WO2022102251A1 - 単結晶の製造方法、磁場発生装置及び単結晶製造装置 - Google Patents

単結晶の製造方法、磁場発生装置及び単結晶製造装置 Download PDF

Info

Publication number
WO2022102251A1
WO2022102251A1 PCT/JP2021/034733 JP2021034733W WO2022102251A1 WO 2022102251 A1 WO2022102251 A1 WO 2022102251A1 JP 2021034733 W JP2021034733 W JP 2021034733W WO 2022102251 A1 WO2022102251 A1 WO 2022102251A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
axis
coil
single crystal
melt
Prior art date
Application number
PCT/JP2021/034733
Other languages
English (en)
French (fr)
Inventor
直輝 松島
竜介 横山
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020237013398A priority Critical patent/KR20230070287A/ko
Priority to US18/036,094 priority patent/US20230407523A1/en
Priority to DE112021005918.1T priority patent/DE112021005918T5/de
Priority to JP2022561308A priority patent/JPWO2022102251A1/ja
Priority to CN202180075806.5A priority patent/CN116438333A/zh
Publication of WO2022102251A1 publication Critical patent/WO2022102251A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/064Circuit arrangements for actuating electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures

Definitions

  • the present invention relates to a method for producing a single crystal, and more particularly to a method for producing a single crystal by a magnetic field applied Czochralski method that pulls up the single crystal while applying a horizontal magnetic field to the melt.
  • the present invention also relates to a magnetic field generator and a single crystal manufacturing apparatus used in such an MCZ method.
  • the so-called MCZ method for pulling up a silicon single crystal while applying a magnetic field to the silicon melt is known.
  • the MCZ method since the convection of the melt is suppressed, the amount of oxygen dissolved in the silicon melt by the reaction with the quartz crucible can be suppressed and the oxygen concentration of the silicon single crystal can be suppressed to a low level.
  • Patent Document 1 the oxygen concentration taken up in a single crystal is lowered or increased by moving the magnetic field center position in the vertical direction in the vertical direction to move closer to or away from the liquid surface in accordance with the progress of pulling up the single crystal. It is stated that it should be done. Further, Patent Document 2 describes that a magnetic field is generated so that the magnetic flux travels along the curved bottom of the crucible.
  • Patent Document 3 a magnetic field generator capable of switching between two types of magnetic fields in which the directions of magnetic field lines are deviated by 90 degrees and the magnetic field distributions are different from each other is used to suppress low oxygen concentration and growth fringes.
  • Japanese Unexamined Patent Publication No. 2004-323323 Japanese Unexamined Patent Publication No. 62-256787 Japanese Unexamined Patent Publication No. 2017-20396
  • the horizontal magnetic field applied near the melt surface travels straight in parallel with the melt surface. This is because, as described above, the magnetic field component orthogonal to the melt surface suppresses the melt convection on the melt surface and causes an increase in the oxygen concentration.
  • the magnetic field travels while bending along the curved bottom. This is because the magnetic field component orthogonal to the inner wall surface of the rutsubo suppresses the convection of the melt, so that the diffusion of oxygen in the melt becomes insufficient and the oxygen concentration in the single crystal tends to be uneven. Therefore, as described in Patent Document 2, it is effective to generate a magnetic field bent along the curved bottom surface of the crucible.
  • Fluctuations in the oxygen concentration distribution in the crystal growth direction of a silicon single crystal affect the in-plane distribution of oxygen concentration in a silicon wafer. As shown in FIG. 14, when a wafer is cut out from a silicon single crystal having growth fringes of oxygen concentration distribution in the crystal growth direction, the in-plane distribution of oxygen concentration of the wafer becomes non-uniform.
  • the present inventors investigated the fluctuation of the oxygen concentration in the single crystal, and found that the growth fringe of the oxygen concentration became small in a specific range of the crystal growth direction, and the fluctuation of the crystal diameter in that range. Found to be very small. As a result of further investigation, it was clarified that the direction of the magnetic field lines near the bottom of the crucible is almost parallel to the bottom of the crucible when growing a single crystal in the range where the growth fringes of oxygen concentration are small.
  • the present invention is based on such technical knowledge, and the method for producing a single crystal according to the present invention is a method for producing a single crystal that pulls up the single crystal while applying a transverse magnetic field to the melt in the rutsubo.
  • the rutsubo is raised in accordance with the decrease in the melt, and the direction of the magnetic field on the melt surface and the direction of the magnetic field on the inner surface of the curved bottom of the rutsubo are from the start to the end of the body portion growing step. It is characterized in that the magnetic field distribution is controlled according to the decrease of the melt so as to be constant.
  • the direction of the magnetic field near the melt surface and the direction of the magnetic field near the bottom of the rutsubo are kept constant from the beginning to the end of the body part growing process, so that oxygen in the single crystal is maintained. It is possible to suppress the melt convection that affects the concentration as much as possible, thereby not only reducing the oxygen content of the single crystal but also making the in-plane distribution of the oxygen concentration uniform.
  • the direction of the magnetic field on the melt surface is preferably parallel to the melt surface.
  • the melt surface is an interface (gas-liquid interface) between the melt and the atmosphere in the raising furnace, and is usually a horizontal surface.
  • the rotation axis of the rutsubo is the Z axis
  • the magnetic field center axis of the transverse magnetic field orthogonal to the Z axis is the Y axis
  • the intersection of the Z axis and the Y axis is the origin
  • the origin is orthogonal to the YZ plane.
  • the angle ⁇ between the normal vector and the magnetic field vector on the inner surface is maintained at 75 degrees or more and 105 degrees or less on the intersection of the inner surface of the curved bottom of the rutsubo and the YZ plane. It is preferable to do so. This makes it possible to suppress the melt convection at the bottom of the crucible and make the in-plane distribution of the oxygen concentration in the single crystal uniform.
  • the integral value at the bottom of the square of the inner product of the normal vector of the inner surface of the curved bottom of the rutsubo and the magnetic field vector is obtained while maintaining the strength of the magnetic field at the origin constant. It is preferable to adjust the magnetic field distribution so as to minimize it. Alternatively, the magnetic field distribution may be adjusted so that the shape of the bottom and the second derivative of the magnetic field in the Y direction match at the center of the bottom. This makes it possible to direct the direction of the magnetic field near the bottom of the crucible along the curved inner surface of the bottom.
  • the bottom portion is preferably in a range of 0.7R or less from the center of the bottom portion. Normally, in single crystal pulling under a transverse magnetic field where the magnetic field distribution is not distorted, the magnetic field distribution near the center is close to parallel to the bottom surface of the rutsubo. Do not do.
  • the setting area of the bottom portion is wider than 0.7R, it becomes difficult to satisfy the above conditions at the corner portion of the crucible whose curvature greatly changes toward the side wall portion.
  • the method for producing a single crystal according to the present invention it is preferable to provide a plurality of coil elements around the rutsubo and control the magnetic field distribution by individually adjusting the magnetic field strength of each coil element.
  • the plurality of coil elements form a plurality of coil element pairs having the same coil axes.
  • the direction of the magnetic field near the bottom of the rutsubo can be changed according to the change in the height position of the rutsubo while maintaining the direction of the magnetic field on the melt surface horizontally.
  • the plurality of coil elements are preferably arranged symmetrically with the XZ plane in between, and are preferably arranged in parallel with the XY plane. According to the present invention, it is possible to realize a magnetic field distribution having high symmetry when viewed from the Z axis.
  • the plurality of coil elements constitute a first coil device that generates a first magnetic field and a second coil device that generates a second magnetic field different from the first magnetic field, and the strength of the first magnetic field and the said. It is preferable to control the magnetic field distribution by individually adjusting the second magnetic field and the strength. As a result, the direction of the magnetic field near the bottom of the crucible can be changed according to the change in the height position of the crucible while keeping the direction of the magnetic field on the melt surface horizontal.
  • the first magnetic field has a magnetic field change in which the positive magnetic field on the Y-axis gradually weakens and then becomes zero, and then the negative magnetic field on the Y-axis gradually becomes stronger. It is preferable to have a magnetic field change in which the negative magnetic field of the Y-axis gradually weakens, then becomes zero, and the positive magnetic field of the Y-axis gradually becomes stronger. As a result, the direction of the magnetic field near the bottom of the crucible can be changed according to the change in the height position of the crucible while keeping the direction of the magnetic field on the melt surface horizontal.
  • the magnetic field generator according to the present invention is a magnetic field generator that applies a transverse magnetic field to the melt in the rutsubo and is used for manufacturing a single crystal by the MCZ method, and is a first coil device that generates a first magnetic field.
  • a second coil device that generates a second magnetic field different from the first magnetic field is provided, the rotation axis of the rutsubo is the Z axis, and the central axis in the application direction of the transverse magnetic field orthogonal to the Z axis is the Y axis.
  • the first coil device is arranged on the YZ plane and the coil axis is
  • the second coil device has at least a pair of matching coil elements, the second coil device is arranged parallel to the XY plane, and has at least two pairs of coil elements with matching coil axes, the first coil device and the second coil device.
  • a plurality of coil elements constituting the coil device are characterized in that they are arranged symmetrically with the XZ plane interposed therebetween.
  • the direction of the magnetic field near the bottom of the rutsubo can be changed according to the change in the height position of the rutsubo while maintaining the direction of the magnetic field on the melt surface horizontally.
  • the first coil device has first and second coil elements arranged on the YZ plane and symmetrically arranged with the Z axis interposed therebetween, and the second coil device is the XY plane.
  • the third and fourth coil elements arranged on the Z-axis and symmetrically arranged across the Z-axis, and the fifth and sixth coil elements arranged on the XY plane and symmetrically arranged across the Z-axis. It is preferable that the first to sixth coil elements are symmetrically arranged with the XZ plane interposed therebetween. This makes it possible to realize a magnetic field distribution with high symmetry when viewed from the Z axis.
  • the angle formed by the coil axes of the third and fourth coil elements with the Y axis is +45 degrees, and the angle formed by the coil axes of the fifth and sixth coil elements with the Y axis is ⁇ 45 degrees. preferable. This makes it possible to realize a magnetic field distribution with high symmetry when viewed from the Z axis.
  • the loop sizes of the loop coils constituting the first and second coil elements are the same, and the loop sizes of the loop coils constituting the third to sixth coil elements are the same. This makes it possible to realize a magnetic field distribution with high symmetry when viewed from the Z axis.
  • the single crystal manufacturing apparatus has a rutsubo that supports the melt, a heater that heats the melt, a crystal pulling mechanism that pulls the single crystal from the melt, and the rutsubo that is rotated and driven up and down. It includes a rutsubo elevating mechanism, the above-mentioned magnetic field generator according to the present invention for applying a transverse magnetic field to the melt, the heater, the crystal pulling mechanism, the rutsubo elevating mechanism, and a control unit for controlling the magnetic field generator. It is characterized by that.
  • the single crystal manufacturing apparatus maintains the direction of the magnetic field near the melt surface and the direction of the magnetic field near the bottom of the rutsubo constant regardless of the change in the height position of the rutsubo during the body portion growing process. It is possible to suppress the melt convection that affects the oxygen concentration in the single crystal as much as possible, thereby not only reducing the oxygen content of the single crystal but also making the in-plane distribution of the oxygen concentration uniform.
  • the present invention it is possible to provide a method for producing a single crystal, a magnetic field generator, and a single crystal producing apparatus capable of making the in-plane distribution of the oxygen concentration in the single crystal uniform.
  • FIG. 1 is a side sectional view schematically showing a configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method for producing a silicon single crystal according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the shape of a silicon single crystal ingot.
  • 4 (a) to 4 (c) are schematic perspective views showing the configuration of the magnetic field generator according to the first embodiment of the present invention, (a) is the overall configuration of the magnetic field generator, and (b) is.
  • the configuration of the first coil device and (c) show the configuration of the second coil device, respectively.
  • FIG. 5 is a graph showing changes in the magnetic field strength generated from the first coil device 21 and the second coil device 22.
  • 6 (a) to 6 (c) are schematic views showing the vector distribution of the composite magnetic field applied to the silicon melt in the quartz crucible.
  • 7 (a) to 7 (c) are schematic perspective views showing the configuration of the magnetic field generator 20 according to the second embodiment of the present invention, where (a) is the overall configuration of the magnetic field generator, (b). (C) shows the configuration of the first coil device, and (c) shows the configuration of the second coil device.
