WO2017047008A1 - 単結晶引き上げ装置及び単結晶引き上げ方法 - Google Patents

単結晶引き上げ装置及び単結晶引き上げ方法 Download PDF

Info

Publication number
WO2017047008A1
WO2017047008A1 PCT/JP2016/003827 JP2016003827W WO2017047008A1 WO 2017047008 A1 WO2017047008 A1 WO 2017047008A1 JP 2016003827 W JP2016003827 W JP 2016003827W WO 2017047008 A1 WO2017047008 A1 WO 2017047008A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
axis
flux density
magnetic flux
distribution
Prior art date
Application number
PCT/JP2016/003827
Other languages
English (en)
French (fr)
Inventor
清隆 高野
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to DE112016003796.1T priority Critical patent/DE112016003796T5/de
Priority to US15/758,023 priority patent/US10253425B2/en
Priority to KR1020217026631A priority patent/KR102478863B1/ko
Priority to KR1020187007462A priority patent/KR20180054615A/ko
Priority to CN201680053903.3A priority patent/CN108026660B/zh
Publication of WO2017047008A1 publication Critical patent/WO2017047008A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Definitions

  • the present invention relates to a single crystal pulling apparatus and a single crystal pulling method using the same.
  • Semiconductors such as silicon and gallium arsenide are composed of a single crystal and are used for memory of computers ranging from small to large, and there is a demand for large capacity, low cost, and high quality storage devices.
  • a magnetic field is applied to a molten semiconductor material accommodated in a crucible, thereby generating a molten liquid.
  • a method of producing a large-diameter and high-quality semiconductor by suppressing thermal convection (generally referred to as a magnetic field application Czochralski (MCZ) method) is known.
  • the single crystal pulling apparatus 100 of FIG. 10 includes a pulling furnace 101 whose upper surface can be opened and closed, and has a structure in which a crucible 102 is built in the pulling furnace 101.
  • a heater 103 for heating and melting the semiconductor material in the crucible 102 is provided around the crucible 102 inside the pulling furnace 101, and a pair of superconducting coils 104 (104a, 104b) is provided outside the pulling furnace 101.
  • a refrigerant container hereinafter referred to as a cylindrical refrigerant container
  • 105 as a cylindrical container.
  • the semiconductor material 106 is put in the crucible 102 and heated by the heater 103 to melt the semiconductor material 106.
  • a seed crystal (not shown) is lowered and inserted into the melt from above the central portion of the crucible 102, and the seed crystal is pulled in the pulling direction 108 at a predetermined speed by a pulling mechanism (not shown).
  • a crystal grows in the solid / liquid boundary layer, and a single crystal is generated.
  • the fluid motion of the melt induced by the heating of the heater 103 that is, thermal convection occurs, the pulled single crystal is likely to undergo dislocation, and the yield of single crystal formation decreases.
  • the superconducting coil 104 of the superconducting magnet 130 is used as a countermeasure.
  • the molten semiconductor material 106 receives an operation deterrent due to the magnetic lines 107 generated by energizing the superconducting coil 104, and the grown single crystal slowly grows as the seed crystal is pulled up without convection in the crucible 102. It is pulled upward and manufactured as a solid single crystal 109.
  • a pulling mechanism for pulling up the single crystal 109 along the crucible central axis 110 is provided above the pulling furnace 101.
  • the superconducting magnet 130 is configured such that a superconducting coil 104 (104a, 104b) is accommodated in a cylindrical vacuum vessel 119 via a cylindrical refrigerant vessel.
  • a pair of superconducting coils 104 a and 104 b facing each other through the central portion in the vacuum vessel 119 are accommodated.
  • the pair of superconducting coils 104a and 104b is a Helmholtz type magnetic field coil that generates a magnetic field along the same horizontal direction.
  • the pulling furnace 101 and the central axis 110 of the vacuum vessel 119 are arranged.
  • Axisymmetric magnetic field lines 107 are generated (the position of the central axis 110 is referred to as the magnetic field center).
  • the superconducting magnet 130 includes a current lead 111 for introducing current into the two superconducting coils 104a and 104b, a first radiation shield 117 housed in the cylindrical refrigerant container 105, and A small helium refrigerator 112 for cooling the second radiation shield 118, a gas discharge pipe 113 for discharging helium gas in the cylindrical refrigerant container 105, a service port 114 having a supply port for supplying liquid helium, and the like are provided. Yes. In the bore 115 of the superconducting magnet 130, the pulling furnace 101 shown in FIG.
  • FIG. 12 shows the magnetic field distribution of the conventional superconducting magnet 130 described above.
  • each coil arrangement direction (X direction in FIG. 12) is directed to both sides.
  • the magnetic field gradually increases, and in the direction perpendicular to this (the Y direction in FIG. 12), the magnetic field gradually decreases in the vertical direction.
  • the magnetic field gradient in the range in the bore 115 is too large, and thus the thermal convection suppression generated in the molten single crystal material is unbalanced, and the magnetic field efficiency is poor. . That is, as shown by the hatched area in FIG.
  • the magnetic field uniformity is not good in the vicinity of the central magnetic field (that is, the cross is elongated in the vertical and horizontal directions in FIG. 12). Therefore, there is a problem that the effect of suppressing thermal convection is low and a high-quality single crystal cannot be pulled up.
  • the number of superconducting coils 104 is four or more (for example, 104a, 104b, 104c, 104d) as shown in FIGS. 13 (a) and 13 (b). 4) and arranged on a plane in a cylindrical vessel coaxially provided around the pulling furnace, and each superconducting coil arranged in the plane is set to face each other through the axis of the cylindrical vessel.
  • an arrangement angle ⁇ (see FIG. 13B) in which one pair of superconducting coils adjacent to each other faces the inside of the cylindrical container is in a range of 100 degrees to 130 degrees (that is, the X axis is It is disclosed that the center angle ⁇ (see FIG.
  • the arrangement angles ⁇ of the superconducting coils 104a, 104b, 104c, and 104d in FIG. 13 are 100 degrees, 110 degrees, 115 degrees, 120 degrees, and 130 degrees, respectively (that is, the center angle ⁇ between the coil axes is 80 degrees, respectively).
  • the central magnetic field is uniformly arranged over a sufficiently wide region.
  • the arrangement angle ⁇ is as small as 90 degrees (the center angle ⁇ between the coil axes is 90 degrees)
  • the width of the central magnetic field in the Y direction becomes extremely narrow. As shown in FIG.
  • the arrangement angle ⁇ is as large as 140 degrees (the central angle ⁇ between the coil axes is 40 degrees)
  • the width of the central magnetic field in the X direction is extremely narrow. Therefore, in the superconducting magnet 130 of FIG. 13, by setting the arrangement angle ⁇ in the range of 100 degrees to 130 degrees, a concentric or square inclined uniform magnetic field can be obtained in the bore 115. Yes.
  • FIG. 8 is a result of analyzing a state in which the single crystal is pulled by the conventional technique using the two coils shown in FIGS. 10 and 11, and the left side in the figure is in the direction of the magnetic field in the central axis 110 (that is, the X axis).
  • the flow velocity distribution in the parallel cross section is shown, and the flow velocity distribution in the cross section perpendicular to the X axis (that is, the cross section parallel to the Y axis) is shown on the right side.
  • the single crystal pulling state is analyzed by the technique disclosed in Patent Document 1 in which a uniform magnetic field distribution is formed by the four coils shown in FIG. 13 (however, the central angle ⁇ between the coil axes is 60 °).
  • FIG. 9 showing the results, the flow rate difference between the left side (in the cross section parallel to the X axis) and the right side (in the cross section perpendicular to the X axis) is slightly smaller than that in FIG.
  • the flow velocity distribution is uneven in the direction.
  • FIGS. 8 and 9 are obtained by simulation analysis of the state where the pulling is performed using the following single crystal pulling conditions using FEMAG-TMF as analysis software.
  • Used crucible Diameter 800mm Charge amount of single crystal material: 400kg Single crystal to grow: Diameter 306mm Length of straight body of single crystal: 40cm Magnetic flux density: Adjusted to be 3000 G at the central axis 110 in the horizontal plane including the coil axis.
  • Single crystal rotation speed 6 rpm
  • Crucible rotation speed 0.03 rpm
  • the speed displayed in FIGS. 8 and 9 is the speed in the cross section, and the circumferential speed is excluded.
  • the present invention has been made in view of the above-described problems, and can reduce the oxygen concentration in a single crystal to be grown, and can suppress a growth stripe in the single crystal to be grown, and a single crystal pulling apparatus that can suppress An object is to provide a single crystal pulling method.
  • the present invention provides a pulling furnace having a central axis in which a crucible containing a heater and a molten single crystal material is disposed, and generating a magnetic field having a superconducting coil provided around the pulling furnace.
  • the magnetic flux density distribution on the X axis is a convex distribution when the magnetic field direction in the central axis in the horizontal plane including the coil axis of the superconducting coil is the X axis,
  • the magnetic flux density at the central axis is a magnetic flux density setting value
  • the magnetic flux density on the X axis is 80% or less of the magnetic flux density setting value at the crucible wall, and at the same time, perpendicular to the X axis in the horizontal plane.
  • Magnetic field distribution is generated so that the magnetic flux density distribution on the Y-axis passing through the central axis is convex downward, and the magnetic flux density on the Y-axis is 140% or more of the magnetic flux density setting value at the crucible wall.
  • a single crystal pulling apparatus is provided.
