KR20220145847A - 단결정 인상장치 및 단결정 인상방법 - Google Patents

단결정 인상장치 및 단결정 인상방법 Download PDF

Info

Publication number
KR20220145847A
KR20220145847A KR1020227031048A KR20227031048A KR20220145847A KR 20220145847 A KR20220145847 A KR 20220145847A KR 1020227031048 A KR1020227031048 A KR 1020227031048A KR 20227031048 A KR20227031048 A KR 20227031048A KR 20220145847 A KR20220145847 A KR 20220145847A
Authority
KR
South Korea
Prior art keywords
single crystal
coil
pulling
magnetic field
axis
Prior art date
Application number
KR1020227031048A
Other languages
English (en)
Inventor
키요타카 타카노
코세이 스가와라
히로유키 카마다
타카히데 오나이
토모히코 오타
Original Assignee
신에쯔 한도타이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쯔 한도타이 가부시키가이샤 filed Critical 신에쯔 한도타이 가부시키가이샤
Publication of KR20220145847A publication Critical patent/KR20220145847A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은, 중심축을 갖는 인상로와, 그 주위에 마련되고, 초전도코일을 갖는 자장발생장치를 구비하며, 용융된 반도체원료에 수평자장을 인가하여, 도가니 내에서의 대류를 억제하는 단결정 인상장치로서, 초전도코일은 안장형 형상이고, 대향배치된 안장형 형상의 초전도코일의 쌍이 2세트 마련되어 있으며, 2세트의 초전도코일의 쌍에 있어서의 2개의 상기 코일축은 동일한 수평면 내에 포함되고, 수평면 내에 있어서, 인상로의 중심축의 자력선방향을 X축으로 했을 때에, 2개의 코일축 간의 X축을 사이에 두는 중심각도α가 100도 이상 120도 이하인 단결정 인상장치이다. 이에 따라, 자장발생효율을 높임으로써 코일높이를 줄이는 것이 가능하고, 반도체원료의 융액면 근처까지 자장중심을 높일 수 있어, 종래보다 더욱 산소농도가 낮은 단결정을 얻을 수 있는 단결정 인상장치, 및 단결정 인상방법이 제공된다.