  • 8 (a) to 8 (c) are schematic perspective views showing the configuration of the magnetic field generator 20 according to the third embodiment of the present invention, and (a) is the overall configuration of the magnetic field generator 20, (b). ) Shows the configuration of the first coil device, and (c) shows the configuration of the second coil device.
  • 9 (a) to 9 (c) are schematic perspective views showing the configuration of the magnetic field generator 20 according to the fourth embodiment of the present invention, and (a) is the overall configuration of the magnetic field generator 20, (b). ) Shows the configuration of the first coil device, and (c) shows the configuration of the second coil device.
  • 10 (a) and 10 (b) are graphs showing the relationship with the magnetic field output, and (a) is the relationship between the melt depth (distance from the liquid surface to the bottom of the crucible) and the magnetic field output, (b). ) It is a graph which shows the relationship between a crystal length and a magnetic field output.
  • 11 (a) to 11 (c) are graphs showing the angle between the magnetic field lines of the composite magnetic field generated using the magnetic field output profiles shown in FIGS.
  • FIG. 12 is a graph showing an oxygen concentration distribution in the crystal growth direction of a silicon single crystal according to an example manufactured while applying a composite magnetic field.
  • 13 (a) to 13 (f) are graphs showing the evaluation results of the oxygen concentration of a silicon single crystal by Comparative Examples and Examples, and
  • FIGS. 13 (a) to 13 (c) are graphs showing the evaluation results of the oxygen concentration of a silicon single crystal while applying a single magnetic field. It is the evaluation result of the oxygen concentration of the silicon single crystal by the manufactured comparative example, and FIGS. It is a schematic diagram for demonstrating the problem of the conventional silicon single crystal.
  • FIG. 1 is a side sectional view schematically showing a configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention.
  • the single crystal manufacturing apparatus 1 includes a chamber 10, a quartz crucible 11 that holds a silicon melt 2 in the chamber 10, a graphite susceptor 12 that holds the quartz crucible 11, and a susceptor 12.
  • the rotating shaft 13 that supports it, the shaft drive mechanism 14 that rotates and drives the rotating shaft 13 up and down, the heater 15 arranged around the susceptor 12, and the outside of the heater 15 and along the inner surface of the chamber 10.
  • the single crystal manufacturing apparatus 1 includes a magnetic field generator 20 arranged outside the chamber 10, a CCD camera 25 for photographing the inside of the chamber 10, an image processing unit 26 for processing an image captured by the CCD camera 25, and an image processing unit 26. It includes a shaft drive mechanism 14, a heater 15, and a control unit 27 that controls a wire winding mechanism 19 based on the output of the image processing unit 26.
  • the chamber 10 is composed of a main chamber 10a and an elongated cylindrical pull chamber 10b connected to the upper opening of the main chamber 10a, and the quartz crucible 11, the susceptor 12, the heater 15 and the heat shield 17 are the main chambers. It is provided in 10a.
  • the pull chamber 10b is provided with a gas introduction port 10c for introducing an inert gas (purge gas) such as argon gas into the chamber 10, and a gas for discharging the inert gas is provided in the lower part of the main chamber 10a.
  • a discharge port 10d is provided.
  • a viewing window 10e is provided in the upper part of the main chamber 10a, and the growing state (solid-liquid interface) of the silicon single crystal 3 can be observed from the viewing window 10e.
  • the quartz crucible 11 is a quartz glass container having a cylindrical side wall portion, a gently curved bottom portion, and a corner portion provided between the side wall portion and the bottom portion.
  • the susceptor 12 is held in close contact with the outer surface of the quartz crucible 11 so as to wrap the quartz crucible 11.
  • the quartz crucible 11 and the susceptor 12 form a double-structured crucible that supports the silicon melt in the chamber 10.
  • the susceptor 12 is fixed to the upper end of the rotating shaft 13 extending in the vertical direction. Further, the lower end portion of the rotary shaft 13 penetrates the center of the bottom portion of the chamber 10 and is connected to a shaft drive mechanism 14 provided on the outside of the chamber 10.
  • the susceptor 12, the rotating shaft 13, and the shaft drive mechanism 14 constitute a crucible elevating mechanism that elevates and drives the quartz crucible 11 while rotating it.
  • the heater 15 is used to melt the silicon raw material filled in the quartz crucible 11 and maintain the molten state.
  • the heater 15 is a carbon resistance heating type heater, and is a substantially cylindrical member provided so as to surround the entire circumference of the quartz crucible 11 in the susceptor 12. Further, the outside of the heater 15 is surrounded by the heat insulating material 16, which enhances the heat retention in the chamber 10.
  • the heat shield 17 suppresses the temperature fluctuation of the silicon melt 2 to form an appropriate hot zone near the solid-liquid interface, and prevents the silicon single crystal 3 from being heated by the radiant heat from the heater 15 and the quartz pot 11. It is provided for the purpose.
  • the heat shield 17 is a cylindrical member made of graphite that covers the upper region of the silicon melt 2 excluding the pulling path of the silicon single crystal 3.
  • a circular opening larger than the diameter of the silicon single crystal 3 is formed in the center of the lower end of the heat shield 17, and a pulling path for the silicon single crystal 3 is secured. As shown, the silicon single crystal 3 passes through the opening and is pulled upward. Since the diameter of the opening of the heat shield 17 is smaller than the diameter of the quartz crucible 11 and the lower end of the heat shield 17 is located inside the quartz crucible 11, the upper end of the rim of the quartz crucible 11 is from the lower end of the heat shield 17. The heat shield 17 does not interfere with the quartz crucible 11 even if it is raised upward.
  • the amount of melt in the quartz rut 11 decreases with the growth of the silicon single crystal 3, but by raising the quartz rut 11 so that the distance (gap) between the melt surface 2s and the heat shield 17 becomes constant, the quartz rut 11 is raised. It is possible to suppress the temperature fluctuation of the silicon melt 2 and control the evaporation amount of the dopant from the silicon melt 2 by keeping the flow velocity of the gas flowing in the vicinity of the melt surface 2s (purge gas guide path) constant. Therefore, it is possible to improve the stability of the crystal defect distribution, the oxygen concentration distribution, the resistivity distribution, etc. in the pulling axis direction of the single crystal.
  • FIG. 1 shows a state in which the silicon single crystal 3 being grown is suspended from the wire 18.
  • the magnetic field generator 20 is composed of a plurality of coils provided around the quartz crucible 11 and applies a transverse magnetic field (horizontal magnetic field) to the silicon melt 2.
  • the maximum strength of the transverse magnetic field on the rotation axis of the quartz rut 11 (on the extension of the crystal pulling axis) is preferably 0.15 to 0.6 (T), which is the magnetic field strength range of general HMCZ.
  • a viewing window 10e for observing the inside is provided in the upper part of the main chamber 10a, and the CCD camera 25 is installed outside the viewing window 10e.
  • the CCD camera 25 captures an image of the boundary between the silicon single crystal 3 and the silicon melt 2 which can be seen from the viewing window 10e through the opening 17a of the heat shield 17.
  • the CCD camera 25 is connected to the image processing unit 26, the captured image is processed by the image processing unit 26, and the processing result is used by the control unit 27 to control the crystal pulling condition.
  • FIG. 2 is a flowchart illustrating a method for producing a silicon single crystal according to an embodiment of the present invention. Further, FIG. 3 is a schematic cross-sectional view showing the shape of the silicon single crystal ingot.
  • the silicon raw material in the quartz crucible 11 is heated to generate the silicon melt 2 (step S11). After that, the seed crystal attached to the tip of the wire 18 is lowered and landed on the silicon melt 2 (step S12).
  • a single crystal pulling step is carried out in which the seed crystal is gradually pulled up while maintaining the contact state with the silicon melt 2 to grow the single crystal.
  • a necking step step S13 of forming a neck portion 3a whose crystal diameter is narrowed down to eliminate dislocations, and a shoulder portion whose crystal diameter is gradually increased to obtain a specified diameter.
  • a shoulder part growing step step S14 for forming 3b, a body part growing step (step S15) for forming a body part 3c in which the crystal diameter is kept constant, and a tail part 3d having a gradually reduced crystal diameter are formed.
  • the tail portion growing step (step S16) is carried out in order, and the tail portion growing step is completed when the silicon single crystal 3 is finally separated from the melt surface 2s.
  • the silicon single crystal ingot 3 having the neck portion 3a, the shoulder portion 3b, the body portion 3c, and the tail portion 3d is completed in order from the upper end to the lower end of the single crystal.
  • the CCD camera 25 takes an image of the boundary between the silicon single crystal 3 and the silicon melt 2.
  • the diameter of the silicon single crystal 3 at the solid-liquid interface and the distance (gap) between the melt surface 2s and the heat shield 17 are calculated from the photographed image.
  • the control unit 27 controls the pulling conditions such as the pulling speed of the wire 18 and the power of the heater 15 so that the diameter of the silicon single crystal 3 becomes the target diameter. Further, the control unit 27 controls the height position of the quartz crucible 11 so that the distance between the melt surface 2s and the heat shield 17 is constant.
  • 4 (a) to 4 (c) are schematic perspective views showing the configuration of the magnetic field generator 20 according to the first embodiment of the present invention, and (a) is the overall configuration of the magnetic field generator 20, (b). ) Shows the configuration of the first coil device 21, and (c) shows the configuration of the second coil device 22.
  • the magnetic field generator 20 includes a first coil device 21 that generates a first transverse magnetic field and a second coil that generates a second transverse magnetic field different from the first transverse magnetic field. It consists of a combination with the device 22.
  • the rotation axis (crystal center axis) of the quartz rut 11 is the Z axis and the intersection of the Z axis and the melt surface is the origin of the Cartesian coordinate system
  • the direction of application of the transverse magnetic field is the Y axis direction. In this way, by preparing two coil devices and independently changing the strength of the transverse magnetic field generated by each, the magnetic field distribution can be changed according to the rise of the quartz crucible 11.
  • the first coil device 21 includes a pair of coil elements composed of loop coils.
  • the first coil device 21 includes a first coil element 21a and a second coil element 21b facing the first coil element 21a with the Z axis interposed therebetween.
  • the first coil element 21a is arranged on the minus side in the Y-axis direction
  • the second coil element 21b is arranged on the plus side in the Y-axis direction.
  • the first coil element 21a and the second coil element 21b are symmetrically arranged with the XZ plane interposed therebetween.
  • the loop sizes of the first and second coil elements 21a and 21b are the same and have a relatively large diameter.
  • the coil axis (coil center axis) of the first coil element 21a and the second coil element 21b coincides with the Y axis. Therefore, the central axis of the magnetic field generated from the first coil device 21 coincides with the Y axis.
  • the magnetic field generation directions of the pair of coil elements are matched with each other. That is, when it is desired to generate a magnetic field in the positive direction of the Y axis from the first coil device 21, the direction of the magnetic field of both the first and second coil elements 21a and 21b is in the positive direction of the Y axis (from the first coil element 21a). It is set in the direction toward the second coil element 21b). On the contrary, when it is desired to generate a magnetic field in the negative direction of the Y axis, the direction of the magnetic field of both the first and second coil elements 21a and 21b is set in the negative direction of the Y axis (from the second coil element 21b to the first coil element 21a). (Direction toward)).
  • the second coil device 22 includes two pairs of coil elements composed of loop coils. Specifically, the second coil device 22 sandwiches the third coil element 22a, the fourth coil element 22b facing the third coil element 22a across the Z axis, the fifth coil element 22c, and the Z axis. A sixth coil element 22d facing the fifth coil element 22c is provided.
  • the third coil element 22a and the fifth coil element 22c are arranged on the minus side in the Y-axis direction, and the fourth coil element 22b and the sixth coil element 22d are arranged on the plus side in the Y-axis direction.
  • the third and fifth coil elements 22a and 22c and the fourth and sixth coil elements 22b and 22d are arranged symmetrically with the XZ plane in between.
  • the loop sizes of the third to sixth coil elements 22a to 22d are the same, and further are the same as the loop sizes of the first and second coil elements 21a and 21b.
  • the coil axes of the third and fourth coil elements 22a and 22b exist in the XY plane and are tilted 45 degrees (+45 degrees) counterclockwise with respect to the Y axis.
  • the coil axes of the fifth and sixth coil elements 22c and 22d also exist in the XY plane, but are tilted 45 degrees ( ⁇ 45 degrees) clockwise with respect to the Y axis. Therefore, the coil axes of the 5th and 6th coil elements 22c and 22d are orthogonal to the coil axes of the 3rd and 4th coil elements 22a and 22b.
  • the magnetic field generation directions of the pair of coil elements are matched with each other. That is, when it is desired to generate a magnetic field in the positive direction of the Y axis from the second coil device 22, the direction of the magnetic field is set in the positive direction of the Y axis (from the third coil element 22a) for both the third and fourth coil elements 22a and 22b. (Direction toward the 4th coil element 22b) and the direction of the magnetic field of both the 5th and 6th coil elements 22c and 22d in the positive direction of the Y axis (direction from the 5th coil element 22c toward the 6th coil element 22d). Set.
  • the direction of the combined magnetic field of the third to sixth coil elements 22a to 22d becomes the positive direction of the Y axis.
  • the direction of the magnetic field of both the third and fourth coil elements 22a and 22b is set in the negative direction of the Y-axis (from the fourth coil element 22b to the third coil element 22a).
  • the direction of the magnetic field of both the fifth and sixth coil elements 22c and 22d is set in the negative direction of the Y axis (the direction from the sixth coil element 22d toward the fifth coil element 22c).
