WO2017043467A1 - 積層フィルム及び積層成形品 - Google Patents

積層フィルム及び積層成形品 Download PDF

Info

Publication number
WO2017043467A1
WO2017043467A1 PCT/JP2016/076105 JP2016076105W WO2017043467A1 WO 2017043467 A1 WO2017043467 A1 WO 2017043467A1 JP 2016076105 W JP2016076105 W JP 2016076105W WO 2017043467 A1 WO2017043467 A1 WO 2017043467A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
laminated film
polymer
monomer
acrylic resin
Prior art date
Application number
PCT/JP2016/076105
Other languages
English (en)
French (fr)
Inventor
愛 東川
祐二 川口
和哉 大姶良
阿部 純一
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2016561026A priority Critical patent/JP6361741B2/ja
Priority to CN202310018006.0A priority patent/CN116423949A/zh
Priority to KR1020207006725A priority patent/KR102374802B1/ko
Priority to EP16844328.1A priority patent/EP3348395A4/en
Priority to CN201680052127.5A priority patent/CN108025540A/zh
Priority to US15/758,569 priority patent/US10737466B2/en
Priority to KR1020187004928A priority patent/KR20180032609A/ko
Publication of WO2017043467A1 publication Critical patent/WO2017043467A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2590/00Signboards, advertising panels, road signs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels

Definitions

  • the present invention relates to a laminated film having high transparency, stress whitening resistance and chemical resistance, and a laminated molded article using the film.
  • Acrylic resin moldings are excellent in transparency and have a beautiful appearance and weather resistance, so they are widely used for the purpose of providing design features such as electrical parts, vehicle parts, optical parts, ornaments, signs, etc. Yes.
  • an acrylic resin molded article made of an acrylic resin composition containing a rubber-containing polymer has high moldability and high utility value.
  • acrylic resin moldings are generally insufficient in chemical resistance, in recent years, a laminate in which vinylidene fluoride resin is laminated on the outermost surface of the acrylic resin molding to provide chemical resistance to the molding.
  • the acrylic resin molded body is often used by being bonded to a base material.
  • a decorative sheet is produced mainly by placing an acrylic resin molded body on a base material and performing hot pressing, and bending is performed to a shape suitable for the application.
  • the conventional laminated molded product has difficulty in molding processability because whitening (stress whitening), cracking, and peeling occur in the film during the bending process.
  • stress whitening means that a fulcrum portion turns white when a decorative sheet or the like is bonded to a base material and the base material is bent to form various members such as a window frame.
  • a layer of a polymer blend of a vinylidene fluoride resin and an acrylic resin is laminated on an acrylic resin layer, which has excellent chemical resistance and surface hardness, and further has a low haze value.
  • a laminated film and a laminated molded body are provided.
  • the laminated film of Patent Document 1 has a high glass transition temperature of the acrylic resin composition of the base layer, it has been difficult to adapt to a member that requires bending in a low temperature environment.
  • Patent Document 2 provides an acrylic resin film having excellent resistance to whitening by increasing the amount of a crosslinking agent in an acrylic resin and setting the particle diameter within a specific range.
  • the acrylic resin film of Patent Document 2 is blended with a MMA-EA copolymer to form a film, whereby the total amount of rubber is reduced and the impact resistance of the film is lowered.
  • the glass transition temperature of the acrylic resin composition is high, it is difficult to adapt to a member that requires bending in a low temperature environment.
  • An object of the present invention is to provide a laminated film having high transparency, stress whitening resistance, and chemical resistance.
  • there is no problem such as stress whitening or cracking even when it is bonded to a substrate under any temperature condition and subjected to bending, and it is possible to impart high design properties with sufficient transparency.
  • a laminated film comprising a layer containing a fluorine-based resin (X) and a layer containing an acrylic resin composition (Y) and satisfying the following conditions (1) and (2); (1) The difference in whiteness ( ⁇ W) of the test piece before and after stretching is 5 or less when stretched from a distance between chucks of 25 mm to 35 mm at a temperature of 0 ° C. and a tensile speed of 500 mm / min according to ISO 527-3. (2)
  • the acrylic resin composition (Y) comprises a rubber-containing polymer (B) containing 30% by mass or more of the elastic polymer (B1).
  • the glass transition temperature of the acrylic resin (A) is 95 to 120 ° C.
  • the rubber-containing polymer (B) is at least one selected from alkyl acrylate (a1) having an alkyl group having 1 to 8 carbon atoms and alkyl methacrylate (a2) having an alkyl group having 1 to 4 carbon atoms. Having an alkyl group having 1 to 4 carbon atoms in the presence of an elastic polymer (B1) obtained by polymerizing the monomer (a) containing the monomer and the crosslinkable monomer (a4).
  • the rubber-containing polymer (B) is a graft polymer, and the content of the graft crossing agent unit in 100% by mass of the elastic polymer (B1) is 1.2% by mass or more.
  • the laminated film according to [8] wherein the total content of the alkyl acrylate (a1) monomer unit and the alkyl methacrylate (a2) monomer unit in the elastic polymer (B1) is 80% by mass or more. .
  • the content ratio of the alkyl acrylate (a1) monomer unit / alkyl methacrylate (a2) monomer unit in the elastic polymer (B1) is 50/50 to 100/0 (mass ratio).
  • the elastic polymer (B1) contains another vinyl monomer (a3) unit, The laminated film of [6], [8] or [9], wherein the content of the monomer (a3) unit in the elastic polymer (B1) is 12% by mass or less.
  • the laminated film of [6], [8], [9] or [10], wherein the content of the alkyl methacrylate (b1) monomer in the monomer (b) is 70% by mass or more.
  • the rubber-containing polymer (B) is a graft polymer, and the content of the graft crossing agent unit in 100% by mass of the elastic polymer (B1) is 1.2% by mass or more. 11].
  • the ratio of the thickness of the layer containing the fluorine-based resin (X) / the layer containing the acrylic resin composition (Y) is 5/95 to 50/50, any of [1] to “13” Laminated film.
  • a laminated molded article obtained by laminating the laminated film of any one of [1] to [14] on a base material.
  • the laminated film of the present invention is excellent in stress whitening resistance, weather resistance, flexibility, transparency, and chemical resistance.
  • it is possible to produce a laminated product having a high design property that does not cause problems such as cracking, peeling and whitening even if it is bonded to a substrate and subjected to bending.
  • the film includes a flat plate material having a thickness of about 0.01 to 0.5 mm, which is called a sheet-like material.
  • the laminated film of the present invention comprises a layer containing a fluorine resin (X) and a layer containing an acrylic resin composition (Y).
  • a layer containing the fluororesin (X) may be referred to as “(X) layer”
  • a layer containing the acrylic resin composition (Y) may be referred to as “(Y) layer”.
  • the laminated film can have a two-layer structure including an (X) layer and a (Y) layer, or a three-layer structure in which the (X) layer exists on both sides of the (Y) layer.
  • the thickness ratio of the (X) layer / (Y) layer is preferably 5 to 50/50 to 95 from the viewpoint of solvent resistance and transparency. From the viewpoint of cost, 5 to 30/70 to 95 is more preferable, and 5 to 15/75 to 95 is still more preferable.
  • the thickness of the laminated film is not particularly limited, but is preferably 500 ⁇ m or less (for example, 10 to 500 ⁇ m). In the case of a film used for a laminated molded product, the thickness is preferably 30 to 400 ⁇ m.
  • the thickness of each layer is determined by observing a sample obtained by cutting the laminated film to a thickness of 70 nm in the cross-sectional direction with a transmission electron microscope, measuring each thickness at five locations, Calculate by averaging. Examples of commercially available transmission electron microscopes include J100S (trade name) manufactured by JEOL Ltd.
  • the fluororesin (X) of the present invention is a vinylidene fluoride resin (F).
  • the vinylidene fluoride resin (F) may be a resin containing a vinylidene fluoride unit, and a homopolymer (polyvinylidene fluoride) consisting only of a vinylidene fluoride unit or a copolymer containing a vinylidene fluoride unit is used. be able to.
  • a vinylidene fluoride resin (F) may be used individually by 1 type, and may use 2 or more types together.
  • the vinylidene fluoride resin (F) may be referred to as “resin (F)”.
  • the mass average molecular weight (Mw) of the resin (F) is preferably 100,000 or more from the viewpoint of chemical resistance, and preferably 300,000 or less from the viewpoint of film forming property.
  • the content of the vinylidene fluoride unit in the copolymer is preferably 85% by mass or more from the viewpoint of compatibility between the resin (F) and the acrylic resin (A) described later.
  • the resin (F) is a copolymer
  • examples of the copolymer component to be copolymerized with vinylidene fluoride include hexafluoropropylene and tetrafluoroethylene. These may be used alone or in combination of two or more.
  • the resin (F) is preferably polyvinylidene fluoride from the viewpoint of obtaining a laminated film having excellent transparency and heat resistance.
  • the resin (F) preferably has a high crystal melting point. Specifically, 150 ° C. or higher is preferable from the viewpoint of heat resistance, and 160 ° C. or higher is more preferable.
  • the upper limit of the crystal melting point is preferably about 175 ° C. which is equal to the crystal melting point of polyvinylidene fluoride from the viewpoint of heat resistance.
  • Crystal melting point means JIS K7121, 3. It means “melting peak temperature” measured according to the method described in (2).
  • Examples of the commercially available resin (F) include Kynar 720 (vinylidene fluoride content: 100% by mass, crystal melting point: 169 ° C.) and Kynar 710 (vinylidene fluoride content: 100% by mass) manufactured by Arkema Co., Ltd. KFT # 850 manufactured by Kureha Co., Ltd. (content of vinylidene fluoride: 100 mass%, crystalline melting point: 173 ° C.); Solef 1006 manufactured by Solvay Specialty Polymers Co., Ltd. (of vinylidene fluoride) Content rate: 100% by mass, crystal melting point: 174 ° C.) and Solef 1008 (content of vinylidene fluoride: 100% by mass, crystal melting point: 174 ° C.).
  • Resin (F) has three types of monomer binding modes: head-to-head, tail-to-tail, and head-to-tail. Head-to-head and tail-to-tail bonds are called “heterologous bonds”. From the viewpoint of improving the chemical resistance of the laminated film, the “ratio of different bonds” in the resin (F) is preferably 10% by mass or less.