Description

단결정 인상장치 및 단결정 인상방법
본 발명은, 단결정 인상장치, 및 이것을 이용한 단결정 인상방법에 관한 것이다.
실리콘이나 갈륨비소 등의 반도체는 단결정으로 구성되어, 소형에서 대형까지의 컴퓨터의 메모리 등에 이용되고 있으며, 기억장치의 대용량화, 저비용화, 고품질화가 요구되고 있다.
종래, 이들 반도체의 요구를 만족시키는 단결정을 제조하기 위한 단결정 인상방법의 하나로서, 도가니 내에 수용되어 있는 용융상태의 반도체원료에 자장을 인가시키고, 이에 따라, 용융액에 발생하는 열대류를 억지(抑止)하여, 대구경이며 고품질의 반도체를 제조하는 방법(일반적으로 자장인가 초크랄스키(MCZ)법이라고 칭하고 있다)이 알려져 있다.
도 8에 의해 종래의 CZ법에 의한 단결정 인상장치의 일례를 설명한다.
이 단결정 인상장치(100)는, 상면이 개구된 인상로(101)를 구비하고, 이 인상로(101) 내에 도가니(102)를 내장한 구성으로 되어 있다. 그리고, 인상로(101)의 내측에는 도가니(102) 내의 반도체원료(106)를 가열용융하기 위한 히터(103)가 도가니(102)의 주위에 마련되고, 인상로(101)의 외측에는, 1쌍(2개)의 초전도코일(104)(104a, 104b)을 원통형 용기로서의 냉매용기(이하, 원통형 냉매용기라고도 칭한다)(105)에 내장한 초전도자석(130)이 배치되어 있다.
단결정의 제조시에는, 도가니(102) 내에 반도체원료(106)를 넣고 히터(103)에 의해 가열하여, 반도체원료(106)를 용융시킨다. 이 용융액 중에 도시하지 않은 종결정을 예를 들어 도가니(102)의 중앙부 상방으로부터 하강하여 접촉하고, 도시하지 않은 인상기구에 의해 종결정을 소정의 속도로 인상방향(108)의 방향으로 인상해 간다. 이에 따라, 고체·액체 경계층에 결정이 성장하고, 단결정이 생성된다. 이때, 히터(103)의 가열에 의해 유기(誘起)되는 용융액의 유체운동, 즉 열대류가 발생하면, 인상되는 단결정이 유전위화하기 쉬워져 단결정생성의 수율이 저하된다.
그래서, 이 대책으로서, 초전도자석(130)의 초전도코일(104)을 사용한다. 즉, 용융액인 반도체원료(106)는, 초전도코일(104)에의 통전에 의해 발생하는 자력선(107)에 의해 동작억지력을 받아, 도가니(102) 내에서 대류하는 일 없이, 종결정의 인상에 수반하여 서서히 상방을 향해 인상되고, 고체인 단결정(109)으로서 제조되게 된다. 한편, 인상로(101)의 상방에는, 도시하지 않으나, 단결정(109)을 도가니중심선(인상로(101)의 중심축(110))을 따라 인상하기 위한 인상기구가 마련되어 있다.
다음으로, 도 9에 의해, 도 8에 나타낸 단결정 인상장치(100)에 사용되는 초전도자석(130)의 일례에 대하여 설명한다.
이 초전도자석(130)은, 원통형 진공용기(119)에 초전도코일(104)(104a, 104b)을 원통형의 냉매용기를 개재하여 수납한 구성으로 되어 있다. 이 초전도자석(130)에 있어서는, 원통형 진공용기(119) 내의 중심부를 개재하여 서로 마주보는 1쌍의 초전도코일(104a, 104b)이 수납되어 있다. 이들 1쌍의 초전도코일(104a, 104b)은 가로방향의 동일 방향을 따르는 자장을 발생시키고 있는 헬름홀츠형 자장코일이며, 도 8에 나타내는 바와 같이, 인상로(101) 및 원통형 진공용기(119)의 중심축(110)에 대하여 좌우대칭인 자력선(107)을 발생시키고 있다(이 중심축(110)의 위치를 자장중심이라고 칭하고 있다).
한편, 이 초전도자석(130)은, 도 8, 9에 나타내는 바와 같이 2개의 초전도코일(104a, 104b)에 전류를 도입하는 전류리드(111), 원통형 진공용기(119)의 내부에 수용된 제1의 복사실드(117) 및 제2의 복사실드(118)를 냉각하기 위한 소형 헬륨냉동기(112), 원통형 냉매용기(105) 내의 헬륨가스를 방출하는 가스방출관(113) 및 액체헬륨을 보급하는 보급구를 갖는 서비스포트(114) 등을 구비하고 있다. 이러한 초전도자석(130)의 보어(115) 내(보어의 내경은 D로 표시된다)에, 도 8에 나타낸 인상로(101)가 배설(配設)된다.
도 10은, 상기 서술한 종래의 초전도자석(130)의 자장분포를 나타내고 있다.
이 도 10에 나타내는 바와 같이, 종래의 초전도자석(130)에 있어서는, 서로 마주본 1쌍의 초전도코일(104a, 104b)이 배치되어 있기 때문에, 각 코일 배치방향(도 10의 X방향)에서는 양측을 향해 자장이 점차 커지고, 이것과 직교하는 방향(도 10의 Y방향)에서는 상하방향을 향해 점차 자장이 작아진다. 이러한 종래의 구성에서는 도 9, 10에 나타내는 바와 같이 보어(115) 내의 범위의 자장구배가 지나치게 크기 때문에, 용융액에 발생하는 열대류억제가 불균형해져 있으며, 또한 자장효율이 나쁘다. 즉, 도 10에 사선으로 나타낸 바와 같이, 자장중심 근방부근의 영역에서는, 자장균일성이 좋지 않기(즉, 도 10에 있어서, 상하, 좌우로 가늘고 긴 크로스상으로 되어 있기) 때문에, 열대류의 억제정밀도가 나빠, 고품질의 단결정을 인상할 수 없다는 문제점이 있었다.
상기 문제점을 해결하기 위한 기술이 특허문헌 1에 개시되어 있다. 특허문헌 1에 개시된 기술을, 도 11a, 11b를 참조하여 설명한다.
초전도자석의 다른 일례를 나타낸 것으로, 도 11a는 사시도이고, 도 11b는, 도 11a의 A-A횡단면을 나타내고 있다. 특허문헌 1에는, 상기 문제점을 해결하기 위해, 도 11a, 도 11b에 나타내는 바와 같이, 초전도코일(104)의 수를 4 이상(예를 들어, 104a, 104b, 104c, 104d의 4개)으로 하고, 각 초전도코일(104)의 중심을 인상로의 주위에 동축적으로 마련한 원통형 진공용기(119) 내의 평면 상에 배치함과 함께, 그 배치된 각 초전도코일(104)을 원통형 진공용기(119)의 축심을 개재하여 대향하는 방향으로 설정하고, 또한 초전도코일의 상호 인접하는 1쌍씩의 것끼리가 원통형 진공용기(119)의 내측을 향하는 배설각도θ(도 11b 참조)를 100°~130°의 범위(즉, X축을 사이에 두고 인접하는 코일축 간의 중심각도α(도 11b 참조)는 50°~80 °)로 설정하는 것이 개시되어 있다.
이에 따라, 보어(115) 내부에 자장구배가 작은 균일성이 좋은 횡자장을 발생시킬 수 있고, 또한, 평면 상에 동심원상 또는 정방형상의 자장분포를 발생시킬 수 있어, 불균형 전자력을 대폭 억제할 수 있다고 되어 있다. 또한, 그 결과, 인상방향의 균일자장영역이 향상됨과 함께, 횡자장방향의 자장이 거의 수평이 되고, 불균형 전자력의 억제에 의해, 고품질의 단결정의 제조를 실현할 수 있으며, 나아가, 이 단결정 인상방법에 따르면, 고품질의 단결정체를 수율좋게 인상할 수 있는 것도 개시되어 있다. 한편, 도 11b 중의 부호 d는 초전도코일의 직경(내경), 부호 l은 1쌍의 코일 간의 거리이다.
이 방법에 따르면, 용융된 반도체원료에 가해지는 자장분포는 균일화되고, 불균형 전자력이 억제되기 때문에, 2코일을 사용한 종래기술과 비교하여, 보다 낮은 자속밀도에서도 열대류가 억제되도록 되었다.
그러나, 이와 같이 균일한 자장분포여도, 자력선이 X축방향을 향하는 횡자장에 있어서는, X축과 평행한 단면 내와 Y축에 평행한 단면 내에서는 열대류에 차이가 있는 것이, 3차원의 융액대류를 포함하는 종합전열해석에 의해 분명해졌다(특허문헌 2 참조).
자장 중에서 도전성 유체가 운동하는 경우, 자력선 그리고 자력선에 수직인 속도성분과 직교하는 방향으로 유기전류가 발생하는데, 전기적으로 절연성을 갖는 석영도가니를 이용한 경우는, 도가니벽과 용융된 반도체원료의 자유표면이 절연벽이 되기 때문에, 이들에 직교하는 방향의 유기전류는 흐르지 않게 된다. 이 때문에, 용융된 반도체원료의 상부에 있어서는 전자력에 의한 대류억제력이 약해져 있고, 또한, X축에 평행한 단면(자력선에 대하여 평행한 단면)과 X축에 수직인 단면(자력선에 대하여 수직인 단면)을 비교하면, X축과 수직인 단면 내(자력선과 수직인 단면 내)의 편이, 대류가 강해져 있다.
이와 같이 상기 4코일에 의해 균일한 자장분포로 한 것에서는, 다소, 대류의 속도차가 작아져 있으나, 그럼에도 둘레방향에서 불균일한 유속분포로 되어 있다. 특히, 자력선에 수직인 단면 내에 도가니벽으로부터 성장계면을 연결하는 흐름장(流れ場)이 잔존함으로써, 석영도가니로부터 용출되는 산소가 결정에 도달하기 때문에, 자장인가에 의한 산소농도 저하효과에는 한계가 있으며, 최근 요구가 많아지고 있는 파워디바이스나 이미지센서용 반도체결정과 같이, 극저농도의 산소농도 요구에 대응하는 것이 어렵다. 또한, 둘레방향에서 불균일한 흐름장이 존재하는 것은, 결정을 회전시키면서 인상하는 결정에 있어서는 성장무늬(成長縞)의 원인이 되고, 성장방향에 평행한 단면 내를 평가하면, 결정회전주기의 저항률·산소농도변동이 관찰되기 때문에, 성장방향에 수직으로 슬라이스한 웨이퍼면 내에서는 링상의 분포가 된다.
특허문헌 2에서는, 이 문제를 해결하기 위해, 도 12a, 12b에 나타내는 바와 같은 단결정 인상장치가 개시되어 있다. 도 12a는 장치의 개략도이고, 도 12b는 초전도자석의 일례를 나타내는 횡단면을 나타내고 있다.
초전도코일(104)의 쌍(104a와 104c, 104b와 104d)의 중심끼리를 통과하는 2개의 코일축(121)을 포함하는 수평면(120) 내에 있어서, 인상로의 중심축(110)에 있어서의 자력선(107)의 방향을 X축으로 했을 때에 X축 상의 자속밀도분포가 위로 볼록한 분포이고, 상기 수평면(120) 내의 상기 중심축(110)에 있어서의 자속밀도를 자속밀도설정값으로 한 경우, X축 상의 자속밀도는 도가니벽에서는 자속밀도설정값의 80% 이하가 됨과 동시에, 수평면(120) 내에 있어서 X축과 직교하며 중심축(110)을 통과하는 Y축 상의 자속밀도분포가 아래로 볼록한 분포이고, Y축 상의 자속밀도는 도가니벽에서는 자속밀도설정값의 140% 이상이 되도록, 자장분포를 발생시키는 것이며, 자장발생장치에 있어서, 각각 대향배치된 초전도코일(104)의 쌍(104a와 104c, 104b와 104d)을 각각의 코일축(121)이 동일한 수평면(120) 내에 포함되도록 2쌍 마련함과 함께, 2개의 코일축(121) 간의 X축을 사이에 두는 중심각도α를 100도 이상 120도 이하로 하였다.