  • the direction of the combined magnetic field of the third to sixth coil elements 22a to 22d becomes the negative direction of the Y axis.
  • FIG. 5 is a graph showing changes in the magnetic field strength generated from the first coil device 21 and the second coil device 22.
  • the magnetic field of the first coil device 21 (first magnetic field) is gradually weakened, and the magnetic field generated from the second coil device 22 (second magnetic field) is gradually strengthened.
  • the magnetic field generated from the first coil device 21 is a magnetic field change in which the positive magnetic field on the Y axis gradually weakens to zero, the direction of the magnetic field is reversed, and the negative magnetic field on the Y axis gradually becomes stronger.
  • the magnetic field generated from the second coil device 22 gradually weakens in the negative direction of the Y axis and becomes zero, the direction of the magnetic field is reversed, and the magnetic field in the positive direction of the Y axis gradually becomes stronger.
  • a relatively large magnetic field directed in the negative direction of the Y axis is applied from the first coil device 21, and a relatively large magnetic field directed in the positive direction of the Y axis is applied from the second coil device 22. Apply.
  • the timing at which the magnetic field profile of the first coil device 21 becomes zero does not match the timing at which the magnetic field profile of the second coil device 22 becomes zero.
  • FIG. 6 shows only the magnetic field in the vicinity of the silicon melt, and omits the magnetic field spreading around the silicon melt. Further, the illustration of the silicon single crystal 3 pulled up from the melt surface 2s is also omitted.
  • the remaining amount of the silicon melt in the quartz crucible 11 is large, and the melt surface 2s is sufficiently separated from the bottom of the crucible.
  • the melt surface 2s is a gas-liquid interface, and is distinguished from the interface between the silicon melt 2 and the quartz crucible 11.
  • the direction of the magnetic field applied near the bottom of the crucible can be fitted to the curved shape of the bottom of the crucible.
  • the silicon melt in the quartz crucible 11 decreases, the melt surface 2s decreases, and the crucible approaches the bottom.
  • the melt surface 2s is further lowered.
  • FIG. 5 by changing the magnetic field strengths of the first coil device 21 and the second coil device 22 according to the crystal length (remaining amount of silicon melt), from the beginning to the end of the crystal pulling process. While maintaining the magnetic field near the melt surface 2s horizontally, the direction of the magnetic field applied near the bottom of the rutsubo can be fitted to the curved shape of the bottom of the rutsubo.
  • the direction of the magnetic field applied near the bottom of the crucible is along the curved bottom of the crucible, a large roll flow is stably generated in the silicon melt, and oxygen tends to evaporate from the melt surface 2s. Therefore, the amount of oxygen taken into the silicon single crystal is reduced.
  • the direction of the magnetic field applied near the bottom of the crucible is along the curved bottom of the crucible, the convection at the bottom of the crucible is not suppressed, so that the amount of oxygen dissolved from the crucible into the silicon melt increases.
  • the oxygen concentration in the silicon single crystal is strongly affected by the evaporation of oxygen from the melt surface, even if the amount of oxygen dissolved in the silicon melt increases slightly, the oxygen concentration in the silicon single crystal Does not rise.
  • FIG. 7 (a) to 7 (c) are schematic perspective views showing the configuration of the magnetic field generator 20 according to the second embodiment of the present invention, and (a) is the overall configuration of the magnetic field generator 20, (b). ) Shows the configuration of the first coil device 21, and (c) shows the configuration of the second coil device 22.
  • the magnetic field generator 20 is a coil element constituting the first and second coil devices 21 and 22 more than the magnetic field generator shown in the first embodiment.
  • the loop size of is small.
  • Other configurations are the same as those of the first embodiment. Even with such a configuration, the same effect as that of the first embodiment can be obtained.
  • 8 (a) to 8 (c) are schematic perspective views showing the configuration of the magnetic field generator 20 according to the third embodiment of the present invention, and (a) is the overall configuration of the magnetic field generator 20, (b). ) Shows the configuration of the first coil device 21, and (c) shows the configuration of the second coil device 22.
  • the magnetic field generator 20 includes coil elements 21a, 21b, in the first and second coil devices 21 and 22 shown in FIGS. 7 (a) to 7 (c).
  • 22a, 22b, 22c, 22d are replaced with a pair of upper and lower coil elements 21ap, 21bp, 22ap, 22bp, 22cp, 22dp. That is, the first coil device 21 includes two pairs of coil elements made of loop coils, and the second coil device 22 includes four pairs of coil elements made of loop coils.
  • the first coil device 21 has a first coil element pair 21ap (21a 1 , 21a 2 ) and a second coil element facing the first coil element pair 21ap with a Z axis interposed therebetween. It has a pair of 21 bp (21b 1 , 21b 2 ).
  • the first coil element pair 21ap (21a 1 , 21a 2 ) is arranged on the minus side in the Y-axis direction
  • the second coil element pair 21bp (21b 1 , 21b 2 ) is arranged on the plus side in the Y-axis direction.
  • the upper coil portion 21a 1 of the first coil element pair 21ap has a positional relationship symmetrical with the lower coil portion 21a 2 of the first coil element pair 21ap across the XY plane, and is the upper stage of the second coil element pair 21bp.
  • the coil portion 21b 1 has a positional relationship symmetrical with the lower coil portion 21b 2 of the second coil element pair 21bp with the XY plane interposed therebetween.
  • the upper coil portion 21a 1 and the upper coil portion 21b 1 form a pair of coil elements having the same coil shaft, and the lower coil portion 21a 2 and the lower coil portion 21b 2 also form a pair of coil elements having the same coil shaft. are doing.
  • the second coil device 22 has a third coil element pair 22ap (22a 1 , 22a 2 ) and a fourth coil element facing the third coil element pair 22ap with the Z axis interposed therebetween.
  • the third coil element pair 22ap and the fifth coil element pair 22cp are arranged on the negative side in the Y-axis direction, and the fourth coil element pair 22bp and the sixth coil element pair 22dp are arranged on the positive side in the Y-axis direction.
  • the upper coil portion 22a 1 of the third coil element pair 22ap has a positional relationship symmetrical with the lower coil portion 22a 2 of the third coil element pair 22ap across the XY plane, and is in the upper stage of the fourth coil element pair 22bp.
  • the coil portion 22b 1 has a positional relationship symmetrical with the lower coil portion 22b 2 of the fourth coil element pair 22bp with the XY plane interposed therebetween.
  • the upper coil portion 22a 1 and the upper coil portion 22b 1 form a pair of coil elements having the same coil shaft, and the lower coil portion 22a 2 and the lower coil portion 22b 2 also form a pair of coil elements having the same coil shaft. are doing.
  • the upper coil portion 22c 1 of the fifth coil element pair 22 cp has a positional relationship symmetrical with the lower coil portion 22c 2 of the fifth coil element pair 22 cp across the XY plane, and is in the upper stage of the sixth coil element pair 22 tp.
  • the coil portion 22d 1 has a positional relationship symmetrical with the lower coil portion 22d 2 of the sixth coil element pair 22dp with the XY plane interposed therebetween.
  • the upper coil portion 22c 1 and the upper coil portion 22d 1 form a pair of coil elements having the same coil shaft, and the lower coil portion 22c 2 and the lower coil portion 22d 2 also form a pair of coil elements having the same coil shaft. are doing.
  • the magnetic field generator 20 according to the third embodiment having the above configuration can also exert the same effect as that of the first embodiment.
  • 9 (a) to 9 (c) are schematic perspective views showing the configuration of the magnetic field generator 20 according to the fourth embodiment of the present invention, and (a) is the overall configuration of the magnetic field generator 20, (b). ) Shows the configuration of the first coil device 21, and (c) shows the configuration of the second coil device 22.
  • the first coil device 21 is composed of two pairs of coil elements (coil elements 21a 1 , 21a 2 , 21b 1 , 21b 2 ) in which the first coil device 21 is a loop coil.
  • the second coil device 22 is provided with two pairs of coil elements (coil elements 22a, 22b, 22c, 22d) composed of loop coils. That is, the first coil device 21 has the same configuration as in FIG. 8, and the second coil device 22 has the same configuration as in FIG. 7. Also in this embodiment, the same effect as that of other embodiments can be obtained.
  • the magnetic field parallel to the curved shape of the bottom of the quartz crucible can be calculated using a mathematical formula.
  • B 1 is a magnetic field vector independently created by the first coil device 21
  • B 2 is a magnetic field vector independently created by the second coil device 22.
  • Ymax is 70% or less of the crucible radius R (0 ⁇ Ymax ⁇ 0.7R). If Ymax is too small, the parallelism at the outer peripheral portion of the crucible will not be satisfied. If Ymax is too large, the parallelism becomes poor at the portion between the central portion of the bottom of the crucible and the outer peripheral portion in order to match the outer circumference, and the crucible shape that suddenly changes toward the crucible side wall surface greatly affects the equation (1).
  • the crucible bottom shape and the second derivative of the magnetic field line in the Y direction are matched at the center of the crucible bottom.
  • the output of the magnetic field generator 20 is adjusted so as to satisfy the following equation (2).
  • B 1, Y and B 1, Z are the Y-direction component and the Z-direction component of the magnetic field vector B 1 independently created by the first coil device 21, and B 2, Y and B 2, Z are the second components, respectively. These are the Y-direction component and the Z-direction component of the magnetic field vector B 2 independently created by the coil device 22.
  • the method for producing a silicon single crystal has been given as an example, but the present invention is not limited to the method for producing a silicon single crystal, and can be applied to various methods for producing a single crystal that employ the HMCZ method. be.
  • the magnetic field generator 20 includes a first coil device 21 composed of four coil elements 21a 1 , 21a 2 , 21b 1 , 21b 2 arranged in a vertical plane, and 4 arranged in a horizontal plane. It is composed of a second coil device 22 composed of two coil elements 22a, 22b, 22c, and 22d.
  • the magnetic field strength at the origin of Cartesian coordinates (the intersection of the crystal center axis (Z axis) and the magnetic field center axis (Y axis)) was set to 3000 G.
  • the diameter of the quartz crucible was 813 mm, and the radius of curvature of the curved bottom of the quartz crucible was 813 mm.
  • the magnetic fields created by the first and second coil devices were calculated using electromagnetic field analysis software.
  • the magnetic field vector on the melt plane was parallel to the Y axis. Further, the angle formed by the normal of the inner surface of the bottom of the quartz rut and the magnetic field vector in the YZ plane is calculated, and the magnetic field output with respect to the melt depth (distance from the liquid surface to the bottom of the rutsubo) is calculated by the above equation (2). Calculated using.
  • the results are shown in the graphs of FIGS. 10A and 10B. In the graphs of FIGS. 10A and 10B, the output required for each of the first and second coil devices to independently create the magnetic field strength at the center of the crystal-melt plane is set to 1.
  • the output (first magnetic field) of the first coil device initially has a large magnetic field strength in the positive direction of the Y axis, but crystal growth progresses and the amount of melt increases. As it decreases, the magnetic field strength in the positive direction of the Y-axis gradually decreases to zero in the middle, and the magnetic field strength in the negative direction of the Y-axis gradually increases.
  • the output of the second coil device initially has a large magnetic field strength in the negative direction of the Y axis, but as the crystal growth progresses and the amount of melt decreases, the magnetic field strength in the negative direction of the Y axis Gradually decreases to zero on the way, and the magnetic field strength in the positive direction gradually increases.
  • 11 (a) to 11 (c) show the first and first angles ⁇ formed by the magnetic field lines of the composite magnetic field generated using the magnetic field output profiles shown in FIGS. 10 (a) and 10 (b) with the inner surface of the bottom of the crucible. It is a graph which shows while comparing with the magnetic field generated when each of two coil devices operates independently.
  • the magnetic field angle with respect to the inner surface of the bottom of the crucible when a combined magnetic field was applied was about 90 degrees to 95 degrees.
  • the magnetic field angle was about 90 degrees to 95 degrees even when the melt depth was 300 mm.
  • the magnetic field angle was approximately 90 degrees, which was a very good result.
  • FIG. 12 is a graph showing an oxygen concentration distribution in the crystal growth direction of a silicon single crystal according to an example manufactured while applying a composite magnetic field. As is clear from the graph shown in the figure, the oxygen concentration in the crystal growth direction was very stable in the range of 10 ⁇ 10 17 to 11 ⁇ 10 17 atoms / cm 3 .
  • FIGS. 13 (a) to 13 (f) are graphs showing the evaluation results of the oxygen concentration of the silicon single crystal according to the comparative examples and the examples.
  • FIGS. 13 (a) to 13 (c) show the evaluation results of the oxygen concentration of the silicon single crystal by the comparative example manufactured while applying a single magnetic field (conventional magnetic field), and the crystal length is 500 mm, 1100 mm, 1700 mm. It is a graph which shows the in-plane distribution (radial distribution) of the oxygen concentration at the position of. Further, FIGS.
  • 13 (d) to 13 (f) show the evaluation results of the oxygen concentration of the silicon single crystal according to the example manufactured while applying the composite magnetic field, and the oxygen at the position where the crystal length is 500 mm, 1100 mm, and 1700 mm. It is a graph which shows the in-plane distribution (radial distribution) of a density
  • FIGS. 13 (a) to 13 (c) the oxygen concentration distribution of the silicon single crystal according to the comparative example varied widely.
  • FIGS. 13 (d) to 13 (f) the variation in the oxygen concentration distribution of the silicon single crystal according to the examples became small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】単結晶中の酸素濃度の面内分布を均一にすることが可能な単結晶の製造方法、磁場発生装置及び単結晶製造装置を提供する。 【解決手段】ルツボ11内の融液2に横磁場を印加しながら単結晶3を引き上げる単結晶の製造方法であって、結晶引き上げ工程中に融液2の減少に合わせてルツボ11を上昇させると共に、融液面2sにおける磁場の向きとルツボ11の湾曲した底部の内面における磁場の向きがボディー部育成工程の開始から終了まで一定となるように、融液2の減少に合わせて磁場分布を制御する。