  • the resin (F) is preferably a resin produced by suspension polymerization from the viewpoint of reducing the ratio of the different types of bonds.
  • the “heterogeneous bond ratio” can be determined from the diffraction peak of the 19 F-NMR spectrum of the resin (F). Specifically, 40 mg of resin (F) is dissolved in 0.8 ml of deuterium dimethylformamide (D 7 -DMF), and 19 F-NMR is measured at room temperature. The obtained 19 F-NMR spectrum has five main peaks at the positions of -91.5 ppm, -92.0 ppm, -94.7 ppm, -113.5 ppm and -115.9 ppm. Of these peaks, the peaks at -113.5 ppm and -115.9 ppm are identified as peaks originating from heterogeneous bonds.
  • the ratio of heterogeneous bonds is calculated by the following equation, where S T is the sum of the areas of the five peaks, S 1 is the area of ⁇ 113.5 ppm, and S 2 is the area of ⁇ 115.9 ppm.
  • Heterogeneous bond ratio [ ⁇ (S 1 + S 2 ) / 2 ⁇ / S T ] ⁇ 100 (%).
  • Resin (F) can contain a matting agent to the extent that the transparency of the laminated film is not impaired.
  • a matting agent organic and inorganic matting agents can be used.
  • the layer containing the fluororesin (X) of the present invention is composed of a vinylidene fluoride resin (F) alone or a polymer blend of the vinylidene fluoride resin (F) and the acrylic resin (A).
  • Acrylic resin (A) may be used individually by 1 type, and may use 2 or more types together.
  • the layer containing a fluorine resin (X) made of a polymer blend preferably contains 50 to 95% by mass of the resin (F) and 5 to 50% by mass of the acrylic resin (A). . If the resin (F) is 50% by mass or more, the chemical resistance of the laminated film is good, and if the resin (F) is 95% by mass or less, the cost of the laminated film can be suppressed.
  • the resin (F) / acrylic resin (A) is more preferably 55 to 95/5 to 45% by mass, still more preferably 60 to 95/5 to 40% by mass.
  • the ratio of the resin (F) and the acrylic resin (A) can be measured by gas chromatography mass spectrometry.
  • the below-mentioned compounding agent can be added in this polymer blend.
  • the acrylic resin (A) of the present invention is a polymer having an acrylic monomer unit as a main component.
  • the acrylic resin (A) preferably has a glass transition temperature (Tg) of 95 to 120 ° C, more preferably 95 to 115 ° C. If Tg is 95 degreeC or more, the surface hardness of a laminated
  • Tg can be measured by DSC (Differential Scanning Calorimetry).
  • Glass transition temperature is JIS K7121, 3.
  • the temperature is raised at a rate of temperature rise of 10 ° C./min and measured as “extrapolated glass transition start temperature”.
  • the acrylic resin (A) may be referred to as “resin (A)”.
  • the resin (A) is a polymer obtained from alkyl (meth) acrylate, and is preferably a polymer containing 70% by mass or more of alkyl methacrylate units.
  • the content of the alkyl methacrylate unit in the resin (A) is more preferably 80% by mass or more from the viewpoint of the surface hardness and heat resistance of the laminated film, and preferably 99% by mass or less from the point of the thermal decomposition resistance of the laminated film. 85 mass% or more and 99 mass% or less are still more preferable.
  • the total content of the alkyl methacrylate unit and the alkyl acrylate unit in the resin (A) is preferably 80% by mass or more.
  • an alkyl methacrylate having a homopolymer Tg of 95 ° C. or higher from the viewpoint of obtaining a laminated film having a high surface hardness.
  • alkyl methacrylate that satisfies this requirement include methyl methacrylate, t-butyl methacrylate, t-butylcyclohexyl methacrylate, and isobornyl methacrylate. These may be used alone or in combination of two or more.
  • the alkyl group of the alkyl methacrylate may be branched or linear. Moreover, the number of carbon atoms of the alkyl group of the alkyl methacrylate is preferably 4 or less from the viewpoint of heat resistance of the laminated film.
  • Resin (A) may be a polymer obtained from alkyl methacrylate or a polymer obtained from alkyl methacrylate and another monomer (for example, methacrylic acid or styrene).
  • the Mw of the resin (A) is preferably 30,000 or more from the viewpoint of mechanical properties of the laminated film, and preferably 200,000 or less from the viewpoint of moldability of the laminated film. 50,000 or more and 150,000 or less are more preferable, and 70,000 or more and 150,000 or less are still more preferable.
  • resin (A) may also contain the rubber-containing polymer (B) mentioned later to such an extent that the transparency of a laminated film is not impaired.
  • the acrylic resin composition (Y) means a resin composition containing a (co) polymer containing an alkyl (meth) acrylate unit.
  • the acrylic resin composition (Y) preferably contains the following rubber-containing polymer (B), and preferably contains 80% by mass or more of the rubber-containing polymer (B) from the viewpoint of stress whitening resistance. 90 mass% or more is more preferable from a viewpoint of mechanical strength, and 95 mass% or more is still more preferable.
  • the acrylic resin composition (Y) may contain the acrylic resin (A) to such an extent that the mechanical strength of the laminated film is not impaired. From the viewpoint of the mechanical strength of the laminated film, it is preferable to contain 0 to 20% by mass of the acrylic resin (A). From the viewpoint of stress whitening resistance, 0 to 10% by mass is preferable, and 0 to 5% by mass is more preferable.
  • the rubber-containing polymer (B) of the present invention comprises at least one selected from alkyl acrylate (a1) having an alkyl group having 1 to 8 carbon atoms and alkyl methacrylate (a2) having an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be either linear or branched. Specific examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and n-octyl acrylate. These may be used alone or in combination of two or more. Among these, an alkyl acrylate having a low Tg is preferable, and n-butyl acrylate is more preferable. If Tg is low, the elastic polymer (B1) has good flexibility and can be easily molded.
  • the alkyl group may be linear or branched. Specific examples include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. These may be used alone or in combination of two or more.
  • alkyl acrylate (a1) and alkyl methacrylate (a2) may be used, or both may be used in combination.
  • the ratio of the alkyl acrylate (a1) is preferably 35% by mass or more because the resulting laminated film has good flexibility. . 45 mass% or more is preferable from a viewpoint of the softness
  • vinyl monomers (a3) include, for example, acrylate monomers having an alkyl group having 9 or more carbon atoms, such as alkyl acrylate, alkoxy acrylate, cyanoethyl acrylate; acrylamide, acrylic acid, methacrylic acid, styrene, alkyl substitution Examples include styrene, acrylonitrile, and methacrylonitrile.
  • the crosslinkable monomer (a4) forms a crosslinked structure with the alkyl acrylate (a1) and / or the alkyl methacrylate (a2) to impart rubber elasticity to the polymer, and between the hard polymer (B). It is a component that forms a crosslink.
  • a graft crossing agent having a function of causing graft crossing is preferable. Examples of such functions include allyl, methallyl or crotyl esters of copolymerizable ⁇ , ⁇ -unsaturated carboxylic acid or dicarboxylic acid. Particularly preferred are allyl esters of acrylic acid, methacrylic acid, maleic acid or fumaric acid. Among them, allyl methacrylate has an excellent effect. In addition, triallyl cyanurate and triallyl isocyanurate are also effective.
  • the graft crossing agent is chemically bonded mainly because the conjugated unsaturated bond of the ester reacts much faster than the allyl group, methallyl group or crotyl group. In the meantime, a substantial part of the allyl group, methallyl group or crotyl group works effectively during the polymerization of the next layer polymer, and gives a graft bond between the adjacent two layers.
  • the crosslinkable monomer (a4) is not limited to a monomer that imparts rubber elasticity to the molded product obtained as described above or causes crossover of the graft. It may be a monomer. Examples include alkylene glycol dimethacrylates such as ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and propylene glycol dimethacrylate; polyvinylbenzene such as divinylbenzene and trivinylbenzene. As described above, various compounds can be selected as the crosslinkable monomer (a4). However, in order to appropriately exhibit the stress whitening resistance, it is preferable to use a graft crossing agent such as allyl methacrylate.
  • a graft crossing agent such as allyl methacrylate.
  • the total amount of alkyl acrylate (a1) and alkyl methacrylate (a2) is 80 to 100% by mass in terms of improving weather resistance, etc.
  • the amount of the body (a3) is preferably 0 to 20% by mass.
  • the content ratio of the monomer (a1) unit / monomer (a2) unit is preferably 50/50 to 100/0 (mass ratio).
  • the amount of the monomer (a3) is more preferably 0 to 12% by mass.
  • the amount of the crosslinkable monomer (a4) is preferably 0.4 to 2.0% by mass, and 0.6 to 1.8% by mass, out of the total 100% by mass of the monomers (a1) to (a4). Is more preferable.
  • this amount is 0.4% by mass or more, crosslinking between the elastic polymer (B1) and the hard polymer (B2) becomes stable, and sufficient transparency is exhibited. Moreover, rubber elasticity can be improved more and the impact resistance of the obtained laminated film increases. Conversely, if it is 2.0 mass% or less, bridge
  • the elastic polymer (B1) may be polymerized in two or more stages. In that case, monomer mixtures having different compositions may be polymerized. By polymerizing in two or more stages, it becomes easy to control the particle diameter of the finally obtained rubber-containing polymer (B).
  • the elastic polymer (B1) when the elastic polymer (B1) is polymerized in two stages, the first elastic polymer (B1-1) and the second elastic polymer (B1-2) are grafted between two layers by a graft crossing agent. It is preferable to have a bond. If the elastic polymer (B1) is polymerized in two or more stages and a graft polymer having a graft bond between two adjacent layers, the particle size of the rubber-containing polymer (B) can be easily controlled. The stress whitening resistance of the laminated film can be suitably expressed.
  • the content of the graft crossing agent unit in 100% by mass of the elastic polymer (B1) is preferably 1.2% by mass or more. If the content of the graft crossing agent unit is 1.2% by mass or more, the layer between the first elastic polymer (B1-1) and the second elastic polymer (B1-2), or the elastic polymer (B1) And the cross-linking between the hard polymer (B2) is stabilized, and the stress whitening resistance of the laminated film is suitably developed.