  • the magnetic field generating device of the single crystal pulling device generates the magnetic field distribution as described above, the molten single crystal material even in the cross section perpendicular to the X axis where the convection suppressing force due to electromagnetic force was insufficient
  • the flow rate in the cross section parallel to the X axis of the molten single crystal material and the flow rate in the cross section perpendicular to the X axis of the molten single crystal material can be balanced. Even within the cross section perpendicular to the X-axis, by reducing the flow rate of the molten single crystal material, it takes longer time for oxygen eluted from the crucible wall to reach the single crystal, and the free surface of the molten single crystal material.
  • the single crystal pulling apparatus By increasing the amount of oxygen evaporated from the single crystal, it is possible to provide a single crystal pulling apparatus that can greatly reduce the oxygen concentration taken into the single crystal. Further, the growth fringes in the single crystal to be grown are suppressed by balancing the flow velocity in the cross section parallel to the X axis of the molten single crystal material and the flow velocity in the cross section perpendicular to the X axis of the molten single crystal material.
  • the single crystal pulling apparatus can be provided.
  • two pairs of superconducting coils arranged opposite to each other are provided so that the respective coil axes are included in the same horizontal plane, and a central angle ⁇ sandwiching the X axis between the coil axes Can be 90 degrees or more and 120 degrees or less.
  • the present invention also provides a single crystal pulling method characterized by pulling up a semiconductor single crystal using the above-described single crystal pulling apparatus.
  • the single crystal pulling apparatus of the present invention that can greatly reduce the oxygen concentration taken into the single crystal and suppress the growth stripes in the single crystal to be grown. It can be. Moreover, according to the single crystal pulling method of the present invention, it is possible to grow a single crystal in which the concentration of oxygen taken in is greatly reduced and the growth fringes are suppressed.
  • FIG. 6 is a diagram illustrating a magnetic flux density portion in Example 1, Example 3, Comparative Example 1, and Comparative Example 3.
  • FIG. It is a figure which shows magnetic flux density distribution in the plane containing a coil axis
  • FIG. 6 is a diagram showing a flow velocity distribution in a melt cross section in Example 1, Example 3, Comparative Example 1, and Comparative Example 3. It is a graph which shows the relationship between center angle (alpha) between coil axes
  • FIG. It is a figure which shows the flow-velocity distribution in the melt cross section at the time of using the superconducting magnet (2 coils) of a prior art. It is a figure which shows the flow-velocity distribution in the melt cross section at the time of using the superconducting magnet (4 coils) of patent document 1.
  • FIG. It is a schematic sectional drawing which shows an example of the conventional single crystal pulling apparatus. It is a schematic perspective view which shows an example of a superconducting magnet. It is a figure which shows the conventional magnetic flux density distribution. It is the schematic perspective view and schematic cross-sectional view which show the superconducting magnet of patent document 1. It is a figure which shows magnetic flux density distribution when arrangement
  • corner (theta) 100 degree
  • the arrangement angle ⁇ is set in a range of 100 degrees to 130 degrees (that is, the central angle ⁇ between the coil axes is 50 degrees to 80 degrees), so that a concentric circle is formed inside the bore. Can be obtained.
  • thermal convection occurs in a cross section parallel to the X axis and in a cross section perpendicular to the X axis. The difference was clarified by comprehensive heat transfer analysis including three-dimensional melt convection conducted by the present inventor.
  • the inventor has intensively studied a single crystal pulling apparatus that can reduce the oxygen concentration in the single crystal to be grown and can suppress the growth stripes in the single crystal to be grown.
  • the magnetic flux density distribution on the X axis is a convex distribution when the magnetic field line direction in the central axis in the horizontal plane including the coil axis of the superconducting coil is the X axis, and the magnetic flux density in the central axis in the horizontal plane is
  • the magnetic flux density setting value is set
  • the magnetic flux density on the X axis is 80% or less of the magnetic flux density setting value on the crucible wall, and at the same time, the magnetic flux density on the Y axis passing through the central axis perpendicular to the X axis in the horizontal plane.
  • the distribution is convex downward, and the magnetic field distribution is generated so that the magnetic flux density on the Y-axis is 140% or more of the magnetic flux density setting value at the crucible wall. Accordingly, the flow velocity of the molten single crystal material can be reduced even in a cross section perpendicular to the X axis where the convection suppressing force due to electromagnetic force is insufficient, and the flow velocity of the molten single crystal material in the cross section parallel to the X axis is reduced. And the flow velocity in the cross section perpendicular to the X-axis of the molten single crystal material can be balanced, thereby increasing the time until oxygen eluted from the crucible wall reaches the single crystal.
  • the oxygen concentration in the single crystal to be grown can be reduced, and a single crystal pulling apparatus that can suppress growth fringes in the single crystal to be grown is provided.
  • the present inventors have found out that it is possible to achieve the present invention.
  • a single crystal pulling apparatus 11 shown in FIG. 1 includes a heating furnace 3, a pulling furnace 1 having a central shaft 10 in which a crucible 2 in which a molten single crystal material (hereinafter referred to as a melt) 6 is accommodated, and a pulling furnace 1 and a magnetic field generating device 30 having a superconducting coil, and applying a horizontal magnetic field to the melt 6 by energizing the superconducting coil to suppress convection of the melt 6 in the crucible 2.
  • the single crystal 9 is pulled up in the pulling direction 8.
  • the magnetic flux density distribution on the X axis is an upward convex distribution when the direction of the magnetic force line 7 in the central axis 10 in the horizontal plane 12 including the coil axis of the superconducting coil is the X axis.
  • the magnetic flux density at the central axis 10 is set as a magnetic flux density setting value
  • the magnetic flux density on the X axis is 80% or less of the magnetic flux density setting value at the crucible wall
  • the magnetic flux density distribution on the Y axis that passes through is a downward convex distribution, and the magnetic field distribution is generated so that the magnetic flux density on the Y axis is 140% or more of the magnetic flux density setting value at the crucible wall.
  • the melt 6 can be obtained even in a cross section perpendicular to the X axis where the convection suppressing force due to electromagnetic force is insufficient. Can be reduced, and the flow rate in the cross section parallel to the X axis of the melt 6 and the flow rate in the cross section perpendicular to the X axis of the melt 6 can be balanced.
  • the time required for the oxygen eluted from the crucible wall to reach the single crystal is increased by reducing the flow rate of the molten single crystal material, so that By increasing the amount of oxygen evaporation, a single crystal pulling apparatus that can significantly reduce the oxygen concentration taken into the single crystal can be obtained. Further, by balancing the flow velocity in the cross section parallel to the X axis of the melt 6 and the flow velocity in the cross section perpendicular to the X axis of the melt 6, growth fringes in the single crystal 9 to be grown can be suppressed. A single crystal pulling apparatus can be used.
  • the magnetic field generation device 30 that generates the magnetic field distribution as described above includes, for example, a pair of superconducting coils 4 arranged to face each other, as shown in FIG. Two pairs (ie, 4 (a), 4 (c) pairs and 4 (b), 4 (d) so that each coil axis 13 is included in the same horizontal plane 12 (see FIG. 1 (a)). And a coil arrangement in which the central angle ⁇ sandwiching the X axis between the coil shafts 13 is 90 degrees or more and 120 degrees or less.
  • the above magnetic field distribution can be reliably generated, and by setting the central angle ⁇ to 120 degrees or less, adjacent superconducting coils can be connected to each other without reducing the coil diameter.
  • the superconducting coil can be arranged without bumping.
  • the coils are not limited to two pairs as long as they generate the above magnetic field distribution, and may be one pair or three or more pairs.
  • the single crystal pulling method of the present invention pulls the semiconductor single crystal 9 using the single crystal pulling apparatus 11 of FIG. 1 described above.
  • the semiconductor single crystal 9 is pulled up as follows. First, in the single crystal pulling apparatus 11, a semiconductor material is put in the crucible 2 and heated by the heater 3 to melt the semiconductor material (see FIG. 1A). Next, by applying a current to the superconducting coil, a horizontal magnetic field generated by the magnetic field generator 30 is applied to the molten single crystal material (ie, melt) 6 to suppress convection of the melt 6 in the crucible 2. (See FIG. 1 (a)). At this time, the magnetic field generator 30 causes the magnetic flux density distribution on the X axis to be a convex distribution when the magnetic field line 7 direction in the central axis 10 in the horizontal plane 12 including the coil axis of the superconducting coil is the X axis.
  • the magnetic flux density at the central axis 10 in the horizontal plane 12 is a magnetic flux density setting value
  • the magnetic flux density on the X axis is 80% or less of the magnetic flux density setting value at the crucible wall, and at the same time, perpendicular to the X axis in the horizontal plane.