Description

単結晶の製造方法、磁場発生装置及び単結晶製造装置
 本発明は、単結晶の製造方法に関し、特に、融液に水平磁場を印加しながら単結晶を引き上げる磁場印加チョクラルスキー法(Magnetic field applied Czochralski method)による単結晶の製造方法に関する。また、本発明はそのようなMCZ法に用いられる磁場発生装置及び単結晶製造装置に関する。
 石英ルツボ内のシリコン融液からシリコン単結晶を引き上げるCZ法の一つとして、シリコン融液に磁場を印加しながらシリコン単結晶を引き上げるいわゆるMCZ法が知られている。MCZ法によれば、融液対流が抑えられることから、石英ルツボとの反応によりシリコン融液中に溶け込む酸素の量を抑制してシリコン単結晶の酸素濃度を低く抑えることができる。
 磁場の印加方法として幾つかの方法が知られているが、中でも横磁場(水平磁場)を印加するHMCZ法の実用化が進んでいる。HMCZ法では石英ルツボの側壁と略直交する横磁場を印加するので、ルツボの側壁近傍の融液対流が効果的に抑制されて、ルツボからの酸素の溶け出し量が減少する。一方、融液表面での対流抑制効果が小さく、融液表面からの酸素(シリコン酸化物)の蒸発がそれほど抑制されないため、融液中の酸素濃度が減少しやすい。したがって、低酸素濃度の単結晶が育成されやすいという特徴がある。
 HMCZ法に関し、例えば特許文献1には、単結晶の引き上げ進行に合わせて磁場中心位置を上下方向に移動させて液面に近接又は離間させることにより、単結晶に取り込まれる酸素濃度を低下又は上昇させることが記載されている。また特許文献2には、磁束がルツボの湾曲した底部に沿って進行するように磁場を発生させることが記載されている。
 特許文献3には、磁力線の方向が90度ずれており、かつ磁場分布が互いに異なる2種類の磁場を切り替えて発生させることができる磁場発生装置を用いて、低酸素濃度且つ成長縞が抑制された単結晶だけでなく、高酸素濃度の単結晶も引き上げることが可能な単結晶製造装置が記載されている。
特開2004-323323号公報 特開昭62-256787号公報 特開2017-206396号公報
 HMCZ法において、融液面付近に印加される水平磁場は、融液面と平行に真っすぐ進行することが好ましい。上記のように、融液面と直交する磁場成分は融液面の融液対流を抑制し、酸素濃度の増加を招くからである。一方、ルツボ底部において磁場は湾曲した底部に沿って曲がりながら進行することが好ましい。ルツボ内壁面と直交する磁場成分が融液対流を抑制することで融液中の酸素の拡散が不十分となり、単結晶中の酸素濃度にムラが発生しやすいからである。したがって、特許文献2に記載のように、ルツボの湾曲した底面に沿って曲がった磁場を発生させることは有効である。
 しかし、結晶引き上げ工程中は結晶成長に伴う融液の減少に合わせて石英ルツボを上昇させて融液面の高さ位置を一定に維持する必要があり、石英ルツボを上昇させると、磁場分布及び石英ルツボと磁場の位置関係が変化するため、磁場を石英ルツボの湾曲した底面に沿わせることが難しくなる。特許文献1に記載のように、磁場分布がルツボの湾曲した底面に沿うように磁場中心位置を上昇させることも可能であるが、その場合には融液面付近において磁場が水平にならず、融液面付近での融液対流の停滞により単結晶の酸素濃度が増加するという問題がある。
 シリコン単結晶の結晶成長方向における酸素濃度分布の変動は、シリコンウェーハの酸素濃度の面内分布に影響を与える。図14に示すように、結晶成長方向に酸素濃度分布の成長縞があるシリコン単結晶からウェーハを切り出すと、ウェーハの酸素濃度の面内分布は不均一になる。
 したがって、本発明の目的は、単結晶中の酸素濃度の面内分布を均一にすることが可能な単結晶の製造方法を提供することにある。また本発明の目的は、そのような単結晶の製造方法に用いられる磁場発生装置及び単結晶製造装置を提供することにある。
 上記課題を解決するため、本発明者らが単結晶中の酸素濃度の変動について調査したところ、結晶成長方向の特定の範囲では酸素濃度の成長縞が小さくなり、またその範囲では結晶直径の変動が非常に小さいことを見出した。さらに調査した結果、酸素濃度の成長縞が小さくなる範囲の単結晶を育成しているときにはルツボ底面付近での磁力線の向きがルツボ底面と平行に近いことが明らかになった。
 本発明はこのような技術的知見に基づくものであり、本発明による単結晶の製造方法は、ルツボ内の融液に横磁場を印加しながら単結晶を引き上げる単結晶の製造方法であって、結晶引き上げ工程中に前記融液の減少に合わせて前記ルツボを上昇させると共に、融液面における磁場の向きと前記ルツボの湾曲した底部の内面における磁場の向きがボディー部育成工程の開始から終了まで一定となるように、前記融液の減少に合わせて磁場分布を制御することを特徴とする。
 本発明による単結晶の製造方法は、融液面付近での磁場の向きとルツボの底部付近での磁場の向きをボディー部育成工程の序盤から終盤まで一定に維持するので、単結晶中の酸素濃度に影響を与える融液対流をできるだけ抑えることができ、これにより単結晶の低酸素化のみならず酸素濃度の面内分布の均一化を図ることができる。
 本発明において、前記融液面における磁場の向きは、前記融液面と平行であることが好ましい。融液面は、融液と引き上げ炉内雰囲気との界面(気液界面)であり、通常は水平面である。これにより、融液面からの酸素の蒸発を活発化させて単結晶の低酸素化を図ることができる。
 前記ルツボの回転軸をZ軸とし、前記Z軸と直交する前記横磁場の磁場中心軸をY軸とし、前記Z軸と前記Y軸との交点を原点とし、YZ平面に直交し前記原点を通る軸をX軸とするとき、前記ルツボの湾曲した底部の内面と前記YZ平面との交線上において、当該内面の法線ベクトルと磁場ベクトルとがなす角度θを75度以上105度以下に維持することが好ましい。これにより、ルツボ底部での融液対流を抑制して単結晶中の酸素濃度の面内分布を均一にすることができる。
 本発明による単結晶の製造方法は、前記原点における磁場の強度を一定に維持しながら、前記ルツボの湾曲した底部の内面の法線ベクトルと磁場ベクトルとの内積の二乗の前記底部における積分値を最小化するように、前記磁場分布を調整することが好ましい。あるいは、前記底部の中心で当該底部の形状と磁場のY方向の2階微分を一致させるように、前記磁場分布を調整してもよい。これにより、ルツボ底部付近での磁場の向きを底部の湾曲した内面に沿わせることができる。
 前記ルツボの半径をRとするとき、前記底部は、前記底部の中心から半径0.7R以下の範囲であることが好ましい。通常、磁場分布が歪んでいない横磁場下での単結晶引き上げでは、中心付近の磁場分布はルツボの底面と平行に近いため、底部の設定領域が狭い場合、本発明は自動的に満たされ意味をなさない。底部の設定領域が0.7Rよりも広い場合には、側壁部に向かって曲率が大きく変化するルツボのコーナー部において上記条件を満たすことが困難となる。
 本発明による単結晶の製造方法は、前記ルツボの周囲に複数のコイル素子を設け、各コイル素子の磁場強度を個別に調整することで前記磁場分布を制御することが好ましい。この場合において、前記複数のコイル素子は、コイル軸が一致した複数のコイル素子対を構成していることが好ましい。本発明によれば、融液面における磁場の向きを水平に維持しつつ、ルツボ底部付近での磁場の向きをルツボの高さ位置の変化に合わせて変化させることができる。
 前記複数のコイル素子は、XZ平面を挟んで対称に配置されていることが好ましく、XY平面と平行に配置されていることが好ましい。本発明によれば、Z軸から見て対称性が高い磁場分布を実現することができる。
 前記複数のコイル素子は、第1磁場を発生する第1コイル装置と、前記第1磁場と異なる第2磁場を発生する第2コイル装置とを構成しており、前記第1磁場の強度と前記第2磁場及び強度を個別に調整することで前記磁場分布を制御することが好ましい。これにより、融液面における磁場の向きを水平に維持しつつ、ルツボ底部付近での磁場の向きをルツボの高さ位置の変化に合わせて変化させることができる。
 前記第1磁場は、Y軸のプラス方向の磁場が徐々に弱くなった後、ゼロになり、さらにY軸のマイナス方向の磁場が徐々に強くなる磁場変化を有し、前記第2磁場は、Y軸のマイナス方向の磁場が徐々に弱くなった後、ゼロになり、さらにY軸のプラス方向の磁場が徐々に強くなる磁場変化を有することが好ましい。これにより、融液面における磁場の向きを水平に維持しつつ、ルツボ底部付近での磁場の向きをルツボの高さ位置の変化に合わせて変化させることができる。
 また、本発明による磁場発生装置は、MCZ法による単結晶の製造に用いられ、ルツボ内の融液に横磁場を印加する磁場発生装置であって、第1磁場を発生する第1コイル装置と、前記第1磁場と異なる第2磁場を発生する第2コイル装置とを備え、前記ルツボの回転軸をZ軸とし、前記Z軸と直交する前記横磁場の印加方向の中心軸をY軸とし、前記Z軸と前記Y軸との交点を原点とし、YZ平面に直交し前記原点を通る軸をX軸とするとき、前記第1コイル装置は、前記YZ平面上に配置され、コイル軸が一致する少なくとも一対のコイル素子を有し、前記第2コイル装置は、XY平面と平行に配置され、コイル軸が一致する少なくとも二対のコイル素子を有し、前記第1コイル装置及び前記第2コイル装置を構成する複数のコイル素子は、XZ平面を挟んで対称に配置されていることを特徴とする。
 本発明によれば、融液面における磁場の向きを水平に維持しつつ、ルツボ底部付近での磁場の向きをルツボの高さ位置の変化に合わせて変化させることができる。このような磁場分布をボディー部育成工程の序盤から終盤まで一定に維持することにより、単結晶中の酸素濃度に影響を与える融液対流をできるだけ抑えることができ、これにより単結晶の低酸素化のみならず酸素濃度の面内分布の均一化を図ることができる。
 本発明において、前記第1コイル装置は、前記YZ平面上に配置され、前記Z軸を挟んで対称に配置された第1及び第2コイル素子を有し、前記第2コイル装置は、XY平面上に配置され、前記Z軸を挟んで対称に配置された第3及び第4コイル素子と、XY平面上に配置され、前記Z軸を挟んで対称に配置された第5及び第6コイル素子とを有し、前記第1乃至第6コイル素子は、XZ平面を挟んで対称に配置されていることが好ましい。これにより、Z軸から見て対称性が高い磁場分布を実現することができる。
 前記第3及び第4コイル素子のコイル軸が前記Y軸となす角度が+45度であり、前記第5及び第6コイル素子のコイル軸が前記Y軸となす角度が-45度であることが好ましい。これにより、Z軸から見て対称性が高い磁場分布を実現することができる。
 前記第1及び第2コイル素子を構成するループコイルのループサイズは同一であり、前記第3乃至第6コイル素子を構成するループコイルのループサイズは同一であることが好ましい。これにより、Z軸から見て対称性が高い磁場分布を実現することができる。
