が起こり、硬化膜が着色しやすい傾向が見られた。
 本発明のウレタン変性(メタ)アクリルアミドからなる硬化膜の吸水率は2%以下であることが好ましく、さらには1%以下であることが特に好ましい。吸水率が2%より大きくなると、高湿度環境下で長時間に使用される場合、硬化膜が経時的に吸水し、膨張による形状に歪みを生じるため密着性や透明性が低下する可能性がある。
 本発明のウレタン変性(メタ)アクリルアミドの硬化収縮率は、紫外線照射による硬化膜の浮き上がり高さを用いて評価を行う場合(耐カール性評価)、浮き上がり高さは1cm以下であることが好ましく、また0.5cm以下であることが特に好ましい。硬化膜の浮き上がりが1cmより大きくなると、膜の歪みによる基材に対する密着性が低下し、その結果、ウレタン変性(メタ)アクリルアミドを含有する硬化性樹脂組成物や当該組成物を用いた成形品まで、耐水性、耐久性、耐折り曲げ性等の低下が起こりやすくなり、また安定的に形状が維持できない可能性がある。
 本発明に用いられる多官能(メタ)アクリル化合物(B)は多官能(メタ)アクリレートもしくは多官能(メタ)アクリルアミドである。例えば、エチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、アクリレートエステル(ジオキサングリコールジアクリレート)、アルコキシ化ヘキサンジオールジ(メタ)アクリレート、アルコキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ウレタン(メタ)アクリルアミド等のモノマーとオリゴマーが挙げられる。また、これらの多官能(メタ)アクリレートは単独で使用してもよいし、また2種類以上併用してもよい。
 本発明に用いられる単官能(メタ)アクリル化合物(C)は単官能(メタ)アクリレートもしくは単官能(メタ)アクリルアミドである。また、必要に応じて重合性4級塩イオン性化合物を含有することができる。さらに、単官能(メタ)アクリル化合物は単独で使用してもよいし、また2種類以上併用してもよい。
 単官能(メタ)アクリレートは、例えば、メチル(メタ)アクリレートのアルキル(メタ)アクリレート、ヒドロキシエチルアクリレート、アルコキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、2-(2-エトキシエトキシ)エチルアクリレート、フェノキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリルアクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、アリル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等が挙げられる。
 本発明に用いられる単官能(メタ)アクリルアミドは、例えば、N-アルキル(メタ)アクリルアミド、N-アルコキシアクリル(メタ)アクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-[3-(ジメチルアミノ)]プロピルアクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-アクリロイルモルホリン、ヒドロキシエチルアクリルアミド等のヒドロキシアルキル(メタ)アクリルアミドが挙げられる。
 本発明のウレタン変性(メタ)アクリルアミド化合物(A)は1重量%以上を活性エネルギー線硬化性樹脂組成物中に含有することが好ましい。1重量%未満の場合は良好な表面硬化性、耐折り曲げ性、耐擦傷性等が得られない可能性がある。また、硬化性樹脂組成物中の多官能(メタ)アクリル化合物(B)の含有量は90重量%以下であることを好ましい。(B)の含有量は90重量%を超えると、硬化性樹脂組成物の液粘度が上昇し、混合や塗布し難く、ハンドリング的な問題が生じるため、好ましくない。さらに、硬化性樹脂組成物中に単官能(メタ)アクリル化合物(C)を配合する場合は、十分な耐擦傷性や硬化性を維持するため、90重量%以下であることが好ましい。
 本発明の活性エネルギー線硬化性樹脂組成物中に重合性4級塩イオン性化合物を加えることができる。例えば、イオン性ビニルモノマー及び/又はそれらを構成成分としたオリゴマー、ポリマーが挙げられる。イオン性ビニルモノマーとは、カチオンとアニオンを組み合わせたオニウム塩であり、具体的には、カチオンとして(メタ)アクリレート系あるいは(メタ)アクリルアミド系のアンモニウムイオンやイミダゾリウムイオン、アニオンとしてはCl、Br、I等のハロゲンイオン又はOH、CHCOO、NO 、ClO 、PF 、BF 、HSO 、CHSO 、CFSO 、CHSO 、CSO 、(CFSO、SCN等の無機酸アニオン又は有機酸アニオンが挙げられる。
 4級塩イオン性化合物のイオンは塗布基材との間に水素結合やイオン結合を形成し易く、また、導電性や帯電防止性を付与することができるので、ぬれ性が向上し、より均一に塗布でき、より安定に膜を形成できる。さらに、重合性4級塩イオン性化合物自身も活性エネルギー線硬化性化合物であるため、活性エネルギー線硬化性樹脂組成物と共重合することにより、ブリードアウトせず、永久的に導電性や帯電防止性を付与する補助効果及び密着性向上効果が提供できる。これらイオン性化合物の配合量は、イオン対の官能基数や分子量によって調整できるので、特に制限されることはない。一般に活性エネルギー線硬化性樹脂組成物に対して、0~50重量%、中でも0~10重量%添加されることが好ましい。イオン性化合物の配合量が50重量%を超えると、品種にもよるが、硬化膜の透過性低下を招く可能性がある。
 本発明の活性エネルギー線とは、活性種を発生する化合物(光重合開始剤)を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、電子線、紫外線、赤外線、X線、α線、β線、γ線等の光エネルギー線が挙げられる。
 本発明の活性エネルギー線硬化性樹脂組成物を硬化させる際には、光重合開始剤を添加しておく。光重合開始剤は、活性エネルギー線として電子線を用いる場合には特に必要はないが、紫外線を用いる場合には必要となる。光重合開始剤はアセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサントン系等の通常のものから適宜選択すればよい。光重合開始剤のうち、市販の光重合開始剤としてはBASFジャパン社製、商品名Irgacure 1173、Irgacure 184、Irgacure 369、Irgacure 500、Irgacure 651、Irgacure 754、Irgacure 819、Irgacure 907、Irgacure 2959、Irgacure TPO、UCB社製、商品名ユベクリルP36等を用いることができる。これらの光重合開始剤は1種又は2種以上を組み合わせて用いることができる。
 これらの光重合開始剤の使用量は特に制限されていないが、一般に活性エネルギー線硬化性樹脂組成物に対して、0~10重量%、中でも1~5重量%が添加されることが好ましい。10重量%を越えると硬化膜の強度低下や黄変してしまう可能性がある。
 本発明の活性エネルギー線硬化性樹脂組成物及びそれから作製される成形品の特性を阻害しない範囲で、顔料、染料、界面活性剤、ブロッキング防止剤、レベリング剤、分散剤、消泡剤、酸化防止剤、紫外線増感剤、防腐剤等の他の任意成分を併用してもよい。
 本発明の活性エネルギー線硬化性樹脂組成物を紙、布、不織布、ガラス、ポリエチレンテレフタレート、ジアセテートセルロース、トリアセテートセルロース、アクリル系ポリマー、ポリ塩化ビニル、セロハン、セルロイド、ポリカーボネート、ポリイミドなどのプラスチック及び金属等の基材の表面や間に塗布し、紫外線等の活性エネルギー線照射で硬化させることにより、高性能のコーティング層やインキ層、粘着剤層又は接着剤層を得ることができる。特に、本発明の活性エネルギー線硬化性樹脂組成物が高透明性のウレタンオリゴマーを有するため、光学用粘着剤、光学用接着剤、光学用フィルムのコート材など光学用樹脂組成物として公的に用いることができる。また、この樹脂組成物を基材上に塗布する方法としては、スピンコート法、スプレーコート法、ディッピング法、グラビアロール法、ナイフコート法、リバースロール法、スクリーン印刷法、バーコーター法等通常の塗膜形成法が用いられることができる。また、基材間に塗布する方法としては、ラミネート法、ロールツーロール法等が挙げられる。
 以下に合成実施例及び評価実施例により、本発明を詳細に、より具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、以下において、収率以外の%は重量%を表す。得られたウレタン変性(メタ)アクリルアミドの物性分析は下記方法により行った。
(1)分子量測定とアクリル当量算出
 得られたウレタン変性(メタ)アクリルアミド等の数量平均分子量は高速液体クロマトグラフィー((株)島津製作所製、「LC-10A」に、カラム:Shodex GPC KF-803L(排除限界分子量:7×10、分離範囲:100~7×10、理論段数:18,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm))、溶離液テトラヒドロフラン)により測定し、標準ポリスチレン分子量換算により算出した。また、アクリル当量((メタ)アクリルアミド基1個当たりの分子量)を算出した。
(2)粘度測定
 得られたウレタン変性(メタ)アクリルアミド等 1重量部、テトラヒドロフラン 1重量部を均一に混合し、コーンプレート型粘度計(装置名:RE550型粘度計 東機産業株式会社製)にて、JIS K5600-2-3に準じて、25℃における溶液粘度を測定した。
 ウレタン変性(メタ)アクリルアミド化合物(A)の合成例について以下に示す。
合成例1 ウレタン変性(メタ)アクリルアミド UY-1の合成
 撹拌機、温度計、冷却器および乾燥ガス導入管を備えた容量300mLの4つ口フラスコにイソホロンジイソシアネート(IPDI) 44.4g(0.2mol)、ETERNACOLL UC-100(ポリカーボネートポリオール、宇部興産社製、数量平均分子量:1,000)90g(0.09mol)、プリポール2033(ダイマージオール、クローダジャパン社製、数量平均分子量:540)5.4g(0.01mol)、メチルエチルケトン(MEK)48.6g、ジブチルヒドロキシトルエン(BHT) 0.08gを仕込み、乾燥窒素を通しながら、70℃まで昇温した後、ジブチル錫ジラウレート 16.2mgを滴下し、70℃で4時間反応させた。次に、ヒドロキシエチルアクリルアミド(KJケミカルズ(株)製、商標登録「HEAA」) 23.0g(0.2mol)を加え、乾燥空気の気流下、系内温度を80℃に保持しながら3時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUY-1 161.9gを得た。赤外吸収スペクトル(IR)により分析を行い、原料であるIPDIのイソシアネート基の特有吸収(2260cm-1)が完全に消失し、また、「HEAA」由来のアミド基の特有吸収(1650cm-1)および生成するウレタン結合の特有吸収(1740cm-1)が検出されたことにより、目的のウレタン変性(メタ)アクリルアミドUY-1の生成を確認した。得られたUY-1の数量平均分子量は1,600、アクリル当量は800、25℃における溶液粘度は20mPa・sであった。
合成例2 ウレタン変性(メタ)アクリルアミド UY-2の合成