이에 따라, 특허문헌 2에 개시된 기술에서는, 이하의 효과를 얻을 수 있다. 즉, 전자력에 의한 대류억제력이 불충분했던 X축과 수직인 단면 내에 있어서도, 용융된 반도체원료의 유속을 저감할 수 있음과 함께, 용융된 반도체원료의 X축에 평행한 단면에 있어서의 유속과, 용융된 반도체원료의 X축에 수직인 단면에 있어서의 유속의 밸런스를 맞출 수 있다.
또한, X축과 수직인 단면 내에 있어서도, 용융된 반도체원료의 유속을 저감함으로써, 도가니벽으로부터 용출된 산소가 단결정에 도달할 때까지의 시간이 길어지고, 용융된 반도체원료의 자유표면으로부터의 산소증발량이 증가함으로써, 단결정에 취입되는 산소농도를 대폭 저감시킬 수 있는 단결정 인상장치로 할 수 있다. 또한, 용융된 반도체원료의 X축에 평행한 단면에 있어서의 유속과, 용융된 반도체원료의 X축에 수직인 단면에 있어서의 유속의 밸런스를 맞춤으로써, 육성하는 단결정 중의 성장무늬를 억제할 수 있는 단결정 인상장치로 할 수 있다고 하였다.
일본특허공개 2004-51475호 공보 일본특허공개 2017-57127호 공보 일본특허공개 H10-291892호 공보
그러나, 본 발명자들이 각종 코일배치에서의 자장분포를 해석한 결과, 특허문헌 2에 기재된 자장분포는, 특허문헌 2에 기재된 코일배치 이외에서도 실현가능한 것이 분명해졌다.
또한, 상기 코일배치에서 자장효율을 높이려면, 코일직경을 최대한 크게 할 필요가 있는데, 그만큼, 코일을 포함하는 용기의 높이도 필요하게 된다. 원통용기인 자석장치(자장발생장치나, 초전도자석이라고도 한다)의 경우, 결정인상이 끝난 단계에서, 해체·세트가 필요하게 되는데, 그때에 자석장치를 하강·상승시킬 필요가 있는 점에서, 자석장치는 승강장치의 위에 설치할 필요가 있다.
자석과 용융원료의 위치관계에 대해서는, 특허문헌 3에도 기재되어 있는 바와 같이, 횡자장의 자장중심높이를 용융원료의 융액면 근처까지 높이면 결정 중의 산소농도는 저하되고, 융액의 깊은 위치로 낮추면 산소농도가 높아지는 것이 알려져 있다. 이 자석장치의 상한위치는, 승강장치의 스트로크와, 인상로측의 간섭에 의해 결정되는데, 일반적으로, 인상로의 챔버는 승강·선회를 가능하게 하기 위해, 자석장치의 외측에 있는 유압실린더와 아암으로 접속되어 있다. 도 13에 인상로의 승강장치(122) 및 초전도자석의 승강장치(123)의 일례를 나타낸다. 이 때문에, 이것이 자석장치의 상한위치를 결정하게 된다. 자석장치의 전체높이가 커지면 커질수록, 코일의 높이방향의 중간인 자장중심위치를 위로 높일 수 없게 되기 때문에, 저산소결정을 얻는 데에는 불리해진다.
본 발명은, 상기 문제점을 감안하여 이루어진 것으로, 자장발생효율을 높임으로써 코일높이를 줄이는 것이 가능하고, 반도체원료의 융액면 근처까지 자장중심을 높일 수 있어, 종래보다 더욱 산소농도가 낮은 단결정을 얻을 수 있는 단결정 인상장치, 및 단결정 인상방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은, 가열히터 및 용융된 반도체원료가 수용되는 도가니가 배치되고 중심축을 갖는 인상로와, 이 인상로의 주위에 마련되고, 초전도코일을 갖는 자장발생장치를 구비하며, 상기 초전도코일에의 통전에 의해 상기 용융된 반도체원료에 수평자장을 인가하여, 상기 용융된 반도체원료의 상기 도가니 내에서의 대류를 억제하는 단결정 인상장치로서,
상기 자장발생장치의 상기 초전도코일은, 상기 인상로의 외형을 따라 만곡된 안장형(鞍型) 형상이고, 상기 인상로의 주위에, 대향배치된 상기 안장형 형상의 초전도코일의 쌍이 2세트 마련되어 있으며,
이 대향배치된 쌍의 초전도코일의 중심끼리를 통과하는 축을 코일축으로 했을 때에,
상기 2세트의 초전도코일의 쌍에 있어서의 2개의 상기 코일축은 동일한 수평면 내에 포함되어 있고,
이 수평면 내에 있어서, 상기 인상로의 상기 중심축에 있어서의 자력선방향을 X축으로 했을 때에, 상기 2개의 코일축 간의 상기 X축을 사이에 두는 중심각도α가 100도 이상 120도 이하인 것을 특징으로 하는 단결정 인상장치를 제공한다.
상기 2개의 코일축 간의 X축을 사이에 두는 중심각도α가 100도 이상 120도 이하의 범위임으로써, X축과 수직인 단면 근방에 있어서, 자력선이 도가니에 직교하는 성분이 강해지기 때문에, X축과 수직인 단면 근방에서도 자연대류가 억제되기 쉬워지고, X축과 평행한 단면에 있어서의 유속과 밸런스를 맞출 수 있다. X축과 수직인 단면 내에 있어서도, 용융된 반도체원료의 유속을 저감함으로써, 도가니벽으로부터 용출된 산소가 단결정에 도달할 때까지의 시간이 길어지고, 용융된 반도체원료의 자유표면으로부터의 산소증발량이 증가함으로써, 단결정에 유입되는 산소농도를 대폭 저감시킬 수 있는 단결정 인상장치로 할 수 있다.
또한, 상기 용융된 반도체원료의 X축에 평행한 단면에 있어서의 유속과, X축에 수직인 단면에 있어서의 유속의 밸런스에 의해, 육성하는 단결정 중의 성장무늬를 억제할 수 있는 단결정 인상장치로 할 수 있다.
또한 인접하는 초전도코일끼리가 지나치게 가까워져 부딪히는 일 없이 적절히 배치할 수 있다.
또한, 초전도코일이 종래와 같은 원형 코일이 아니라, 안장형 형상의 코일임으로써, 코일의 둘레길이를 길게 할 수 있기 때문에, 동일한 전류값에서도 보다 큰 자속밀도의 자장을 발생시킬 수 있다. 즉, 자장발생효율을 높일 수 있다.
게다가, 안장형 형상이기 때문에 원형인 것보다 코일의 전체높이가 작아짐으로써, 자장발생장치 내에서의 코일 중심높이위치를 높일 수 있다. 그 때문에, 승강장치에서 상한까지 높였을 때에, 융액에 대하여 보다 높은 위치로 자장중심을 설정할 수 있고, 예를 들어 특허문헌 2와 같은 종래의 단결정 인상장치보다, 더욱 산소농도가 낮은 단결정을 얻는 것이 가능해진다.
또한, 상기 목적을 달성하기 위해, 본 발명은, 가열히터 및 용융된 반도체원료가 수용되는 도가니가 배치되고 중심축을 갖는 인상로와, 이 인상로의 주위에 마련되고, 초전도코일을 갖는 자장발생장치를 구비하며, 상기 초전도코일에의 통전에 의해 상기 용융된 반도체원료에 수평자장을 인가하여, 상기 용융된 반도체원료의 상기 도가니 내에서의 대류를 억제하는 단결정 인상장치로서,
상기 자장발생장치의 상기 초전도코일은, 상기 인상로의 외형을 따른 형상보다 큰 곡률로 만곡된 안장형 형상이고, 상기 인상로의 주위에, 대향배치된 상기 안장형 형상의 초전도코일의 쌍이 2세트 마련되어 있으며,
이 대향배치된 쌍의 초전도코일의 중심끼리를 통과하는 축을 코일축으로 했을 때에,
상기 2세트의 초전도코일의 쌍에 있어서의 2개의 상기 코일축은 동일한 수평면 내에 포함되어 있고,
이 수평면 내에 있어서, 상기 인상로의 상기 중심축에 있어서의 자력선방향을 X축으로 했을 때에, 상기 2개의 코일축 간의 상기 X축을 사이에 두는 중심각도α가 100도 이상 120도 이하인 것을 특징으로 하는 단결정 인상장치를 제공한다.
상기 2개의 코일축 간의 X축을 사이에 두는 중심각도α가 100도 이상 120도 이하의 범위임으로써, X축과 수직인 단면 근방에 있어서, 자력선이 도가니에 직교하는 성분이 강해지기 때문에, X축과 수직인 단면 근방에서도 자연대류가 억제되기 쉬워지고, X축과 평행한 단면에 있어서의 유속과 밸런스를 맞출 수 있다. X축과 수직인 단면 내에 있어서도, 용융된 반도체원료의 유속을 저감함으로써, 도가니벽으로부터 용출된 산소가 단결정에 도달할 때까지의 시간이 길어지고, 용융된 반도체원료의 자유표면으로부터의 산소증발량이 증가함으로써, 단결정에 유입되는 산소농도를 대폭 저감시킬 수 있는 단결정 인상장치로 할 수 있다.
또한, 상기 용융된 반도체원료의 X축에 평행한 단면에 있어서의 유속과, X축에 수직인 단면에 있어서의 유속의 밸런스에 의해, 육성하는 단결정 중의 성장무늬를 억제할 수 있는 단결정 인상장치로 할 수 있다.
또한 인접하는 초전도코일끼리가 지나치게 가까워져 부딪히는 일 없이 적절히 배치할 수 있다.
또한, 초전도코일이 종래와 같은 원형 코일이 아니라, 안장형 형상의 코일임으로써, 코일의 둘레길이를 길게 할 수 있기 때문에, 동일한 전류값에서도 보다 큰 자속밀도의 자장을 발생시킬 수 있다. 즉, 자장발생효율을 높일 수 있다.
게다가, 안장형 형상이기 때문에 원형인 것보다 코일의 전체높이가 작아짐으로써, 자장발생장치 내에서의 코일 중심높이위치(코일축의 높이위치)를 높일 수 있다. 그 때문에, 승강장치에서 상한까지 높였을 때에, 융액에 대하여 보다 높은 위치로 자장중심을 설정할 수 있고, 예를 들어 특허문헌 2와 같은 종래의 단결정 인상장치보다, 더욱 산소농도가 낮은 단결정을 얻는 것이 가능해진다.
또한, 평면에서 봤을 때, 쌍의 초전도코일의 중심영역(즉, 상기 코일축의 위치부근)에 상당하는(또는, 가까운) 각도의 영역(코일축 각도영역)에서는, 그 이외의 각도의 영역과 비교하여, 도가니에 직교하는 자속밀도성분이 강해지고, 도가니의 내벽 근방에 있어서의 융액의 산소의 확산경계층이 얇아지기 때문에, 도가니로부터 산소가 용해되기 쉬워진다. 그러나 본 발명에 있어서는, 코일로부터 떨어진 장소의 자속밀도는 코일까지의 거리의 2승에 반비례하는 것을 이용하여, 초전도코일의 안장형 형상이 인상로의 외형을 따른 형상보다 큰 곡률로 만곡되어 있기 때문에, 코일축 각도영역에 있어서의 자속밀도를 저하시킬 수 있고, 이 각도영역에서의 도가니로부터의 산소의 용해를 억제할 수 있으며, 그 결과, 한층 더 산소농도가 낮은 단결정을 얻을 수 있다.
이때, 상기 인상로의 외형을 따른 형상의 곡률에 대한 상기 안장형 형상의 초전도코일의 곡률의 비가 1.2 이상 2.0 이하인 것으로 할 수 있다.
이 비(곡률비라고도 한다)가 1.2 이상이면, 상기 자속밀도의 저하나 산소의 용해의 억제를 보다 효과적으로 행할 수 있다. 또한 2.0 이하이면, 코일을 수용하는 광체(筐體)의 외형이 지나치게 커지는 것을 방지할 수 있고, 또한, 중심자장강도의 저하에 의해 최대자장강도의 저하를 초래하는 것을 방지할 수 있다.