 さらにまた、本発明による単結晶製造装置は、融液を支持するルツボと、前記融液を加熱するヒーターと、前記融液から単結晶を引き上げる結晶引き上げ機構と、前記ルツボを回転及び昇降駆動するルツボ昇降機構と、前記融液に横磁場を印加する上述した本発明による磁場発生装置と、前記ヒーター、前記結晶引き上げ機構、前記ルツボ昇降機構、及び前記磁場発生装置を制御する制御部とを備えることを特徴とする。
 本発明による単結晶製造装置は、融液面付近での磁場の向きとルツボの底部付近での磁場の向きをボディー部育成工程中のルツボの高さ位置の変化によらず一定に維持するので、単結晶中の酸素濃度に影響を与える融液対流をできるだけ抑えることができ、これにより単結晶の低酸素化のみならず酸素濃度の面内分布の均一化を図ることができる。
 本発明によれば、単結晶中の酸素濃度の面内分布を均一にすることが可能な単結晶の製造方法、磁場発生装置及び単結晶製造装置を提供することができる。
図1は、本発明の実施の形態による単結晶製造装置の構成を概略的に示す側面断面図である。 図2は、本発明の実施の形態によるシリコン単結晶の製造方法を説明するフローチャートである。 図3は、シリコン単結晶インゴットの形状を示す略断面図である。 図4(a)~(c)は、本発明の第1の実施の形態による磁場発生装置の構成を示す略斜視図であって、(a)は磁場発生装置の全体構成、(b)は第1コイル装置の構成、(c)は第2コイル装置の構成をそれぞれ示している。 図5は、第1コイル装置21及び第2コイル装置22から発生する磁場強度の変化を示すグラフである。 図6(a)~(c)は、石英ルツボ内のシリコン融液に印加される複合磁場のベクトル分布を示す模式図である。 図7(a)~(c)は、本発明の第2の実施の形態による磁場発生装置20の構成を示す略斜視図であって、(a)は磁場発生装置の全体構成、(b)は第1コイル装置の構成、(c)は第2コイル装置の構成をそれぞれ示している。 図8(a)~(c)は、本発明の第3の実施の形態による磁場発生装置20の構成を示す略斜視図であって、(a)は磁場発生装置20の全体構成、(b)は第1コイル装置の構成、(c)は第2コイル装置の構成をそれぞれ示している。 図9(a)~(c)は、本発明の第4の実施の形態による磁場発生装置20の構成を示す略斜視図であって、(a)は磁場発生装置20の全体構成、(b)は第1コイル装置の構成、(c)は第2コイル装置の構成をそれぞれ示している。 図10(a)及び(b)は、磁場出力との関係を示すグラフであって、(a)は融液深さ(液面からルツボ底までの距離)と磁場出力との関係、(b)結晶長と磁場出力との関係を示すグラフである。 図11(a)~(c)は、図10(a)及び(b)に示した磁場出力プロファイルを用いて生成した複合磁場の磁力線とルツボ底部の内面とがなす角度を示すグラフであって、(a)は融液深さが200mm、(b)は融液深さが300mm、(c)は融液深さが400mmの場合をそれぞれ示すものである。 図12は、複合磁場を印加しながら製造した実施例によるシリコン単結晶の結晶成長方向の酸素濃度分布を示すグラフである。 図13(a)~(f)は、比較例及び実施例によるシリコン単結晶の酸素濃度の評価結果を示すグラフであって、図13(a)~(c)は単一磁場を印加しながら製造した比較例によるシリコン単結晶の酸素濃度の評価結果であり、図13(d)~(f)は複合磁場を印加しながら製造した実施例によるシリコン単結晶の酸素濃度の評価結果である。 従来のシリコン単結晶の問題点を説明するための模式図である。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明の実施の形態による単結晶製造装置の構成を概略的に示す側面断面図である。
 図1に示すように、単結晶製造装置1は、チャンバー10と、チャンバー10内においてシリコン融液2を保持する石英ルツボ11と、石英ルツボ11を保持するグラファイト製のサセプタ12と、サセプタ12を支持する回転シャフト13と、回転シャフト13を回転及び昇降駆動するシャフト駆動機構14と、サセプタ12の周囲に配置されたヒーター15と、ヒーター15の外側であってチャンバー10の内面に沿って配置された断熱材16と、石英ルツボ11の上方に配置された熱遮蔽体17と、石英ルツボ11の上方であって回転シャフト13と同軸上に配置された単結晶引き上げ用のワイヤー18と、チャンバー10の上方に配置されたワイヤー巻き取り機構19とを備えている。
 また単結晶製造装置1は、チャンバー10の外側に配置された磁場発生装置20と、チャンバー10内を撮影するCCDカメラ25と、CCDカメラ25で撮影された画像を処理する画像処理部26と、画像処理部26の出力に基づいてシャフト駆動機構14、ヒーター15及びワイヤー巻き取り機構19を制御する制御部27とを備えている。
 チャンバー10は、メインチャンバー10aと、メインチャンバー10aの上部開口に連結された細長い円筒状のプルチャンバー10bとで構成されており、石英ルツボ11、サセプタ12、ヒーター15及び熱遮蔽体17はメインチャンバー10a内に設けられている。プルチャンバー10bにはチャンバー10内にアルゴンガス等の不活性ガス(パージガス)を導入するためのガス導入口10cが設けられており、メインチャンバー10aの下部には不活性ガスを排出するためのガス排出口10dが設けられている。また、メインチャンバー10aの上部には覗き窓10eが設けられており、シリコン単結晶3の育成状況(固液界面)を覗き窓10eから観察可能である。
 石英ルツボ11は、円筒状の側壁部と、緩やかに湾曲した底部と、側壁部と底部との間に設けられたコーナー部とを有する石英ガラス製の容器である。サセプタ12は、加熱によって軟化した石英ルツボ11の形状を維持するため、石英ルツボ11の外表面に密着して石英ルツボ11を包むように保持する。石英ルツボ11及びサセプタ12はチャンバー10内においてシリコン融液を支持する二重構造のルツボを構成している。
 サセプタ12は鉛直方向に延びる回転シャフト13の上端部に固定されている。また回転シャフト13の下端部はチャンバー10の底部中央を貫通してチャンバー10の外側に設けられたシャフト駆動機構14に接続されている。サセプタ12、回転シャフト13及びシャフト駆動機構14は石英ルツボ11を回転させながら昇降駆動するルツボ昇降機構を構成している。
 ヒーター15は、石英ルツボ11内に充填されたシリコン原料を溶融して溶融状態を維持するために用いられる。ヒーター15はカーボン製の抵抗加熱式ヒーターであり、サセプタ12内の石英ルツボ11の全周を取り囲むように設けられた略円筒状の部材である。さらにヒーター15の外側は断熱材16に取り囲まれており、これによりチャンバー10内の保温性が高められている。
 熱遮蔽体17は、シリコン融液2の温度変動を抑制して固液界面付近に適切なホットゾーンを形成すると共に、ヒーター15及び石英ルツボ11からの輻射熱によるシリコン単結晶3の加熱を防止するために設けられている。熱遮蔽体17は、シリコン単結晶3の引き上げ経路を除いたシリコン融液2の上方の領域を覆うグラファイト製の円筒部材である。
 熱遮蔽体17の下端中央にはシリコン単結晶3の直径よりも大きな円形の開口が形成されており、シリコン単結晶3の引き上げ経路が確保されている。図示のように、シリコン単結晶3は開口を通過して上方に引き上げられる。熱遮蔽体17の開口の直径は石英ルツボ11の口径よりも小さく、熱遮蔽体17の下端部は石英ルツボ11の内側に位置するので、石英ルツボ11のリム上端を熱遮蔽体17の下端よりも上方まで上昇させても熱遮蔽体17が石英ルツボ11と干渉することはない。
 シリコン単結晶3の成長と共に石英ルツボ11内の融液量は減少するが、融液面2sと熱遮蔽体17との間隔(ギャップ)が一定になるように石英ルツボ11を上昇させることにより、シリコン融液2の温度変動を抑制すると共に、融液面2sの近傍(パージガス誘導路)を流れるガスの流速を一定にしてシリコン融液2からのドーパントの蒸発量を制御することができる。したがって、単結晶の引き上げ軸方向の結晶欠陥分布、酸素濃度分布、抵抗率分布等の安定性を向上させることができる。
 石英ルツボ11の上方には、シリコン単結晶3の引き上げ軸であるワイヤー18と、ワイヤー18を巻き取るワイヤー巻き取り機構19が設けられており、これらは結晶引き上げ機構を構成している。ワイヤー巻き取り機構19はワイヤー18と共に単結晶を回転させる機能を有している。ワイヤー巻き取り機構19はプルチャンバー10bの上方に配置されており、ワイヤー18はワイヤー巻き取り機構19からプルチャンバー10b内を通って下方に延びており、ワイヤー18の先端部はメインチャンバー10aの内部空間まで達している。図1には、育成途中のシリコン単結晶3がワイヤー18に吊設された状態が示されている。単結晶の引き上げ時には種結晶をシリコン融液2に浸漬し、石英ルツボ11と種結晶をそれぞれ回転させながらワイヤー18を徐々に引き上げることにより単結晶を成長させる。
 磁場発生装置20は、石英ルツボ11の周囲に設けられた複数のコイルからなり、シリコン融液2に横磁場(水平磁場)を印加する。石英ルツボ11の回転軸上(結晶引き上げ軸の延長線上)における横磁場の最大強度は、一般的なHMCZの磁場強度範囲である0.15~0.6(T)であることが好ましい。シリコン融液2に磁場を印加することで磁力線に直交する方向の融液対流を抑制することができる。したがって、石英ルツボ11からの酸素の溶出を抑えることができ、シリコン単結晶中の酸素濃度を低減することができる。
 メインチャンバー10aの上部には内部を観察するための覗き窓10eが設けられており、CCDカメラ25は覗き窓10eの外側に設置されている。単結晶引き上げ工程中、CCDカメラ25は覗き窓10eから熱遮蔽体17の開口17aを通して見えるシリコン単結晶3とシリコン融液2との境界部の画像を撮影する。CCDカメラ25は画像処理部26に接続されており、撮影画像は画像処理部26で処理され、処理結果は制御部27において結晶引き上げ条件の制御に用いられる。
 図2は、本発明の実施の形態によるシリコン単結晶の製造方法を説明するフローチャートである。また、図3は、シリコン単結晶インゴットの形状を示す略断面図である。
 図2及び図3示すように、シリコン単結晶3の製造では、石英ルツボ11内のシリコン原料を加熱してシリコン融液2を生成する(ステップS11)。その後、ワイヤー18の先端部に取り付けられた種結晶を降下させてシリコン融液2に着液させる(ステップS12)。