  • the magnetic flux density distribution on the Y axis passing through the axis 10 is a downward convex distribution, and the magnetic field distribution is generated so that the magnetic flux density on the Y axis is 140% or more of the magnetic flux density setting value in the crucible wall (see FIG. 1 (a)).
  • the magnetic field generator 30 for generating the magnetic field distribution as described above for example, as shown in FIG.
  • each pair of superconducting coils 4 arranged to face each other is included in the same horizontal plane.
  • a magnetic field generator having a coil arrangement in which two pairs are provided and the center angle ⁇ sandwiching the X axis between the coil shafts 13 is 90 degrees or more and 120 degrees or less can be used.
  • the lower limit value of the magnetic flux density in the crucible wall on the X axis and the upper limit value of the magnetic flux density in the crucible wall on the Y axis are not particularly limited.
  • the density is 30% or more of the magnetic flux density setting value, and the magnetic flux density in the crucible wall on the Y axis is 250% or less of the magnetic flux density setting value.
  • a seed crystal (not shown) is lowered and inserted into the melt 6 from, for example, the upper center of the crucible 2, and the seed crystal is rotated in the pulling direction 8 at a predetermined speed by a pulling mechanism (not shown). Pull up (see FIG. 1 (a)). Thereby, a crystal grows in the solid / liquid boundary layer, and the semiconductor single crystal 9 is generated.
  • Example 1 In the single crystal pulling apparatus 11 of FIG. 1A, the magnetic field generator 30 is configured to use a magnetic field generator having the coil arrangement shown in FIG. 2 (that is, the central angle ⁇ between the coil axes is 120 degrees).
  • the semiconductor single crystal was pulled under the pulling conditions shown below.
  • Used crucible Diameter 800mm
  • Charge amount of single crystal material 400kg
  • Single crystal to grow Diameter 306mm
  • Magnetic flux density Adjusted to be 3000 G (magnetic flux density setting value) on the central axis 10 in the horizontal plane including the coil axis.
  • Single crystal rotation speed 6 rpm
  • Crucible rotation speed 0.03 rpm
  • FIG. 4 (d) The magnetic flux density distribution in the horizontal plane including the coil axis at this time was measured. The results are shown in FIG. 4 (d), FIG.
  • FIG. 5A shows the magnetic flux density distribution on the X axis
  • FIG. 5B shows the magnetic flux density distribution on the Y axis.
  • the magnetic flux density distribution on the X-axis is a convex distribution upward (see FIG. 5A)
  • the magnetic flux density on the X-axis is 80% or less of the magnetic flux density setting value at the crucible wall (44 %) (See Table 1).
  • the magnetic flux density distribution on the Y-axis is a convex distribution downward (see FIG.
  • the oxygen concentration of the thus grown semiconductor single crystal was examined. The result is shown in FIG.
  • FIG. 7 the maximum value and the minimum value of the oxygen concentration in each semiconductor single crystal are shown, and thereby the oxygen concentration variation in the semiconductor single crystal is shown.
  • Example 2 A single crystal pulling apparatus having the same configuration as in Example 1 was used except that the central angle ⁇ between the coil axes was 110 degrees. Using such a single crystal pulling apparatus, the semiconductor single crystal was pulled in the same manner as in Example 1.
  • Example 2 The magnetic flux density distribution in the horizontal plane including the coil axis at this time was measured. The results are shown in FIG. In Example 2, the magnetic flux density distribution on the X-axis is a convex distribution (see FIG. 5A), and the magnetic flux density on the X-axis is 80% or less of the magnetic flux density setting value at the crucible wall (52 %) (See Table 1). Further, in Example 2, the magnetic flux density distribution on the Y axis is a downwardly convex distribution (see FIG. 5B), and the magnetic flux density on the Y axis is 140% or more of the magnetic flux density setting value at the crucible wall. (183%) (see Table 1).
  • Example 3 A single crystal pulling apparatus having the same configuration as in Example 1 was used except that the central angle ⁇ between the coil axes was set to 100 degrees. Using such a single crystal pulling apparatus, the semiconductor single crystal was pulled in the same manner as in Example 1.
  • Example 3 The magnetic flux density distribution in the horizontal plane including the coil axis at this time was measured. The results are shown in FIG. 4 (c), FIG.
  • the magnetic flux density distribution on the X-axis is an upwardly convex distribution (see FIG. 5A), and the magnetic flux density on the X-axis is 80% or less of the magnetic flux density set value at the crucible wall (63 %) (See Table 1).
  • the magnetic flux density distribution on the Y axis is a downward convex distribution (see FIG. 5B), and the magnetic flux density on the Y axis is 140% or more of the magnetic flux density set value at the crucible wall. (164%) (see Table 1).
  • the flow velocity distribution in the cross section of the melt 6 was analyzed in the same manner as in Example 1. The analysis result is shown in FIG.
  • Example 4 A single crystal pulling apparatus having the same configuration as in Example 1 was used except that the central angle ⁇ between the coil axes was 90 degrees. Using such a single crystal pulling apparatus, the semiconductor single crystal was pulled in the same manner as in Example 1.
  • Example 4 The magnetic flux density distribution in the horizontal plane including the coil axis at this time was measured. The results are shown in FIG. In Example 4, the magnetic flux density distribution on the X-axis is a convex distribution (see FIG. 5A), and the magnetic flux density on the X-axis is 80% or less of the set value of the magnetic flux density on the crucible wall (76 %) (See Table 1). Further, in Example 4, the magnetic flux density distribution on the Y axis is a downwardly convex distribution (see FIG. 5B), and the magnetic flux density on the Y axis is 140% or more of the magnetic flux density setting value at the crucible wall. (145%) (see Table 1).
  • the magnetic field generating apparatus 30 is configured to use a magnetic field generating apparatus having the coil arrangement shown in FIG. 3 (that is, the central angle ⁇ between the coil axes is 60 degrees). Using such a single crystal pulling apparatus, the semiconductor single crystal was pulled in the same manner as in Example 1.
  • the magnetic flux density distribution in the horizontal plane including the coil axis at this time was measured. The results are shown in FIG. 4 (a), FIG.
  • the magnetic flux density distribution on the X axis is a downwardly convex distribution (see FIG. 5A), and the magnetic flux density on the X axis is larger than 80% of the magnetic flux density setting value on the crucible wall ( 121%) (see Table 1).
  • the magnetic flux density distribution on the Y-axis is substantially constant (see FIG. 5B), and the magnetic flux density on the Y-axis is less than 140% (102%) of the magnetic flux density setting value on the crucible wall. (See Table 1).
  • the flow velocity distribution in the cross section of the melt 6 was analyzed in the same manner as in Example 1. The analysis result is shown in FIG.
  • Comparative Example 2 A single crystal pulling apparatus having the same configuration as Comparative Example 1 was used except that the central angle ⁇ between the coil axes was set to 70 degrees. Using such a single crystal pulling apparatus, the semiconductor single crystal was pulled in the same manner as in Example 1.
  • the magnetic flux density distribution in the horizontal plane including the coil axis at this time was measured. The results are shown in FIG.
  • the magnetic flux density distribution on the X axis is a downwardly convex distribution (see FIG. 5A), and the magnetic flux density on the X axis is larger than 80% of the magnetic flux density setting value on the crucible wall ( 105%) (see Table 1).
  • the magnetic flux density distribution on the Y axis is a downward convex distribution (see FIG. 5B), and the magnetic flux density on the Y axis is less than 140% of the magnetic flux density set value at the crucible wall. (114%) (see Table 1).
  • Comparative Example 3 A single crystal pulling apparatus having the same configuration as Comparative Example 1 was used except that the central angle ⁇ between the coil axes was set to 80 degrees. Using such a single crystal pulling apparatus, the semiconductor single crystal was pulled in the same manner as in Example 1.
  • the magnetic flux density distribution in the horizontal plane including the coil axis at this time was measured. The results are shown in FIG. 4 (b), FIG.
  • the magnetic flux density distribution on the X-axis is an upwardly convex distribution (see FIG. 5A), and the magnetic flux density on the X-axis is larger than 80% of the magnetic flux density setting value on the crucible wall ( 90%) (see Table 1).
  • the magnetic flux density distribution on the Y axis is a downwardly convex distribution (see FIG. 5B), and the magnetic flux density on the Y axis is less than 140% of the magnetic flux density setting value at the crucible wall. (129%) (see Table 1).
  • the flow velocity distribution in the cross section of the melt 6 was analyzed in the same manner as in Example 1. The analysis result is shown in FIG.
  • the magnetic flux density distribution on the X-axis is a convex distribution
  • the magnetic flux density on the X-axis is 80% or less of the magnetic flux density setting value on the crucible wall, and at the same time on the Y-axis.
  • the comparison does not satisfy the above magnetic flux density distribution condition.
  • the magnetic field distribution satisfying the above magnetic flux density distribution condition can be generated by setting the central angle ⁇ between the coil axes to 90 degrees or more and 120 degrees or less.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、溶融した単結晶材料が収容される坩堝が配置され中心軸を有する引き上げ炉と、引き上げ炉の周囲に設けられ超電導コイルを有する磁場発生装置とを備えた単結晶引き上げ装置であって、磁場発生装置は、超電導コイルのコイル軸を含む水平面内の中心軸における磁力線方向をX軸としたときにX軸上の磁束密度分布が上に凸の分布であり、水平面内の中心軸における磁束密度を磁束密度設定値とした場合、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%以下となると同時に、水平面内においてX軸と直交し中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%以上となるように、磁場分布を発生させるものであることを特徴とする単結晶引き上げ装置である。これにより、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができる単結晶引き上げ装置が提供される。