 合成例1と同じ装置を用い、ユニルーブ DGP-700F(ポリエーテルポリオール、4官能、日油社製、数量平均分子量:700)17.5g(0.025mol)、ETERNACOLL UH-50(ポリカーボネートポリオール、宇部興産社製、数量平均分子量:500)50g(0.1mol)、ヘキサメチレンジイソシアネート(HDI)52.4g(0.2mol)、MEK 39.4g、BHT 0.07gを仕込み、乾燥窒素を通しながら、65℃まで昇温した後、トリエチレンジアミン 0.13gを滴下し、65℃で5時間反応させた。次に、「HEAA」 11.5g(0.1mol)を仕込み、乾燥空気の気流下、系内温度を65℃に保持しながら3時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUY-2 131.4gを得た。合成例1と同様に、IR分析により目的のウレタン変性(メタ)アクリルアミドUY-2の生成を確認した。得られたUY-2の数量平均分子量は4,480、アクリル当量は1,120、25℃における溶液粘度は35mPa・sであった。
合成例3 ウレタン変性(メタ)アクリルアミド UY-3の合成
 合成例1と同じ装置を用い、ジシクロヘキシルメタン-4,4'-ジイソシアナート(水添MDI) 16.8g(0.1mol)、UMMA-1001(アクリルポリオール(メチルアクリレート主骨格、単官能、綜研化学社製、数量平均分子量:1,000) 50g(0.05mol)、UH-100(ポリカーボネートポリオール、宇部興産社製、数量平均分子量:1000) 50g(0.05mol)、BHT 0.06gを仕込み、乾燥窒素を通しながら、65℃まで昇温した後、ジブチル錫ジラウレート 12.3mgを滴下し、65℃で4時間反応させた。次に、「HEAA」 5.8g(0.05mol)を仕込み、乾燥空気の気流下、系内温度を65℃に保持しながら3時間撹拌を続け、粘性のある液体としてUY-3 122.6gを得た。合成例1と同様に、IR分析により目的のウレタン変性(メタ)アクリルアミドUY-3の生成を確認した。得られたUY-3の数量平均分子量は2,700、アクリル当量は2,700、25℃における溶液粘度は23mPa・sであった。
合成例4 ウレタン変性(メタ)アクリルアミドUY-4の合成
合成例1と同じ装置を用い、IPDIのイソシアヌレート体(IPDIヌレート)16.7g(0.025mol)、クラレポリオールP-530(ポリエステルポリオール、クラレ社製、数量平均分子量500)37.5g(0.075mol)、MEK 24.2g、BHT 0.04g、ジブチル錫ジラウレート 8.1mgを仕込んだ後、乾燥窒素を通しながら、IPDI 16.7g(0.075mol)を65℃に維持するように滴下速度を調製しながら滴下し、65℃で2時間反応させた。次に、N-メチルヒドロキシエチルアクリルアミド(MHEAA)を 9.7g(0.08mol)を仕込み、乾燥空気の気流下、系内温度を65℃に保持しながら5時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUY-4 80.5gを得、合成例1と同様に、IR分析により目的のウレタン変性(メタ)アクリルアミドUY-4の生成を確認した。得られたUY-4の数量平均分子量は3,200、アクリル当量は1,100、25℃における溶液粘度は28mPa・sであった。
合成例5 ウレタン変性(メタ)アクリルアミドUY-5の合成
 合成例1と同じ装置を用い、GI-1000(両末端水酸基ブタジエン、日本曹達社製、数量平均分子量1,500) 75g(0.05mol)、MEK 34.2g、BHT 0.06g、ペンタメチルジエチレントリアミン 0.11gを仕込んだ後、乾燥窒素を通しながら、水添MDI 26.2(0.1mol)を70℃に維持するように滴下速度を調製しながら滴下し、70℃で4時間反応させた。次に、ヒドロキシエチルメタクリルアミド(HEMAA)12.9g(0.10mol)を仕込み、乾燥空気の気流下、系内温度を70℃に保持しながら4時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUY-5 114.1gを得、合成例1と同様に、IR分析により目的のウレタン変性(メタ)アクリルアミドUY-5の生成を確認した。得られたUY-5の数量平均分子量は2,250、アクリル当量は1,130、25℃における溶液粘度は80mPa・sであった。
合成例6 ウレタン変性(メタ)アクリルアミドUY-6の合成
 合成例1と同じ装置を用い、KF-6000(両末端カルビノール変性シリコーン、信越化学社製、数平均分子量:1,000) 50g(0.05mol)、トリメチルヘキサメチレンジイソシアネート(TMHDI) 21.0g(0.1mol)、BHT 0.04gを仕込み、乾燥窒素を通しながら、70℃まで昇温した後、ジブチル錫ジラウレート 8.3mgを滴下し、70℃で5時間反応させた。次に、「HEAA」 11.5g(0.1mol)を仕込み、乾燥空気の気流下、系内温度を80℃に保持しながら3時間撹拌を続けた。粘性のある液体としてUY-6 82.5gを得、合成例1と同様に、IR分析により目的のウレタン変性(メタ)アクリルアミドUY-6の生成を確認した。得られたUY-6の数量平均分子量は1,700、アクリル当量は830、25℃における溶液粘度は12mPa・sであった。
合成例7 ウレタン変性(メタ)アクリルアミドUY-7の合成
 合成例1と同じ装置を用い、ユニオール D-250(ポリプロピレングリコール、日油社製、数量平均分子量:250) 25g(0.1mol)、BHT 0.04を仕込み、乾燥窒素を通しながら、75℃まで昇温した後、ジブチル錫ジラウレート 8.2mgを滴下し、HDI 33.6g(0.2mol)75℃で3時間反応させた。次に、「HEAA」 23.0g(0.2mol)を仕込み、乾燥空気の気流下、系内温度を75℃に保持しながら3時間撹拌を続けた。粘性のある液体としてUY-7 81.6gを得、合成例1と同様に、IR分析により目的のウレタン変性(メタ)アクリルアミドUY-7の生成を確認した。得られたUY-7の数量平均分子量は820、アクリル当量は400、25℃における溶液粘度は8mPa・sであった。
比較合成例1 ウレタンアクリル系オリゴマー(UA-1)の合成
 合成例1と同じ装置を用い、デュラノール T4672(ポリカーボネートポリオール、旭化成ケミカルズ製、数量平均分子量:2,000) 100g(0.05mol)、IPDIヌレート 11.1g(0.02mol)、MEK 38.4g、BHT 0.06gを仕込み、80℃まで昇温した後、ジブチル錫ジラウレート 12.8mgを滴下し、乾燥窒素を通しながら、IPDI 14.7g(0.07mol)を80℃に維持するように滴下速度を調製しながら滴下し、80℃で4時間反応させた。次に、「HEAA」 9.4g(0.08mol)を仕込み、乾燥空気の気流下、系内温度を80℃に保持しながら3時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUA-1 135.2gを得、合成例1と同様に、IR分析によりウレタンアクリル系オリゴマーUA-1の生成を確認した。得られたUA-1の数量平均分子量は7,700、アクリル当量は2,600、25℃における溶液粘度は250mPa・sであった。
比較合成例2 ウレタンアクリル系オリゴマー(UA-2)の合成
 合成例1と同じ装置を用い、ユニオール D-400(ポリプロピレングリコール、日油製、数量平均分子量400) 53.3g(0.13mol)、BHT 0.06g、ジブチル錫ジラウレート 12.1mgを仕込んだ跡、乾燥窒素を通しながら、水添MDI 52.4g(0.2mol)を80℃に維持するように滴下速度を調製しながら滴下し、80℃で5時間反応させた。次に、「HEAA」を15.3g(0.13mol)を仕込み、乾燥空気の気流下、系内温度を80℃に保持しながら3時間撹拌を続けた。粘性のある液体としてUA-2 121.0gを得、合成例1と同様に、IR分析によりウレタンアクリル系オリゴマーUA-2の生成を確認した。得られたUA-2の数量平均分子量は1,900、アクリル当量は950、25℃における溶液粘度は24mPa・sであった。
比較例合成3 ウレタンアクリル系オリゴマーUA-3の合成
 合成例1と同じ装置を用い、KF-6000 60g(0.06mol)、IPDI 26.6g(0.12mol)、BHT 0.05gを仕込んだ後、乾燥窒素を通しながら、80℃まで昇温させた後、ジブチル錫ジラウレート 10.1mg、80℃で4時間反応させた。次に、ヒドロキシエチルアクリレート(HEA) 13.9g(0.12mol)を仕込み、乾燥空気の気流下、系内温度を70℃に保持しながら3時間撹拌を続けた。粘性のある液体として100.6gを得、合成例1と同様に、IR分析によりウレタンアクリル系オリゴマーUA-3の生成を確認した。得られたUA-3の数量平均分子量は1,500、アクリル当量は850、25℃における溶液粘度は10mPa・sであった。
比較例合成4 ウレタンアクリル系オリゴマーUA-4の合成
 合成例1と同じ装置を用い、ユニオールTG-330(ポリオキシプロピレンーグリセリンエーテル、3官能、日油社製、数量平均分子量:330) 13.2g(0.04mol)、IPDIヌレート 79.9g(0.12mol)、MEK 36.3g、BHT 0.06gを仕込んだ後、乾燥窒素を通しながら、65℃まで昇温させた後、ジブチル錫ジラウレート 12.1mg、65℃で4時間反応させた。次に、HEA 27.8g(0.24mol)を仕込み、乾燥空気の気流下、系内温度を65℃に保持しながら4時間撹拌を続けた。減圧法により溶剤を留去し、固体としてウレタンアクリル系オリゴマーUA-4121.0gを得た。合成例1と同様に、IR分析によりUA-4の生成を確認した。得られたUA-4の数量平均分子量は3,000、アクリル当量は500、25℃における溶液粘度は23mPa・sであった。
比較例合成5 アダクトタイプのウレタンアクリルアミドUA-5の合成
 特許文献2(特開2002-37849号公報)の実施例2を参考に、トリレンジイソシアネート(TDI)74.8g(0.43mol)、「HEAA」100g(0.87mol)をN,N-ジメチルホルムアミド(DMF)180g中にて40℃、4時間反応することにより合成し、減圧法により溶媒を留去し、固体としてアダクトタイプのウレタンアクリルアミドUA-5を取得した。得られたUA-5の数量平均分子量は400、25℃における溶液粘度は8mPa・sであった。
 多官能(メタ)アクリル化合物(B)の合成例について以下に示す。
合成例8 反応性ウレタンポリマーUP-1の合成
 合成例1と同じ装置を用い、ETERNACOLL UC-100 75g(0.075mol)、MEK 51.5g、BHT 0.06g、ジブチル錫ジラウレート 11.1mgを仕込み、乾燥窒素を通しながら、65℃まで昇温した後、IPDI 26.2g(0.12mol)を滴下し、65℃で4時間反応させた。その後、「HEAA」 10.0g(0.09mol)を仕込み、乾燥空気の気流下、系内温度を65℃に保持しながら4時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUP-1 111.1gを得た。合成例1と同様に、IR分析により目的の反応性ウレタンポリマーUP-1の生成を確認した。得られたUP-1の数量平均分子量は4,700、アクリル当量は1,560、25℃における溶液粘度は55mPa・sであった。
合成例9 反応性ウレタンポリマーUP-2の合成
 合成例1と同じ装置を用い、TDI 8.7g(0.05mol)、PTMG2000(ポリテトラメチレンエーテルグリコール、三菱化学社製、数量平均分子量:2,000) 90g(0.045mol)、MEK 50.0g、BHT 0.05gを仕込み、乾燥窒素を通しながら、75℃まで昇温した後、ジブチル錫ジラウレート 10.0mgを滴下し、75℃で3時間反応させた。次に、ヒドロキシエチルメタクリレート(HEMA)1.3g(0.01mol)を仕込み、乾燥空気の気流下、系内温度を75℃に保持しながら3時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUP-2 100.0gを得た。合成例1と同様に、IR分析により目的の反応性ウレタンポリマーUP-2の生成を確認した。得られたUP-2の数量平均分子量は20,000、アクリル当量は10,000、25℃における溶液粘度は180mPa・sであった。