  • the elastic polymer (B1) is obtained by a polymerization method such as emulsion polymerization or suspension polymerization.
  • a polymerization method such as emulsion polymerization or suspension polymerization.
  • an emulsifier, a polymerization initiator, and a chain transfer agent can be used.
  • an anionic, cationic or nonionic surfactant is used, and an anionic surfactant is particularly preferable.
  • the anionic surfactant include rosin acid soap, potassium oleate, sodium stearate, sodium myristate, sodium N-lauroylsarcosate, dipotassium alkenyl succinate, sodium lauryl sulfate, etc.
  • Sulfate salts such as sodium dioctylsulfosuccinate, sodium dodecylbenzenesulfonate, sodium alkyldiphenyl ether disulfonate, and the like; and phosphate esters such as polyoxyethylene alkylphenylether sodium phosphate.
  • Examples of the method for preparing the emulsion include a method of adding a surfactant after charging the monomer mixture in water, a method of charging the monomer mixture after charging the surfactant in water, and a monomer
  • An example is a method in which water is added after a surfactant is charged into the mixture.
  • a method of charging the surfactant after charging the monomer mixture into water and a method of charging the monomer mixture after charging the surfactant into water are preferable.
  • the polymerization initiator include persulfates such as potassium persulfate and sodium persulfate; organic peroxides such as t-butyl hydroperoxide, cumene hydroperoxide and benzoyl peroxide; azobisisobutyronitrile. Azo compounds such as: redox initiators in which these persulfates or organic peroxides are combined with a reducing agent. Among these, a redox initiator is preferable, and a sulfoxylate initiator combined with ferrous sulfate, ethylenediaminetetraacetic acid disodium salt, sodium formaldehyde sulfoxylate, and hydroperoxide is more preferable.
  • the polymerization initiator can be added to one or both of the aqueous phase and the monomer phase.
  • the amount of the polymerization initiator is preferably 0.05 to 1.0 part by mass, more preferably 0.1 to 0.6 part by mass with respect to 100 parts by mass in total of the monomers (a1) to (a4). . If the amount of the polymerization initiator is 0.05 parts by mass or more, a laminated film having good mechanical strength can be obtained. Moreover, if it is 1.0 mass part or less, fluidity
  • chain transfer agent examples include C 2-20 alkyl mercaptan, mercapto acids, thiophenol, and carbon tetrachloride.
  • the chain transfer agent is preferably mixed during the polymerization of the hard polymer (B2), and n-octyl mercaptan is preferable.
  • the polymerization temperature varies depending on the type and amount of the polymerization initiator, but is preferably 40 to 120 ° C, more preferably 60 to 95 ° C.
  • a core part having a Tg exceeding 0 ° C. may be polymerized prior to the polymerization of the elastic polymer (B1).
  • the core is preferably 0 to 10% by mass in the rubber-containing polymer (B) from the viewpoint of the stability of polymer particle size generation.
  • alkyl acrylate (a1) having an alkyl group having 1 to 8 carbon atoms
  • the rubber-containing polymer (B) is obtained by polymerizing the monomer (b) containing an alkyl methacrylate (b1) having an alkyl group having 1 to 4 carbon atoms in the presence of the elastic polymer (B1). can get.
  • the monomer (b) is polymerized to form the hard part (B2).
  • Specific examples of the alkyl methacrylate (b1) include the same as the specific examples of the alkyl methacrylate (a2). They may be used alone or in combination of two or more.
  • the monomer (b) other monomers (b2) other than the alkyl methacrylate (b1) can also be used.
  • Specific examples of the other monomer (b2) include the same examples as the specific examples of the alkyl acrylate (a1) and the other vinyl monomer (a3). They may be used alone or in combination of two or more.
  • the content of the alkyl methacrylate (b1) is preferably 70% by mass or more, and more preferably 85% by mass or more. Thereby, Tg of a hard part (B2) can be made high moderately.
  • the monomer (b) may be polymerized in two or more stages. In that case, monomer mixtures having different compositions may be polymerized.
  • the obtained polymerization solution is used as it is, and then the monomer (b) is added and polymerization is continued.
  • the emulsifier, the polymerization initiator, and the chain transfer agent in this polymerization are the same as the specific examples in the polymerization of the elastic polymer (B1).
  • the amount of the chain transfer agent is preferably 0.1 to 2 parts by mass, more preferably 0.2 to 1 part by mass with respect to 100 parts by mass of the monomer (b).
  • the amount of the chain transfer agent is 0.1 parts by mass or more, the flexibility of the molded body is increased. Moreover, if it is 2 mass parts or less, the mechanical strength of a molded object will become high.
  • the Tg of the elastic polymer (B1) is preferably 0 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • Tg is 0 ° C. or lower, the obtained laminated film has preferable impact resistance.
  • This Tg is a value measured and calculated as follows using a dynamic viscoelasticity measuring apparatus. A test piece was formed into a sheet having a width of 6 mm and a thickness of 1 mm, and using a dynamic viscoelasticity measuring device, in accordance with ISO 6721-4, an initial chuck distance of 2 cm, a measurement frequency of 0.1 Hz, and a measurement temperature range of ⁇ 90.
  • the value of tan ⁇ (loss tangent) at each temperature is calculated according to the equation of “/ E”.
  • Tg the temperature
  • the Tg of the hard part (B2) is preferably 70 ° C. or higher, and more preferably 75 ° C. or higher. By having such Tg, an acrylic resin composition (Y) excellent in moldability can be obtained, the heat resistance of the laminated film is high, and the workability in a low temperature environment is good.
  • Tg of the hard part (B2) is a temperature corresponding to a peak appearing at the highest temperature in the dynamic viscoelasticity measurement similar to the method of measuring the Tg of the elastic polymer (B1).
  • an alkyl having 1 to 8 carbon atoms is obtained.
  • a monomer having a composition in which the ratio of the alkyl acrylate (a1) having a group is gradually decreased and the ratio of the alkyl methacrylate (a2) having an alkyl group having 1 to 4 carbon atoms is gradually increased is sequentially polymerized.
  • a part (B3) can also be formed.
  • the intermediate part (B3) includes an alkyl acrylate (c1) having an alkyl group having 1 to 8 carbon atoms, an alkyl methacrylate (c2) having an alkyl group having 1 to 4 carbon atoms, another monomer (c3), a crosslinkable property
  • the monomer (c4) is preferably used as a constituent component. Specific examples of the monomers (c1) to (c4) are the same as the specific examples of the monomers (a1) to (a4). When the total amount of the monomers (c1) to (c4) is 100% by mass, the monomer (c1) is 10 to 90% by mass, single amount from the viewpoint of heat resistance and stress whitening resistance of the laminated film obtained.
  • the body (c2) is preferably 10 to 90% by mass, the monomer (c3) 0 to 20% by mass, and the monomer (c4) 0 to 10% by mass.
  • Monomer (c1) 20 to 80% by mass, monomer (c2) 20 to 80% by mass, monomer (c3) 0 to 10% by mass, and monomer (c4) 0 to 5% by mass are more preferable. .
  • the ratio of the intermediate part (B3) in 100% by mass of the rubber-containing polymer (B) is preferably 0 to 35% by mass from the viewpoint of the design properties of the obtained laminated film, and 5 to 15% by mass from the point of stress whitening resistance. Is more preferable.
  • the ratio of the elastic polymer (B1) / intermediate part (B3) / hard part (B2) is 25 to 45 mass% / 5 to 15 mass% from the viewpoint of stress whitening resistance. / 50 to 70% by mass is preferable.
  • the ratio of the elastic polymer (B1) in 100% by mass of the rubber-containing polymer (B) is preferably 30% by mass or more, and more preferably 50 to 70% by mass. If the ratio of an elastic polymer (B1) is 30 mass% or more, the mechanical strength and the softness
  • the ratio of the hard part (B2) in 100% by mass of the rubber-containing polymer (B) is preferably 70% by mass or less, more preferably 20 to 60% by mass, and further preferably 30 to 50% by mass. If the ratio of a hard part (B2) is 20 mass% or more, the fluidity
  • the rubber-containing polymer (B) is recovered as a powder from the latex after completion of the polymerization reaction.
  • the latex is brought into contact with a coagulant to coagulate or salt out, separated into solid and liquid, washed with water about 1 to 100 times the mass of the polymer, and then subjected to dehydration such as filtration.
  • a wet powder is obtained by the treatment, and the wet powder is further dried by a hot air dryer such as a press dehydrator or a fluid dryer.
  • the latex may be directly dried by a spray drying method. The drying temperature and drying time of the polymer can be appropriately determined depending on the type of polymer.
  • the coagulant examples include organic salts such as sodium acetate, calcium acetate, potassium formate and calcium formate; inorganic salts such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride and sodium sulfate.
  • organic salts such as sodium acetate, calcium acetate, potassium formate and calcium formate
  • inorganic salts such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride and sodium sulfate.
  • calcium salts such as calcium acetate and calcium chloride are preferable.
  • calcium acetate is more preferable from the viewpoint of the hot water whitening resistance of the molded body and the low moisture content of the recovered powder.
  • One coagulant may be used alone, or two or more coagulants may be used in combination.
  • the coagulant is usually used as an aqueous solution.
  • the concentration of the aqueous solution of the coagulant preferably calcium acetate, is preferably 0.1% by mass or more, and more preferably 1% by mass or more from the viewpoint that the acrylic resin composition can be stably coagulated and recovered. Further, the concentration of the aqueous solution of calcium acetate is 20% by mass or less from the viewpoint that the amount of the coagulant remaining in the collected powder is small, and particularly the performance of the laminated film such as hot water whitening resistance and colorability is hardly deteriorated. Preferably, 15 mass% or less is more preferable. When the concentration of calcium acetate exceeds 20% by mass, calcium acetate may precipitate due to saturation at 10 ° C. or less.
  • Examples of the method of bringing the latex into contact with the coagulant include, for example, a method in which the aqueous solution of the coagulant is stirred and the latex is continuously added to the coagulant and stirring is continued for a certain period of time.
  • the amount of the aqueous solution of the coagulant is preferably 10 to 500 parts by mass with respect to 100 parts by mass of the latex.