Description

単結晶引き上げ装置及び単結晶引き上げ方法
 本発明は、単結晶引き上げ装置、及びこれを用いた単結晶引き上げ方法に関する。
 シリコンやガリウム砒素などの半導体は単結晶で構成され、小型から大型までのコンピュータのメモリ等に利用されており、記憶装置の大容量化、低コスト化、高品質化が要求されている。
 従来、これら半導体の要求を満たす単結晶を製造するための単結晶引上げ方法の1つとして、坩堝内に収容されている溶融状態の半導体材料に磁場を印加させ、これにより、溶融液に発生する熱対流を抑止して、大口径かつ高品質の半導体を製造する方法(一般に磁場印加チョクラルスキー(MCZ)法と称している)が知られている。
 図10を用いて従来のCZ法による単結晶引き上げ装置の一例を説明する。図10の単結晶引き上げ装置100は、上面が開閉可能な引き上げ炉101を備え、この引き上げ炉101内に坩堝102を内蔵した構成となっている。そして、引上げ炉101の内側には坩堝102内の半導体材料を加熱溶融するためのヒーター103が坩堝102の周囲に設けられ、引き上げ炉101の外側には、1対の超電導コイル104(104a,104b)を円筒型容器としての冷媒容器(以下、円筒型冷媒容器と称する)105に内蔵した超電導磁石130が配置されている。
 単結晶の製造に際しては、坩堝102内に半導体材料106を入れてヒーター103により加熱し、半導体材料106を溶融させる。この溶融液中に図示しない種結晶を例えば坩堝102の中央部上方から下降挿入し、図示しない引上げ機構により種結晶を所定の速度で引き上げ方向108の方向に引上げていく。これにより、固体・液体境界層に結晶が成長し、単結晶が生成される。この際、ヒーター103の加熱によって誘起される溶融液の流体運動、即ち熱対流が生じると、引上げられる単結晶が有転位化しやすく、単結晶生成の歩留りが低下する。
 そこで、この対策として、超電導磁石130の超電導コイル104を使用する。すなわち、溶融液の半導体材料106は、超電導コイル104への通電によって発生する磁力線107により動作抑止力を受け、坩堝102内で対流することなく、種結晶の引上げに伴って成長単結晶がゆっくりと上方に向って引上げられ、固体の単結晶109として製造されるようになる。なお、引上げ炉101の上方には 、図示しないが、単結晶109を坩堝中心軸110に沿って引上げるための引上げ機構が設けられている。
 次に、図11により、図10に示した単結晶引き上げ装置100に用いられる超電導磁石130の一例について説明する。この超電導磁石130は、円筒型真空容器119に超電導コイル104(104a,104b)を円筒形の冷媒容器を介して収納した構成とされている。この超電導磁石130においては、真空容器119内の中心部を介して互いに向き合う1対の超電導コイル104a、104bが収納されている。これら1対の超電導コイル104a、104bは横向きの同一方向に沿う磁場を発生しているヘルムホルツ型磁場コイルであり、図10に示すように、引き上げ炉101及び真空容器119の中心軸110に対して軸対称の磁力線107を発生している(この中心軸110の位置を磁場中心と称している)。
 なお、この超電導磁石130は、図10、11に示すように2つの超電導コイル104a、104bに電流を導入する電流リード111、円筒型冷媒容器105の内部に納められた第1の輻射シールド117および第2の輻射シールド118を冷却するための小型ヘリウム冷凍機112、円筒型冷媒容器105内のヘリウムガスを放出するガス放出管113及び液体ヘリウムを補給する補給口を有するサービスポート114等を備えている。このような超電導磁石130のボア115内に、図10に示した引上げ炉101が配設される。
 図12は、上述した従来の超電導磁石130の磁場分布を示している。図11に示すように、従来の超電導磁石130においては、互いに向き合った1対の超電導コイル104a、104bが配置されていることから、各コイル配置方向(図12のX方向)では両側に向って磁場が次第に大きくなり、これと直交する方向(図12のY方向)では上下方向に向って次第に磁場が小さくなる。このような従来の構成では図12に示すようにボア115内の範囲の磁場勾配が大きすぎるため、溶融した単結晶材料に発生する熱対流抑制が不均衡になっており、かつ磁場効率が悪い。即ち、図12に同じ磁束密度の領域を斜線で示したように、中心磁場近傍付近の領域では、磁場均一性がよくない(すなわち、図12において、上下、左右に細長いクロス状になっている)ため、熱対流の抑制効果が低く、高品質の単結晶を引上げることができないという問題点があった。
 特許文献1には、上記の問題点を解決するため、図13(a)、図13(b)に示すように、超電導コイル104の数を4以上(例えば、104a、104b、104c、104dの4つ)とし、引き上げ炉の周囲に同軸的に設けた筒形容器内の平面上に配置するとともに、その配置された各超電導コイルを筒形容器の軸心を介して対向する向きに設定し、かつ超電導コイルの相互に隣接する1対ずつのもの同士が前記筒形容器の内側に向く配設角度θ(図13(b)参照)を100度~130度の範囲(すなわち、X軸を挟んで隣接するコイル軸間の中心角度α(図13(b)参照)は50度~80度)に設定することが開示されている。これによって、ボア115内部に磁場勾配の少ない均一性のよい横磁場を発生することができ、また、平面上に同心円状もしくは正方形状の磁場分布を発生することができ、不均衡電磁力を大幅に抑制することができるとされ、また、その結果、引上げ方向の均一磁場領域が向上するとともに、横磁場方向の磁場がほぼ水平になり、不均衡電磁力の抑制により、高品質の単結晶の製造が実現でき、さらに、この単結晶引上げ方法によれば、高品質の単結晶体を歩留りよく引上げることができることも開示されている。
 すなわち、図13の超電導コイル104a、104b、104c、104dの配設角度θを、それぞれ、100度、110度、115度、120度、130度(すなわち、コイル軸間の中心角度αはそれぞれ80度、70度、65度、60度、50度)とした場合の磁場分布を示す図14~図18に示した磁場分布において、中心磁場が十分に広い領域に亘って均一に配置される。その一方で、図19に示すように、配設角度θが90度(コイル軸間の中心角度αは90度)と小さい場合には、中心磁場のY方向の幅が極端に狭くなり、図20に示すように、配設角度θが140度(コイル軸間の中心角度αは40度)と大きい場合には、中心磁場のX方向の幅が極端に狭くなっている。
 したがって、図13の超電導磁石130において、配設角度θを100度~130度の範囲に設定することで、ボア115内部に同心円状もしくは正方傾斜状の等分布磁場を得ることができるとされている。
特開2004-051475号公報
 しかしながら、本発明者が検討した結果、図14~図18に示すように均一な磁場分布であっても、中心軸110における磁力線がX軸方向に向かう横磁場においては、X軸と平行な断面内とX軸に垂直な断面内とでは熱対流に違いがあることが、3次元の融液対流を含む総合伝熱解析により明らかとなった。
 図8は、図10、11に示す2コイルを用いた従来技術で単結晶引き上げを行っている状態を解析した結果であり、図中左側は中心軸110における磁力線方向(すなわち、X軸)に平行な断面内の流速分布を示しており、また右側はX軸に垂直な断面(すなわち、Y軸に平行な断面)内の流速分布を示したものである。このように溶融した半導体材料に磁場を印加することで対流は抑制され、特に溶融した半導体材料の下半分では殆ど流れがなくなっているが、上半分には流れ場が残っている。磁場中で導電性流体が運動する場合、磁力線ならびに磁力線に垂直な速度成分と直交する方向に誘起電流が生ずるが、電気的に絶縁性を有する石英ルツボを用いた場合は、ルツボ壁と溶融した半導体材料の自由表面が絶縁壁となるため、これらに直交する方向の誘起電流は流れなくなる。このため、溶融した半導体材料の上部においては電磁力による対流抑制力が弱くなっており、また、図8の左側(X軸に平行な断面内)と右側(X軸と垂直な断面内)を比べると、X軸と垂直な断面内(磁力線に垂直な断面内)の方が、X軸に平行な断面内(磁力線に平行な断面内)よりも対流が強くなっていることがわかる。
 一方、図13に示す4コイルにより均一な磁場分布を形成した特許文献1で開示されている技術(ただし、コイル軸間の中心角度αは60°)で単結晶引き上げを行っている状態を解析した結果を示す図9では、図8と比較すると、左側(X軸に平行な断面内)と右側(X軸と垂直な断面内)の流速差が若干小さくなっているが、それでも坩堝の周方向で不均一な流速分布となっている。
 ここで、図8、9に示す解析結果は、解析ソフトとしてFEMAG-TMFを使用し、以下に示す単結晶引き上げ条件を用いて引上げを行っている状態をシミュレーション解析したものである。
  使用坩堝       :直径800mm
  単結晶材料のチャージ量:400kg
  育成する単結晶    :直径306mm
  単結晶の直胴部の長さ :40cm
  磁束密度       :コイル軸を含む水平面内の中心軸110にお
              いて3000Gとなるように調整
  単結晶回転速度    :6rpm
  坩堝回転速度     :0.03rpm
 なお、図8、9において表示されている速度は、断面内の速度であり、周方向速度は除外している。
 図8、9で見られるように、従来技術及び特許文献1に開示された技術においては、X軸に垂直な断面内に坩堝壁から成長界面への流れ場が残存することで、石英坩堝から溶出する酸素が結晶に到達するため、水平磁場印加による酸素濃度低下効果には限界があり、最近需要が多くなっているパワーデバイスやイメージセンサー用半導体結晶における極低濃度の酸素濃度要求に応えることが難しくなっているという問題点がある。また、坩堝の周方向で不均一な流れ場が存在することは、単結晶を回転させながら引き上げる単結晶においては成長縞の原因となり、成長方向に平行な断面内を評価すると、結晶回転周期の抵抗率・酸素濃度変動が観察されるため、成長方向に垂直にスライスしたウェーハ面内ではリング状の分布となってしまうという問題点もある。
 本発明は、上記問題点に鑑みてなされたものであって、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができる単結晶引き上げ装置、及び単結晶引き上げ方法を提供することを目的とする。
 上記目的を達成するために、本発明は、加熱ヒーター及び溶融した単結晶材料が収容される坩堝が配置され中心軸を有する引き上げ炉と、前記引き上げ炉の周囲に設けられ超電導コイルを有する磁場発生装置とを備え、前記超電導コイルへの通電により前記溶融した単結晶材料に水平磁場を印加して、前記溶融した単結晶材料の前記坩堝内での対流を抑制する単結晶引き上げ装置であって、