合成例10 反応性ウレタンポリマーUP-3の合成
 合成例1と同じ装置を用い、IPDI 11.1g(0.05mol)、ETERNACOLL UHC-50-200(ポリカーボネートポリオール、宇部興産社製、数量平均分子量:2,000) 80g(0.04mol)、MEK 46.7g、BHT 0.05gを仕込み、乾燥窒素を通しながら、70℃まで昇温した後、ジブチル錫ジラウレート 9.3mgを滴下し、70℃で4時間反応させた。次に、HEA 2.3g(0.02mol)を仕込み、乾燥空気の気流下、系内温度を70℃に保持しながら4時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUP-3 93.4gを得た。合成例1と同様に、IR分析により目的の反応性ウレタンポリマーUP-3の生成を確認した。得られたUP-3の数量平均分子量は9,000、アクリル当量は4,600、25℃における溶液粘度は80mPa・sであった。
合成例11 反応性ウレタンポリマーUP-4の合成
 合成例1と同じ装置を用い、IPDIヌレート 1.11g(2mmol)、IPDI 11.1g(50mmol)、ユニオールD-2000(ポリプロピレングリコール、日油社製、数量平均分子量:2,000) 91g(0.045mol)、MEK 51.8g、BHT 0.05gを仕込み、乾燥窒素を通しながら、70℃まで昇温した後、ジブチル錫ジラウレート 10.4mgを滴下し、70℃で3時間反応させた。次に、HEA 0.5g(5mmol)を仕込み、乾燥空気の気流下、系内温度を80℃に保持しながら3時間撹拌を続けた。減圧法により溶剤を留去し、粘性のある液体としてUP-4 103.6gを得た。合成例1と同様に、IR分析により目的の反応性ウレタンポリマーUP-4の生成を確認した。得られたUP-4の数量平均分子量は68,000、アクリル当量は22,500、25℃における溶液粘度は1200mPa・sであった。
 合成例1~7で得られたウレタン変性(メタ)アクリルアミド及び比較合成例5で得られたウレタンアクリル系オリゴマーを用いて、汎用有機溶剤やアクリルモノマーに対する溶解特性を以下の方法で評価し、結果を表1に示す。また、評価に用いた溶剤、モノマーは以下の通りである。
IPA:イソプロパノール
MEK:メチルエチルケトン
THF:テトラヒドロフラン
「ACMO」:N-アクリロイルモルホリン(商標登録「ACMO」)
HDDA:1,6-ヘキサンジオール ジ アクリレート
BA:ブチルアクリレート
IBOA:イソボルニルアクリレート
2EHA;2-エチルヘキシルアクリレート
THFA;テトラヒドロフルフリルアクリレート
(3)溶解性
 得られたウレタン変性(メタ)アクリルアミド等 1重量部に希釈剤として汎用の溶剤又はアクリルモノマーを1重量部添加、撹拌後、一晩静置し、目視により溶解の程度を確認した。
 ◎:透明性が高く、白濁や分離が全く確認されない。
 ○:透明性は高いが、白濁が僅かに見られる。
 △:層分離はしてないが、白濁している。
 ×:白濁し、さらに層分離している
 評価実施例、評価比較例の結果に示されているとおり、アダクトタイプのウレタンアクリルアミドは汎用溶剤やアクリルモノマーに対する溶解性が悪く、特に疎水性溶剤、モノマーには溶解できず、活性エネルギー線硬化性樹脂組成物としては取扱に困難であった。これはアダクトタイプのウレタンアクリルアミドの分子内及び分子間の水素結合が非常に強いためであり、自己凝集による溶媒や他種モノマーへの分散は困難であった。
 合成例1~6で得られたウレタン変性(メタ)アクリルアミド、比較合成例1~4で得られたウレタンアクリル系オリゴマーを用いて、活性エネルギー線硬化性樹脂組成物を調製した。そして、これらの樹脂組成物を使用し、紫外線硬化膜の作製及び硬化膜の特性評価を行い、結果を表2に示す。
実施例A-1
 合成例1で得られたウレタン変性(メタ)アクリルアミドUY-1 100重量部、MEK 100重量部と光重合開始剤としてDarocur 1173  3重量部を均一に混合し、活性エネルギー線硬化性樹脂組成物を調製した。その後、得られた硬化性樹脂組成物を用い、下記方法にて紫外線硬化膜を作製した。
紫外線硬化膜の作製方法
 厚さ100μmのポリエチレンテレフタラート(PET)フィルム(「コスモシャイン A4100」東洋紡社製、片面アンカーコート処理)のアンカーコート面にバーコーター(RDS 12)にて塗布し、乾燥塗膜の厚みが10μmになるように塗膜を作製した。得られた塗膜は防爆式乾燥機にて80℃、2分間乾燥した後、紫外線照射(装置:アイグラフィックス製インバーター式コンベア装置ECS-4011GX、メタハライドランプ:アイグラフィックス製M04-L41)により硬化させ、紫外線硬化膜を作製した。樹脂組成物の硬化性、得られた硬化膜の耐タック性、耐収縮性、透明性、吸水率、密着性を評価し、結果を表2に示す。
(4) 硬化性
 前記と同様に厚み10μmの乾燥塗膜を作製し、温度70℃にて照度2mW/cmの紫外線を120秒照射し(積算光量240mJ/cm)、樹脂組成物のビニル基由来のピーク(1630cm-1)高さをリアルタイムFT-IRにて測定し、塗膜の硬化率を算出した(硬化率(%)=(硬化前のビニル基由来ピーク高さ-硬化後のビニル基由来ピーク高さ)/硬化前のビニル基由来ピーク高さ×100)。
 ◎:硬化率90%以上
 ○:硬化率80%以上90%未満
 △:硬化率50%以上80%未満
 ×:硬化率50%未満
(5) 耐タック性
 前記と同様に厚み10μmの乾燥塗膜を作製し、温度70℃にて照度700mW/cmの紫外線を3秒照射し(積算光量2100mJ/cm)、完全硬化した塗膜(完全硬化膜)を作製した。完全硬化膜の表面を指で触り、べたつき具合を評価した。
  ◎:べたつきが全くない。
  ○:若干のべたつきがあるが、表面に指の跡が残らない。
  △:べとつきがあり、表面に指の跡が残る。
  ×:べとつきがひどく、表面に指が貼りつく。
(6) 耐カール性(耐収縮性)
 前記と同様に厚み60μmの完全硬化膜を作製した。得られた完全硬化膜を10cm角に切り取り、四隅の浮き上がりの高さを測定し、同様に切り取った5枚分の測定値から平均値を算出した。
 ◎:浮き上がり高さは0.5mm未満である。
 ○:浮き上がり高さは0.5mm以上、かつ1mm未満である。
 △:浮き上がり高さは1mm以上、かつ3mm未満である。  
 ×:浮き上がり高さは3mm以上である。
(7)透明性(目視)
 前記の耐収縮性試験で得られた完全硬化塗膜を用いて、目視によって観察し、透明性を評価した。
 ◎:透明であり、曇りが全くない。
 ○:透明であり、曇りが僅かにある。
 △:曇りがあるが、透明な部分も残ってある。
 ×:極度な曇りがあり、透明な部分が確認できない。
(8) 吸水率
 深さ1mmとなるようにくり抜いたテフロンシート上に硬化性樹脂組成物を流し込み、真空乾燥(50℃、400torr)した後、紫外線照射(700mW/cm、2000mJ/cm)にて硬化させ、紫外線硬化シートを作製した。得られたシートを3cm角に切り取り、それを試験片とした。得られた試験片を温度50℃、相対湿度95%の環境に24時間静置し、その吸水率を算出した(吸水率(%)=(恒温恒湿後の重量-恒温恒湿前の重量)/恒温恒湿前の重量×100)
(10)密着性
 前記と同様に各種材質の基板上に厚み10μmの完全硬化膜を作製した。JIS K 5600に準拠して、1mm角のマス目を100個作成し、セロハンテープを貼り付け、一気に剥がした時に基板側に塗膜が残ったマス目の数を数えて評価した。
実施例A-2~A-7、比較実施例A-8~A-11
 表2に記載の組成に代えた以外は実施例A-1と同様に紫外線硬化性樹脂組成物を調製し、硬化膜を作製、上記方法にて評価を行った。結果を表2に示す。
 評価実施例と評価比較例の結果に示されるとおり、本発明のウレタン変性(メタ)アクリルアミドは、分子量及びアクリル当量が特定の範囲内であるため、活性エネルギー線硬化性が高く、得られた硬化膜の表面乾燥性(耐タック性)、耐カール性及び耐水性が良好であり、また透明性や各種基材に対する密着性も全て満足できるものである。しかし、分子量又はアクリル当量が本発明の特定範囲から外れてしまうと、硬化性、耐タック性と耐カール性の全て満足できるものが取得できなくなり、その結果、硬化膜の透明性、密着性と耐水性も低下してしまった。特に分子量が高すぎる場合、カーボネート骨格やエーテル骨格由来の特性が強く現われ、結晶性の向上に伴う透明性が低下し、硬化膜の密着性低下(評価比較例A-8)や硬化膜表面のべたつき(評価比較例A-9)が顕著となるようになった。
 一方、(メタ)アクリレートを含有するウレタンアクリル系オリゴマーでは、分子量及びアクリル当量がともに本発明の特定範囲内であっても、硬化性、耐タック性と耐硬化収縮性のいずれか一項以上の性能が満足できず、密着性も低かった。また、1分子当たりに6個のアクリレート基を有する評価比較例A-11では、外観上耐タック性が良好であったが、ビニル基の硬化率が50%未満に留まって、硬化収縮率も高かった。
 本発明のウレタン変性(メタ)アクリルアミドは分子量およびアクリル当量が特定範囲内であり、硬化性が高いのにもかかわらず、耐カール性に優れた硬化膜を取得することができた。これは、アミド基同士又はアミド基とウレタン結合との間の水素結合が強く、本発明のウレタン変性(メタ)アクリルアミドが硬化前においても凝集状態で存在し、その結果、硬化前後の分子間の距離が大幅に縮むことはなく、硬化膜全体の収縮性も抑制できたと発明者らが推測している。
 合成例1~7で得られたウレタン変性(メタ)アクリルアミド、比較合成例1~5で得られたウレタンアクリル系オリゴマーを用いて、各応用分野における特性評価を行った。実施例及び比較例に用いた材料は以下の通りである。
「HEAA」;ヒドロキシエチルアクリルアミド(KJケミカルズ(株)製)
「DMAA」;N,N-ジメチルアクリルアミド(KJケミカルズ(株)製)
「DEAA」;N,N-ジエチルアクリルアミド(KJケミカルズ(株)製)
「ACMO」;N-アクリロイルモルホリン(KJケミカルズ(株)製)
「DMAPAA」;ジメチルアミノプロピルアクリルアミド(KJケミカルズ(株)製)
HEA;ヒドロキシエチルアクリレート
2EHA;2-エチルヘキシルアクリレート
EEA;2-(2-エトキシエトキシ)エチルアクリレート
THFA;テトラヒドロフルフリルアクリレート
IBOA;イソボルニルアクリレート
IBMA;イソボルニルメタクリレート
VEEA;2-(2-ビニロキシエトキシ)エチルアクリレート
CHA;シクロヘキシルアクリレート
CHMA;シクロヘキシルメタクリレート
4HBA;4-ヒドロキシブチルアクリレート
A-LEN-10;エトキシ化o-フェニルフェノールアクリレート(新中村化学工業(株)製)
HDDA;1,6-ヘキサンジオールジアクリレート
TPGDA;トリプロピレングリコールジアクリレート
PETA;ペンタエリスリトールトリアクリレート
DPHA;ジペンタエリスリトールヘキサアクリレート
DMAEA-TFSIQ;アクリロイルオキシエチルトリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド(KJケミカルズ(株)製)
DMAPAA-TFSIQ;アクリロイルアミノプロピルトリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド(KJケミカルズ(株)製)
Irgacure 184;1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASFジャパン製)
Irgacure 1173;2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(BASFジャパン製)
Irgacure TPO;2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(BASFジャパン製)