  • the temperature of the coagulation step is preferably 30 to 100 ° C. from the viewpoint of blocking the obtained coagulated powder.
  • the Mw of the acetone-soluble component of the rubber-containing polymer (B) is preferably 25000 to 70000, more preferably 30000 to 65000. If Mw is 25000 or more, the mechanical strength of the resulting laminated film is improved, and cracks during molding can be suppressed. Moreover, the fracture
  • This Mw is a value measured by gel permeation chromatography (GPC) for the acetone-soluble component in the rubber-containing polymer (B). Specifically, the measured value by the following method is employ
  • 1 g of rubber-containing polymer (B) is dissolved in 50 g of acetone and refluxed at 70 ° C. for 4 hours to obtain an acetone-soluble component.
  • the obtained extract is centrifuged at 14,000 rpm ⁇ 30 minutes at 4 ° C. using CRG SERIES (manufactured by Hitachi, Ltd.).
  • Acetone-insoluble matter was removed by decantation, and the acetone-soluble matter obtained by drying at 50 ° C.
  • Mw of the acetone soluble part of the rubber-containing polymer (B) can be adjusted by appropriately changing the amount of the chain transfer agent during the polymerization.
  • the chain transfer agent is preferably mixed during the polymerization of the hard polymer (B2).
  • the gel content of the acrylic resin composition (Y) is preferably 50 to 70% by mass, and more preferably 55 to 70% by mass. If the gel content is 50% by mass or more, the resulting laminated film has high mechanical strength and is easy to handle. Moreover, if gel content rate is 70 mass% or less, the fluidity
  • the acrylic resin composition (Y) preferably has a melt tension value of 0.03 N or more, more preferably 0.04 N or more.
  • Melt tension is one of the indicators for determining molding processability such as calendar moldability, extrusion moldability, blow moldability, foam moldability, and the like, and improvement of melt tension can be regarded as improvement of moldability.
  • the melt tension of the acrylic resin composition (Y) is within the above range, the take-off property is good in melt extrusion molding and calendar molding, and it is difficult to break. Further, in the case of melt extrusion into a film shape, it is possible to prevent the discharge amount from being lowered and the productivity from being deteriorated, and the film thickness accuracy is also improved.
  • the laminated film of the present invention may contain a compounding agent as necessary.
  • compounding agents include stabilizers, lubricants, plasticizers, impact resistance aids, fillers, antibacterial agents, antifungal agents, foaming agents, mold release agents, antistatic agents, colorants, matting agents, and UV absorption agents.
  • Agents thermoplastic polymers.
  • a compounding agent can be added to the latex of the polymerization solution to powder the mixture of the compounding agent and the polymer. Moreover, you may mix a compounding agent after powderization of latex.
  • a compounding agent with what pulverized latex to the kneading machine accompanying a molding machine.
  • the kneader associated with the molding machine include a single screw extruder and a twin screw extruder.
  • the acrylic resin composition (Y) of the present invention is prepared by mixing a part of the total amount of the rubber-containing polymer (B) and, if necessary, a compounding agent to prepare a master batch. It can also be obtained by multi-stage compounding where the batch is further mixed with the remainder of the rubber-containing polymer (B).
  • the acrylic resin composition (Y) When the acrylic resin composition (Y) is melt-extruded, first, a part of the total amount of the rubber-containing polymer (B) and, if necessary, a compounding agent are mixed and a single screw extruder or Supply to a twin screw extruder, melt knead to produce a master batch pellet, mix the master batch pellet and the remainder of the rubber-containing polymer (B), and supply again to the single screw extruder or twin screw extruder Then, melt-kneading and melt-extrusion can be performed to obtain a molded body.
  • an ultraviolet absorber to the (Y) layer in order to impart weather resistance.
  • the molecular weight of the ultraviolet absorber is preferably 300 or more, and more preferably 400 or more.
  • an ultraviolet absorber having a molecular weight of 300 or more is used, for example, when a film is produced, it is possible to suppress problems such as occurrence of roll contamination due to resin adhering to a transfer roll or the like.
  • the kind of ultraviolet absorber is not specifically limited, A benzotriazole type ultraviolet absorber and a triazine type ultraviolet absorber are preferable.
  • Examples of the former commercial products include Tinuvin 360 and Tinuvin 234 manufactured by BASF Japan Ltd .; Adeka Stub LA-31RG manufactured by ADEKA Corp.
  • Examples of the latter commercially available products include Tinuvin 1577, Tinuvin 1600, Tinuvin 460 manufactured by BASF Japan, and Adeka Stub LA-F70 and Adeka Stub LA-46 manufactured by ADEKA.
  • the addition amount of the ultraviolet absorber is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic resin composition (Y). From the viewpoint of process contamination, solvent resistance, and weather resistance during film formation, 0.5 to 5 parts by mass is more preferable.
  • the light stabilizer is added to the (Y) layer.
  • a radical scavenger such as a hindered amine light stabilizer is particularly preferable.
  • Commercially available products of such light stabilizers include Chimassorb 944, Chimassorb 2020, Tinuvin 770 manufactured by BASF Japan, and Adeka Stub LA-57 and Adeka Stub LA-72 manufactured by ADEKA.
  • the amount of the hindered amine light stabilizer added is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the acrylic resin composition (Y). From the viewpoint of preventing process contamination during film formation, 0.15 to 3 parts by mass is more preferable.
  • an antioxidant is added to the (Y) layer.
  • antioxidant a known one can be used, and a hindered phenol antioxidant is particularly preferable.
  • a commercially available product of such an antioxidant is Irganox 1076 manufactured by BASF Japan.
  • the addition amount of the antioxidant is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the acrylic resin composition (Y). From the viewpoint of transparency of the laminated film, 0.05 to 3 parts by mass is more preferable.
  • the layer containing the fluororesin (X) and the layer of the acrylic resin composition (Y) are laminated while simultaneously melt-extruding. Extrusion is preferred.
  • Specific methods for laminating a plurality of molten resin layers include (1) a method of laminating a molten resin layer before passing through a die, such as a feed block method, and (2) a molten resin layer in a die such as a multi-manifold method. Examples include a method of laminating, and (3) a method of laminating a molten resin layer after passing through a die such as a multi-slot method.
  • the laminated film of the present invention can be produced by a production method including the following steps. Two melt extruders are prepared and their cylinder temperature and die temperature are set to 200-250 ° C. The composition containing the fluororesin (X) is melt plasticized in one extruder. At the same time, the acrylic resin composition (Y) is melt plasticized in the other extruder. The molten resin extruded from the die at the tip of both extruders is coextruded onto a cooling roll set to 50 to 100 ° C.
  • the laminated film of the present invention is a laminate film obtained by molding in a thickness of 0.05 to 0.1 mm and a width of 15 mm in accordance with ISO 527-3, using a test piece as a test piece, at a temperature of 0 ° C., and a tensile speed of 500 mm / min.
  • the difference ( ⁇ W) in whiteness (W value) between the test pieces before and after stretching when the distance between the initial chuck distances from 25 mm to 35 mm is 5 or less.
  • ⁇ W is preferably 3 or less.
  • the W value is a value measured using a C / 2 ° light source in accordance with the geometric condition a of JIS Z8722. If ⁇ W before and after stretching is 5 or less, when the film is bent, the bent portion is not whitened or whitening is not noticeable, so the appearance of the obtained laminated film is improved.
  • the total light transmittance of the laminated film of the present invention is measured according to JIS K7136. Using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., trade name: NDH4000), the total light transmittance measured under conditions of a light source D65 and a temperature of 25 ° C. is 90% or more. If the total light transmittance is 90% or more, the appearance of the laminated film will be good.
  • a laminate (laminated molded product) having the (X) layer on the surface can be produced.
  • a base material can be suitably selected according to the target laminated molded product.
  • a thermoplastic resin such as a polyvinyl chloride resin, an olefin resin, an ABS resin, or a polycarbonate resin can be used.
  • Examples of laminated molded products include exterior wall building materials such as window frames, entrance door frames, roofing materials, and siding materials that are attached to steel plates for the purpose of imparting design properties.
  • the base material has a two-dimensional shape and is a material that can be heat-sealed
  • the base material and the laminated film can be laminated by a method such as thermal lamination. What is necessary is just to laminate
  • Rubber-containing polymer (B-2) A rubber-containing polymer (B-2) was obtained in the same manner as in Production Example 1, except that the intermediate polymer (B3) was not formed, according to the addition amount described in “Table 1”. This rubber-containing polymer (B-2) had a gel content of 65% and Mw of 36,000.
  • Rubber-containing polymer (B-3) A rubber-containing polymer (B-3) was obtained in the same manner as in Production Example 1 according to the addition amount described in “Table 1”. This rubber-containing polymer (B-3) had a gel content of 62% and Mw of 60,000.
  • Acrylic resin composition (Y-1) 100 parts of the above rubber-containing polymer (B-1), 2.0 parts of a processing aid (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Metabrene P551A), UV absorber (manufactured by ADEKA Corporation, trade name: ADK STAB LA) -31) 2.36 parts, light stabilizer (BASF Japan K.K., trade name: Chimassorb 2020) 0.51 part, phenolic antioxidant (BASF Japan K.K., trade name: Irganox 1076) 0 .1 part was mixed using a Henschel mixer. This powdery mixture is melt-kneaded at a cylinder temperature of 100 to 240 ° C.
  • a pellet of the resin composition (Y-1) was obtained.
  • Polymer blend (5) A pellet of polymer blend (5) was obtained in the same manner as in Production Example 9 except that Kynar 720 manufactured by Arkema Co., Ltd. was used as the vinylidene fluoride resin (F).
  • ⁇ Evaluation method> Difference in whiteness before and after stretching
  • a laminate film obtained by molding to a thickness of 0.05 to 0.1 mm and a width of 15 mm was used as a test piece, and the tensile speed was 0 ° C.
  • the difference ( ⁇ W) in the whiteness (W value) of the test piece before and after stretching when the distance between the initial chuck distances from 25 mm to 35 mm was 10 mm was measured.
  • the W value was measured with a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., trade name: SE-2000) using a C / 2 ° light source according to the geometric condition a of JIS Z8722.