 次に、シリコン融液2との接触状態を維持しながら種結晶を徐々に引き上げて単結晶を育成する単結晶の引き上げ工程を実施する。単結晶の引き上げ工程では、無転位化のために結晶直径が細く絞られたネック部3aを形成するネッキング工程(ステップS13)と、規定の直径を得るために結晶直径が徐々に増加したショルダー部3bを形成するショルダー部育成工程(ステップS14)と、結晶直径が一定に維持されたボディー部3cを形成するボディー部育成工程(ステップS15)と、結晶直径が徐々に減少したテール部3dを形成するテール部育成工程(ステップS16)が順に実施され、シリコン単結晶3が融液面2sから最終的に切り離されることによりテール部育成工程が終了する。以上により、単結晶の上端から下端に向かって順に、ネック部3a、ショルダー部3b、ボディー部3c、及びテール部3dを有するシリコン単結晶インゴット3が完成する。
 単結晶の引き上げ工程中は、シリコン単結晶3の直径及びシリコン融液2の液面位置を制御するため、CCDカメラ25でシリコン単結晶3とシリコン融液2との境界部の画像を撮影し、撮影画像から固液界面におけるシリコン単結晶3の直径及び融液面2sと熱遮蔽体17との間隔(ギャップ)を算出する。制御部27は、シリコン単結晶3の直径が目標直径となるようにワイヤー18の引き上げ速度、ヒーター15のパワー等の引き上げ条件を制御する。また制御部27は、融液面2sと熱遮蔽体17との間隔が一定となるように石英ルツボ11の高さ位置を制御する。
 次に、磁場発生装置20の構成について詳細に説明する。
 図4(a)~(c)は、本発明の第1の実施の形態による磁場発生装置20の構成を示す略斜視図であって、(a)は磁場発生装置20の全体構成、(b)は第1コイル装置21の構成、(c)は第2コイル装置22の構成をそれぞれ示している。
 図4(a)に示すように、この磁場発生装置20は、第1の横磁場を発生する第1コイル装置21と、第1の横磁場と異なる第2の横磁場を発生する第2コイル装置22との組み合わせからなる。石英ルツボ11の回転軸(結晶中心軸)をZ軸とし、Z軸と融液面との交点を直交座標系の原点とするとき、横磁場の印加方向はY軸方向とする。このように、2つのコイル装置を用意し、各々が発生する横磁場の強度を独立に変化させることにより、石英ルツボ11の上昇に合わせて磁場分布を変化させることができる。
 図4(b)に示すように、第1コイル装置21は、ループコイルからなる一対のコイル素子を備えている。詳細には、第1コイル装置21は、第1コイル素子21aと、Z軸を挟んで第1コイル素子21aと対向する第2コイル素子21bとを備えている。第1コイル素子21aはY軸方向のマイナス側、第2コイル素子21bはY軸方向のプラス側にそれぞれ配置されている。特に、第1コイル素子21aと第2コイル素子21bはXZ平面を挟んで対称に配置されている。
 第1及び第2コイル素子21a,21bのループサイズは同一であり、比較的大きな直径を有している。第1コイル素子21a及び第2コイル素子21bのコイル軸(コイル中心軸)はY軸と一致している。そのため、第1コイル装置21から発生する磁場の中心軸はY軸と一致している。
 第1コイル装置21の動作では、一対のコイル素子の磁場発生方向を互いに一致させる。すなわち、第1コイル装置21からY軸のプラス方向の磁場を発生させたい場合には、第1及び第2コイル素子21a,21bともに磁場の向きをY軸のプラス方向(第1コイル素子21aから第2コイル素子21bに向かう方向)に設定する。逆に、Y軸のマイナス方向の磁場を発生させたい場合には、第1及び第2コイル素子21a,21bともに磁場の向きをY軸のマイナス方向(第2コイル素子21bから第1コイル素子21aに向かう方向)に設定する。
 図4(c)に示すように、第2コイル装置22は、ループコイルからなる二対のコイル素子を備えている。詳細には、第2コイル装置22は、第3コイル素子22aと、Z軸を挟んで第3コイル素子22aと対向する第4コイル素子22bと、第5コイル素子22cと、Z軸を挟んで第5コイル素子22cと対向する第6コイル素子22dとを備えている。第3コイル素子22a及び第5コイル素子22cはY軸方向のマイナス側、第4コイル素子22b及び第6コイル素子22dはY軸方向のプラス側にそれぞれ配置されている。特に、第3及び第5コイル素子22a,22cと第4及び第6コイル素子22b,22dはXZ平面を挟んで対称に配置されている。
 第3~第6コイル素子22a~22dのループサイズは同一であり、さらに第1及び第2コイル素子21a,21bのループサイズと同一である。第3及び第4コイル素子22a,22bのコイル軸はXY平面内に存在し、Y軸に対して反時計回りに45度(+45度)傾いている。第5及び第6コイル素子22c,22dのコイル軸もXY平面内に存在するが、Y軸に対して時計回りに45度(-45度)傾いている。したがって、第5及び第6コイル素子22c,22dのコイル軸は、第3及び第4コイル素子22a,22bのコイル軸と直交している。
 第2コイル装置22の動作でも、一対のコイル素子の磁場発生方向を互いに一致させる。すなわち、第2コイル装置22からY軸のプラス方向の磁場を発生させたい場合には、第3及び第4コイル素子22a,22bともに磁場の向きをY軸のプラス方向(第3コイル素子22aから第4コイル素子22bに向かう方向)にすると共に、第5及び第6コイル素子22c,22dともに磁場の向きをY軸のプラス方向(第5コイル素子22cから第6コイル素子22dに向かう方向)に設定する。これにより、第3~第6コイル素子22a~22dの合成磁場の向きはY軸のプラス方向となる。逆に、Y軸のマイナス方向の磁場を発生させたい場合には、第3及び第4コイル素子22a,22bともに磁場の向きをY軸のマイナス方向(第4コイル素子22bから第3コイル素子22aに向かう方向)に設定すると共に、第5及び第6コイル素子22c,22dともに磁場の向きをY軸のマイナス方向(第6コイル素子22dから第5コイル素子22cに向かう方向)に設定する。これにより、第3~第6コイル素子22a~22dの合成磁場の向きはY軸のマイナス方向となる。
 図5は、第1コイル装置21及び第2コイル装置22から発生する磁場強度の変化を示すグラフである。
 図5に示すように、結晶引き上げ工程の序盤では、第1コイル装置21からY軸のプラス方向を向いた比較的大きな磁場を印加し、第2コイル装置22からY軸のマイナス方向を向いた比較的大きな磁場を印加する。
 その後、結晶成長が進むにつれて、第1コイル装置21の磁場(第1磁場)を徐々に弱くし、第2コイル装置22から発生する磁場(第2磁場)を徐々に強くする。第1コイル装置21から発生する磁場は、Y軸のプラス方向の磁場が徐々に弱くなってゼロになり、さらに磁場の向きが反転し、Y軸のマイナス方向の磁場が徐々に強くなる磁場変化を有する。第2コイル装置22から発生する磁場は、Y軸のマイナス方向の磁場が徐々に弱くなってゼロになり、さらに磁場の向きが反転し、Y軸のプラス方向の磁場が徐々に強くなる磁場変化を有する。したがって、結晶引き上げ工程の終盤では、第1コイル装置21からY軸のマイナス方向を向いた比較的大きな磁場を印加し、第2コイル装置22からY軸のプラス方向を向いた比較的大きな磁場を印加する。第1コイル装置21の磁場プロファイルがゼロになるタイミングと第2コイル装置22の磁場プロファイルがゼロになるタイミングは一致しない。
 図6(a)~(c)は、石英ルツボ11内のシリコン融液2に印加される複合磁場のベクトル分布を示す模式図である。なお、図6にはシリコン融液付近の磁場のみを記載し、シリコン融液の周囲に広がる磁場は省略している。また、融液面2sから引き上げられたシリコン単結晶3の図示も省略している。
 図6(a)に示す結晶引き上げ工程の序盤では、石英ルツボ11内のシリコン融液の残量が多く、融液面2sはルツボ底部から十分に離れている。なお融液面2sとは気液界面のことであり、シリコン融液2と石英ルツボ11との界面とは区別される。このとき、図5に示した結晶長が短いときの磁場強度プロファイルを適用することにより、ルツボ底部付近に印加される磁場の向きをルツボの底部の湾曲形状にフィットさせることができる。
 図6(b)に示す結晶引き上げ工程の中盤では、石英ルツボ11内のシリコン融液が減少し、融液面2sが低下してルツボ底部に近づく。図6(c)に示す結晶引き上げ工程の終盤では、融液面2sがさらに低下する。しかし、図5に示したように、結晶長(シリコン融液残量)に合わせて第1コイル装置21及び第2コイル装置22の磁場強度を変化させることにより、結晶引き上げ工程の序盤から終盤まで、融液面2s付近の磁場を水平に維持しながら、ルツボ底部付近に印加される磁場の向きをルツボの底部の湾曲形状にフィットさせることができる。
 ルツボ底部付近に印加される磁場の向きがルツボの湾曲した底部に沿っていない場合、ルツボの底部において対流が部分的に抑制され、シリコン融液の大きなロール流の形状が時間的に変動して不安定となる。そのため、ルツボの底部でシリコン融液中に溶け込んだ酸素のシリコン単結晶への届き方も時間変動して酸素濃度の面内分布にばらつきが発生する。
 しかし、ルツボ底部付近に印加される磁場の向きがルツボの湾曲した底部に沿っている場合、シリコン融液には大きなロール流が安定的に発生し、融液面2sから酸素が蒸発しやすくなるので、シリコン単結晶中に取り込まれる酸素の量は減少する。ルツボ底部付近に印加される磁場の向きがルツボの湾曲した底部に沿っている場合、ルツボの底部の対流が抑制されないため、ルツボからシリコン融液への酸素の溶け出し量は多くなる。しかし、シリコン単結晶中の酸素濃度は、融液面からの酸素の蒸発の影響を強く受けるので、シリコン融液中への酸素の溶け込み量が多少増えたとしても、シリコン単結晶中の酸素濃度は上昇しない。
 図7(a)~(c)は、本発明の第2の実施の形態による磁場発生装置20の構成を示す略斜視図であって、(a)は磁場発生装置20の全体構成、(b)は第1コイル装置21の構成、(c)は第2コイル装置22の構成をそれぞれ示している。
 図7(a)~(c)に示すように、この磁場発生装置20は、第1の実施の形態で示した磁場発生装置よりも第1及び第2コイル装置21,22を構成するコイル素子のループサイズが小さい点にある。その他の構成は第1の実施の形態と同様である。このような構成であっても、第1の実施の形態と同様の効果を奏することができる。
 図8(a)~(c)は、本発明の第3の実施の形態による磁場発生装置20の構成を示す略斜視図であって、(a)は磁場発生装置20の全体構成、(b)は第1コイル装置21の構成、(c)は第2コイル装置22の構成をそれぞれ示している。
 図8(a)~(c)に示すように、この磁場発生装置20は、図7(a)~(c)に示した第1及び第2コイル装置21,22におけるコイル素子21a,21b,22a,22b,22c,22dを上下二段のコイル素子対21ap,21bp,22ap,22bp,22cp,22dpに置き換えたものである。すなわち、第1コイル装置21はループコイルからなる二対のコイル素子を備えており、第2コイル装置22はループコイルからなる四対のコイル素子を備えている。