이때, 상기 자장발생장치는, 연직방향으로 상하이동 가능한 승강장치의 위에 설치되어 있는 것으로 할 수 있다.
이에 따라, 조업 종료 후의 해체·세트시에는 자장발생장치를 하강시켜, 오퍼레이터가 노 내의 핫존의 해체청소를 용이하게 행할 수 있다. 또한 단결정 인상에 있어서도, 보다 용이하게, 단결정 중의 산소농도가 원하는 값이 되도록, 자장발생장치의 높이위치를 조정하는 것이 가능해진다.
또한, 상기 안장형 형상의 초전도코일은, 세로폭이 가로폭보다 짧은 것으로 할 수 있다.
이러한 것이면, 보다 확실하게 코일의 전체높이를 작게 할 수 있어, 코일 중심높이위치를 높이고, 보다 높은 위치로 자장중심을 설정할 수 있어, 보다 용이하게 저산소농도의 단결정을 얻을 수 있다.
또한, 본 발명은, 상기 단결정 인상장치를 이용하여, 반도체 단결정을 인상하는 것을 특징으로 하는 단결정 인상방법을 제공한다.
이러한 단결정 인상방법이면, 유입되는 산소농도가 대폭 저감됨과 함께 성장무늬가 억제된 반도체 단결정을 육성할 수 있다.
이때, 상기 반도체 단결정을 인상할 때에, 이 반도체 단결정 중에 포함되는 산소농도의 목표값에 따라, 상기 자장발생장치의 높이위치를 조정할 수 있다.
이와 같이 하면, 미세한 산소농도제어가 가능하고, 보다 확실하게 저산소농도의 반도체 단결정을 육성할 수 있다.
이상과 같이, 본 발명의 단결정 인상장치이면, 단결정에 유입되는 산소농도를 대폭 저감시킬 수 있음과 함께, 육성하는 단결정 중의 성장무늬를 억제할 수 있는 단결정 인상장치로 할 수 있다.
또한, 본 발명의 단결정 인상장치이면, 코일 중심높이위치를 높일 수 있거나, 도가니로부터의 산소가 단결정에 도달할 때까지의 시간을 길게 할 수 있거나, 또한, 코일축 각도영역에 있어서의 도가니로부터의 산소의 용해를 억제할 수 있거나 하여, 단결정에 유입되는 산소농도를 대폭 저감시킬 수 있음과 함께, 육성하는 단결정 중의 성장무늬를 억제할 수 있는 단결정 인상장치로 할 수 있다.
또한, 본 발명의 단결정 인상방법에 따르면, 유입되는 산소농도가 대폭 저감됨과 함께 성장무늬가 억제된 반도체 단결정을 육성할 수 있다.
도 1은 본 발명의 단결정 인상장치의 일례를 나타내는 개략도이다.
도 2a는 본 발명의 초전도코일의 형상의 일례를 나타내는 사시도이다.
도 2b는 본 발명의 초전도코일의 배치의 일례를 나타내는 횡단면도이다.
도 3은 실시예 1에 있어서의 자속밀도분포를 나타내는 해석도이다.
도 4는 실시예 1에 있어서의 융액 내의 속도벡터와 산소농도분포를 나타내는 해석도이다.
도 5는 실시예 2에 있어서의 융액 내의 속도벡터와 산소농도분포를 나타내는 해석도이다.
도 6은 비교예 1에 있어서의 자속밀도분포를 나타내는 해석도이다.
도 7은 비교예 1에 있어서의 융액 내의 속도벡터와 산소농도분포를 나타내는 해석도이다.
도 8은 종래의 단결정 인상장치의 일례를 나타내는 개략도이다.
도 9는 종래의 초전도자석의 일례를 나타내는 개략도이다.
도 10은 종래의 초전도자석의 자장분포의 일례를 나타내는 설명도이다.
도 11a는 종래의 다른 초전도자석의 일례를 나타내는 사시도이다.
도 11b는 종래의 다른 초전도자석의 일례를 나타내는 횡단면도이다.
도 12a는 종래의 다른 단결정 인상장치의 일례를 나타내는 개략도이다.
도 12b는 종래의 다른 초전도자석의 일례를 나타내는 횡단면도이다.
도 13은 인상로의 승강장치 및 초전도자석의 승강장치의 일례를 나타내는 개략도이다.
도 14a는 본 발명의 초전도코일의 형상의 다른 일례를 나타내는 사시도이다.
도 14b는 본 발명의 초전도코일의 배치의 다른 일례를 나타내는 횡단면도이다.
도 15는 실시예 3에 있어서의 자속밀도분포를 나타내는 해석도이다.
도 16은 실시예 3에 있어서의 융액 내의 속도벡터와 산소농도분포를 나타내는 해석도이다.
도 17은 실시예 4에 있어서의 융액 내의 속도벡터와 산소농도분포를 나타내는 해석도이다.
도 18은 코일을 4개 배설한 경우에 있어서의, 도가니의 내벽에 대하여 직교하는 자속밀도성분(B⊥)과 둘레각도의 관계를 나타내는 그래프이다.
도 19는 실시예 5에 있어서의 자속밀도분포를 나타내는 해석도이다.
도 20은 실시예 5에 있어서의 융액 내의 속도벡터와 산소농도분포를 나타내는 해석도이다.
자장 중에서 도전성 유체가 운동하는 경우, 자력선 그리고 자력선에 수직인 속도성분과 직교하는 방향으로 유기전류가 발생하는데, 전기적으로 절연성을 갖는 석영도가니를 이용한 경우는, 도가니벽과 용융된 반도체원료의 자유표면이 절연벽이 되기 때문에, 이들에 직교하는 방향의 유기전류는 흐르지 않게 된다. 이 때문에 용융된 반도체원료 중에서도 X축과 수직인 단면 근방에서는 대류억제력이 불충분해진다.
그러나, 인상로의 주위에, 대향배치된 초전도코일의 쌍이 2세트 마련되어 있고, 이 대향배치된 쌍의 초전도코일의 중심끼리를 통과하는 축을 코일축으로 했을 때에, 상기 2세트의 초전도코일의 쌍에 있어서의 2개의 코일축이 동일한 수평면 내에 포함되어 있고, 2개의 코일축 간의 X축(상기 수평면 내에서의 인상로의 중심축에 있어서의 자력선방향)을 사이에 두는 중심각도α가 100도 이상 120도 이하이면, 특허문헌 2와 같은 자장분포를 발생시키는 것으로 할 수 있어, 전자력에 의한 대류억제력이 불충분했던 X축과 수직인 단면 내에 있어서도, 용융된 반도체원료의 유속을 저감할 수 있음과 함께, 용융된 반도체원료의 X축에 평행한 단면에 있어서의 유속과, 용융된 반도체원료의 X축에 수직인 단면에 있어서의 유속의 밸런스를 맞출 수 있다. 그리고, 그 결과, 전술한 바와 같이 단결정에 유입되는 산소농도를 크게 저감시킬 수 있고, 육성단결정 중의 성장무늬를 억제하는 것이 가능하다.
나아가서는, 초전도코일로서 안장형 형상의 코일을 이용한 것이면, 자장발생효율을 높일 수 있음과 함께, 원형 코일보다 코일의 전체높이를 작게 하기 쉽게 할 수 있어, 코일 중심높이위치를 높일 수 있고, 자장중심위치를 보다 높은 위치로 할 수 있어, 한층 더 낮은 산소농도의 단결정을 얻는 것이 가능하다.
또한, 그 안장형 형상의 코일에 관하여, 인상로의 외형을 따른 형상보다 큰 곡률로 만곡되어 있는 것이기 때문에, 비교적 도가니로부터 산소가 용해되기 쉬운 코일축 각도영역에 있어서의 자속밀도를 저하시키고, 이 각도영역에 있어서의 도가니로부터의 산소의 용해의 억제를 도모함으로써, 더욱 낮은 산소농도의 단결정을 얻을 수 있다.
본 발명자들은 이들을 발견하여, 본 발명을 완성시켰다.
이하, 본 발명에 대하여 도면을 참조하여 실시형태를 설명하는데, 본 발명은 이것으로 한정되는 것은 아니다.
도 1에 본 발명의 단결정 인상장치의 일례를 나타낸다.
도 1의 단결정 인상장치(11)는, CZ법에 의한 것으로, 가열히터(3)와, 용융된 반도체원료(6)가 수용되는 석영제의 도가니(2)가 배치되고, 중심축(10)을 갖는 인상로(1)와, 인상로(1)의 주위에 마련되고, 초전도코일을 갖는 초전도자석(자장발생장치(30))을 구비하고 있으며, 초전도코일에의 통전에 의해 융액(용융된 반도체원료이며, 멜트라고도 한다)(6)에 수평자장을 인가하여, 융액(6)의 도가니(2) 내에서의 대류를 억제하면서, 단결정(9)을 인상방향(8)으로 인상하는 구성으로 되어 있다.
(초전도코일의 제1 실시태양)
여기서, 도 2a, 2b를 참조하여, 자장발생장치(30)에 있어서의 초전도코일의 형상이나 배치에 대하여 상세히 서술한다. 도 2a는 초전도코일의 형상의 일례를 나타내는 사시도이고, 도 2b는 그 배치의 일례를 나타내는 횡단면도이다.
초전도코일(간단히, 코일이라고도 한다)(4)은 합계 4개 있고(4a-4d), 각각, 통상(筒狀)의 인상로(1)의 외형을 따라 만곡된 안장형 형상을 하고 있다. 인상로(1)의 주위에, 대향배치되어 있는 쌍이 2세트 마련되어 있다. 여기서는, 4a와 4c, 4b와 4d의 조합으로 되어 있다.
종래와 같은 원형이 아니라 안장형 형상의 코일(4)이기 때문에, 코일의 둘레길이를 길게 할 수 있고, 한층 더 큰 자속밀도의 자장을 발생시킬 수 있어, 자장발생의 효율이 높은 것으로 할 수 있다.
게다가, 원형인 것과 비교하여 코일의 전체높이를 보다 작게 하기 쉽기 때문에, 원형인 것과 비교하여 코일의 중심높이위치를 한층 더 높은 위치로 높일 수 있다. 즉, 융액(6)에 대하여 보다 높은 위치로 자장중심을 설정할 수 있어, 보다 산소농도가 낮은 단결정(9)의 제조를 도모할 수 있다.
한편, 코일(4)은 세로폭이 가로폭보다 짧은 것으로 할 수 있다. 이 경우, 보다 확실하게 코일의 전체높이를 작게 할 수 있고, 나아가서는 저산소농도의 단결정(9)을 한층 용이하게 얻는 것이 가능해진다.
또한, 대향배치된 쌍의 코일(4)의 중심끼리를 통과하는 축을 코일축으로 했을 때, 2세트의 코일(4)의 쌍(4a와 4c의 쌍과, 4b와 4d의 쌍)에 있어서의 2개의 코일축(13, 14)은 동일한 수평면(12) 내(도 1 참조)에 포함되어 있다. 나아가서는 자력선(7)에 관하여, 수평면(12) 내에 있어서, 인상로(1)의 중심축(10)에 있어서의 자력선방향을 X축으로 했을 때에, 2개의 코일축(13, 14)이 형성하는 각도 중, X축을 사이에 두는 각도(중심각도α)가 100도 이상 120도 이하이다.
이와 같이 중심각도α가 100도 이상인 배치이면, 특허문헌 2와 같은 자장분포를 발생시키는 것이 가능하다. 그리고, 융액(6)에 있어서의 X축에 평행한 단면에 있어서의 유속과, X축에 수직인 단면에 있어서의 유속의 밸런스를 맞출 수 있다.
이 밸런스의 실현화에 의해, X축과 수직인 단면 내에 있어서도, 도가니(2)의 내벽으로부터 용출된 산소가 단결정(9)에 도달할 때까지의 시간이 길어지고, 융액(6)의 자유표면으로부터의 산소증발량이 증가함으로써, 단결정(9)에 유입되는 산소농도를 대폭 저감시킬 수 있다.
또한 상기 밸런스에 의해, 단결정(9) 중의 성장무늬를 억제할 수 있다.
또한 120도 이하이면, 인접하는 코일(4)끼리가 부딪히지 않고 적절히 배치할 수 있다.
(초전도코일의 제2 실시태양)