Irgacure 819;ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド((BASFジャパン製)
Irgacure 127;2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル]-2-メチル-プロパン-1-オン(BASFジャパン製)
ヒタロイド7851;エポキシアクリレートオリゴマー(日立化成製)
ヒタロイド7975;アクリルアクリレートオリゴマー(日立化成製)(溶剤型材料であったため、エバポレーターにて脱溶剤後使用)
評価実施例B-1
 合成例1で合成したウレタン変性(メタ)アクリルアミドUY-1 8重量部、合成例12で合成した反応性ウレタンポリマー UP-4 30重量部、「HEAA」 10重量部、「DEAA」 30重量部、CHA 4重量部、EEA  15重量部、DMAPAA-TFSIQ 3重量部を混合し、光重合開始剤としてIrgacure 184 1重量部を加え、均一に混合し、紫外線硬化性粘着剤を調製した。その後、得られた粘着剤を用い、下記方法にて、紫外線硬化による粘着シートの作成及び評価を行った。
紫外線硬化型粘着シートの作製方法
 上記にて調製した紫外線硬化型粘着剤を重剥離セパレーター(シリコーンコートPETフィルム)に塗工し、軽剥離セパレーター(シリコーンコートPETフィルム)で気泡を噛まないように卓上型ロール式ラミネーター機(Royal Sovereign製 RSL-382S)を用いて、粘着層が厚さ25μmになるように貼り合わせ、紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS-4011GX、メタルハライドランプ:アイグラフィックス製 M04-L41、紫外線照度:700mW/cm、積算光量:2000mJ/cm)し、光学用透明粘着シートを作製した。得られた粘着シートの特性を下記方法で評価し、結果を表3に示す。
(10)透明性(透過率)
 温度23℃、相対湿度50%の条件下、被着体としてガラス基板に25mm幅に裁断した粘着シートの軽剥離セパレーターの剥がした面を貼り付け、更に重剥離セパレーターを剥がし、透過率を測定した。測定はヘイズメーター(日本電色工業社製、NDH-2000)を用いて、JIS K 7105に準拠し、ガラス基板の全光線透過率を測定した後、ガラス板の透過率を差し引き、粘着層自体の透過率を算出し、透明性を数値として評価した。透過率が高いほど、透明性が良い。
(11)表面抵抗率測定
 型板 (縦110×横110mm) を用い、カッターナイフで粘着シートを裁断し、温度23℃、相対湿度50%に調整した恒温恒湿機に入れ、3時間静置し、表面抵抗率測定用試料を得た。JIS K 6911 に基づき、デジタルエレクトロメーター(R8252型:エーディーシー社製)を用いて測定を行った。
(12)粘着力
 温度23℃、相対湿度50%の条件下、被着体としてポリエチレンテレフタレート(PET)フィルム(厚さ100μm)またはガラスの基板に転写し、重さ2kgの圧着ローラーを用いて2往復することにより加圧貼付し、同雰囲気下で30分間放置した。その後、引っ張り試験機(装置名:テンシロンRTA-100 ORIENTEC社製)を用いて、剥離速度300mm/分にて180°剥離強度(N/25mm)を測定した。
 ◎ :15(N/25mm)以上
 ○ :10(N/25mm)以上、15(N/25mm)未満
 △ :3(N/25mm)以上、10(N/25mm)未満
 × :3(N/25mm)未満
(13)耐汚染性
粘着シートを前述の粘着力の測定と同様に被着体に貼り付け、80℃、24時間放置した後、粘着シートを剥がした後の被着体表面の汚染を目視によって観察した。
 ◎:汚染なし
 ○:ごく僅かに汚染がある。
 △:僅かに汚染がある。
 ×:糊(粘着剤)残りがある。
(14)耐黄変性
粘着シートをガラス基板に貼り付け、キセノンフェードメーター(SC-700-WA:スガ試験機社製)にセットし、70mW/cmの強度の紫外線を、120時間照射した後、粘着シートの変色を目視によって観察した。
 ◎:黄変が目視で全く確認できない。
 ○:黄変が目視でごく僅かに確認できる。
 △:黄変が目視で確認できる。
 ×:明らかな黄変が目視で確認できる。
(15)耐湿熱性
粘着シートを前述の耐黄変性試験と同様にガラス基板に貼り付け、温度85℃、相対湿度85%の条件下で100時間保持した後の浮き・剥がれ、気泡、白濁の発生有無を目視によって観察、評価した。
 ◎:透明で、浮き・剥がれも気泡も発生しない。
 ○:ごく僅かな曇りがあるが、浮き・剥がれも気泡も発生しない。
 △:僅かな曇り又は浮き・剥がれ、気泡がある。
 ×:極度な曇り又は浮き・剥がれ、気泡がある。
(16)段差追従性
ガラス基板に厚み20μmの黒色テープを貼り合わせ、段差付きのガラスを作製した。粘着シートを段差付きガラスに転写し、温度23℃、相対湿度50%の雰囲気下で2kg荷重のローラーにて1往復(圧着速度300mm/分)加圧貼付し、温度80℃にて24時間放置した後、段差部分の状態を光学顕微鏡で確認した。
 ◎:全く気泡が見られない
 〇:わずかに小さな球状の気泡が見られる
 △:大きな気泡が見られ、気泡同士がつながっている場合がある
 ×:大きな気泡同士がつながり、段差部分で線上に広がっている 
(17)抜き打ち加工性
得られた粘着シートをトムソン打ち抜き法(直線刃が並行に5.0mm間隔で10本並んだ抜き打ち刃による打ち抜き法)によってカッティングを施した。
 ◎:打ち抜き刃に全く何も残らなかった。
 〇:打ち抜き刃にわずかに粘着剤が残った。
 △:打ち抜き刃に粘着剤が残る。
 ×:打ち抜き刃に粘着剤が著しく残り、明確にカッティング表面を確認できない。
評価実施例B-2~7、評価比較例B-8~11
 表3に記載の組成に代えた以外は評価実施例B-1と同様に紫外線硬化樹脂組成物を調製し、粘着シートを作製し、上記方法にて評価した。結果を表3に示す。
 評価実施例と評価比較例の結果に示されるとおり、分子量およびアクリル当量が一定範囲外であるウレタン変性(メタ)アクリルアミド、もしくは分子量及びアクリル当量が一定範囲内であるウレタン変性(メタ)アクリレートを配合される場合は、いずれも粘着力、耐湿熱性が低下する傾向があり、また硬化後粘着シートの耐汚染性や抜き打ち加工性においても不良であることから使用が困難であった。本発明のウレタン変性(メタ)アクリルアミドを用いることにより、透明性や粘着力がありながら、耐汚染性、抜き打ち加工性に優れた粘着シートを得ることが出来る。
評価実施例C-1
 合成例1で合成したウレタン変性(メタ)アクリルアミドUY-1  22重量部、合成例10で合成した反応性ウレタンポリマーUP-3 15重量部、「ACMO」  18重量部、「HEAA」 9重量部、「DMAA」  14重量部、THFA  10重量部、IBOA 12重量部を混合し、光重合開始剤としてIrgacure 1173 3重量部を加え、均一に混合し、紫外線硬化性接着剤を調製した。その後、得られた接着剤を用い、下記方法にて、紫外線硬化による偏光板作製及び偏光板の物性評価を行った。
UV照射による偏光板の作製
 卓上型ロール式ラミネーター機(Royal Sovereign製 RSL-382S)を用いて、2枚の透明フィルム(保護フィルム、位相差フィルム又は光学補償フィルム)の間に偏光フィルムを挟み、透明フィルムと偏光フィルムの間に、実施例又は比較例の接着剤を、厚さ10μmになるように貼り合わせた。貼り合わせた透明フィルムの上面から紫外線を照射(紫外線照度:700mW/cm、積算光量:2000mJ/cm)し、偏光フィルムの両側に透明フィルムを有する偏光板を作製した。
(18)表面形状観察
 得られた偏光板表面を目視によって観察し、下記基準で評価した。
 ◎:偏光板の表面に微小なスジも凹凸ムラも確認できない。
 ○:偏光板の表面に部分的に微小なスジが確認できる。
 △:偏光板の表面に微小なスジや凹凸ムラが確認できる。
 ×:偏光板の表面に明らかなスジや凹凸ムラが確認できる。
(19)剥離強度
 温度23℃、相対湿度50%の条件下、20mm×150mmに裁断した偏光板(試験片)を、引っ張り試験機(島津製作所製 オートグラフAGXS-X 500N)に取り付けた試験板に両面接着テープを用いて貼り付けた。両面接着テープを貼付していない方の透明保護フィルムと偏光フィルムの一片を、20~30mm程度あらかじめ剥がしておき、上部つかみ具にチャックし、剥離速度300mm/minにて90°剥離強度(N/25mm)を測定した。
 ◎:3.0(N/25m)以上
 ○:1.5(N/25m)以上、3.0(N/25m)未満
 △:0.5(N/25m)以上、1.5(N/25m)未満
 ×:0.5(N/25m)未満
(20)耐水性
 得られた偏光板を20×80mmに切断し、60℃の温水に48時間浸漬した後、偏光子と保護フィルム、位相差フィルム、光学補償フィルムとの界面における剥離の有無を確認した。判定は下記の基準で行った。
 ◎:偏光子と保護フィルムとの界面で剥離なし(1mm未満)。
 ○:偏光子と保護フィルムとの界面の一部に剥離あり(1mm以上、3mm未満)。
 △:偏光子と保護フィルムとの界面の一部に剥離あり(3mm以上、5mm未満)。
 ×:偏光子と保護フィルムとの界面で剥離あり(5mm以上)。
(21)耐久性
 得られた偏光板を150mm×150mmに裁断し、冷熱衝撃装置(エスペック社製TSA-101L-A)に入れ、-40℃~80℃のヒートショックを各30分間、100回行い、下記基準で評価した。
 ◎:クラックの発生なし。
 ○:端部にのみ5mm以下の短いクラックの発生あり。
 △:端部以外の場所にクラックが短い線状に発生している。しかし、その線により偏光板が2つ以上の部分に分離してはいない。
 ×:端部以外の場所にクラックの発生あり。その線により、偏光板が2つ以上の部分に離している。
評価実施例C-2~7、評価比較例C-8~11
 表4に記載の組成に代えた以外は評価実施例C-1と同様に紫外線硬化樹脂を調製し、偏光板を作製し、上記方法にて評価した。結果を表4に示す。
 評価実施例と評価比較例の結果に示されるとおり、分子量およびアクリル当量が一定範囲外であるウレタン変性(メタ)アクリルアミド、もしくは分子量及びアクリル当量が一定範囲内であるウレタン変性(メタ)アクリレートを配合される場合、エーテルやエステルなど主骨格由来の柔軟性が高く、剥離強度、耐水性が低下する傾向であり、また、接着剤の不完全硬化による剥離強度、耐久性が低くいことから
 使用が困難であった。本発明のウレタン変性(メタ)アクリルアミドを用いた接着剤は、架橋密度が高いことから剥離強度、耐久性が高く、柔軟性と強度のバランスがよく、耐水性にも優れたことが分かった。
評価実施例D-1
 合成例1で合成したウレタン変性(メタ)アクリルアミドUY-1  48重量部、HDDA 15重量部、TPGDA 24重量部、「DEAA」 8重量部、IBOA 5重量部、顔料3重量部、顔料分散剤 3重量部を混合し、光重合開始剤としてIrgacure 819 2重量部、Irgacure 127 3重量部を加え、均一に混合し、光硬化性インキ組成物を調製した。その後、下記方法にて、インクジェット印刷を行い、得られた印刷物の評価を行った。
(22) 粘度
 得られたインク組成物の粘度をJIS K5600-2-3に準じて、コーンプレート型粘度計(装置名:RE550型粘度計 東機産業株式会社製)を使用し、測定した。インクジェット式印刷を踏まえて、20℃におけるインク組成物の粘度は3~20mPa・s以下であることが好ましく、さらには5~18mPa・sであることが好ましい。3mPa・s未満では吐出後の印刷にじみ、印刷ずれによる吐出追従性の低下が見られ、20mPa・s以上では吐出ノズルのつまりによる吐出安定性の低下がみられるため、好ましくない。
(23) 相溶性
 上記の方法により調製したインク組成物を目視により相溶性を確認した。
 ◎:インク組成物に不溶解物なし。
 〇:インク組成物にわずかに不溶解物がみられる。
 △:インク組成物全体に不溶解物がみられる。
 ×:インク組成物に沈殿物あり。