 前記磁場発生装置は、前記超電導コイルのコイル軸を含む水平面内の前記中心軸における磁力線方向をX軸としたときに前記X軸上の磁束密度分布が上に凸の分布であり、前記水平面内の前記中心軸における磁束密度を磁束密度設定値とした場合、前記X軸上の磁束密度は坩堝壁では前記磁束密度設定値の80%以下となると同時に、前記水平面内において前記X軸と直交し前記中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の140%以上となるように、磁場分布を発生させるものであることを特徴とする単結晶引き上げ装置を提供する。
 単結晶引き上げ装置の磁場発生装置が、上記のような磁場分布を発生させるものであれば、電磁力による対流抑制力が不十分だったX軸と垂直な断面内においても、溶融した単結晶材料の流速を低減できるとともに、溶融した単結晶材料のX軸に平行な断面における流速と、溶融した単結晶材料のX軸に垂直な断面における流速とをバランスさせることができる。X軸と垂直な断面内においても、溶融した単結晶材料の流速を低減することによって、坩堝壁から溶出した酸素が単結晶に到達するまでの時間が長くなり、溶融した単結晶材料の自由表面からの酸素蒸発量が増加することで、単結晶に取り込まれる酸素濃度を大幅に低減させることができる単結晶引き上げ装置とすることができる。また、溶融した単結晶材料のX軸に平行な断面における流速と、溶融した単結晶材料のX軸に垂直な断面における流速とをバランスさせることによって、育成する単結晶中の成長縞を抑制することができる単結晶引き上げ装置とすることができる。
 このとき、前記磁場発生装置において、それぞれ対向配置された超電導コイルの対をそれぞれのコイル軸が同じ水平面内に含まれるように2対設けるとともに、前記コイル軸間の前記X軸を挟む中心角度αを90度以上120度以下とすることができる。
 磁場発生装置の超電導コイルをこのように配置することで、上記のような磁場分布を確実に発生させることができる。
 また、本発明は、上記の単結晶引き上げ装置を用いて、半導体単結晶を引き上げることを特徴とする単結晶引き上げ方法を提供する。
 このような単結晶引き上げ方法であれば、取り込まれる酸素濃度が大幅に低減されるとともに成長縞が抑制された半導体単結晶を育成することができる。
 以上のように、本発明の単結晶引き上げ装置であれば、単結晶に取り込まれる酸素濃度を大幅に低減させることができるとともに育成する単結晶中の成長縞を抑制することができる単結晶引き上げ装置とすることができる。また、本発明の単結晶引き上げ方法によれば、取り込まれる酸素濃度が大幅に低減されるとともに成長縞が抑制された単結晶を育成することができる。
本発明の単結晶引き上げ装置の一例を示す図である。 実施例1のコイル配置(上から見た図)を示す図である。 比較例1のコイル配置(上から見た図)を示す図である。 実施例1、実施例3、比較例1、比較例3における磁束密度部分を示す図である。 コイル軸を含む平面内の磁束密度分布を示す図である。 実施例1、実施例3、比較例1、比較例3における融液断面内の流速分布を示す図である。 コイル軸間の中心角度αと単結晶中酸素濃度との関係を示すグラフである。 従来技術の超電導磁石(2コイル)を用いた場合の融液断面における流速分布を示す図である。 特許文献1の超電導磁石(4コイル)を用いた場合の融液断面における流速分布を示す図である。 従来の単結晶引き上げ装置の一例を示す概略断面図である。 超電導磁石の一例を示す概略斜視図である。 従来の磁束密度分布を示す図である。 特許文献1の超電導磁石を示す概略斜視図及び概略横断面図である。 図13で配設角度θ=100度のときの磁束密度分布を示す図である。 図13で配設角度θ=110度のときの磁束密度分布を示す図である。 図13で配設角度θ=115度のときの磁束密度分布を示す図である。 図13で配設角度θ=120度のときの磁束密度分布を示す図である。 図13で配設角度θ=130度のときの磁束密度分布を示す図である。 図13で配設角度θ=90度のときの磁束密度分布を示す図である。 図13で配設角度θ=140度のときの磁束密度分布を示す図である。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 上述のように、特許文献1では、配設角度θを100度~130度(すなわち、コイル軸間の中心角度αは、50度~80度)の範囲に設定することで、ボア内部に同心円状もしくは正方傾斜状の等分布磁場を得ることを可能にしている。しかしながら、このような均一な磁場分布であっても、中心軸110における磁力線がX軸方向に向かう横磁場においては、X軸と平行な断面内とX軸に垂直な断面内とでは熱対流に違いがあることが、本発明者の行った3次元の融液対流を含む総合伝熱解析により明らかとなった。X軸に垂直な断面内に坩堝壁から成長界面への流れ場が残存することで、石英坩堝から溶出する酸素が結晶に到達するため、水平磁場印加による酸素濃度低下効果には限界があり、パワーデバイスやイメージセンサー用半導体単結晶における極低濃度の酸素濃度要求に応えることが難しくなっているという問題点がある。また、坩堝の周方向で不均一な流れ場が存在することは、単結晶を回転させながら引き上げる単結晶においては成長縞の原因となり、成長方向に平行な断面内を評価すると、結晶回転周期の抵抗率・酸素濃度変動が観察されるため、成長方向に垂直にスライスしたウェーハ面内ではリング状の分布となってしまうという問題点もある。
 そこで、本発明者は、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができる単結晶引き上げ装置について鋭意検討を重ねた。
 その結果、超電導コイルのコイル軸を含む水平面内の中心軸における磁力線方向をX軸としたときにX軸上の磁束密度分布が上に凸の分布であり、水平面内の中心軸における磁束密度を磁束密度設定値とした場合、X軸上の磁束密度は坩堝壁では前記磁束密度設定値の80%以下となると同時に、水平面内においてX軸と直交し前記中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%以上となるように、磁場分布を発生させることとした。これにより、電磁力による対流抑制力が不十分だったX軸と垂直な断面内においても、溶融した単結晶材料の流速を低減できるとともに、溶融した単結晶材料のX軸に平行な断面における流速と、溶融した単結晶材料のX軸に垂直な断面における流速とをバランスさせることができ、それにより、坩堝壁から溶出した酸素が単結晶に到達するまでの時間が長くなり、溶融した単結晶材料の自由表面からの酸素蒸発量が増加することで、育成する単結晶中の酸素濃度を低減できるとともに、育成する単結晶中の成長縞を抑制することができる単結晶引き上げ装置とすることができることを見出し、本発明をなすに至った。
 まず、図1を参照しながら、本発明の単結晶引き上げ装置の実施態様の一例を説明する。
 図1の単結晶引き上げ装置11は、加熱ヒーター3と、溶融した単結晶材料(以下、融液と称する)6が収容される坩堝2が配置され中心軸10を有する引き上げ炉1と、引き上げ炉1の周囲に設けられ超電導コイルを有する磁場発生装置30とを備えており、超電導コイルへの通電により融液6に水平磁場を印加して、融液6の坩堝2内での対流を抑制しながら、単結晶9を引き上げ方向8に引き上げる構成になっている。
 磁場発生装置30は、超電導コイルのコイル軸を含む水平面12内の中心軸10における磁力線7方向をX軸としたときにX軸上の磁束密度分布が上に凸の分布であり、水平面12内の中心軸10における磁束密度を磁束密度設定値とした場合、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%以下となると同時に、水平面内においてX軸と直交し中心軸10を通るY軸上の磁束密度分布が下に凸の分布であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%以上となるように、磁場分布を発生させるものである。
 単結晶引き上げ装置11の磁場発生装置30が、上記のような磁場分布を発生させるものであれば、電磁力による対流抑制力が不十分だったX軸と垂直な断面内においても、融液6の流速を低減できるとともに、融液6のX軸に平行な断面における流速と、融液6のX軸に垂直な断面における流速とをバランスさせることができる。X軸と垂直な断面内においても、溶融した単結晶材料の流速を低減することによって、坩堝壁から溶出した酸素が単結晶に到達するまでの時間が長くなり、融液6の自由表面からの酸素蒸発量が増加することで、単結晶に取り込まれる酸素濃度を大幅に低減させることができる単結晶引き上げ装置とすることができる。また、融液6のX軸に平行な断面における流速と、融液6のX軸に垂直な断面における流速とをバランスさせることによって、育成する単結晶9中の成長縞を抑制することができる単結晶引き上げ装置とすることができる。
 上記のような磁場分布を発生させる磁場発生装置30は、例えば、磁場発生装置30を上から見た図である図1(b)に示すように、それぞれ対向配置された超電導コイル4の対をそれぞれのコイル軸13が同じ水平面12(図1(a)参照)内に含まれるように2対(すなわち、4(a)、4(c)の対、及び、4(b)、4(d)の対)設けるとともに、コイル軸13間のX軸を挟む中心角度αを90度以上120度以下とするコイル配置を有する構成とすることができる。
 中心角度αを90度以上とすることで上記の磁場分布を確実に発生することができ、中心角度αを120度以下とすることで、コイル径を小さくしなくても、隣接する超電導コイル同士がぶつかることなく超電導コイルを配置することができる。
 もちろん、コイルは上記磁場分布を発生するものであれば、2対である場合には限定されず、1対であっても、あるいは3対以上であってもよい。
 次に、図1を参照しながら、本発明の単結晶引き上げ方法の実施態様の一例を説明する。
 本発明の単結晶引き上げ方法は、上記で説明した図1の単結晶引き上げ装置11を用いて、半導体単結晶9を引き上げるものである。
 具体的には、以下のようにして半導体単結晶9を引き上げる。
 まず、単結晶引き上げ装置11において、坩堝2内に半導体材料を入れて加熱ヒーター3により加熱し、半導体材料を溶融させる(図1(a)参照)。
 次に、超電導コイルへの通電により、溶融した単結晶材料(すなわち、融液)6に磁場発生装置30によって発生させた水平磁場を印加して、融液6の坩堝2内での対流を抑制する(図1(a)参照)。このとき、磁場発生装置30によって、超電導コイルのコイル軸を含む水平面12内の中心軸10における磁力線7方向をX軸としたときにX軸上の磁束密度分布が上に凸の分布であり、水平面12内の中心軸10における磁束密度を磁束密度設定値とした場合、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%以下となると同時に、水平面内においてX軸と直交し中心軸10を通るY軸上の磁束密度分布が下に凸の分布であり、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%以上となるように、磁場分布を発生させる(図1(a)参照)。上記のような磁場分布を発生させる磁場発生装置30として、例えば、図1(b)に示すように、それぞれ対向配置された超電導コイル4の対をそれぞれのコイル軸13が同じ水平面内に含まれるように2対設けるとともに、コイル軸13間のX軸を挟む中心角度αを90度以上120度以下とするコイル配置を有する磁場発生装置を用いることができる。