여기서, 도 14a, 14b를 참조하여, 자장발생장치(30)에 있어서의 초전도코일의 형상이나 배치에 대하여 다른 태양을 상세히 서술한다. 도 14a는 초전도코일의 형상의 일례를 나타내는 사시도이고, 도 14b는 그 배치의 일례를 나타내는 횡단면도이다.
초전도코일(간단히, 코일이라고도 한다)(4)은 합계 4개 있고(4a-4d), 각각, 통상의 인상로(1)의 외형을 따른 형상보다 큰 곡률로 만곡된 안장형 형상을 하고 있다. 인상로(1)의 주위에, 대향배치되어 있는 쌍이 2세트 마련되어 있다. 여기서는, 4a와 4c, 4b와 4d의 조합으로 되어 있다.
종래와 같은 원형이 아니라 안장형 형상의 코일(4)이기 때문에, 코일의 둘레길이를 길게 할 수 있고, 한층 더 큰 자속밀도의 자장을 발생시킬 수 있어, 자장발생의 효율이 높은 것으로 할 수 있다.
게다가, 원형인 것과 비교하여 코일의 전체높이를 보다 작게 하기 쉽기 때문에, 원형인 것과 비교하여 코일의 중심높이위치를 한층 더 높은 위치로 높일 수 있다. 즉, 융액(6)에 대하여 보다 높은 위치로 자장중심을 설정할 수 있어, 보다 산소농도가 낮은 단결정(9)의 제조를 도모할 수 있다.
한편, 코일(4)은 세로폭이 가로폭보다 짧은 것으로 할 수 있다. 이 경우, 보다 확실하게 코일의 전체높이를 작게 할 수 있고, 나아가서는 저산소농도의 단결정(9)을 한층 용이하게 얻는 것이 가능해진다.
또한, 대향배치된 쌍의 코일(4)의 중심끼리를 통과하는 축을 코일축으로 했을 때, 2세트의 코일(4)의 쌍(4a와 4c의 쌍과, 4b와 4d의 쌍)에 있어서의 2개의 코일축(13, 14)은 동일한 수평면(12) 내(도 1 참조)에 포함되어 있다. 나아가서는 자력선(7)에 관하여, 수평면(12) 내에 있어서, 인상로(1)의 중심축(10)에 있어서의 자력선방향을 X축으로 했을 때에, 2개의 코일축(13, 14)이 형성하는 각도 중, X축을 사이에 두는 각도(중심각도α)가 100도 이상 120도 이하이다.
이와 같이 중심각도α가 100도 이상인 배치이면, 특허문헌 2와 같은 자장분포를 발생시키는 것이 가능하다. 그리고, 융액(6)에 있어서의 X축에 평행한 단면에 있어서의 유속과, X축에 수직인 단면에 있어서의 유속의 밸런스를 맞출 수 있다.
이 밸런스의 실현화에 의해, X축과 수직인 단면 내에 있어서도, 도가니(2)의 내벽으로부터 용출된 산소가 단결정(9)에 도달할 때까지의 시간이 길어지고, 융액(6)의 자유표면으로부터의 산소증발량이 증가함으로써, 단결정(9)에 유입되는 산소농도를 대폭 저감시킬 수 있다.
또한 상기 밸런스에 의해, 단결정(9) 중의 성장무늬를 억제할 수 있다.
또한 120도 이하이면, 인접하는 코일(4)끼리가 부딪히지 않고 적절히 배치할 수 있다.
여기서, 코일(4)의 곡률에 대하여 상세히 서술한다. 코일(4)은, 전술한 바와 같이 인상로(1)의 외형을 따른 형상보다 큰 곡률로 만곡되어 있는 것인데, 본 발명자들이 그와 같이 만곡시키는 이유를 발견하기에 이른 경위에 대하여 설명한다.
도 18은 석영제의 도가니(2)의 내벽에 대하여 직교하는 자속밀도성분(B⊥)을 둘레각도에 대하여 플롯한 것이다. 한편, 이 둘레각도란, 여기서는, 도 14b에 나타내는 바와 같이 코일(4a, 4b)의 사이를 기준(0°)으로 한 반시계방향의 각도이다. 또한, 여기서는 중심각도α가 120도가 되도록 4개의 코일(4a~4d)이 배설되어 있는 경우를 예로 들고 있다. 인상로(1)의 외형을 따른 형상을 기준으로 하여, 그로부터 곡률비(인상로(1)의 외형을 따른 형상의 곡률에 대한 코일(4)의 곡률의 비)를 1.0에서 1.5, 나아가서는 2.0으로 크게 해 가면, 각 코일의 중심영역에 가까운 35°와 145°부근(즉, 전술한 코일축(13, 14)의 위치 부근에 상당하는 각도영역이며, 코일축 각도영역을 말함)의 B⊥가 완화되어 있는 것을 알 수 있다.
본 발명과 같은 중심각도α가 100도 이상 120도 이하인 코일(4)의 배치에 의한 자장분포이면, X축에 평행한 단면과 수직인 단면에 있어서의 대류억제력의 차는 종래의 수평자장과 비교하여 작아져 있기는 하나, 그럼에도 전체둘레에서 4개소 있는 이 코일축 각도영역에서는 특히 도가니(2)에 직교하는 자속밀도성분이 강한 점에서, 도가니(2)의 내벽 근방에 있어서의 융액(6)의 산소의 확산경계층이 얇아지기 때문에, 다른 각도영역과 비교하여 석영제의 도가니(2)로부터 산소가 용해되기 쉽게 되어 있다. 코일(4)로부터 떨어진 장소의 자속밀도는 코일(4)까지의 거리의 2승에 반비례하기 때문에, 코일(4)의 곡률을 크게 함으로써(곡률비를 1보다 크게 함으로써), 이들 코일축 각도영역에 있어서의 자속밀도를 저하시키는 것이 가능하다. 이에 따라, 코일축 각도영역에 있어서의 도가니(2)로부터의 산소의 용해를 억제하고, 그에 따라 한층 저산소농도의 단결정(9)을 얻을 수 있다.
이 코일(4)의 곡률은 인상로(1)의 외형을 따른 형상의 곡률보다 크면 되고 특별히 한정되지 않는데, 그 바람직한 범위는, 인상로(1)의 외형을 따른 형상의 곡률비를 1.0으로 했을 때에(도 14b에는 참고로서 곡률비 1.0의 라인을 그었다), 1.2 이상 2.0 이하이다. 한편, 이 곡률비는 코일(4)의 예를 들어 육후(肉厚) 중심에 있어서의 값으로 할 수 있다. 1.2 이상으로 하면 상기 산소용해의 억제를 보다 효과적으로 행할 수 있다. 또한 2.0 이하이면 코일(4)을 수용하는 광체의 외형이 지나치게 커지는 것을 방지하는 것이 가능하고, 또한, 중심자장강도의 저하로 인한 최대자장강도의 저하를 억제할 수 있다.
또한 단결정 인상장치(11)는, 도 1에 나타내는 바와 같이 인상로(1)의 승강장치(22)를 갖고 있으며, 인상로(1)의 연직방향의 승강이나, 선회가 가능하게 되어 있다.
나아가, 자장발생장치(30)를 위한 승강장치(23)를 갖고 있으며, 이 승강장치(23)의 위에 설치되어 있는 자장발생장치(30)는 연직방향으로 승강(상하이동) 가능하다. 이에 따라, 조업 종료 후에 있어서, 인상로(1)에 있어서의 핫존 해체청소를 용이하게 행할 수 있고, 자장발생장치(30)의 높이 조정에 의해, 육성하는 단결정(9)의 산소농도의 조정을 하기 쉽다.
다음으로, 상기와 같은 본 발명의 단결정 인상장치(11)를 이용한 본 발명의 단결정 인상방법에 대하여 설명한다. 여기서는 반도체 단결정인 실리콘 단결정을 인상하는 방법에 대하여 설명한다.
먼저, 단결정 인상장치(11)에 있어서, 도가니(2) 내에 반도체원료(다결정 실리콘)를 넣고 가열히터(3)에 의해 가열하여, 반도체원료를 용융시킨다(융액(6)).
다음으로, 초전도코일(4)에의 통전에 의해, 융액(6)에 자장발생장치(30)에 의해 발생시킨 수평자장을 인가하여, 융액(6)의 도가니(2) 내에서의 대류를 억제한다.
다음으로, 융액(6) 중에 종결정(도시생략)을 예를 들어 도가니(2)의 중앙부 상방으로부터 하강하여 접촉하고, 인상기구(도시생략)에 의해 종결정을 소정의 속도로 인상방향(8)의 방향으로 회전시키면서 인상해 간다. 이에 따라, 고체·액체 경계층에 결정이 성장하고, 반도체의 단결정(실리콘 단결정)(9)이 생성된다.
이러한 단결정 인상방법이면, 유입되는 산소농도가 대폭 저감됨과 함께 성장무늬가 억제된 반도체 단결정을 육성할 수 있다. 인상하는 단결정 중의 산소농도는 특별히 한정되지 않는데, 특히, 5ppma-JEIDA 이하, 바람직하게는 3ppma-JEIDA 이하, 나아가서는 1ppma-JEIDA 이하인 것을 제조할 수 있다.
한편, 이 반도체 단결정을 인상할 때에, 이 반도체 단결정 중에 포함되는 산소농도의 목표값에 따라, 승강장치(23)를 이용하여, 자장발생장치(30)의 높이위치를 조정할 수 있다.
구체적으로는, 자장발생장치(30)의 높이위치와 단결정(9) 중의 산소농도의 관계를 미리 실험 등에 의해 구해 두고, 인상 개시 전에, 자장발생장치(30)의 높이위치를 원하는 높이위치로 설정해 둔다. 단결정(9)의 인상 중에는, 자장높이를 변경하지 않고, 그 이외의 파라미터로 단결정 중의 산소농도를 제어할 수 있다. 대표적인 파라미터는 도가니회전이나 히터위치 등을 사용할 수 있다.
또한, 1개의 단결정(9)의 인상 중에 있어서, 자장발생장치(30)의 높이위치를 패턴제어하는 것으로도 미세한 산소농도제어가 가능하다.
실시예
이하, 본 발명의 실시예 및 비교예를 나타내어 본 발명을 보다 구체적으로 설명하는데, 본 발명은 이들로 한정되는 것은 아니다.
(실시예 1)
도 1, 2a, 2b에 나타내는 본 발명의 단결정 인상장치(11)를 이용하여 단결정 인상을 행하였다.
인상로의 중심축을 중심선으로 하는 반경 900mm의 원을 따른 형상의 안장형 코일이며, 코일의 세로폭이 620mm, 가로폭(만곡을 따른 최외주의 길이)이 약 985mm인 초전도코일을 동일한 수평면 내에 4개 배치하고(대향하는 코일의 쌍이 2세트), 중심축에 있어서의 자력선방향을 X축으로 했을 때에, 2개의 코일축 간의 X축을 사이에 두는 중심각도α를 120도로 배치한 자장발생장치에 대하여, 자장해석과 3D멜트대류해석을 행한 후, 이 장치를 이용하여 실리콘 단결정의 인상을 행하였다.
해석시의 계산조건은, 차지량 400kg, 32인치(80cm) 도가니, 직경 306mm의 실리콘 단결정, 결정회전 9rpm, 도가니회전 0.4rpm, 인상속도 0.4mm/min으로 계산하고 있다.
도 3은, ANSYS-Maxwell3D에 의한 자장해석결과이며, 중심축에 있어서의 자속밀도가 1000Gauss가 되도록 코일의 전류×감은 수를 조정하여 해석한 후, 자속밀도의 분포를 표시시킨 것이다.
상기 자장해석의 결과로부터, 결정과 멜트영역을 포함하는 공간의 자속밀도를 추출하고, 자장분포를 고려한 3D멜트대류해석을 실시하였다. 코일축의 높이위치는 융액표면으로부터 140mm 아래로 설정하였다. 도 4의 좌측은, 그 결과로부터 얻어진 멜트 내의 속도벡터, 또한 우측은 멜트 내의 산소농도분포를 나타내고 있다. ⊥B는 자력선에 수직인 단면, ∥B는 자력선에 평행한 단면을 나타낸다.
후술하는 비교예 1과 마찬가지로, 자력선과 수직인 단면에 있어서도 대류억제력이 강하고 결정단(端) 아래에만 비교적 활발한 흐름이 보이는 정도이며, 멜트 내의 산소농도도 낮아져 있다.