UV照射による印刷物の作製
 得られたインク組成物を厚さ100μmのポリエチレンテレフタラート(PET)フィルムにバーコーター(RDS 12)にて塗布し、紫外線照射(装置:HOYA製LED式UV照射システムH-10MAH20-1T18、385nm)により硬化させ、印刷物を作製した。
(24) 硬化性
 上記方法にて印刷物を作成する際、室温23℃の環境下インク組成物が完全硬化するまでの積算光量を測定した。
  ◎:500mJ/cmで完全硬化
  ○:500~1000mJ/cmで完全硬化
  △:1000~2000mJ/cmで完全硬化
  ×:完全硬化までに2000mJ/cm以上が必要
(25) 表面乾燥性
 上記方法にて作製した印刷物を、室温23℃、相対湿度50%の環境に5分間静置し、印刷面に上質紙を重ね、荷重1kg/cmの付加を1分間かけ、紙へのインクの転写程度を評価した。
  ◎:インクが乾燥し、紙への転写が全くなかった。
  ○:インクが乾燥し、紙への転写がわずかにあった。
  △:インクがほぼ乾燥し、紙への転写があった。
  ×:インクが殆ど乾燥せず、紙への転写が多かった。
インクジェット印刷と印刷適性評価
 インクジェット方式のカラープリンタ(セイコーエプソン製PM-A890)を用いて、ベタ画像を印刷し、紫外線を照射(紫外線照度:700mW/cm、積算光量:2000mJ/cm)することで印刷物を作製し、以下の方法にて評価した。結果は表5に示す。
(26) 吐出安定性
 上記したインクジェットプリンタにて印字を行い、印字物の印刷状態を目視により評価した。
  ◎:ノズル抜けなく、良好に印刷されている。
  〇:わずかにノズル抜けあり。
  △:広い範囲にてノズル抜けがあり。
  ×:不吐出がある。
(27) 鮮明度
 印刷後の画像の鮮明度を目視で観察した。
  ◎:インクにじみが全く見られなく、画像が鮮明であった。
  ○:インクにじみが殆どなく、画像が良好であった。
  △:インクにじみが若干見られた。
  ×:インクにじみが著しくみられた。
(28) 耐水性
 流水中に印刷面を1分間さらし、画像の変化を目視で観察した。
  ◎:画像の鮮明度が全く変わらなかった。
  ○:画像の鮮明度が殆ど変らなかったが、インクにじみが僅かに見られた。
  △:画像の鮮明度が低下し、インクにじみが見られた。
  ×:画像の鮮明度が著しく低下し、インクにじみが著しく見られた。
評価実施例D-2~7、評価比較例D-8~11
 表5に記載の組成に代えた以外は評価実施例D-1と同様にインク組成物を調製し、上記方法にて印刷物を作製し、上記方法にて評価した。結果を表5に示す。
 評価実施例と評価比較例の結果に示されるとおり、分子量およびアクリル当量が一定範囲外であるウレタン変性(メタ)アクリルアミド、もしくは分子量及びアクリル当量が一定範囲内であるウレタン変性(メタ)アクリレートを配合される場合、インク組成物調製後の粘度が高いから吐出安定性が低く、硬化性、表面乾燥性も低い傾向である。また、主骨格由来のべたつきや(メタ)アクリレートの低硬化性により吐出硬化後の印刷物においてにじみがみられた。本発明のウレタン変性(メタ)アクリルアミドを用いる場合、硬化性や硬化密度が高く、表面乾燥性や鮮明度、耐水性を併せ持つ、優れたインク組成物を得ることが出来た。
評価実施例E-1
 合成例1で合成したウレタン変性(メタ)アクリルアミドUY-1 15重量部、合成例8で合成した反応性ウレタンポリマーUP-1 20重量部、合成例10で合成した反応性ウレタンポリマーUP-3 30重量部、PETA 25重量部、IBOA 10重量部を混合し、光重合開始剤としてDarocur 1173 3重量部を加え、均一に混合し、光硬化性コート組成物を調製した。
(29)相溶性
上記の方法により得られたコート剤組成物を目視により相溶性を確認した。
 ◎:コート組成物透明性が高く、白濁や分離が全く確認ない。
 〇:コート組成物の透明性は高いが、白濁が僅かに見られる。
 △:コート組成物全体が白濁している。
 ×:コート組成物に白濁し、さらに分離している。
(30) 濡れ性
得られたコート剤組成物を基材上に塗布し、塗膜の付着状態を目視によって観察した。
 ◎:塗布直後も、5分静置後も、はじくことなく、平滑な塗膜を形成していた。
 〇:塗布直後ははじかなかったが、5分静置後は少々はじきがみられた。
 △:塗布直後に少々はじきがみられた。
 ×:塗布直後に多くのはじきがみられ、均一な塗膜が得られなかった。
紫外線照射によるコート膜の作製
 得られたコート剤組成物を厚さ100μmのPETフィルムにバーコーター(RDS 12)に塗布し、紫外線を照射(紫外線照度:700mW/cm)することでコート膜(厚み10μm)を作製し、下記方法にて評価した。結果を表6に示す。また、溶媒を用いる場合、塗布後80℃にて3分を乾燥させてから紫外線を照射した。
(31) 硬化性
コート剤組成物を塗布し、得られた塗膜に、室温23℃環境下、紫外線照度700mW/cmを照射し、樹脂組成物が完全硬化するまでの積算光量を測定した。完全硬化とは硬化膜の表面をシリコンゴムでなぞった際に跡がつかなくなる状態とする。
  ◎:積算光量1000mJ/cmで完全硬化。
  〇:積算光量1000mJ/cm~2000mJ/cmで完全硬化。
  △:積算光量2000mJ/cm~5000mJ/cmで完全硬化。
  ×:完全硬化まで積算光量5000mJ/cm以上が必要。
(32) 耐タック性
 上記方法にて得られたコート膜の表面を指で触り、べたつき具合を評価した。
  ◎:べたつきが全くない。
  ○:若干のべたつきがあるが、表面に指の跡が残らない。
  △:べとつきがあり、表面に指の跡が残る。
  ×:べとつきがひどく、表面に指が貼りつく。
(33) 耐カール性(耐収縮性)
 上記方法にて得られた塗膜に紫外線照射(紫外線照度700mW/cm,積算光量2000mJ/cm)して得られたコート膜を10cm角に切り取り、四隅の浮き上がりの平均を測定した。
  ◎:浮き上がり高さは0.5mm未満である。
  ○:浮き上がり高さは0.5mm以上、かつ1mm未満である。
  △:浮き上がり高さは1mm以上、かつ3mm未満である。  
×:浮き上がり高さは3mm以上である。
(34)耐擦傷性
#0000のスチールウールを用いて、200g/cmの荷重をかけながら10往復させ、傷の発生の有無を目視で評価した。
 ◎:膜の剥離や傷の発生がほとんど認められない。
 ○:膜の一部にわずかな細い傷が認められる。
 △:膜全面に筋状の傷が認められる。
 ×:膜の剥離が生じる。
(35)自己修復性
 上記方法にて得られたコート膜にさじで傷をつけてから温度25℃、相対湿度50%の環境に静置し、傷の回復状態を目視にて評価した。
  ◎:30分以内に傷が完全に回復している。
  ○:30分~5時間以内に傷が完全に回復している。
  △:5時間~24時間以内に傷が完全に回復している。
  ×:24時間静置後も傷が完全に回復しない。
(36) 密着性
 JIS K 5600に準拠して、1mm角のマス目を100個作成し、セロハンテープを貼り付け、一気に剥がした時に基板側に塗膜が残ったマス目の数を数えて評価した。
(37) 耐湿性
 PETフィルム(100μm)上に得られたコート膜を、温度50℃、相対湿度95%の環境に24時間静置し、その後の膜を目視、もしくは密着性試験にて評価した。
  ◎:高温高湿下でも透明性を維持し、密着性の低下も見られない。
  〇:高温高湿下でも透明性を維持するが、密着性においてわずかに低下がみられる。
  △:高温高湿下でも透明性を維持するが、密着性において大幅に低下がみられる。
  ×:高温高湿下において透明性の低下、さらに密着性の低下がみられる。
評価実施例E-2~7、評価比較例E-8~11
 表6に記載の組成に代えた以外は評価実施例E-1と同様にコート組成物を調製し、上記方法にて硬化膜を作製し、上記方法にて評価した。結果を表6に示す。
 評価実施例と評価比較例の結果に示されるとおり、分子量およびアクリル当量が一定範囲外であるウレタン変性(メタ)アクリルアミド、もしくは分子量及びアクリル当量が一定範囲内であるウレタン変性(メタ)アクリレートを配合される場合、コート剤の硬化性、得られたコート膜の表面乾燥性(耐タック性)が低く、耐擦傷性と自己修復性も低減傾向である。本発明のウレタン変性(メタ)アクリルアミドを用いた場合は、硬化膜内部の架橋密度が高いことから硬化性、表面乾燥性に加え、耐擦傷性と自己修復性を兼ね備えた硬化膜を調製することが可能であった。
評価実施例F-1
 合成例1で合成したウレタン変性(メタ)アクリルアミド系UY-1  32重量部、合成例6で合成したウレタン変性(メタ)アクリルアミドUY-6 5重量部、合成例9で合成した反応性ウレタンポリマーUP-2 22重量部、「ACMO」 5重量部、IBMA 21重量部、CHMA 15重量部を混合し、光重合開始剤としてIrgacure 184 3重量部を加え、均一に混合し、爪装飾用コート剤組成物を調製した。
爪装飾方法
 得られた爪装飾用コート剤組成物を爪上にフラットブラシを用いて均一に塗布し、ジェルネイル専用LEDライト(12W)を用いて20秒照射することで、爪上に爪装飾を形成した。
(38)硬化性
 上記方法にて得られた爪装飾の表面を指で触り、べたつき具合を評価した。
  ◎:べたつきが全くない。
  ○:若干のべたつきがあるが、表面に指の跡が残らない。
  △:べとつきがあり、表面に指の跡が残る。
  ×:べとつきがひどく、表面に指が貼りつく。
(39)平滑性
 上記方法にて得られた爪装飾の表面を目視にて確認した。
  ◎:表面が平滑であり、塗布面全てにおいて凹凸がみられない。
  ○:全体的に平滑であるが、一部凹凸がみられる。
  △:塗布後に一部、フラットブラシによる刷毛跡が残る。
  ×:塗布後にフラットブラシによる刷毛跡が残る。
(40)光沢性
 上記方法にて得られた爪装飾の表面を目視にて観察した。
  ◎:表面光沢がある。
  ○:光の反射は確認できるが、うっすらと曇りがみられる。
  △:表面が全体的に若干曇る。
  ×:表面が曇る。
(41)密着性
 上記方法にて得られた爪装飾を他の爪で引っ掻いた後の外観変化を目視にて確認した。
  ◎:外観に変化なし。
  ○:爪装飾の一部に浮き上がりがあり、白化が確認された。
  △:爪装飾の一部に剥離を確認した。
  ×:爪装飾の顕著な剥離を確認した。
(42)除去性
 上記方法にて得られた爪装飾を覆うようにして、アセトンを含んだコットンを載せた。次にアルミホイルで爪全体を多い、サニメント手袋をした後10分間温水につけて放置する。アルミホイルとコットンを取り除き、布を用いて軽く擦った。
  ◎:布を用いずとも、容易に爪装飾を剥離することができた。
  ○:布を用いて軽く擦ると、容易に爪装飾を剥離することができた。
  △:布を用いて1分ほど擦り続けると、爪装飾を剥離することができた。
  ×:アセトンを膨潤しておらず、布で擦っても剥離できない。
評価実施例F-2~7、評価比較例F-8~11
 表7に記載の組成に代えた以外は評価実施例F-1と同様に爪装飾用コート剤組成物を調製し、上記方法にて爪装飾を作製し、上記方法にて評価した。結果を表7に示す。
 評価実施例と評価比較例の結果に示されるとおり、分子量およびアクリル当量が一定範囲外であるウレタン変性(メタ)アクリルアミド、もしくは分子量及びアクリル当量が一定範囲内であるウレタン変性(メタ)アクリレートを配合された場合、組成物の硬化性、得られた装飾膜の光沢性が低く、主骨格由来の柔軟性、べたつき性付与のため、爪上への爪装飾形成時の平滑性が悪く、液だれやフラットブラシの刷毛跡が残る傾向である。本発明のウレタン変性(メタ)アクリルアミドを用いた場合では、硬化後装飾膜のべたつきが抑制され、硬化時の爪からの浮きあがりも低いことから爪からの浮き上がりもなく高密着でありながら、アセトンでの除去性も高い爪装飾を形成可能であった。
評価実施例G-1