 この場合、X軸上の坩堝壁における磁束密度の下限値、及び、Y軸上の坩堝壁における磁束密度の上限値は特に限定されないが、装置の都合上、一般にX軸上の坩堝壁における磁束密度は磁束密度設定値の30%以上となり、Y軸上の坩堝壁における磁束密度は磁束密度設定値の250%以下となる。
 次に、融液6中に種結晶(不図示)を例えば坩堝2の中央部上方から下降挿入し、引き上げ機構(不図示)により種結晶を所定の速度で引き上げ方向8の方向に回転させながら引上げていく(図1(a)参照)。これにより、固体・液体境界層に結晶が成長し、半導体単結晶9が生成される。
 このような単結晶引き上げ方法であれば、取り込まれる酸素濃度が大幅に低減されるとともに成長縞が抑制された半導体単結晶を育成することができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 図1(a)の単結晶引き上げ装置11において、磁場発生装置30として、図2に示すコイル配置(すなわち、コイル軸間の中心角度αは120度)を有する磁場発生装置を用いる構成とした。
 このような単結晶引き上げ装置を用いて、以下に示す引き上げ条件で、半導体単結晶の引き上げを行った。
  使用坩堝       :直径800mm
  単結晶材料のチャージ量:400kg
  育成する単結晶    :直径306mm
  磁束密度       :コイル軸を含む水平面内の中心軸10におい
              て3000G(磁束密度設定値)となるよう
              に調整
  単結晶回転速度    :6rpm
  坩堝回転速度     :0.03rpm
 このときのコイル軸を含む水平面内の磁束密度分布を測定した。その結果を図4(d)、図5、表1に示す。ここで、図5(a)はX軸上の磁束密度分布を示しており、図5(b)はY軸上の磁束密度分布を示している。実施例1においては、X軸上の磁束密度分布は上に凸の分布であり(図5(a)参照)、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%以下(44%)となっている(表1参照)。また、実施例1においては、Y軸上の磁束密度分布は下に凸の分布であり(図5(b)参照)、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%以上(203%)となっている(表1参照)。
 さらに、解析ソフトとしてFEMAG-TMFを使用し、上記に示す引き上げ条件を用いて単結晶の引上げを行った場合の単結晶の直胴部の長さが40cmとなった状態のときの融液6の断面(X軸上の断面及びY軸上の断面)における流速分布をシミュレーション解析した。その解析結果を図6(d)に示す。
 このようにして育成した半導体単結晶について、酸素濃度を調べた。その結果を図7に示す。ここで、図7において、各半導体単結晶内の酸素濃度の最大値及び最小値が示されており、これにより半導体単結晶内の酸素濃度バラツキが示されている。
(実施例2)
 コイル軸間の中心角度αを110度とした以外は、実施例1と同様な構成の単結晶引き上げ装置とした。
 このような単結晶引き上げ装置を用いて、実施例1と同様にして、半導体単結晶の引き上げを行った。
 このときのコイル軸を含む水平面内の磁束密度分布を測定した。その結果を図5、表1に示す。実施例2においては、X軸上の磁束密度分布が上に凸の分布であり(図5(a)参照)、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%以下(52%)となっている(表1参照)。また、実施例2においては、Y軸上の磁束密度分布が下に凸の分布であり(図5(b)参照)、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%以上(183%)となっている(表1参照)。
 このようにして育成した半導体単結晶について、酸素濃度を調べた。その結果を図7に示す。
(実施例3)
 コイル軸間の中心角度αを100度とした以外は、実施例1と同様な構成の単結晶引き上げ装置とした。
 このような単結晶引き上げ装置を用いて、実施例1と同様にして、半導体単結晶の引き上げを行った。
 このときのコイル軸を含む水平面内の磁束密度分布を測定した。その結果を図4(c)、図5、表1に示す。実施例3においては、X軸上の磁束密度分布が上に凸の分布であり(図5(a)参照)、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%以下(63%)となっている(表1参照)。また、実施例3においては、Y軸上の磁束密度分布が下に凸の分布であり(図5(b)参照)、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%以上(164%)となっている(表1参照)。
 さらに、実施例1と同様にして融液6の断面における流速分布を解析した。その解析結果を図6(c)に示す。
 このようにして育成した半導体単結晶について、酸素濃度を調べた。その結果を図7に示す。
(実施例4)
 コイル軸間の中心角度αを90度とした以外は、実施例1と同様な構成の単結晶引き上げ装置とした。
 このような単結晶引き上げ装置を用いて、実施例1と同様にして、半導体単結晶の引き上げを行った。
 このときのコイル軸を含む水平面内の磁束密度分布を測定した。その結果を図5、表1に示す。実施例4においては、X軸上の磁束密度分布が上に凸の分布であり(図5(a)参照)、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%以下(76%)となっている(表1参照)。また、実施例4においては、Y軸上の磁束密度分布が下に凸の分布であり(図5(b)参照)、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%以上(145%)となっている(表1参照)。
 このようにして育成した半導体単結晶について、酸素濃度を調べた。その結果を図7に示す。
(比較例1)
 図1(a)の単結晶引き上げ装置11において、磁場発生装置30として、図3に示すコイル配置(すなわち、コイル軸間の中心角度αは60度)を有する磁場発生装置を用いる構成とした。
 このような単結晶引き上げ装置を用いて、実施例1と同様にして、半導体単結晶の引き上げを行った。
 このときのコイル軸を含む水平面内の磁束密度分布を測定した。その結果を図4(a)、図5、表1に示す。比較例1においては、X軸上の磁束密度分布が下に凸の分布であり(図5(a)参照)、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%より大きく(121%)なっている(表1参照)。また、比較例1においては、Y軸上の磁束密度分布がほぼ一定であり(図5(b)参照)、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%未満(102%)となっている(表1参照)。
 さらに、実施例1と同様にして融液6の断面における流速分布を解析した。その解析結果を図6(a)に示す。
 このようにして育成した半導体単結晶について、酸素濃度を調べた。その結果を図7に示す。
(比較例2)
 コイル軸間の中心角度αを70度とした以外は、比較例1と同様な構成の単結晶引き上げ装置とした。
 このような単結晶引き上げ装置を用いて、実施例1と同様にして、半導体単結晶の引き上げを行った。
 このときのコイル軸を含む水平面内の磁束密度分布を測定した。その結果を図5、表1に示す。比較例2においては、X軸上の磁束密度分布が下に凸の分布であり(図5(a)参照)、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%より大きく(105%)なっている(表1参照)。また、比較例2においては、Y軸上の磁束密度分布が下に凸の分布であり(図5(b)参照)、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%未満(114%)となっている(表1参照)。
 このようにして育成した半導体単結晶について、酸素濃度を調べた。その結果を図7に示す。
(比較例3)
 コイル軸間の中心角度αを80度とした以外は、比較例1と同様な構成の単結晶引き上げ装置とした。
 このような単結晶引き上げ装置を用いて、実施例1と同様にして、半導体単結晶の引き上げを行った。
 このときのコイル軸を含む水平面内の磁束密度分布を測定した。その結果を図4(b)、図5、表1に示す。比較例3においては、X軸上の磁束密度分布が上に凸の分布であり(図5(a)参照)、X軸上の磁束密度は坩堝壁では磁束密度設定値の80%より大きく(90%)なっている(表1参照)。また、比較例3においては、Y軸上の磁束密度分布が下に凸の分布であり(図5(b)参照)、Y軸上の磁束密度は坩堝壁では磁束密度設定値の140%未満(129%)となっている(表1参照)。
 さらに、実施例1と同様にして融液6の断面における流速分布を解析した。その解析結果を図6(b)に示す。
 このようにして育成した半導体単結晶について、酸素濃度を調べた。その結果を図7に示す。
Figure JPOXMLDOC01-appb-T000001
 図6からわかるように、X軸上の磁束密度分布が上に凸の分布であり、X軸上の磁束密度が坩堝壁では磁束密度設定値の80%以下であると同時に、Y軸上の磁束密度分布が下に凸の分布であり、Y軸上の磁束密度が坩堝壁では磁束密度設定値の140%以上である実施例1、3においては、上記の磁束密度分布条件を満たさない比較例1、3と比べて、融液のY軸上の断面における流速が低減されているとともに、融液のX軸上の断面における流速と融液のY軸上の断面における流速との差が低減されている。
 そして、図7からわかるように、上記の磁束密度分布条件を満たす実施例1~4においては、上記の磁束密度条件を満たさない比較例1~3と比べて、育成した半導体単結晶の酸素濃度が低減されており、酸素濃度のバラツキも低減されている。
 さらに、図5、表1からわかるように、コイル軸間の中心角度αを90度以上、120度以下とすることで、上記の磁束密度分布条件を満たす磁場分布を発生させることができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (3)