 図8(b)に示すように、第1コイル装置21は、第1コイル素子対21ap(21a,21a)と、Z軸を挟んで第1コイル素子対21apと対向する第2コイル素子対21bp(21b,21b)とを備えている。第1コイル素子対21ap(21a,21a)はY軸方向のマイナス側、第2コイル素子対21bp(21b,21b)はY軸方向のプラス側にそれぞれ配置されている。
 第1コイル素子対21apの上段コイル部21aは、XY平面を挟んで第1コイル素子対21apの下段コイル部21aと対称な位置関係を有しており、第2コイル素子対21bpの上段コイル部21bは、XY平面を挟んで第2コイル素子対21bpの下段コイル部21bと対称な位置関係を有している。上段コイル部21aと上段コイル部21bはコイル軸が一致する一対のコイル素子を構成しており、下段コイル部21aと下段コイル部21bもコイル軸が一致する一対のコイル素子を構成している。
 図8(c)に示すように、第2コイル装置22は、第3コイル素子対22ap(22a,22a)と、Z軸を挟んで第3コイル素子対22apと対向する第4コイル素子対22bp(22b,22b)と、第5コイル素子対22cp(22c,22c)と、Z軸を挟んで第5コイル素子対22cpと対向する第6コイル素子対22dp(22d,22d)とを備えている。第3コイル素子対22ap及び第5コイル素子対22cpはY軸方向のマイナス側、第4コイル素子対22bp及び第6コイル素子対22dpはY軸方向のプラス側にそれぞれ配置されている。
 第3コイル素子対22apの上段コイル部22aは、XY平面を挟んで第3コイル素子対22apの下段コイル部22aと対称な位置関係を有しており、第4コイル素子対22bpの上段コイル部22bは、XY平面を挟んで第4コイル素子対22bpの下段コイル部22bと対称な位置関係を有している。上段コイル部22aと上段コイル部22bはコイル軸が一致する一対のコイル素子を構成しており、下段コイル部22aと下段コイル部22bもコイル軸が一致する一対のコイル素子を構成している。
 第5コイル素子対22cpの上段コイル部22cは、XY平面を挟んで第5コイル素子対22cpの下段コイル部22cと対称な位置関係を有しており、第6コイル素子対22dpの上段コイル部22dは、XY平面を挟んで第6コイル素子対22dpの下段コイル部22dと対称な位置関係を有している。上段コイル部22cと上段コイル部22dはコイル軸が一致する一対のコイル素子を構成しており、下段コイル部22cと下段コイル部22dもコイル軸が一致する一対のコイル素子を構成している。
 以上の構成を有する第3の実施の形態による磁場発生装置20も、第1の実施の形態と同様の効果を奏することができる。
 図9(a)~(c)は、本発明の第4の実施の形態による磁場発生装置20の構成を示す略斜視図であって、(a)は磁場発生装置20の全体構成、(b)は第1コイル装置21の構成、(c)は第2コイル装置22の構成をそれぞれ示している。
 図9(a)~(c)に示すように、この磁場発生装置20は、第1コイル装置21がループコイルからなる二対のコイル素子(コイル素子21a,21a,21b,21b)を備えており、第2コイル装置22がループコイルからなる二対のコイル素子(コイル素子22a,22b,22c,22d)を備えている点にある。すなわち、第1コイル装置21については図8と同様の構成とし、第2コイル装置22については図7と同様の構成を採用したものである。本実施形態においても、他の実施の形態と同様の効果を得ることができる。
 石英ルツボの底部の湾曲形状に平行な磁場は、数式を用いて求めることができる。
 例えば、石英ルツボの内底面Z=C(Y)の法線ベクトルnと磁場ベクトルの内積の二乗のY=0からY=Ymaxまでの積分値を最小化するように磁場発生装置20の出力を調整する。つまり、以下の(1)式を、原点の磁場強度を特定の値に固定しながら最小化する。
Figure JPOXMLDOC01-appb-M000001
 ここでBは第1コイル装置21が単独でつくる磁場ベクトルであり、Bは第2コイル装置22が単独でつくる磁場ベクトルである。
 磁場分布はルツボ中心軸付近では水平に近づくため、ルツボ底部の中心付近ではルツボ底部の形状と磁場分布はある程度平行に近い。それに対して、ルツボ底部の外周付近では磁場分布とルツボ形状が平行から離れる傾向がある。よって、(1)式の被積分関数はYが大きいところで大きくなるため、(1)式の最小化にはYの大きいところで被積分関数を小さくする、つまりルツボ形状と磁力線を平行に近づける必要がある。
 Ymaxはルツボ半径Rの70%以下が望ましい(0≦Ymax≦0.7R)。Ymaxが小さすぎればルツボ外周部での平行が満たされない。Ymaxが大きすぎれば、外周に合わせるためルツボ底部の中心部と外周部の間の部分で平行が悪くなり、また、ルツボ側壁面に向かって急変するルツボ形状が(1)式に大きく影響する。
 (1)式のバリエーションとしてBではなくBの方向ベクトルを用いて評価する方法も考えられる。
 すなわち、ルツボ底中心でルツボ底形状と磁力線のY方向の2階微分を一致させる。具体的には以下の(2)式を満たすように磁場発生装置20の出力を調整する。
Figure JPOXMLDOC01-appb-M000002
 ここでB1,Y及びB1,Zはそれぞれ第1コイル装置21が単独で作る磁場ベクトルBのY方向成分及びZ方向成分であり、B2,YおよびB2,Zはそれぞれ第2コイル装置22が単独で作る磁場ベクトルBのY方向成分及びZ方向成分である。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記実施形態においてはシリコン単結晶の製造方法を例に挙げたが、本発明はシリコン単結晶の製造方法に限定されず、HMCZ法を採用する種々の単結晶の製造方法に適用可能である。
 図9に示した磁場発生装置20を用いてHMCZ法によるシリコン単結晶の育成を行った。上記のように、この磁場発生装置20は、垂直面内に配置された4つのコイル素子21a,21a,21b,21bからなる第1コイル装置21と、水平面内に配置された4つのコイル素子22a,22b,22c,22dからなる第2コイル装置22とで構成されたものである。
 直交座標の原点(結晶中心軸(Z軸)と磁場中心軸(Y軸)との交点)での磁場強度は3000Gとした。石英ルツボの直径は813mm、石英ルツボの湾曲した底部の曲率半径は813mmであった。
 電磁場解析ソフトを用いて第1及び第2コイル装置が作る磁場を計算した。融液面における磁場ベクトルはY軸と平行にした。またYZ平面内で石英ルツボの底部の内面の法線と磁場ベクトルとがなす角度を計算し、融液深さ(液面からルツボ底までの距離)に対する磁場出力を、上記(2)式を用いて計算した。その結果を図10(a)及び(b)のグラフに示す。なお、図10(a)及び(b)のグラフでは、第1及び第2コイル装置の各々が単独で結晶-融液面中心で磁場強度を作るのに必要な出力を1としている。
 図10(a)及び(b)に示すように、第1コイル装置の出力(第1磁場)は、最初はY軸のプラス方向に大きな磁場強度を有するが、結晶成長が進み融液量が減少するにつれてY軸のプラス方向の磁場強度が徐々に低下して途中でゼロとなり、さらにY軸のマイナス方向の磁場強度が徐々に増加する。逆に、第2コイル装置の出力(第2磁場)は、最初はY軸のマイナス方向に大きな磁場強度を有するが、結晶成長が進み融液量が減少するにつれてY軸のマイナス方向の磁場強度が徐々に低下して途中でゼロとなり、さらにプラス方向の磁場強度が徐々に増加する。
 図11(a)~(c)は、図10(a)及び(b)に示した磁場出力プロファイルを用いて生成した複合磁場の磁力線がルツボ底部の内面となす角度θを、第1及び第2コイル装置がそれぞれ単独で動作したときに発生する磁場と比較しながらに示すグラフである。
 図11(c)に示すように、融液深さが400mmの場合において、複合磁場を印加したときのルツボ底部の内面に対する磁場角度は約90度~95度となった。また図11(b)に示すように、融液深さが300mmの場合においても、磁場角度は約90度~95度となった。図11(a)に示すように、融液深さが200mmの場合には、磁場角度がほぼ90度となり、非常に良好な結果となった。
 図12は、複合磁場を印加しながら製造した実施例によるシリコン単結晶の結晶成長方向の酸素濃度分布を示すグラフである。図示のグラフから明らかなように、結晶成長方向の酸素濃度は10×1017~11×1017atoms/cmの範囲内で非常に安定した結果となった。
 図13(a)~(f)は、比較例及び実施例によるシリコン単結晶の酸素濃度の評価結果を示すグラフである。特に、図13(a)~(c)は、単一磁場(従来磁場)を印加しながら製造した比較例によるシリコン単結晶の酸素濃度の評価結果であって、結晶長が500mm、1100mm、1700mmの位置での酸素濃度の面内分布(径方向分布)を示すグラフである。また、図13(d)~(f)は、複合磁場を印加しながら製造した実施例によるシリコン単結晶の酸素濃度の評価結果であって、結晶長が500mm、1100mm、1700mmの位置での酸素濃度の面内分布(径方向分布)を示すグラフである。
 図13(a)~(c)に示すように、比較例によるシリコン単結晶の酸素濃度分布はばらつきが大きかった。一方、図13(d)~(f)に示すように、実施例によるシリコン単結晶の酸素濃度分布はばらつきが小さくなった。
1  単結晶製造装置
2  シリコン融液
3  シリコン単結晶(インゴット)
3a  ネック部
3b  ショルダー部
3c  ボディー部
3d  テール部
10  チャンバー
10a  メインチャンバー
10b  プルチャンバー
10c  ガス導入口
10d  ガス排出口
10e  覗き窓
11  石英ルツボ
12  サセプタ
13  回転シャフト
14  シャフト駆動機構
15  ヒーター
16  断熱材
17  熱遮蔽体
18  ワイヤー
19  ワイヤー巻き取り機構
20  磁場発生装置
21a  第1コイル素子
21a  上段コイル部
21a  下段コイル部
21ap  第1コイル素子対
21b  第2コイル素子
21b  上段コイル部
21b  下段コイル部
21bp  第2コイル素子対
22a  第3コイル素子
22a  上段コイル部
22a  下段コイル部
22ap  第3コイル素子対
22b  第4コイル素子
22b  上段コイル部
22b  下段コイル部
22bp  第4コイル素子対
22c  第5コイル素子
22c  上段コイル部
22c  下段コイル部
22cp  第5コイル素子対
22d  第6コイル素子
22d  上段コイル部
22d  下段コイル部
22dp  第6コイル素子対
25  CCDカメラ
26  画像処理部
27  制御部