 合成例1で合成したウレタン変性(メタ)アクリルアミドUY-1 24重量部、合成例2で合成したウレタン変性(メタ)アクリルアミドUY-2 12重量部、合成例8で合成した反応性ウレタンポリマーUP-1 25重量部、合成例9で合成した反応性ウレタンポリマーUP-2 5重量部、「ACMO」10重量部、「DEAA」4重量部、4-HBA 10重量部とA-LEN-10 10重量部を混合し、光重合開始剤としてIrgcure 184 2重量部、Irgacure TPO 2重量部を加え、均一に混合し、光硬化性封止剤を調製した。
光硬化型封止剤樹脂硬化物の作製方法
 ガラス板(縦50mm×横50mm×厚さ5mm)上にシリコン製のスペーサー(縦30mm×横15mm×厚さ3mm)をセットし、スペーサーの内部に上記にて調製した光硬化型封止剤を注入した。十分に脱気した後、紫外線を照射(紫外線照度:700mW/cm、積算光量:2000mJ/cm)し、封止剤樹脂硬化物を作製した。得られた硬化物の特性を下記方法で評価し、結果を表8に示す。
(43)透明性
 得られた硬化物を用いて、温度23℃、相対湿度50%の雰囲気下で、24時間を静止した。その後、ヘイズメーター(日本電色工業社製、NDH-2000)により硬化膜の透過率を測定し、透明性を下記通り4段階分けて評価した。
 ◎:透過率は90%以上
 ○:透過率は85%以上、かつ90%未満
 △:透過率は50%以上、かつ85%未満
 ×:透過率は50%未満
(44) 耐光性
 得られた硬化物をガラス基板に貼り付け、分光測色計(CM-3600d:コニカミノルタ社製)で黄色度を測定した。その後、キセノンフェードメーター(SC-700-WA:スガ試験機社製)にセットし、30℃でおいて、4W/cmの強度の紫外線を100時間照射し、照射後も照射前と同様に黄色度を測定し、硬化物の変色を目視によって観察した。
 ◎:黄変が目視で全く確認できない。
 ○:黄変が目視でごく僅かに確認できる。
 △:黄変が目視で確認できる。
 ×:明らかな黄変が目視で確認できる。
(45)耐水性
 得られた硬化物から1gを切り取って、試験片として温度85℃×相対湿度95%の恒温恒湿機にセットし、48時間静置し、その後再び試験片の重量を測定し、その吸水率を算出した(吸水率(%)=(恒温恒湿後の重量-恒温恒湿前の重量)/恒温恒湿前の重量×100)。
 ◎:吸水率は1.0%未満
 ○:吸水率は1.0%以上、かつ2.0%未満
 △:吸水率は2.0%以上、かつ3.0%未満
 ×:吸水率は3.0%以上
(46)アウトガス試験
 得られた硬化物から1gを切り取って、試験片として温度100℃に設定した恒温槽に静置し、乾燥窒素気流を24時間流して、その後再び試験片の重量を測定し、アウトガスの発生率を算出した(アウトガス発生率(%)=(恒温後の重量-恒温前の重量)/恒温前の重量×100)。
 ◎:発生率は0.1%未満
 ○:発生率は0.1%以上、かつ0.3%未満
 △:発生率は0.3%以上、かつ1.0%未満
 ×:発生率は1.0%以上
(47)耐ヒートサイクル性
 得られた硬化物を-40℃で30分間、次に100℃で30分間放置を1サイクルとして10回繰り返し、硬化物の状態を目視によって観察した。
 ◎:全く変化が見られない
 〇:わずかに気泡の発生が見られるが、クラックの発生が見られない。透明である。
 △:多少の気泡或いはクラックの発生が見られ、わずかな曇である。
 ×:気泡又はクラックが全面的に発生し、半透明状態である。
 評価実施例G-2~7、評価比較例G-8~12
 表8に記載の組成に代えた以外は評価実施例G-1と同様に紫外線硬化樹脂を調製し、封止剤硬化物を作製し、上記方法にて評価した。結果を表8に示す。
評価実施例と評価比較例の結果に示されるとおり、分子量およびアクリル当量が一定範囲外であるウレタン変性(メタ)アクリルアミド、もしくは分子量及びアクリル当量が一定範囲内であるウレタン変性(メタ)アクリレートを含有した場合、得られた硬物の透過率が低く、硬化物内部の架橋密度が低く、アウトガスの発生が顕著であり、耐水性が低い傾向がある。また、アダクトタイプのウレタンアクリルアミドを用いた場合は、組成物とした際の透過率、耐光性が低く、硬化物内部の結晶性が高いため、ビニル基の自由度が阻害され、ビニル基を完全に消失することは困難であった。
 本発明のウレタン変性(メタ)アクリルアミドを用いた場合は、耐光性が一部低いものの見られたが、封止剤の硬化性が高く、硬化物内部の架橋密度が高いため、耐水性も高く、アウトガスの発生が十分に抑制でき、また耐ヒートサイクル性も高いものであった。
評価実施例H-1
 合成例1で合成したウレタン変性(メタ)アクリルアミドUY-1  3重量部、合成例2で合成したウレタン変性(メタ)アクリルアミドUY-2 5重量部、合成例8で合成した反応性ウレタンポリマーUP-1 28重量部、合成例10で合成した反応性ウレタンポリマーUP-3 50重量部、DPHA 10重量部、IBOA 4重量部、MEK50重量部を混合し、光重合開始剤としてIrgacure 184 3重量部を加え、均一に混合し、加飾フィルム用樹脂組成物を調製した。
光硬化型加飾フィルムの作製方法
 得られた加飾フィルム用樹脂組成物を厚さ125μmのPETフィルム(「ソフトシャインTA009」東洋紡社製)にバーコーター(RDS 30)にて乾燥膜厚が20μmとなるように塗布した後、100℃で1分間乾燥し、紫外線硬化前成型膜を作製した。その後、紫外線を照射(紫外線照度:700mW/cm、積算光量:2000mJ/cm)することで加飾フィルムを作製し、紫外線硬化前成型膜、加飾フィルムのそれぞれを下記方法にて評価した。結果を表9に示す。
(48)透明性
 得られた紫外線硬化前成型膜を用い、ヘイズメーター(日本電色工業社製、NDH-2000)により硬化膜の透過率を測定し、透明性を下記通り4段階分けて評価した。
 ◎:透過率は90%以上
 ○:透過率は85%以上、かつ90%未満
 △:透過率は50%以上、かつ85%未満
 ×:透過率は50%未満
(49)耐ブロッキング性
 得られた紫外線硬化前成型膜に未処理PET(厚さ100μm、「コスモシャイン A4100」東洋紡社製、アンカーコート未処理面)を重ねて重さ2kgの圧着ローラーを用いて2往復することにより加圧貼付し、温度23℃、湿度50%雰囲気下で30分間放置した。その後、未処理PETをはがし、目視観察により耐ブロッキング性を評価した。
 ◎:未処理PETとの付着がなく、成型膜の外観も変化なし
 ○:未処理PETとの付着はないが、成型膜表面の一部に跡が残る
 △:未処理PETへの移りはないが、成型膜表面全体に跡が残る
 ×:未処理PETへの移りがあり、成型膜表面に剥がれや浮きが見られる
(50)破断伸度
 得られた紫外線硬化前成型膜を用い、温度130℃、10mm/minの速度にて測定した。
 測定機器;テンシロン万能材料試験機RTA-100(オリエンテック社製)
 破断伸度[%]=破断時のシート長さ/試験前のシート長さ×100
  ◎:破断伸度が100%以上
  ○:破断伸度が50%以上100%未満
  △:破断伸度が10%以上50%未満
  ×:破断伸度が10%未満
(51)成型加工性試験
  得られた紫外線硬化前成型膜を、圧空成形機SDF400(株式会社ソディック)を用いて加熱温度130℃にて成型加工し、25℃まで放冷後、成形品の加飾層の状態を目視で確認した。
  ◎:まったく割れがみられず、表面も透明性の高いものであった。
  ○:割れは見られないが、加飾層の厚みにムラがあり、透明性の低下が一部見られる。
  △:ひびや若干の割れが見られ、加飾層の厚みムラや透明性の低下が一部見られる。
  ×:割れが多数見られ、加飾層の厚みムラや透明性の低下が著しい。
(52)硬化性
 加飾フィルム用樹脂組成物を塗布し、100℃にて1分間乾燥した後、室温23℃環境下、得られた塗膜に、紫外線照度700mW/cmを照射し、樹脂組成物が完全硬化するまでの積算光量を測定した。完全硬化とは硬化膜の表面をシリコンゴムでなぞった際に跡がつかなくなる状態とする。
  ◎:積算光量1000mJ/cmで完全硬化。
  〇:積算光量1000mJ/cm~2000mJ/cmで完全硬化。
  △:積算光量2000mJ/cm~5000mJ/cmで完全硬化。
  ×:完全硬化まで積算光量5000mJ/cm以上が必要。
(52)密着性
 得られた加飾フィルムを用い、JIS K 5600に準拠して、1mm角のマス目を100個作成し、セロハンテープを貼り付け、一気に剥がした時に基板側に塗膜が残ったマス目の数を数えて評価した。
(53)鉛筆硬度
 得られた加飾フィルムを用い、JIS K 5600に準拠して、鉛筆を45°の角度で10mm程度引っ掻いた際、加飾フィルム表面に傷のつかない最も硬い鉛筆を鉛筆硬度とした。
 ◎:鉛筆硬度が2H以上
 ○:鉛筆硬度HB~H
 △:鉛筆硬度が3B~B
 ×:鉛筆硬度が4B以下
(54)耐擦傷性
 #0000のスチールウールを用いて、200g/cmの荷重をかけながら加飾フィルム上を10往復させ、傷の発生の有無を目視で評価した。
 ◎:膜の剥離や傷の発生がほとんど認められない。
 ○:膜の一部にわずかな細い傷が認められる。
 △:膜全面に筋状の傷が認められる。
 ×:膜の剥離が生じる。
(55)耐折り曲げ性
 上記で得られた加飾フィルムを、コート面が外側になるように折り曲げ、1kgの重しを載せて10分間放置し、加飾フィルム表面の割れの有無を目視にて観察した。
  ◎:まったく割れがみられなかった。
  ○:折り曲げ部が一部白化した。
  △:折り曲げ部において一部割れがみられた。
  ×:折り曲げ部において割れがみられた。
評価実施例H-2~7、評価比較例H-8~11
 表9に記載の組成に代えた以外は評価実施例H-1と同様に加飾フィルム用樹脂組成物を調製し、上記方法に加飾フィルムを作製し、上記方法にて評価した。結果を表9に示す。
 評価実施例と評価比較例の結果に示されるとおり、分子量およびアクリル当量が一定範囲外であるウレタン変性(メタ)アクリルアミド、もしくは分子量及びアクリル当量が一定範囲内であるウレタン変性(メタ)アクリレートを含有した場合、紫外線硬化前成型膜が柔軟であり、タックが見られることから耐ブロッキング性が悪く、高温条件下での伸びが得られにくい傾向であった。また、得られた加飾フィルムは耐折り曲げ性が高いものも確認されたが、硬化物が柔らかいため耐擦傷性が低かった。
 本発明のウレタン変性(メタ)アクリルアミドを用いた場合では、アミド基やウレタン結合の凝集が疑似的なハードセグメントを形成することから高い耐ブロッキング性や成型加工性を示し、割れのない紫外線硬化前成型膜得られた。また、ウレタンポリマー、ウレタン変性(メタ)アクリルアミドのTg以上となる高温時は擬似的なハードセグメントが一時的に分散することから高い破断伸度を示し、Tg以下となる高い常温付近では鉛筆硬度、耐擦傷性を有する加飾フィルムを取得することができた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 以上説明してきたように、本発明のウレタン変性(メタ)アクリルアミドは分子内にウレタン結合及び1つ以上の(メタ)アクリルアミド基を有し、分子量とアクリル当量がある特定の範囲内であることを特徴としたものであり、紫外線硬化により硬化物内部の架橋密度が高まり、さらにアミド基、ウレタン結合部位の凝集することにより、疑似的なハードセグメントを形成することが可能のため、硬化性や耐タック性に優れるだけではなく、硬度、耐収縮性、耐久性等を示しながら、ウレタン結合と(メタ)アクリルアミド以外の、アルコール化合物由来の主骨格部位に持ち込まれた柔軟性や耐水性、すべり性などの性能も示す。本発明のウレタン変性(メタ)アクリルアミドは親水性と疎水性、硬度と柔軟性のバランスを有し、それを用いることにより、透明性や各種基材に対する密着性、耐擦傷性の高い硬化性樹脂組成物を取得することができた。さらに、本発明の硬化性樹脂組成物単独でもから、必要に応じて単官能モノマー、多官能モノマー、汎用オリゴマー、顔料などを混合して使用することにより、粘接着剤、電子材料、光学や半導体分野、インク、コーティング剤、ジェルネイル、封止剤、加飾フィルム、光硬化型のレジストの用途に好適に用いることができる。