  1.  加熱ヒーター及び溶融した単結晶材料が収容される坩堝が配置され中心軸を有する引き上げ炉と、前記引き上げ炉の周囲に設けられ超電導コイルを有する磁場発生装置とを備え、前記超電導コイルへの通電により前記溶融した単結晶材料に水平磁場を印加して、前記溶融した単結晶材料の前記坩堝内での対流を抑制する単結晶引き上げ装置であって、
     前記磁場発生装置は、前記超電導コイルのコイル軸を含む水平面内の前記中心軸における磁力線方向をX軸としたときに前記X軸上の磁束密度分布が上に凸の分布であり、前記水平面内の前記中心軸における磁束密度を磁束密度設定値とした場合、前記X軸上の磁束密度は坩堝壁では前記磁束密度設定値の80%以下となると同時に、前記水平面内において前記X軸と直交し前記中心軸を通るY軸上の磁束密度分布が下に凸の分布であり、前記Y軸上の磁束密度は坩堝壁では前記磁束密度設定値の140%以上となるように、磁場分布を発生させるものであることを特徴とする単結晶引き上げ装置。
  2.  前記磁場発生装置において、それぞれ対向配置された超電導コイルの対をそれぞれのコイル軸が同じ水平面内に含まれるように2対設けるとともに、前記コイル軸間の前記X軸を挟む中心角度αを90度以上120度以下としたものであることを特徴とする請求項1に記載の単結晶引き上げ装置。
  3.  請求項1又は請求項2に記載の単結晶引き上げ装置を用いて、半導体単結晶を引き上げることを特徴とする単結晶引き上げ方法。
PCT/JP2016/003827 2015-09-18 2016-08-23 単結晶引き上げ装置及び単結晶引き上げ方法 WO2017047008A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016003796.1T DE112016003796T5 (de) 2015-09-18 2016-08-23 Vorrichtung zum Ziehen eines Einkristalls und Verfahren zum Ziehen eines Einkristalls
US15/758,023 US10253425B2 (en) 2015-09-18 2016-08-23 Single-crystal pulling apparatus and single-crystal pulling method
KR1020217026631A KR102478863B1 (ko) 2015-09-18 2016-08-23 단결정 인상장치 및 단결정 인상방법
KR1020187007462A KR20180054615A (ko) 2015-09-18 2016-08-23 단결정 인상장치 및 단결정 인상방법
CN201680053903.3A CN108026660B (zh) 2015-09-18 2016-08-23 单晶拉制装置以及单晶拉制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185654A JP6436031B2 (ja) 2015-09-18 2015-09-18 単結晶引き上げ装置、及び単結晶引き上げ方法
JP2015-185654 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047008A1 true WO2017047008A1 (ja) 2017-03-23