  • the test piece was extract
  • the total light transmittance of the laminated film was measured according to JIS K7136. Using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., trade name: NDH4000), measurement was performed under conditions of a light source D65 and a temperature of 25 ° C.
  • the laminated film is hot-pressed at 140 ° C and laminated on a steel sheet decorative sheet obtained by laminating a 0.1-0.3mm thick PVC layer on a 0.5-1.0mm thick steel sheet. Get the goods.
  • the temperature of the obtained laminated molded product was adjusted to ⁇ 30 ° C., and then bent to 90 ° over 2 seconds with the steel sheet side inside, and the appearance change of the laminated molded product was visually evaluated according to the following criteria.
  • The bent fulcrum part is not whitened.
  • The bent fulcrum portion is slightly whitened.
  • X The bending fulcrum is whitened.
  • Example 1 A multi-manifold die was installed at the tip of 40 mm ⁇ single screw extruder 1 and 30 mm ⁇ single screw extruder 2.
  • the acrylic resin composition (Y-1) pellets obtained in Production Example 4 were supplied to the single screw extruder 1 having a cylinder temperature of 230 to 240 ° C. and melt plasticized.
  • the polymer blend (4) pellets obtained in Production Example 9 were supplied to the single screw extruder 2 having a cylinder temperature of 200 to 230 ° C. and melt plasticized. These melt plasticized materials are supplied to a multi-manifold die heated to 250 ° C.
  • Example 2 A laminated film was obtained in the same manner as in Example 1, except that the polymer blend (4) pellets were changed to the polymer blend (1) pellets obtained in Production Example 6. The evaluation results are shown in “Table 2”.
  • Example 3 A laminated film was obtained in the same manner as in Example 1, except that the polymer blend (4) pellet was changed to the polymer blend (2) pellet obtained in Production Example 7. The evaluation results are shown in “Table 2”.
  • Example 4 A laminated film was obtained in the same manner as in Example 1, except that the polymer blend (4) pellet was changed to the polymer blend (3) pellet obtained in Production Example 8. The evaluation results are shown in “Table 2”.
  • Example 5 A laminated film was obtained in the same manner as in Example 1 except that the pellet of the acrylic resin composition (Y-1) was changed to the pellet of the acrylic resin composition (Y-2) obtained in Production Example 5. It was. The evaluation results are shown in “Table 2”.
  • Example 6 A laminated film was obtained in the same manner as in Example 1, except that the polymer blend (4) pellet was changed to the polymer blend (5) pellet obtained in Production Example 10. The evaluation results are shown in “Table 2”.
  • the laminated film of the present invention has a difference in whiteness before and after stretching ( ⁇ W) of 5 or less, and is excellent in stress whitening resistance. Moreover, when it laminates
  • the laminated film of the present invention is bonded to a metal base material, etc., and the base material is bent to form various members such as an entrance door, cracking, peeling, whitening, etc. It is possible to manufacture a laminated product having a high design without causing the above problem.
  • the laminated film of the present invention is excellent in transparency, stress whitening resistance, and chemical resistance. Particularly, it is suitable for a laminated molded product for building materials and a laminated molded product for vehicle members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

高い透明性、耐ストレス白化性、耐薬品性を有する積層フィルムとして、フッ素系樹脂(X)を含む層と、アクリル系樹脂組成物(Y)を含む層とからなり、下記の条件(1)及び(2)を満足する積層フィルムを提供する。 (1)ISO527-3に従い、温度0℃、引張速度500mm/分で、チャック間距離25mmから35mmまで延伸した際の、延伸前後の試験片の白色度の差(ΔW)が5以下である。 (2)アクリル系樹脂組成物(Y)が弾性重合体(B1)を30質量%以上含有するゴム含有重合体(B)からなる。

Description

積層フィルム及び積層成形品
 本発明は、高い透明性、耐ストレス白化性、耐薬品性を有する積層フィルム、及びそのフィルムを用いた積層成形品に関する。
 アクリル樹脂製の成形体は透明性に優れており、美しい外観と耐候性を有することから、電器部品、車輌部品、光学用部品、装飾品、看板等の意匠性付与を目的に幅広く用いられている。特に、ゴム含有重合体を含有するアクリル樹脂組成物からなるアクリル樹脂成形体は、成形加工性が高くその利用価値は高い。しかし、アクリル樹脂成形体は一般的に耐薬品性が不充分であるため、近年ではアクリル樹脂成形体の最表面にフッ化ビニリデン系樹脂を積層することで成形体に耐薬品性を付与した積層成形体の要望が多くなっている。
 上記のアクリル樹脂成形体は、基材に貼り合せて使用されることが多い。その方法としては、主として基材にアクリル樹脂成形体を載せて熱プレスを施すことにより化粧シートを作製し、用途にあった形状へ曲げ加工が施される。
 しかし、従来の積層成形品では、この曲げ加工の際にフィルムに白化(ストレス白化)や割れ、剥れが生じるため成形加工性に難があった。尚、本明細書において「ストレス白化」とは、化粧シート等を基材に貼り合せ、この基材を窓枠等の各種部材の形状にするために曲げ加工した際に、支点部分が白く変化する現象をいう。
 特許文献1では、アクリル系樹脂層の上に、フッ化ビニリデン系樹脂とアクリル系樹脂とのポリマーブレンドの層を積層することで優れた耐薬品性と表面硬度を兼ね備え、更にヘーズ値が小さい透明な積層フィルム、積層成形体を提供している。しかしながら、特許文献1の積層フィルムは、基層のアクリル系樹脂組成物のガラス転移温度が高いため、低温環境下で曲げ加工が要求される部材への適応が困難であった。
 特許文献2では、アクリル系樹脂中の架橋剤量を増量し、粒子径を特定の範囲に設定することで耐折曲白化性に優れるアクリル系樹脂フィルムを提供している。しかしながら、特許文献2のアクリル系樹脂フィルムでは、MMA-EA共重合体とブレンドしてフィルム化することで、全体のゴム量が減り、フィルムの耐衝撃性が低下する。また、アクリル系樹脂組成物のガラス転移温度が高いため、低温環境下で曲げ加工が要求される部材への適応が困難であった。
国際公開第2013/039119号パンフレット 特開2004-137298号公報