Claims (12)

  1.  1分子あたり水酸基を1つ以上有するアルコール化合物、1分子あたりイソシアネート基を2つ以上有するイソシアネート化合物及び一般式[1](式中、Rは水素原子又はメチル基を示し、R及びRは同一又は異なって、水素原子、又は水酸基で置換されていてもよい炭素数1乃至6の直鎖状又は分岐鎖状のアルキル基、炭素3乃至6の脂肪族環又は芳香環を示し、またR及びRはそれらを担持する窒素原子を一緒になって、さらに酸素原子又は窒素原子を含まれていてもよい飽和あるいは不飽和の5~7員環を形成してもよい。ただしR及びRが同時に水素原子の場合、及びR及びRが同時にアルキル基の場合を除き、かつRとRに有する水酸基の合計は1以上である。)で表される水酸基を含有するN-置換(メタ)アクリルアミド化合物との付加反応で得られる、分子内に1つ以上のウレタン結合と1つ以上の(メタ)アクリルアミド基を併せ持つ、ウレタン変性(メタ)アクリルアミド化合物。
    Figure JPOXMLDOC01-appb-C000001
  2.  数平均分子量は250~4,500、かつ、(メタ)アクリル当量は250~3,000の範囲であることを特徴とする請求項1に記載のウレタン変性(メタ)アクリルアミド化合物。
  3.  前記のアルコール化合物はエーテル骨格、エステル骨格、カーボネート骨格、シリコーン骨格、オレフィン骨格、アクリル骨格から選ばれる1種もしくは2種以上の骨格を有する化合物であることを特徴とする請求項1又は2のいずれか1項に記載のウレタン変性(メタ)アクリルアミド化合物。
  4.  エーテル骨格を有する数平均分子量250~1,500かつアクリル当量250~750の範囲であることを特徴とする、請求項1~3のいずれか1項に記載のウレタン変性(メタ)アクリルアミド化合物。
  5. 請求項1~4のいずれか1項に記載のウレタン変性(メタ)アクリルアミド化合物(A)1~100重量%、多官能(メタ)アクリル化合物(B)0~90重量%及び単官能(メタ)アクリル化合物(C)0~90重量%を含有する活性エネルギー線硬化性樹脂組成。
  6. 請求項1~4のいずれか1項に記載の組成物を含有することを特徴とする活性エネルギー線硬化性粘着剤組成物。
  7. 請求項1~4のいずれか1項に記載の組成物を含有することを特徴とする活性エネルギー線硬化性接着剤組成物。
  8. 請求項1~4のいずれか1項に記載の組成物を含有することを特徴とする活性エネルギー線硬化性インクジェットインク組成物。
  9. 請求項1~4のいずれか1項に記載の組成物を含有することを特徴とする活性エネルギー線硬化性コーティング組成物。
  10. (請求項1~4のいずれか1項に記載の組成物を含有することを特徴とする活性エネルギー線硬化性爪装飾用硬化性組成物。
  11. 請求項1~4のいずれか1項に記載の組成物を含有することを特徴とする活性エネルギー線硬化性性封止剤硬化性組成物。
  12. 請求項1~4のいずれか1項に記載の組成物を含有することを特徴とする活性エネルギー線硬化性加飾フィルム用硬化性組成物。
PCT/JP2016/076913 2015-09-15 2016-09-13 ウレタン変性(メタ)アクリルアミド化合物及びそれを含有する活性エネルギー線硬化性樹脂組成物 WO2017047565A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/754,160 US10759897B2 (en) 2015-09-15 2016-09-13 Urethane-modified (meth)acrylamide compound and active energy ray curable resin composition containing same
KR1020187009431A KR101924553B1 (ko) 2015-09-15 2016-09-13 우레탄변성 (메타)아크릴아미드 화합물 및 이를 함유하는 활성에너지선 경화성 수지 조성물
CN201680051078.3A CN108291001B (zh) 2015-09-15 2016-09-13 氨基甲酸酯改性(甲基)丙烯酰胺化合物及含有该化合物的活性能量射线固化性树脂组合物
JP2017518367A JP6232599B2 (ja) 2015-09-15 2016-09-13 ウレタン変性(メタ)アクリルアミド化合物及びそれを含有する活性エネルギー線硬化性樹脂組成物
EP16846436.0A EP3333208A4 (en) 2015-09-15 2016-09-13 URETHANO MODIFIED (METH) ACRYLAMIDE COMPOUND AND RESIN-RESISTANT RESIN COMPOSITION THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-181304 2015-09-15
JP2015181304 2015-09-15
JP2016-172082 2016-09-02
JP2016172082 2016-09-02