Claims (17)

  1.  ルツボ内の融液に横磁場を印加しながら単結晶を引き上げる単結晶の製造方法であって、
     結晶引き上げ工程中に前記融液の減少に合わせて前記ルツボを上昇させると共に、融液面における磁場の向きと前記ルツボの湾曲した底部の内面における磁場の向きがボディー部育成工程の開始から終了まで一定となるように、前記融液の減少に合わせて磁場分布を制御することを特徴とする単結晶の製造方法。
  2.  前記融液面における磁場の向きは、前記融液面と平行である、請求項1に記載の単結晶の製造方法。
  3.  前記ルツボの回転軸をZ軸とし、前記Z軸と直交する前記横磁場の印加方向の中心軸をY軸とし、前記Z軸と前記Y軸との交点を原点とし、YZ平面に直交し前記原点を通る軸をX軸とするとき、
     前記ルツボの湾曲した底部の内面と前記YZ平面との交線上において、当該内面の法線ベクトルと磁場ベクトルとがなす角度θを75度以上105度以下に維持する、請求項1又は2に記載の単結晶の製造方法。
  4.  前記原点における磁場の強度を一定に維持しながら、前記ルツボの湾曲した底部の内面の法線ベクトルと磁場ベクトルとの内積の二乗の前記底部における積分値を最小化するように、前記磁場分布を調整する、請求項3に記載の単結晶の製造方法。
  5.  前記底部の中心で当該底部の形状と磁場のY方向の2階微分を一致させるように、前記磁場分布を調整する、請求項3に記載の単結晶の製造方法。
  6.  前記ルツボの半径をRとするとき、前記底部は、前記底部の中心から半径0.7R以下の範囲である、請求項3乃至5のいずれか一項に記載の単結晶の製造方法。
  7.  前記ルツボの周囲に複数のコイル素子を設け、各コイル素子の磁場強度を個別に調整することで前記磁場分布を制御する、請求項1乃至6のいずれか一項に記載の単結晶の製造方法。
  8.  前記複数のコイル素子は、コイル軸が一致した複数のコイル素子対を構成している、請求項7に記載の単結晶の製造方法。
  9.  前記複数のコイル素子は、XZ平面を挟んで対称に配置されている、請求項7又は8に記載の単結晶の製造方法。
  10.  前記複数のコイル素子は、XY平面と平行に配置されている、請求項7乃至9のいずれか一項に記載の単結晶の製造方法。
  11.  前記複数のコイル素子は、第1磁場を発生する第1コイル装置と、
     前記第1磁場と異なる第2磁場を発生する第2コイル装置とを構成しており、
     前記第1磁場の強度と前記第2磁場及び強度を個別に調整することで前記磁場分布を制御する、請求項7乃至10のいずれか一項に記載の単結晶の製造方法。
  12.  前記第1磁場は、Y軸のプラス方向の磁場が徐々に弱くなった後、ゼロになり、さらにY軸のマイナス方向の磁場が徐々に強くなる磁場変化を有し、
     前記第2磁場は、Y軸のマイナス方向の磁場が徐々に弱くなった後、ゼロになり、さらにY軸のプラス方向の磁場が徐々に強くなる磁場変化を有する、請求項11に記載の単結晶の製造方法。
  13.  MCZ法による単結晶の製造に用いられ、ルツボ内の融液に横磁場を印加する磁場発生装置であって、
     第1磁場を発生する第1コイル装置と、
     前記第1磁場と異なる第2磁場を発生する第2コイル装置とを備え、
     前記ルツボの回転軸をZ軸とし、前記Z軸と直交する前記横磁場の印加方向の中心軸をY軸とし、前記Z軸と前記Y軸との交点を原点とし、YZ平面に直交し前記原点を通る軸をX軸とするとき、
     前記第1コイル装置は、前記YZ平面上に配置され、コイル軸が一致する少なくとも一対のコイル素子を有し、
     前記第2コイル装置は、XY平面と平行に配置され、コイル軸が一致する少なくとも二対のコイル素子を有し、
     前記第1コイル装置及び前記第2コイル装置を構成する複数のコイル素子は、XZ平面を挟んで対称に配置されていることを特徴とする磁場発生装置。
  14.  前記第1コイル装置は、前記YZ平面上に配置され、前記Z軸を挟んで対称に配置された第1及び第2コイル素子を有し、
     前記第2コイル装置は、前記XY平面上に配置され、前記Z軸を挟んで対称に配置された第3及び第4コイル素子と、前記XY平面上に配置され、前記Z軸を挟んで対称に配置された第5及び第6コイル素子とを有し、
     前記第1乃至第6コイル素子は、前記XZ平面を挟んで対称に配置されている、請求項13に記載の磁場発生装置。
  15.  前記第3及び第4コイル素子のコイル軸が前記Y軸となす角度が+45度であり、
     前記第5及び第6コイル素子のコイル軸が前記Y軸となす角度が-45度である、請求項14に記載の磁場発生装置。
  16.  前記第1及び第2コイル素子を構成するループコイルのループサイズは同一であり、
     前記第3乃至第6コイル素子を構成するループコイルのループサイズは同一である、請求項13乃至15のいずれか一項に記載の磁場発生装置。
  17.  融液を支持するルツボと、
     前記融液を加熱するヒーターと、
     前記融液から単結晶を引き上げる結晶引き上げ機構と、
     前記ルツボを回転及び昇降駆動するルツボ昇降機構と、
     前記融液に横磁場を印加する請求項13乃至16のいずれか一項に記載の磁場発生装置と、
     前記ヒーター、前記結晶引き上げ機構、前記ルツボ昇降機構、及び前記磁場発生装置を制御する制御部とを備えることを特徴とする単結晶製造装置。
PCT/JP2021/034733 2020-11-10 2021-09-22 単結晶の製造方法、磁場発生装置及び単結晶製造装置 WO2022102251A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237013398A KR20230070287A (ko) 2020-11-10 2021-09-22 단결정의 제조 방법, 자장 발생 장치 및 단결정 제조 장치
US18/036,094 US20230407523A1 (en) 2020-11-10 2021-09-22 Single crystal manufacturing method, magnetic field generator, and single crystal manufacturing apparatus
DE112021005918.1T DE112021005918T5 (de) 2020-11-10 2021-09-22 Einkristallherstellungsverfahren, magnetfeldgenerator undeinkristallherstellungsvorrichtung
JP2022561308A JPWO2022102251A1 (ja) 2020-11-10 2021-09-22
CN202180075806.5A CN116438333A (zh) 2020-11-10 2021-09-22 单晶的制造方法、磁场产生装置及单晶制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-186976 2020-11-10
JP2020186976 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102251A1 true WO2022102251A1 (ja) 2022-05-19

Family

ID=81601814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034733 WO2022102251A1 (ja) 2020-11-10 2021-09-22 単結晶の製造方法、磁場発生装置及び単結晶製造装置

Country Status (7)

Country Link
US (1) US20230407523A1 (ja)
JP (1) JPWO2022102251A1 (ja)
KR (1) KR20230070287A (ja)
CN (1) CN116438333A (ja)
DE (1) DE112021005918T5 (ja)
TW (1) TWI797764B (ja)
WO (1) WO2022102251A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424090A (en) * 1987-07-20 1989-01-26 Toshiba Ceramics Co Method and apparatus for producing single crystal
JP2001203106A (ja) * 2000-01-21 2001-07-27 Sumitomo Heavy Ind Ltd 水平磁界発生用超電導磁石装置
JP2004051475A (ja) * 2002-05-31 2004-02-19 Toshiba Corp 単結晶引上げ装置、超電導磁石および単結晶引上げ方法
JP2007184383A (ja) * 2006-01-06 2007-07-19 Kobe Steel Ltd 磁場形成装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561072B2 (ja) 1986-04-30 1996-12-04 東芝セラミツクス株式会社 単結晶の育成方法及びその装置
JP4363078B2 (ja) 2003-04-28 2009-11-11 株式会社Sumco 単結晶の製造方法
CN201670889U (zh) * 2009-12-10 2010-12-15 嘉兴市中科光电科技有限公司 一种磁极间距可调的mcz永磁场装置
CN101923591B (zh) * 2010-08-09 2012-04-04 西安理工大学 用于mcz单晶炉的非对称勾形磁场的三维优化设计方法
JP6620670B2 (ja) 2016-05-16 2019-12-18 信越半導体株式会社 単結晶引き上げ装置及び単結晶引き上げ方法
CN106191988A (zh) * 2016-08-25 2016-12-07 宁夏中晶半导体材料有限公司 一种用于mcz法拉制单晶硅的降氧工艺及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424090A (en) * 1987-07-20 1989-01-26 Toshiba Ceramics Co Method and apparatus for producing single crystal
JP2001203106A (ja) * 2000-01-21 2001-07-27 Sumitomo Heavy Ind Ltd 水平磁界発生用超電導磁石装置
JP2004051475A (ja) * 2002-05-31 2004-02-19 Toshiba Corp 単結晶引上げ装置、超電導磁石および単結晶引上げ方法
JP2007184383A (ja) * 2006-01-06 2007-07-19 Kobe Steel Ltd 磁場形成装置

Also Published As

Publication number Publication date
US20230407523A1 (en) 2023-12-21
JPWO2022102251A1 (ja) 2022-05-19
KR20230070287A (ko) 2023-05-22
TWI797764B (zh) 2023-04-01
CN116438333A (zh) 2023-07-14
DE112021005918T5 (de) 2023-08-31
TW202223175A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
EP1831436B1 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
US20100101485A1 (en) Manufacturing method of silicon single crystal
JP5240191B2 (ja) シリコン単結晶引上装置
CN108779577B (zh) 单晶硅的制造方法
WO2019167989A1 (ja) シリコン融液の対流パターン制御方法、シリコン単結晶の製造方法、および、シリコン単結晶の引き上げ装置
JP2019085299A (ja) 単結晶の製造方法及び装置
JP5228671B2 (ja) シリコン単結晶の育成方法
JP4758338B2 (ja) 単結晶半導体の製造方法
WO2022102251A1 (ja) 単結晶の製造方法、磁場発生装置及び単結晶製造装置
WO2019167986A1 (ja) シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
JP2004189559A (ja) 単結晶成長方法
TWI784314B (zh) 單晶矽的製造方法
JP2019210199A (ja) シリコン単結晶の製造方法
JP6958632B2 (ja) シリコン単結晶及びその製造方法並びにシリコンウェーハ
TWI745974B (zh) 一種半導體晶體生長裝置
JP2005231944A (ja) 単結晶半導体の製造方法
JPH10287488A (ja) 単結晶引き上げ方法
JP2000239096A (ja) シリコン単結晶の製造方法
WO2023223691A1 (ja) シリコン単結晶の育成方法、シリコンウェーハの製造方法、および単結晶引き上げ装置
JP5454625B2 (ja) シリコン単結晶の引上げ方法により引上げられたインゴットから得られたシリコン単結晶ウェーハ
WO2022254885A1 (ja) シリコン単結晶の製造方法
JP5056603B2 (ja) シリコン単結晶の引上げ方法及び該方法により引上げられたインゴットから得られたシリコン単結晶ウェーハ
TWI736169B (zh) 一種半導體晶體生長方法和裝置
JP2001019592A (ja) 単結晶引き上げ装置
JP2005306669A (ja) シリコン単結晶の引上げ装置及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237013398

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022561308

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21891499

Country of ref document: EP

Kind code of ref document: A1