 本発明の課題は、高い透明性、耐ストレス白化性、耐薬品性を有する積層フィルムを提供することにある。特に、いかなる温度条件で基材と貼りあわせて曲げ加工を施した際にもストレス白化や割れ等の問題が生じず、且つ、充分な透明性により高い意匠性を付与することが可能な積層フィルム、及びこれを用いた積層成形品を提供することにある。
 即ち、本発明は以下の特徴を有する。
[1] フッ素系樹脂(X)を含む層と、アクリル系樹脂組成物(Y)を含む層とからなり、下記の条件(1)及び(2)を満足する積層フィルム;
 (1)ISO527-3に従い、温度0℃、引張速度500mm/分で、チャック間距離25mmから35mmまで延伸した際の、延伸前後の試験片の白色度の差(ΔW)が5以下である、
 (2)アクリル系樹脂組成物(Y)が弾性重合体(B1)を30質量%以上含有するゴム含有重合体(B)からなる。
[2] フッ素系樹脂(X)が、フッ化ビニリデン系樹脂(F)である、[1]の積層フィルム。
[3] フッ素系樹脂(X)を含む層が、フッ化ビニリデン系樹脂(F)とアクリル系樹脂(A)のポリマーブレンドからなる、[1]の積層フィルム。
[4] アクリル系樹脂組成物(Y)を含む層が、ゴム含有重合体(B)を80質量%以上含む、[1]又は[2]の積層フィルム。
[5] アクリル系樹脂(A)のガラス転移温度が95~120℃であり、
フッ化ビニリデン系樹脂(F)/アクリル系樹脂(A)の含有比が50/50~95/5(質量比)である、[3]の積層フィルム。
[6] ゴム含有重合体(B)が、炭素数1~8のアルキル基を有するアルキルアクリレート(a1)及び炭素数1~4のアルキル基を有するアルキルメタクリレート(a2)から選ばれる1種以上の単量体と、架橋性単量体(a4)とを含む単量体(a)を重合して得られた弾性重合体(B1)の存在下で、炭素数1~4のアルキル基を有するアルキルメタクリレート(b1)を含む単量体(b)を重合して得られた、[1]~[5]のいずれかの積層フィルム。
[7] ゴム含有重合体(B)がグラフト重合体であり、弾性重合体(B1)100質量%中のグラフト交叉剤単位の含有率が1.2質量%以上である、[1]~[6]のいずれかの積層フィルム。
[8] 弾性重合体(B1)中の、アルキルアクリレート(a1)単量体単位とアルキルメタクリレート(a2)単量体単位の合計の含有率が80質量%以上である、[6]の積層フィルム。
[9] 弾性重合体(B1)中の、アルキルアクリレート(a1)単量体単位/アルキルメタクリレート(a2)単量体単位の含有比が、50/50~100/0(質量比)である、[6]又は[8]に記載の積層フィルム。
[10] 弾性重合体(B1)が、他のビニル単量体(a3)単位を含有し、
弾性重合体(B1)中の、単量体(a3)単位の含有率が12質量%以下である、[6]、[8]又は[9]の積層フィルム。
[11] 単量体(b)中の、アルキルメタクリレート(b1)単量体の含有率が70質量%以上である、[6]、[8]、[9]又は[10]の積層フィルム。
[12] ゴム含有重合体(B)がグラフト重合体であり、弾性重合体(B1)100質量%中のグラフト交叉剤単位の含有率が1.2質量%以上である、[8]~[11]のいずれかの積層フィルム。
[13] 全光線透過率が90%以上である、[1]~[12]の積層フィルム。
[14] フッ素系樹脂(X)を含む層/アクリル系樹脂組成物(Y)を含む層の厚さの比率が、5/95~50/50である、[1]~「13」のいずれかの積層フィルム。
[15] [1]~[14]のいずれかの積層フィルムを基材に積層した、積層成形品。
[16] [1]~[14]のいずれかの積層フィルムを金属部材に積層した、積層成形品。
 本発明の積層フィルムは、耐ストレス白化性、耐候性、柔軟性、透明性、耐薬品性に優れている。本発明の積層フィルムを用いれば、基材と貼り合わせて曲げ加工を施しても、割れや剥れ、白化等の問題が生じることがない意匠性の高い積層成形品を製造することができる。
 以下、本発明の積層フィルム及びその製造方法の好ましい形態について説明する。尚、本発明において、フィルムとは厚さが0.01~0.5mm程度の平板材料であって、シート状物と称されるものも含まれる。
<積層フィルム>
 本発明の積層フィルムは、フッ素系樹脂(X)を含む層と、アクリル系樹脂組成物(Y)を含む層とからなる。
 以下では、フッ素系樹脂(X)を含む層を「(X)層」、アクリル系樹脂組成物(Y)を含む層を「(Y)層」と記す場合がある。
 積層フィルムは、(X)層と(Y)層とからなる2層構成、又は(Y)層の両側に(X)層が存在する3層構成とすることができる。
 積層フィルムは、耐溶剤性、透明性の観点から(X)層/(Y)層の厚さの比率が、5~50/50~95であることが好ましい。コストの観点から、5~30/70~95がより好ましく、5~15/75~95が更に好ましい。
 積層フィルムの厚さは、特に制限されないが、500μm以下(例えば、10~500μm)が好ましい。積層成形品に用いるフィルムの場合、その厚さは30~400μmが好ましい。この厚さが30μm以上であると、成形時の取り扱いが容易になる。一方、厚さが400μm以下であると、適度な剛性を有することになるので、ラミネート性、二次加工性等が向上する。また、単位面積あたりの質量の点で、経済的に有利になる。さらには、製膜性が安定してフィルムの製造が容易になる。30~200μmがより好ましい。
 尚、本発明において、各層の厚さは、積層フィルムを断面方向に70nmの厚さに切断したサンプルを、透過型電子顕微鏡にて観察し、5箇所でそれぞれの厚さを測定し、それらを平均することで算出する。透過型電子顕微鏡の市販品としては、例えば日本電子(株)製J100S(商品名)が挙げられる。
<フッ素系樹脂(X)>
 本発明のフッ素系樹脂(X)は、フッ化ビニリデン系樹脂(F)である。
 フッ化ビニリデン系樹脂(F)は、フッ化ビニリデン単位を含む樹脂であればよく、フッ化ビニリデン単位のみからなる単独重合体(ポリフッ化ビニリデン)や、フッ化ビニリデン単位を含む共重合体を用いることができる。
 フッ化ビニリデン系樹脂(F)は、1種を単独で用いてもよく2種以上を併用してもよい。
 以下では、フッ化ビニリデン系樹脂(F)を「樹脂(F)」と記す場合がある。
 樹脂(F)の質量平均分子量(Mw)は、耐薬品性の点から10万以上が好ましく、製膜性の点から30万以下が好ましい。
 前記共重合体中のフッ化ビニリデン単位の含有率は、樹脂(F)と後述するアクリル系樹脂(A)との相溶性の点から85質量%以上が好ましい。
 樹脂(F)が共重合体の場合、フッ化ビニリデンと共重合させる共重合成分としては、例えば、ヘキサフルオロプロピレン、テトラフルオロエチレンが挙げられる。これらは1種を単独で用いてもよく2種以上を併用してもよい。
 しかしながら、透明性及び耐熱性に優れた積層フィルムが得られる点から、樹脂(F)は、ポリフッ化ビニリデンであることが好ましい。
 樹脂(F)は、高い結晶融点を有することが好ましい。具体的には、耐熱性の点から150℃以上が好ましく、160℃以上がより好ましい。また、結晶融点の上限は、耐熱性の点からポリフッ化ビニリデンの結晶融点に等しい175℃程度であることが好ましい。
 尚、「結晶融点」とは、JIS K7121、3.(2)に記載の方法に準拠して測定される「融解ピーク温度」を意味する。
 樹脂(F)の市販品としては、例えば、アルケマ(株)製のKynar720(フッ化ビニリデンの含有率:100質量%、結晶融点:169℃)、Kynar710(フッ化ビニリデンの含有率:100質量%、結晶融点:169℃);(株)クレハ製のKFT#850(フッ化ビニリデンの含有率:100質量%、結晶融点:173℃);ソルベイスペシャリティポリマーズ(株)製のSolef1006(フッ化ビニリデンの含有率:100質量%、結晶融点:174℃)、Solef1008(フッ化ビニリデンの含有率:100質量%、結晶融点:174℃)が挙げられる。
 樹脂(F)は、モノマーの結合様式として、頭-頭結合(head to head)、尾-尾結合(tail to tail)、頭-尾結合(head to tail)の3種の結合様式があり、頭-頭結合及び、尾-尾結合は「異種結合」と呼ばれる。
 積層フィルムの耐薬品性を向上させる点から、樹脂(F)における「異種結合の比率」は10質量%以下が好ましい。異種結合の比率を低くする点から、樹脂(F)は懸濁重合により製造された樹脂であることが好ましい。
 「異種結合の比率」は、樹脂(F)の19F-NMRスペクトルの回折ピークから求めることができる。具体的には、樹脂(F)40mgを重水素ジメチルホルムアミド(D-DMF)0.8mlに溶解し、室温下で19F-NMRを測定する。得られた19F-NMRスペクトルは、-91.5ppm、-92.0ppm、-94.7ppm、-113.5ppm及び-115.9ppmの位置に主要な5本のピークを有する。
 これらのピークのうち、-113.5ppm及び-115.9ppmのピークが異種結合に由来するピークと同定される。従って、5本の各ピーク面積の合計をS、-113.5ppmの面積をS、-115.9ppmの面積をSとして、異種結合の比率は次式により算出される。
  異種結合の比率 = [{(S+S)/2}/S]×100(%)。
 樹脂(F)は、積層フィルムの透明性を損なわない程度に、艶消し剤を含むことができる。艶消し剤としては、有機及び無機の艶消し剤が使用可能である。
<フッ素系樹脂(X)を含む層>
 本発明のフッ素系樹脂(X)を含む層は、フッ化ビニリデン系樹脂(F)単独、又はフッ化ビニリデン系樹脂(F)とアクリル系樹脂(A)とのポリマーブレンドからなる。
 アクリル系樹脂(A)は、1種を単独で用いてもよく2種以上を併用してもよい。
 耐薬品性の点から、ポリマーブレンドからなるフッ素系樹脂(X)を含む層は、樹脂(F)を50~95質量%、アクリル系樹脂(A)を5~50質量%含有することが好ましい。樹脂(F)が50質量%以上であれば、積層フィルムの耐薬品性が良好となり、また樹脂(F)が95質量%以下であれば積層フィルムのコストが抑えられる。樹脂(F)/アクリル系樹脂(A)が55~95/5~45質量%がより好ましく、60~95/5~40質量%が更に好ましい。
 樹脂(F)とアクリル系樹脂(A)の比率は、ガスクロマトグラフ質量分析によって測定することができる。
 尚、このポリマーブレンド中には、後述の配合剤を添加することができる。
<アクリル系樹脂(A)>
 本発明のアクリル系樹脂(A)は、アクリル系の単量体単位を主成分とする重合体である。
 アクリル系樹脂(A)は、ガラス転移温度(Tg)が95~120℃であることが好ましく、95~115℃がより好ましい。Tgが95℃以上であれば、積層フィルムの表面硬度が良好となる。また、Tgが120℃以下であれば、積層フィルムの成形性が良好となる。
 ここで、Tgは、DSC(示差走査熱量分析計)によって測定できる。
 「ガラス転移温度」はJIS K7121、3.(2)に記載の方法に準拠して昇温速度10℃/分の条件で昇温を行ない、「補外ガラス転移開始温度」として測定される温度である。
 以下では、アクリル系樹脂(A)を「樹脂(A)」と記す場合がある。