Publications (1)

Publication Number Publication Date
WO2017047565A1 true WO2017047565A1 (ja) 2017-03-23

Family

ID=58288821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076913 WO2017047565A1 (ja) 2015-09-15 2016-09-13 ウレタン変性(メタ)アクリルアミド化合物及びそれを含有する活性エネルギー線硬化性樹脂組成物

Country Status (6)

Country Link
US (1) US10759897B2 (ja)
EP (1) EP3333208A4 (ja)
JP (1) JP6232599B2 (ja)
KR (1) KR101924553B1 (ja)
CN (1) CN108291001B (ja)
WO (1) WO2017047565A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066042A (ja) * 2015-09-28 2017-04-06 株式会社サクラクレパス 光硬化性人工爪組成物
JP2019085394A (ja) * 2017-11-09 2019-06-06 Kjケミカルズ株式会社 光硬化性爪化粧料
JP2020007522A (ja) * 2018-03-08 2020-01-16 Kjケミカルズ株式会社 加飾フィルム用樹脂組成物
JP2021502445A (ja) * 2017-11-10 2021-01-28 エルジー・ケム・リミテッド 光硬化性組成物およびその硬化物を含むコーティング層
JP7285381B1 (ja) * 2023-01-04 2023-06-01 第一工業製薬株式会社 硬化性樹脂組成物、フィルム及び物品

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991783B2 (ja) 2017-08-23 2022-01-13 キヤノン株式会社 物品の搬送方法、物品の搬送装置、光学素子の製造方法、光学素子の製造装置、プログラム、記録媒体
US20210317250A1 (en) * 2018-07-10 2021-10-14 Dsm Ip Assets B.V. Radiation-curable aqueous polyurethane dispersions
CN112513126B (zh) * 2018-07-25 2023-08-08 东曹株式会社 含有脲基甲酸酯基的多异氰酸酯组合物、聚氨酯树脂形成性组合物、密封材料、膜组件
CN110294829B (zh) * 2019-05-22 2021-06-15 思达威(北京)能源科技有限公司 一种聚氨酯丙烯酰胺聚合物及其制备方法
CN112876615B (zh) * 2019-11-13 2023-05-26 万华化学集团股份有限公司 一种3d打印光固化组合物及其制备方法
US11787884B2 (en) * 2019-12-13 2023-10-17 Kj Chemicals Corporation Photopolymerization initiator
FR3108908B1 (fr) * 2020-04-01 2022-03-25 Arkema France Matériaux élastiques préparés à partir de compositions liquides durcissables
JP2022020989A (ja) * 2020-07-21 2022-02-02 Dicグラフィックス株式会社 活性エネルギー線硬化性コーティング剤、これを用いた塗装建材
CN115487362B (zh) * 2022-09-21 2023-07-04 上海康德莱医疗器械股份有限公司 用于导管、导丝的紫外固化超亲水超润滑双层涂层体系

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139157A1 (ja) * 2006-05-31 2007-12-06 Nippon Shokubai Co., Ltd. 多価(メタ)アクリルアミド化合物及びこれを含有する水系硬化性樹脂組成物
JP2013227519A (ja) * 2012-03-29 2013-11-07 Sanyo Chem Ind Ltd ポリウレタン樹脂製造用ポリオール組成物及びこれを用いたポリウレタン樹脂の製造方法
JP2015071682A (ja) * 2013-10-02 2015-04-16 三洋化成工業株式会社 活性エネルギー線硬化性樹脂及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP2016113518A (ja) * 2014-12-12 2016-06-23 Kjケミカルズ株式会社 (メタ)アクリルアミド系ウレタンオリゴマーを有する活性エネルギー線硬化性樹脂組成物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2433908A1 (de) * 1974-07-15 1976-02-05 Basf Ag Strahlungshaertbare ueberzugsmassen
JP4535574B2 (ja) 2000-07-27 2010-09-01 株式会社興人 新規なウレタンアクリルアミド類および該ウレタンアクリルアミド類を含有した紫外線及び電子線硬化性樹脂組成物
JP2005272833A (ja) 2004-02-26 2005-10-06 Sanyo Chem Ind Ltd ポリウレタン樹脂水性分散体
JP4915042B2 (ja) 2004-03-29 2012-04-11 日立化成工業株式会社 光硬化型樹脂組成物及びそれを用いた光硬化型コーティング剤、光硬化型フィルム
JP2008045032A (ja) * 2006-08-16 2008-02-28 Showa Denko Kk 熱硬化性樹脂組成物、オーバーコート剤および、保護膜
JP5302564B2 (ja) 2008-03-31 2013-10-02 東海ゴム工業株式会社 電子写真機器用材料および電子写真機器用導電性ロール
JP5124391B2 (ja) 2008-08-27 2013-01-23 日東電工株式会社 偏光板用接着剤、偏光板、その製造方法、光学フィルムおよび画像表示装置
JP2010128417A (ja) 2008-12-01 2010-06-10 Sumitomo Chemical Co Ltd 光学フィルム
JP2011218616A (ja) 2010-04-07 2011-11-04 Aica Kogyo Co Ltd 成型用ハードコートフィルム
JP5678531B2 (ja) 2010-09-13 2015-03-04 東洋インキScホールディングス株式会社 粘着剤及びそれを用いた粘着フィルム
JP2012082288A (ja) 2010-10-08 2012-04-26 Aica Kogyo Co Ltd 硬化性樹脂組成物
WO2013108707A1 (ja) * 2012-01-17 2013-07-25 Dic株式会社 活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型水性塗料、及び該塗料で塗装された物品
JP2015028607A (ja) * 2013-06-26 2015-02-12 Kjケミカルズ株式会社 偏光板用活性エネルギー線硬化性接着剤
EP3121209B1 (en) * 2014-03-17 2018-10-17 KJ Chemicals Corporation Urethane oligomer and active energy ray curable resin composition containing same
CN106572964B (zh) * 2014-08-05 2020-05-19 科思创德国股份有限公司 用于化妆品组合物的聚氨酯脲溶液
US10676561B2 (en) 2015-09-16 2020-06-09 Kj Chemicals Corporation (Meth)acrylamide based urethane oligomer and active energy ray curable resin composition containing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139157A1 (ja) * 2006-05-31 2007-12-06 Nippon Shokubai Co., Ltd. 多価(メタ)アクリルアミド化合物及びこれを含有する水系硬化性樹脂組成物
JP2013227519A (ja) * 2012-03-29 2013-11-07 Sanyo Chem Ind Ltd ポリウレタン樹脂製造用ポリオール組成物及びこれを用いたポリウレタン樹脂の製造方法
JP2015071682A (ja) * 2013-10-02 2015-04-16 三洋化成工業株式会社 活性エネルギー線硬化性樹脂及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP2016113518A (ja) * 2014-12-12 2016-06-23 Kjケミカルズ株式会社 (メタ)アクリルアミド系ウレタンオリゴマーを有する活性エネルギー線硬化性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3333208A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066042A (ja) * 2015-09-28 2017-04-06 株式会社サクラクレパス 光硬化性人工爪組成物
JP2019085394A (ja) * 2017-11-09 2019-06-06 Kjケミカルズ株式会社 光硬化性爪化粧料
JP7199693B2 (ja) 2017-11-09 2023-01-06 Kjケミカルズ株式会社 光硬化性爪化粧料
JP2021502445A (ja) * 2017-11-10 2021-01-28 エルジー・ケム・リミテッド 光硬化性組成物およびその硬化物を含むコーティング層
JP7039102B2 (ja) 2017-11-10 2022-03-22 エルジー・ケム・リミテッド 光硬化性組成物およびその硬化物を含むコーティング層
JP2020007522A (ja) * 2018-03-08 2020-01-16 Kjケミカルズ株式会社 加飾フィルム用樹脂組成物
JP7281161B2 (ja) 2018-03-08 2023-05-25 Kjケミカルズ株式会社 加飾フィルム用樹脂組成物
JP7285381B1 (ja) * 2023-01-04 2023-06-01 第一工業製薬株式会社 硬化性樹脂組成物、フィルム及び物品

Also Published As

Publication number Publication date
US10759897B2 (en) 2020-09-01
EP3333208A4 (en) 2019-04-10
JPWO2017047565A1 (ja) 2017-09-14
CN108291001A (zh) 2018-07-17
KR20180038579A (ko) 2018-04-16
KR101924553B1 (ko) 2018-12-03
JP6232599B2 (ja) 2017-11-22
US20180244832A1 (en) 2018-08-30
CN108291001B (zh) 2020-11-17
EP3333208A1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6232599B2 (ja) ウレタン変性(メタ)アクリルアミド化合物及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP6277383B2 (ja) (メタ)アクリルアミド系ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP5954556B2 (ja) ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物
CN107805478B (zh) 紫外线固化型粘合剂、固化物、粘合片
TWI595017B (zh) Active energy ray-curable composition, cured product thereof, and article having a cured coating film thereof
JP2016113518A (ja) (メタ)アクリルアミド系ウレタンオリゴマーを有する活性エネルギー線硬化性樹脂組成物
JP5302616B2 (ja) 保護用粘着シート
JP2023016900A (ja) t-ブチルシクロヘキシル(メタ)アクリレートを含有するコーティング組成物
JP2016181370A (ja) アルコキシアルキル(メタ)アクリルアミドを有するウレタンオリゴマー及びそれを含有する光硬化性樹脂組成物
TWI708792B (zh) 胺基甲酸乙酯改性(甲基)丙烯醯胺化合物及含有該化合物之活性能量射線硬化性樹脂組成物
TWI683832B (zh) (甲基)丙烯醯胺系胺基甲酸乙酯低聚物及含有該化合物之活性能量射線硬化性樹脂組成物
EP4306316A1 (en) Coating composition, adhesive or non-adhesive coating layers formed of said coating composition, and a layered body having said coating layers

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017518367

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15754160

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016846436

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009431

Country of ref document: KR

Kind code of ref document: A