이러한 본 발명에 있어서의 코일형상, 배치여도, 전체면에서 3~5ppma-JEIDA 정도이며 면 내 분포가 우수한 극저산소결정을 얻을 수 있다.
또한, 비교예 1과 비교하여 코일의 세로폭이 작은 점에서, 더욱 산소농도를 낮추기 위해 코일축의 중심높이위치를 높일 수 있는 여지가 있다. 이것에 대해서는 실시예 2로서 후술한다.
또한, 실시예 1에서는 코일축 간의 중심각도α를 120도로 했으나, 이 실시예 1에서 얻어진 효과(저산소농도, 또한, 우수한 면 내 분포)는 코일축 간의 각도를 100도까지 작게 해도 얻을 수 있었다.
(실시예 2)
실시예 1에서는 안장형 코일을 사용함으로써, 비교예 1(코일전체높이: 900mm)과 비교하여 코일높이를 280mm 낮게 할 수 있었다. 그래서 실시예 2에서는, 코일축의 높이위치를 융액표면으로 설정하여 3D멜트대류해석을 행한 후, 이 장치를 이용하여 실리콘 단결정의 인상을 행하였다.
도 5는, 수치해석으로 얻어진 멜트 내의 속도벡터와 멜트 내의 산소농도분포를 나타내고 있다. 실시예 1과 비교하여, 멜트 내의 산소농도가 낮아져 있는 것을 알 수 있다.
실제로, 이 코일배치이면, 코일축의 높이위치를 융액표면으로 설정할 수 있고, 웨이퍼 전체면에서 1ppma-JEIDA를 하회함과 함께 면 내 분포가 우수한 극저산소결정을 얻을 수 있었다.
(비교예 1)
도 12a, 12b에 나타내는 종래의 초전도자석(자장발생장치)의 단결정 인상장치를 이용하여 단결정 인상을 행하였다.
코일축을 포함하는 수평면 내에 있어서, 인상기의 중심축에 있어서의 자력선방향을 X축으로 했을 때에, 대향배치된 직경 900mm의 코일의 쌍을 각각의 코일축이 동일한 수평면 내에 포함되도록 2세트 마련함과 함께, X축을 사이에 두는 코일축 간의 중심각도α를 120도로 하여 원통형 진공용기 내에 배치한 자장발생장치에 대하여, 자장해석과 3D멜트대류해석을 행한 후, 이 장치를 이용하여 실리콘 단결정의 인상을 행하였다.
해석시의 계산조건은, 차지량 400kg, 32인치(80cm) 도가니, 직경 306mm의 실리콘 단결정, 결정회전 9rpm, 도가니회전 0.4rpm, 인상속도 0.4mm/min으로 계산하고 있다.
도 6은, ANSYS-Maxwell3D에 의한 자장해석결과이며, 중심축에 있어서의 자속밀도가 1000Gauss가 되도록 코일의 전류×감은 수를 조정하여 해석한 후, 자속밀도의 분포를 표시시킨 것이다.
상기 자장해석의 결과로부터, 결정과 멜트영역을 포함하는 공간의 자속밀도를 추출하고, 자장분포를 고려한 3D멜트대류해석을 실시하였다. 코일축의 높이위치는 비교예 1에 있어서 상한위치인 융액표면으로부터 140mm 아래로 설정하였다. 도 7은, 그 결과로부터 얻어진 멜트 내의 속도벡터, 또한 우측은 멜트 내의 산소농도분포를 나타내고 있다.
비교예 1의 자장에서는, 자력선과 수직인 단면에 있어서도 대류억제력이 강하고 결정단 아래에만 비교적 활발한 흐름이 보이는 정도이며, 멜트 내의 산소농도도 낮아져 있다.
이 코일배치이면, 전체면에서 3~5ppma-JEIDA 정도이며 면 내 분포가 우수한 극저산소결정을 얻을 수 있는데, 자장발생효율을 높이기 위해서는 코일직경을 크게 할 필요가 있고, 더욱 산소농도를 낮추기 위해 코일의 중심높이를 높이려고 하면, 인상기와의 간섭을 발생시키기 쉽다. 따라서, 비교예 1의 장치에서는, 산소농도를 더욱 낮추는 것은 어렵다.
(비교예 2)
2개의 코일축 간의 중심각도α를 90도로 한 것 이외는 실시예 1과 동일한 자장발생장치에 대하여, 자장해석과 3D멜트대류해석을 행한 후, 이 장치를 이용하여 실리콘 단결정의 인상을 행하였다.
그러나, X축과 수직인 단면에서의 대류억제력이 저하됨으로써, 산소농도가 상승하고, 또한 면 내 분포도 악화되었다. 원하는 저산소농도이며 면 내 분포가 우수한 실리콘 단결정을 얻을 수는 없었다.
(비교예 3)
2개의 코일축 간의 중심각도α를 130도로 한 것 이외는 실시예 1과 동일한 자장발생장치를 조립하려고 했으나, 인접하는 코일끼리가 부딪히기 때문에, 조립할 수 없었다.
(실시예 3)
도 1, 14a, 14b에 나타내는 본 발명의 단결정 인상장치(11)를 이용하여 단결정 인상을 행하였다.
인상로의 중심축을 중심선으로 하는 반경 900mm의 원을 따른 형상(인상로의 외형을 따른 형상)에 대하여, 곡률비가 1.8로 만곡된 안장형 코일이며, 코일의 세로폭이 620mm, 가로폭(만곡을 따른 최외주의 길이)이 약 980mm인 초전도코일을 동일한 수평면 내에 4개 배치하고(대향하는 코일의 쌍이 2세트), 중심축에 있어서의 자력선방향을 X축으로 했을 때에, 2개의 코일축 간의 X축을 사이에 두는 중심각도α를 120도로 배치한 자장발생장치에 대하여, 자장해석과 3D멜트대류해석을 행한 후, 이 장치를 이용하여 실리콘 단결정의 인상을 행하였다.
해석시의 계산조건은, 차지량 400kg, 32인치(80cm) 도가니, 직경 306mm의 실리콘 단결정, 결정회전 9rpm, 도가니회전 0.4rpm, 인상속도 0.4mm/min으로 계산하고 있다.
도 15는, ANSYS-Maxwell3D에 의한 자장해석결과이며, 중심축에 있어서의 자속밀도가 1000Gauss가 되도록 코일의 전류×감은 수를 조정하여 해석한 후, 자속밀도의 분포를 표시시킨 것이다.
상기 자장해석의 결과로부터, 결정과 멜트영역을 포함하는 공간의 자속밀도를 추출하고, 자장분포를 고려한 3D멜트대류해석을 실시하였다. 코일축의 높이위치는 융액표면으로부터 140mm 아래로 설정하였다. 도 16의 좌측은, 그 결과로부터 얻어진 멜트 내의 속도벡터, 또한 우측은 멜트 내의 산소농도분포를 나타내고 있다. ⊥B는 자력선에 수직인 단면, ∥B는 자력선에 평행한 단면을 나타낸다.
전술한 비교예 1과 마찬가지로, 자력선과 수직인 단면에 있어서도 대류억제력이 강하고 결정단 아래에만 비교적 활발한 흐름이 보이는 정도이며, 멜트 내의 산소농도도 낮아져 있다.
이러한 본 발명에 있어서의 코일형상, 배치이며, 또한, 이 코일형상은 곡률비가 1.8로 크고, 도가니내벽에 직교하는 자속밀도성분(B⊥)이 둘레방향에 있어서 한층 더 균일하기 때문에, 전체면에서 1~3ppma-JEIDA 정도이며 면 내 분포가 우수한 극저산소결정을 얻을 수 있다.
또한, 비교예 1과 비교하여 코일의 세로폭이 작은 점에서, 더욱 산소농도를 낮추기 위해 코일축의 높이위치를 높일 수 있는 여지가 있다. 이것에 대해서는 실시예 4로서 후술한다.
또한, 실시예 3에서는 코일축 간의 중심각도α를 120도로 했으나, 이 실시예 3에서 얻어진 효과(저산소농도, 또한, 우수한 면 내 분포)는 코일축 간의 각도를 100도까지 작게 해도 얻을 수 있었다.
(실시예 4)
실시예 3에서는 안장형 코일을 사용함으로써, 비교예 1(코일전체높이: 900mm)과 비교하여 코일높이를 280mm 낮게 할 수 있었다. 그래서 실시예 4에서는, 코일축의 높이위치를 융액표면으로 설정하여 3D멜트대류해석을 행한 후, 이 장치를 이용하여 실리콘 단결정의 인상을 행하였다.
도 17은, 수치해석으로 얻어진 멜트 내의 속도벡터와 멜트 내의 산소농도분포를 나타내고 있다. 실시예 3과 비교하여, 멜트 내의 산소농도가 낮아져 있는 것을 알 수 있다.
실제로, 이 코일배치이면, 코일축의 높이위치를 융액표면으로 설정할 수 있고, 웨이퍼 전체면에서 0.5ppma-JEIDA를 하회함과 함께 면 내 분포가 우수한 극저산소결정을 얻을 수 있었다.
(비교예 4)
2개의 코일축 간의 중심각도α를 90도로 한 것 이외는 실시예 3과 동일한 자장발생장치에 대하여, 자장해석과 3D멜트대류해석을 행한 후, 이 장치를 이용하여 실리콘 단결정의 인상을 행하였다.
그러나, X축과 수직인 단면에서의 대류억제력이 저하됨으로써, 산소농도가 상승하고, 또한 면 내 분포도 악화되었다. 원하는 저산소농도이며 면 내 분포가 우수한 실리콘 단결정을 얻을 수는 없었다.
(비교예 5)
2개의 코일축 간의 중심각도α를 130도로 한 것 이외는 실시예 3과 동일한 자장발생장치를 조립하려고 했으나, 인접하는 코일끼리가 부딪히기 때문에, 조립할 수 없었다.
(실시예 5)
곡률비가 1.1로 만곡된 코일의 세로폭이 620mm, 가로폭(만곡을 따른 최외주의 길이)이 약 890mm인 안장형 코일을 이용하는 것 이외는 실시예 3과 동일하게 하여, 자장발생장치에 대하여, 자장해석과 3D멜트대류해석을 행한 후, 이 장치를 이용하여 실리콘 단결정의 인상을 행하였다.
도 19는, ANSYS-Maxwell3D에 의한 자장해석결과이며, 중심축에 있어서의 자속밀도가 1000Gauss가 되도록 코일의 전류×감은 수를 조정하여 해석한 후, 자속밀도의 분포를 표시시킨 것이다.
상기 자장해석의 결과로부터, 결정과 멜트영역을 포함하는 공간의 자속밀도를 추출하고, 자장분포를 고려한 3D멜트대류해석을 실시하였다. 코일축의 높이위치는, 실시예 3, 비교예 1과 동일한 융액표면으로부터 140mm 아래로 설정하였다. 도 20의 좌측은, 그 결과로부터 얻어진 멜트 내의 속도벡터, 또한 우측은 멜트 내의 산소농도분포를 나타내고 있다.
실시예 5의 자장에서도, 비교예 1과 마찬가지로, 자력선과 수직인 단면에 있어서도 대류억제력이 강하고 결정단 아래에만 비교적 활발한 흐름이 보이는 정도이며, 멜트 내의 산소농도도 낮아져 있다.
이러한 안장형, 곡률비의 코일형상, 배치여도, 전체면에서 3~5ppma-JEIDA 정도이며 면 내 분포가 우수한 극저산소결정을 얻을 수 있다. 한편, 산소농도에 관하여, 상기와 같이 전체면에서 3~5ppma-JEIDA 정도이고 비교예 1과 동일한 정도이나, 평균으로는 비교예 1보다 낮은 값으로 할 수 있었다.
또한, 비교예 1과 비교하여 코일의 세로폭이 작은 점에서, 더욱 산소농도를 낮추기 위해, 실시예 4와 같이 코일축의 높이위치를 높일 수 있는 여지가 있다.
한편, 본 발명은, 상기 실시형태로 한정되는 것은 아니다. 상기 실시형태는, 예시이며, 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고, 동일한 작용효과를 나타내는 것은, 어떠한 것이어도 본 발명의 기술적 범위에 포함된다.