 樹脂(A)は、アルキル(メタ)アクリレートから得られる重合体であり、アルキルメタクリレート単位を70質量%以上含む重合体であることが好ましい。
 樹脂(A)中のアルキルメタクリレート単位の含有率は、積層フィルムの表面硬度及び耐熱性の点から80質量%以上がより好ましく、積層フィルムの耐熱分解性の点から99質量%以下が好ましい。85質量%以上、99質量%以下が更に好ましい。
 また、樹脂(A)と樹脂(F)との相溶性の点から、樹脂(A)中のアルキルメタクリレート単位及びアルキルアクリレート単位の合計含有率は、80質量%以上が好ましい。
 樹脂(A)の原料となる単量体としては、表面硬度の高い積層フィルムを得る点から、その単独重合体のTgが95℃以上であるアルキルメタクリレートを用いることが好ましい。
 この要件を満たすアルキルメタクリレートとしては、例えば、メチルメタクリレート、t-ブチルメタクリレート、t-ブチルシクロヘキシルメタクリレート、イソボルニルメタクリレートが挙げられる。これらは1種を単独で用いてもよく2種以上を併用してもよい。
 尚、アルキルメタクリレートのアルキル基は分岐状でもよく、直鎖状でもよい。また、アルキルメタクリレートのアルキル基の炭素数は、積層フィルムの耐熱性の点から4以下が好ましい。
 樹脂(A)は、アルキルメタクリレートから得られる重合体であってもよく、アルキルメタクリレートと、他の単量体(例えば、メタクリル酸やスチレン。)とから得られる重合体であってもよい。
 樹脂(A)のMwは、積層フィルムの機械的特性の点から3万以上が好ましく、積層フィルムの成形性の点から20万以下が好ましい。5万以上、15万以下がより好ましく、7万以上、15万以下が更に好ましい。
 尚、樹脂(A)は、積層フィルムの透明性を損なわない程度に、後述するゴム含有重合体(B)を含んでもよい。
<アクリル系樹脂組成物(Y)を含む層>
 アクリル系樹脂組成物(Y)は、アルキル(メタ)アクリレート単位を含有する(共)重合体を含む樹脂組成物を意味する。
 アクリル系樹脂組成物(Y)は、下記のゴム含有重合体(B)を含有することが好ましく、耐ストレス白化性の観点からゴム含有重合体(B)を80質量%以上含むことが好ましい。機械強度の観点から90質量%以上がより好ましく、95質量%以上が更に好ましい。
 アクリル系樹脂組成物(Y)は、積層フィルムの機械強度を損なわない程度にアクリル系樹脂(A)を含んでいてもよい。積層フィルムの機械強度の観点から、アクリル系樹脂(A)を0~20質量%含むことが好ましい。耐ストレス白化の点から0~10質量%が好ましく、0~5質量%がより好ましい。
<ゴム含有重合体(B)>
 本発明のゴム含有重合体(B)は、炭素数1~8のアルキル基を有するアルキルアクリレート(a1)及び炭素数1~4のアルキル基を有するアルキルメタクリレート(a2)から選ばれる1種以上の単量体と、架橋性単量体(a4)とを含む単量体(a)を重合して得られる弾性重合体(B1)の存在下で、炭素数1~4のアルキル基を有するアルキルメタクリレート(b1)を含む単量体(b)を重合して得られる。
 炭素数1~8のアルキル基を有するアルキルアクリレート(a1)は、アルキル基が、直鎖状、分岐状の何れでもよい。具体例としては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレートが挙げられる。これらは1種を単独で用いてもよく2種以上を併用してもよい。
 この中では、Tgが低いアルキルアクリレートが好ましく、n-ブチルアクリレートがより好ましい。Tgが低ければ、弾性重合体(B1)が良好な柔軟性を有し、かつ容易に成形できる。
 炭素数1~4のアルキル基を有するアルキルメタクリレート(a2)は、アルキル基が、直鎖状、分岐状の何れでもよい。具体例としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレートが挙げられる。これらは1種を単独で用いてもよく2種以上を併用してもよい。
 アルキルアクリレート(a1)とアルキルメタクリレート(a2)は、何れか一方のみを用いてもよく、双方を組み合わせて用いてもよい。弾性重合体(B1)の原料として用いる単量体(a)100質量%中、アルキルアクリレート(a1)の比率は、得られる積層フィルムの柔軟性が良好となることから、35質量%以上が好ましい。積層フィルムの柔軟性の観点から45質量%以上が好ましく、60質量%以上がより好ましい。
 弾性重合体(B1)の原料として用いる単量体(a)として、アルキルアクリレート(a1)及びアルキルメタクリレート(a2)以外の、他のビニル単量体(a3)を併せて用いることもできる。
 他のビニル単量体(a3)としては、例えば、炭素数9以上のアルキル基を有するアルキルアクリレート、アルコキシアクリレート、シアノエチルアクリレート等のアクリレート単量体;アクリルアミド、アクリル酸、メタクリル酸、スチレン、アルキル置換スチレン、アクリロニトリル、メタクリロニトリルが挙げられる。
 架橋性単量体(a4)は、アルキルアクリレート(a1)及び/又はアルキルメタクリレート(a2)と架橋構造を形成して、重合体にゴム弾性を付与すると共に、硬質重合体(B)との間に架橋を形成する成分である。中でも、更にグラフト交叉を生じる機能を有するグラフト交叉剤が好ましい。
 このような機能を有するものとして、例えば、共重合性のα、β-不飽和カルボン酸又はジカルボン酸のアリル、メタリル又はクロチルエステルが挙げられる。特に、アクリル酸、メタクリル酸、マレイン酸又はフマル酸のアリルエステルが好ましい。
 中でも、アリルメタクリレートが優れた効果を奏する。その他、トリアリルシアヌレート、トリアリルイソシアヌレートも有効である。
 グラフト交叉剤は、主としてそのエステルの共役不飽和結合がアリル基、メタリル基又はクロチル基よりはるかに早く反応し、化学的に結合する。この間アリル基、メタリル基又はクロチル基の実質上のかなりの部分は次層重合体の重合中に有効に働き、隣接二層間にグラフト結合を与えるものである。
 尚、架橋性単量体(a4)は、上述のように得られる成形体にゴム弾性を付与したり、グラフト交叉を生じたりする単量体に限定されず、耐熱性向上のための架橋性単量体であってもよい。
 例えば、エチレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート、プロピレングリコールジメタクリレート等のアルキレングリコールジメタクリレート;ジビニルベンゼン、トリビニルベンゼン等のポリビニルベンゼンが挙げられる。
 このように架橋性単量体(a4)は、多様な化合物を選択し得るが、耐ストレス白化性を好適に発現するためには、アリルメタクリレート等のグラフト交叉剤の使用が好ましい。
 以上の単量体(a1)~(a4)の合計100質量%中、アルキルアクリレート(a1)とアルキルメタクリレート(a2)の合計量は、耐候性向上等の点で80~100質量%、単量体(a3)の量は0~20質量%が好ましい。また、耐ストレス白化等の観点から単量体(a1)単位/単量体(a2)単位の含有比は、50/50~100/0(質量比)であることが好ましい。耐ストレス白化の観点から、単量体(a3)の量は0~12質量%がより好ましい。
 架橋性単量体(a4)の量は、単量体(a1)~(a4)の合計100質量%中、0.4~2.0質量%が好ましく、0.6~1.8質量%がより好ましい。この量が0.4質量%以上であれば、弾性重合体(B1)と硬質重合体(B2)との間の架橋が安定となり、充分な透明性が発現する。また、ゴム弾性をより向上でき、得られる積層フィルムの耐衝撃性が増大する。逆に2.0質量%以下であれば、架橋を適度に制御でき、得られる積層フィルムの柔軟性が好適に発現する。
 弾性重合体(B1)は2段以上に分けて重合してもよい。その場合、組成の異なる単量体混合物を重合してもよい。2段以上に分けて重合することで、最終的に得られるゴム含有重合体(B)の粒子径の制御が容易になる。
 弾性重合体(B1)を、例えば2段に分けて重合する場合、第一弾性重合体(B1-1)と第二弾性重合体(B1-2)とは、グラフト交叉剤によって二層間にグラフト結合を有することが好ましい。
 弾性重合体(B1)が、2段以上に分けて重合され、隣接する二層間にグラフト結合を有するグラフト重合体であれば、ゴム含有重合体(B)の粒子径の制御が容易となり、得られる積層フィルムの耐ストレス白化性を好適に発現することができる。
 弾性重合体(B1)は、弾性重合体(B1)100質量%中のグラフト交叉剤単位の含有率が1.2質量%以上であることが好ましい。グラフト交叉剤単位の含有率が1.2質量%以上であれば、第一弾性重合体(B1-1)と第二弾性重合体(B1-2)の層間、また、弾性重合体(B1)と硬質重合体(B2)の層間の架橋が安定となり、積層フィルムの耐ストレス白化性が好適に発現する。
 弾性重合体(B1)は、乳化重合、懸濁重合等の重合法により得られる。乳化重合による場合、乳化剤、重合開始剤、連鎖移動剤を用いることができる。
 乳化剤としては、アニオン系、カチオン系又はノニオン系の界面活性剤が用いられ、特にアニオン系界面活性剤が好ましい。
 アニオン系界面活性剤の具体例としては、ロジン酸石鹸、オレイン酸カリウム、ステアリン酸ナトリウム、ミリスチン酸ナトリウム、N-ラウロイルザルコシン酸ナトリウム、アルケニルコハク酸ジカリウム系等のカルボン酸塩;ラウリル硫酸ナトリウム等の硫酸エステル塩;ジオクチルスルホコハク酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム系等のスルホン酸塩;ポリオキシエチレンアルキルフェニルエーテルリン酸ナトリウム系等のリン酸エステル塩が挙げられる。
 乳化液を調製する方法としては、例えば、水中に単量体混合物を仕込んだ後に界面活性剤を投入する方法、水中に界面活性剤を仕込んだ後に単量体混合物を投入する方法、単量体混合物中に界面活性剤を仕込んだ後に水を投入する方法が挙げられる。この中では、水中に単量体混合物を仕込んだ後に界面活性剤を投入する方法、及び、水中に界面活性剤を仕込んだ後に単量体混合物を投入する方法が好ましい。
 重合開始剤の具体例としては、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩;t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ化合物;これら過硫酸塩又は有機過酸化物と還元剤とを組み合わせたレドックス系開始剤が挙げられる。
 この中では、レドックス系開始剤が好ましく、特に、硫酸第一鉄・エチレンジアミン四酢酸二ナトリウム塩・ソジウムホルムアルデヒドスルホキシレート・ハイドロパーオキサイドを組み合わせたスルホキシレート系開始剤がより好ましい。
 重合開始剤は、水相及び単量体相の何れか一方又は両方に添加することができる。
 重合開始剤の量は、単量体(a1)~(a4)の合計100質量部に対して、0.05~1.0質量部が好ましく、0.1~0.6質量部がより好ましい。重合開始剤量が0.05質量部以上であれば、機械強度が良好な積層フィルムが得られる。また、1.0質量部以下であれば、流動性が良好になり、アクリル系樹脂組成物(Y)を溶融押出して成形する際の成形性が良好になる。