Family

ID=58288507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003827 WO2017047008A1 (ja) 2015-09-18 2016-08-23 単結晶引き上げ装置及び単結晶引き上げ方法

Country Status (6)

Country Link
US (1) US10253425B2 (ja)
JP (1) JP6436031B2 (ja)
KR (2) KR102478863B1 (ja)
CN (1) CN108026660B (ja)
DE (1) DE112016003796T5 (ja)
WO (1) WO2017047008A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225985A1 (ja) * 2019-05-08 2020-11-12 信越半導体株式会社 単結晶引き上げ装置及び単結晶引き上げ方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129883A (zh) * 2018-03-30 2019-08-16 杭州慧翔电液技术开发有限公司 一种用于磁控直拉单晶的磁体结构及磁控直拉单晶的方法
JP2019196289A (ja) * 2018-05-11 2019-11-14 信越半導体株式会社 単結晶の製造方法及び単結晶引き上げ装置
DE102019213236A1 (de) * 2019-09-02 2021-03-04 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben aus einkristallinem Silizium
JP7160006B2 (ja) * 2019-09-19 2022-10-25 信越半導体株式会社 単結晶引上げ装置および単結晶引上げ方法
JP7230781B2 (ja) * 2019-11-14 2023-03-01 信越半導体株式会社 単結晶引き上げ装置及び単結晶引き上げ方法
CN113046833A (zh) * 2019-12-27 2021-06-29 上海新昇半导体科技有限公司 一种半导体晶体生长装置
CN111243821A (zh) * 2020-03-13 2020-06-05 中国科学院电工研究所 一种磁控直拉单晶超导磁体系统
KR20220145847A (ko) 2020-03-17 2022-10-31 신에쯔 한도타이 가부시키가이샤 단결정 인상장치 및 단결정 인상방법
JP2022141151A (ja) 2021-03-15 2022-09-29 信越半導体株式会社 単結晶引上げ装置および単結晶引上げ方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051475A (ja) * 2002-05-31 2004-02-19 Toshiba Corp 単結晶引上げ装置、超電導磁石および単結晶引上げ方法
JP2004315289A (ja) * 2003-04-16 2004-11-11 Shin Etsu Handotai Co Ltd 単結晶の製造方法
JP2005123313A (ja) * 2003-10-15 2005-05-12 Sumitomo Heavy Ind Ltd 単結晶引上げ装置用超電導磁石装置における冷凍機の装着構造及び冷凍機のメンテナンス方法
JP2009173536A (ja) * 2008-01-21 2009-08-06 Siltron Inc 高品質の半導体単結晶インゴットの製造装置及び方法
US20140053771A1 (en) * 2012-08-21 2014-02-27 Babcock Noell Gmbh Generating a Homogeneous Magnetic Field While Pulling a Single Crystal from Molten Semiconductor Material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173536A (ja) * 2001-12-05 2003-06-20 Toshiba Corp 光ディスク装置及び記録倍速切替方法
JP3982353B2 (ja) * 2002-07-12 2007-09-26 日本電気株式会社 フォルトトレラントコンピュータ装置、その再同期化方法及び再同期化プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051475A (ja) * 2002-05-31 2004-02-19 Toshiba Corp 単結晶引上げ装置、超電導磁石および単結晶引上げ方法
JP2004315289A (ja) * 2003-04-16 2004-11-11 Shin Etsu Handotai Co Ltd 単結晶の製造方法
JP2005123313A (ja) * 2003-10-15 2005-05-12 Sumitomo Heavy Ind Ltd 単結晶引上げ装置用超電導磁石装置における冷凍機の装着構造及び冷凍機のメンテナンス方法
JP2009173536A (ja) * 2008-01-21 2009-08-06 Siltron Inc 高品質の半導体単結晶インゴットの製造装置及び方法
US20140053771A1 (en) * 2012-08-21 2014-02-27 Babcock Noell Gmbh Generating a Homogeneous Magnetic Field While Pulling a Single Crystal from Molten Semiconductor Material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225985A1 (ja) * 2019-05-08 2020-11-12 信越半導体株式会社 単結晶引き上げ装置及び単結晶引き上げ方法
JP2020183334A (ja) * 2019-05-08 2020-11-12 信越半導体株式会社 単結晶引き上げ装置及び単結晶引き上げ方法

Also Published As

Publication number Publication date
CN108026660A (zh) 2018-05-11
US20180237940A1 (en) 2018-08-23
CN108026660B (zh) 2020-07-24
KR20210107902A (ko) 2021-09-01
US10253425B2 (en) 2019-04-09
KR102478863B1 (ko) 2022-12-19
DE112016003796T5 (de) 2018-05-30
KR20180054615A (ko) 2018-05-24
JP2017057127A (ja) 2017-03-23
JP6436031B2 (ja) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6436031B2 (ja) 単結晶引き上げ装置、及び単結晶引き上げ方法
JP2004051475A (ja) 単結晶引上げ装置、超電導磁石および単結晶引上げ方法
JP6620670B2 (ja) 単結晶引き上げ装置及び単結晶引き上げ方法
US11578423B2 (en) Magnet coil for magnetic czochralski single crystal growth and magnetic czochralski single crystal growth method
WO2019167989A1 (ja) シリコン融液の対流パターン制御方法、シリコン単結晶の製造方法、および、シリコン単結晶の引き上げ装置
WO2020225985A1 (ja) 単結晶引き上げ装置及び単結晶引き上げ方法
JP7160006B2 (ja) 単結晶引上げ装置および単結晶引上げ方法
JP2019196289A (ja) 単結晶の製造方法及び単結晶引き上げ装置
WO2021187017A1 (ja) 単結晶引上げ装置および単結晶引上げ方法
JP7230781B2 (ja) 単結晶引き上げ装置及び単結晶引き上げ方法
JPS6036392A (ja) 単結晶引上装置
JP2000044387A (ja) シリコン単結晶製造方法
WO2022196127A1 (ja) 単結晶引上げ装置および単結晶引上げ方法
WO2022163091A1 (ja) 単結晶引上げ装置および単結晶引上げ方法
WO2023008508A1 (ja) シリコン単結晶の製造方法
WO2022102251A1 (ja) 単結晶の製造方法、磁場発生装置及び単結晶製造装置
JPH10167875A (ja) 単結晶製造装置
JPS6278184A (ja) 単結晶育成装置
JPH01246192A (ja) 単結晶引上げ装置
JPH0157079B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845886

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15758023

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187007462

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003796

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845886

Country of ref document: EP

Kind code of ref document: A1