Claims (7)

  1. 가열히터 및 용융된 반도체원료가 수용되는 도가니가 배치되고 중심축을 갖는 인상로와, 이 인상로의 주위에 마련되고, 초전도코일을 갖는 자장발생장치를 구비하며, 상기 초전도코일에의 통전에 의해 상기 용융된 반도체원료에 수평자장을 인가하여, 상기 용융된 반도체원료의 상기 도가니 내에서의 대류를 억제하는 단결정 인상장치로서,
    상기 자장발생장치의 상기 초전도코일은, 상기 인상로의 외형을 따라 만곡된 안장형 형상이고, 상기 인상로의 주위에, 대향배치된 상기 안장형 형상의 초전도코일의 쌍이 2세트 마련되어 있으며,
    이 대향배치된 쌍의 초전도코일의 중심끼리를 통과하는 축을 코일축으로 했을 때에,
    상기 2세트의 초전도코일의 쌍에 있어서의 2개의 상기 코일축은 동일한 수평면 내에 포함되어 있고,
    이 수평면 내에 있어서, 상기 인상로의 상기 중심축에 있어서의 자력선방향을 X축으로 했을 때에, 상기 2개의 코일축 간의 상기 X축을 사이에 두는 중심각도α가 100도 이상 120도 이하인 것을 특징으로 하는 단결정 인상장치.
  2. 가열히터 및 용융된 반도체원료가 수용되는 도가니가 배치되고 중심축을 갖는 인상로와, 이 인상로의 주위에 마련되고, 초전도코일을 갖는 자장발생장치를 구비하며, 상기 초전도코일에의 통전에 의해 상기 용융된 반도체원료에 수평자장을 인가하여, 상기 용융된 반도체원료의 상기 도가니 내에서의 대류를 억제하는 단결정 인상장치로서,
    상기 자장발생장치의 상기 초전도코일은, 상기 인상로의 외형을 따른 형상보다 큰 곡률로 만곡된 안장형 형상이고, 상기 인상로의 주위에, 대향배치된 상기 안장형 형상의 초전도코일의 쌍이 2세트 마련되어 있으며,
    이 대향배치된 쌍의 초전도코일의 중심끼리를 통과하는 축을 코일축으로 했을 때에,
    상기 2세트의 초전도코일의 쌍에 있어서의 2개의 상기 코일축은 동일한 수평면 내에 포함되어 있고,
    이 수평면 내에 있어서, 상기 인상로의 상기 중심축에 있어서의 자력선방향을 X축으로 했을 때에, 상기 2개의 코일축 간의 상기 X축을 사이에 두는 중심각도α가 100도 이상 120도 이하인 것을 특징으로 하는 단결정 인상장치.
  3. 제2항에 있어서,
    상기 인상로의 외형을 따른 형상의 곡률에 대한 상기 안장형 형상의 초전도코일의 곡률의 비가 1.2 이상 2.0 이하인 것을 특징으로 하는 단결정 인상장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 자장발생장치는, 연직방향으로 상하이동 가능한 승강장치의 위에 설치되어 있는 것을 특징으로 하는 단결정 인상장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 안장형 형상의 초전도코일은, 세로폭이 가로폭보다 짧은 것을 특징으로 하는 단결정 인상장치.
  6. 제1항 내지 제5항 중 어느 한 항에 기재된 단결정 인상장치를 이용하여, 반도체 단결정을 인상하는 것을 특징으로 하는 단결정 인상방법.
  7. 제6항에 있어서,
    상기 반도체 단결정을 인상할 때에, 이 반도체 단결정 중에 포함되는 산소농도의 목표값에 따라, 상기 자장발생장치의 높이위치를 조정하는 것을 특징으로 하는 단결정 인상방법.
KR1020227031048A 2020-03-17 2021-02-22 단결정 인상장치 및 단결정 인상방법 KR20220145847A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2020-046021 2020-03-17
JP2020046021 2020-03-17
JPJP-P-2020-178960 2020-10-26
JP2020178960 2020-10-26
PCT/JP2021/006610 WO2021187017A1 (ja) 2020-03-17 2021-02-22 単結晶引上げ装置および単結晶引上げ方法

Publications (1)

Publication Number Publication Date
KR20220145847A true KR20220145847A (ko) 2022-10-31

Family

ID=77771990

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227031048A KR20220145847A (ko) 2020-03-17 2021-02-22 단결정 인상장치 및 단결정 인상방법

Country Status (7)

Country Link
US (1) US20230138632A1 (ko)
JP (1) JP7439900B2 (ko)
KR (1) KR20220145847A (ko)
CN (1) CN115244229A (ko)
DE (1) DE112021000599T5 (ko)
TW (1) TW202204703A (ko)
WO (1) WO2021187017A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291892A (ja) 1997-04-22 1998-11-04 Komatsu Electron Metals Co Ltd 結晶中の不純物濃度検出方法および単結晶の製造方法並びに単結晶引上げ装置
JP2004051475A (ja) 2002-05-31 2004-02-19 Toshiba Corp 単結晶引上げ装置、超電導磁石および単結晶引上げ方法
JP2017057127A (ja) 2015-09-18 2017-03-23 信越半導体株式会社 単結晶引き上げ装置、及び単結晶引き上げ方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476962B2 (ja) * 1995-06-05 2003-12-10 三菱電機株式会社 単結晶引上装置
JP2000007485A (ja) * 1998-06-16 2000-01-11 Mitsubishi Electric Corp 単結晶製造装置
JP3609312B2 (ja) 2000-01-21 2005-01-12 住友重機械工業株式会社 水平磁界発生用超電導磁石装置
JP2004189559A (ja) * 2002-12-12 2004-07-08 Sumitomo Mitsubishi Silicon Corp 単結晶成長方法
KR20050007498A (ko) 2003-07-08 2005-01-19 주식회사 덕성 굽은 형태의 원형 또는 타원형 초전도 코일을 사용하는수평자계발생용 초전도자석장치
JP2007184383A (ja) 2006-01-06 2007-07-19 Kobe Steel Ltd 磁場形成装置
JP4757129B2 (ja) 2006-07-20 2011-08-24 三菱電機株式会社 超電導電磁石
JP5889509B2 (ja) * 2008-05-26 2016-03-22 株式会社東芝 単結晶引上げ装置用超電導マグネット装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291892A (ja) 1997-04-22 1998-11-04 Komatsu Electron Metals Co Ltd 結晶中の不純物濃度検出方法および単結晶の製造方法並びに単結晶引上げ装置
JP2004051475A (ja) 2002-05-31 2004-02-19 Toshiba Corp 単結晶引上げ装置、超電導磁石および単結晶引上げ方法
JP2017057127A (ja) 2015-09-18 2017-03-23 信越半導体株式会社 単結晶引き上げ装置、及び単結晶引き上げ方法

Also Published As

Publication number Publication date
CN115244229A (zh) 2022-10-25
US20230138632A1 (en) 2023-05-04
WO2021187017A1 (ja) 2021-09-23
TW202204703A (zh) 2022-02-01
JP7439900B2 (ja) 2024-02-28
DE112021000599T5 (de) 2022-12-08
JPWO2021187017A1 (ko) 2021-09-23

Similar Documents

Publication Publication Date Title
KR102478863B1 (ko) 단결정 인상장치 및 단결정 인상방법
KR100954291B1 (ko) 고품질의 반도체 단결정 잉곳 제조장치 및 방법
KR100562260B1 (ko) 단결정 인상 장치, 단결정 인상 방법 및 초전도 자석
JP6950581B2 (ja) シリコン単結晶の製造方法およびシリコン単結晶の引き上げ装置
US11578423B2 (en) Magnet coil for magnetic czochralski single crystal growth and magnetic czochralski single crystal growth method
KR20220006513A (ko) 단결정 인상장치 및 단결정 인상방법
JP6620670B2 (ja) 単結晶引き上げ装置及び単結晶引き上げ方法
KR20220145847A (ko) 단결정 인상장치 및 단결정 인상방법
JP7160006B2 (ja) 単結晶引上げ装置および単結晶引上げ方法
WO2022196127A1 (ja) 単結晶引上げ装置および単結晶引上げ方法
KR20200111777A (ko) 실리콘 융액의 대류 패턴 제어 방법 및, 실리콘 단결정의 제조 방법
JP7230781B2 (ja) 単結晶引き上げ装置及び単結晶引き上げ方法
WO2022163091A1 (ja) 単結晶引上げ装置および単結晶引上げ方法
KR20230070287A (ko) 단결정의 제조 방법, 자장 발생 장치 및 단결정 제조 장치
KR20240038957A (ko) 실리콘 단결정의 제조방법
JP2005306669A (ja) シリコン単結晶の引上げ装置及びその方法