 連鎖移動剤の具体例としては、炭素数2~20のアルキルメルカプタン、メルカプト酸類、チオフェノール、四塩化炭素が挙げられる。連鎖移動剤は、硬質重合体(B2)の重合時に混在させることが好ましく、n-オクチルメルカプタンが好ましい。
 重合温度は、重合開始剤の種類や量によって異なるが、好ましくは40~120℃、より好ましくは60~95℃である。
 弾性重合体(B1)の重合に先立って、Tgが0℃を超える芯部を重合してもよい。芯部はゴム含有重合体(B)中、ポリマー粒子径生成の安定性の点で0~10質量%が好ましい。
 芯部は炭素数1~8のアルキル基を有するアルキルアクリレート(a1)10~50質量%、炭素数1~4のアルキル基を有するアルキルメタクリレート(a2)20~70質量%、他のビニル単量体(a3)0~10質量%、架橋性単量体(a4)0.1~10質量%とを含む単量体(a)((a1)~(a4)の合計が100質量%)を重合して得られるものが好ましい。
 ゴム含有重合体(B)は、上述の弾性重合体(B1)の存在下で、炭素数1~4のアルキル基を有するアルキルメタクリレート(b1)を含む単量体(b)を重合することにより得られる。単量体(b)は重合して硬質部(B2)を形成する。
 アルキルメタクリレート(b1)の具体例としては、アルキルメタクリレート(a2)の具体例と同じものが挙げられる。それらは1種を単独で用いてもよく2種以上を併用してもよい。
 単量体(b)として、アルキルメタクリレート(b1)以外の、他の単量体(b2)を併せて用いることもできる。他の単量体(b2)の具体例としては、アルキルアクリレート(a1)及び他のビニル単量体(a3)の具体例と同じものが挙げられる。それらは1種を単独で用いてもよく2種以上を併用してもよい。
 単量体(b)100質量%中、アルキルメタクリレート(b1)の含有率は70質量%以上が好ましく、85質量%以上がより好ましい。これにより、硬質部(B2)のTgを適度に高くすることができる。
 単量体(b)は2段以上に分けて重合してもよい。その場合、組成の異なる単量体混合物を重合してもよい。
 単量体(b)の重合反応は、弾性重合体(B1)の重合反応終了後、得られた重合液をそのまま用いて、単量体(b)を添加して、引き続き重合を行なうことが好ましい。
 この重合における乳化剤、重合開始剤、連鎖移動剤の具体例は、弾性重合体(B1)の重合における具体例と同じである。
 連鎖移動剤の量は、単量体(b)100質量部に対して、0.1~2質量部が好ましく、0.2~1質量部がより好ましい。連鎖移動剤の量が0.1質量部以上であれば、成形体の柔軟性が高くなる。また、2質量部以下であれば、成形体の機械的強度が高くなる。
 弾性重合体(B1)のTgは0℃以下が好ましく、-30℃以下がより好ましい。Tgが0℃以下であれば、得られる積層フィルムが、好ましい耐衝撃性を有する。このTgは、動的粘弾性測定装置を用いて次のように測定、算出した値である。
 試験片を幅6mm、厚さ1mmのシートに成形し、動的粘弾性測定装置を用いて、ISO6721-4に準拠して、初期チャック間距離2cm、測定周波数0.1Hz、測定温度範囲-90~150℃、昇温速度2℃/分、窒素気流200mL/分の条件で、引張モードで貯蔵弾性率(E’)と損失弾性率(E’’)の値を測定し、tanδ=E’’/E’の式に従って、各温度におけるtanδ(損失正接)の値を算出する。
 次にtanδの値を温度に対してプロットすると、二つ以上のピークが現れる。このうちの最も低温で現れるピークに対応する温度を、弾性重合体のTgとする。
 硬質部(B2)のTgは70℃以上が好ましく、75℃以上がより好ましい。このようなTgを有することにより、成形性に優れるアクリル系樹脂組成物(Y)が得られ、かつ積層フィルムの耐熱性が高く、低温環境下での加工性が良好となる。
 硬質部(B2)のTgは、弾性重合体(B1)のTgの測定法と同様の動的粘弾性測定において、最も高温で現れるピークに対応する温度である。
 また、弾性重合体(B1)の重合反応終了後、単量体(b)の重合を行なう前に、弾性重合体(B1)を構成する単量体の組成から、炭素数1~8のアルキル基を有するアルキルアクリレート(a1)の比率を徐々に減じ、炭素数1~4のアルキル基を有するアルキルメタクリレート(a2)の比率を徐々に増加させた組成の単量体を順次重合して、中間部(B3)を形成することもできる。
 中間部(B3)は、炭素数1~8のアルキル基を有するアルキルアクリレート(c1)、炭素数1~4のアルキル基を有するアルキルメタクリレート(c2)、他の単量体(c3)、架橋性単量体(c4)を構成成分とすることが好ましい。
 単量体(c1)~(c4)の具体例は、単量体(a1)~(a4)の具体例と同じである。
 単量体(c1)~(c4)の合計を100質量%とした場合、得られる積層フィルムの耐熱性、耐ストレス白化性の点から、単量体(c1)10~90質量%、単量体(c2)10~90質量%、単量体(c3)0~20質量%、単量体(c4)0~10質量%が好ましい。単量体(c1)20~80質量%、単量体(c2)20~80質量%、単量体(c3)0~10質量%、単量体(c4)0~5質量%がより好ましい。
 ゴム含有重合体(B)100質量%中における中間部(B3)の比率は、得られる積層フィルムの意匠性の点から0~35質量%が好ましく、耐ストレス白化の点から5~15質量%がより好ましい。
 中間部(B3)が含有される場合、耐ストレス白化の点から弾性重合体(B1)/中間部(B3)/硬質部(B2)の比率は、25~45質量%/5~15質量%/50~70質量%が好ましい。
 ゴム含有重合体(B)100質量%中における弾性重合体(B1)の比率は、30質量%以上が好ましく、50~70質量%がより好ましい。弾性重合体(B1)の比率が30質量%以上であれば、得られる積層フィルムの機械強度や柔軟性が向上し、クラックや折曲げた際の白化を抑制できる。また、基材にラミネートして折曲加工した際に白化や剥れ、破断を抑制できる。
 弾性重合体(B1)の比率が70質量%以下であれば、得られる積層フィルムは厚さ精度に優れ、成形時の生産性が低下しない。
 ゴム含有重合体(B)100質量%中における硬質部(B2)の比率は、70質量%以下が好ましく、20~60質量%がより好ましく、30~50質量%が更に好ましい。硬質部(B2)の比率が20質量%以上であれば、成形時の流動性が向上し、膜厚精度の高い積層フィルムの製造が容易となる。70質量%以下であれば積層フィルムの柔軟性が増し、成形加工性が向上する。
 乳化重合法を用いた場合、重合反応終了後のラテックスからゴム含有重合体(B)を粉体として回収する。粉体として回収する方法としては、例えば、ラテックスを凝固剤と接触させて凝固又は塩析し、固液分離し、重合体の1~100質量倍程度の水で洗浄し、濾別等の脱水処理により湿潤状の粉体とし、更にこの湿潤状の粉体を圧搾脱水機や流動乾燥機等の熱風乾燥機で乾燥させる方法が挙げられる。
 その他、スプレードライ法によりラテックスを直接乾燥させてもよい。重合体の乾燥温度、乾燥時間は重合体の種類によって適宜決定できる。
 凝固剤の具体例としては、酢酸ナトリウム、酢酸カルシウム、ギ酸カリウム、ギ酸カルシウム等の有機塩;塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、硫酸ナトリウム等の無機塩が挙げられる。中でも、酢酸カルシウム、塩化カルシウム等のカルシウム塩が好ましい。
 特に、成形体の耐温水白化性の点、また回収される粉体の含水率を低くする点から、酢酸カルシウムがより好ましい。
 凝固剤は1種を単独で用いてもよく2種以上を併用してもよい。
 凝固剤は、通常、水溶液として用いられる。凝固剤、好ましくは酢酸カルシウムの水溶液の濃度は、安定してアクリル樹脂組成物を凝固、回収できる点から、0.1質量%以上が好ましく、1質量%以上がより好ましい。また、酢酸カルシウムの水溶液の濃度は、回収した粉体に残存する凝固剤の量が少なく、特に耐温水白化性、着色性等の積層フィルムの性能を殆ど低下させない点から、20質量%以下が好ましく、15質量%以下がより好ましい。
 尚、酢酸カルシウムは、濃度が20質量%を超えると10℃以下では飽和により酢酸カルシウムが析出することがある。
 ラテックスを凝固剤に接触させる方法としては、例えば、凝固剤の水溶液を攪拌しながら、そこにラテックスを連続的に添加して一定時間攪拌を継続する方法や、凝固剤の水溶液とラテックスとを一定の比率で攪拌機付きの容器に連続的に注入しながら接触させ、凝固した粉体と水とを含む混合物を容器から連続的に抜き出す方法がある。
 凝固剤の水溶液の量は、ラテックス100質量部に対して10~500質量部が好ましい。凝固工程の温度は得られた凝固粉のブロッキングの点から、30~100℃が好ましい。
 ゴム含有重合体(B)のアセトン可溶分のMwは、25000~70000が好ましく、30000~65000がより好ましい。Mwが25000以上であれば、得られる積層フィルムの機械強度が向上し、成形加工時の割れを抑制できる。また、折曲加工時の破断や白化を抑制できる。
 Mwが70000以下であれば、得られる積層フィルムは柔軟性が高く、加工性に優れる。すなわち積層フィルムを鋼板等の基材に貼り合わせた後、曲げ加工する際に曲部で白化が発生せず、得られる各種部材の外観が良好となる。
 このMwは、ゴム含有重合体(B)中のアセトン可溶分についてゲル浸透クロマトグラフィ(GPC)により測定した値である。具体的には、以下の方法による測定値を採用する。
 [1]ゴム含有重合体(B)1gをアセトン50gに溶解させ、70℃で4時間還流させてアセトン可溶分を得る。
 [2]得られた抽出液を、CRG SERIES((株)日立製作所製)を用いて、4℃で14000rpm×30分間遠心分離を行なう。
 [3]アセトン不溶分をデカンテーションで取り除き、真空乾燥機にて50℃×24時間乾燥させて得られたアセトン可溶分について、以下の条件でGPC測定を行ない、標準ポリスチレンによる検量線からMwを求める。
  装置 :東ソー(株)製「HLC8220」
  カラム:東ソー(株)製「TSKgel SuperMultiporeHZ-H」(内径4.6mm×長さ15cm×2本、排除限界4×10(推定))
  溶離液:テトラヒドロフラン
  溶離液流量:0.35mL/分
  測定温度 :40℃
  試料注入量:10μL(試料濃度0.1%)
 ゴム含有重合体(B)のアセトン可溶分のMwは、重合時に連鎖移動剤の量を適宜変更することによって調整できる。連鎖移動剤は硬質重合体(B2)の重合時に混在させることが好ましい。
 アクリル系樹脂組成物(Y)のゲル含有率は50~70質量%が好ましく、55~70質量%がより好ましい。ゲル含有率が50質量%以上であれば、得られる積層フィルムの機械的強度が高く、取り扱いが容易である。また、ゲル含有率が70質量%以下であれば、成形時の流動性が高く、連続成形を可能とする。
 ここで、アクリル系樹脂組成物(Y)のゲル含有率は、下記式により算出して求めることができる。
  G=(m/M)×100 (%)
 式中、G(%)はゲル含有率を示し、Mは所定量(抽出前質量ともいう)の樹脂組成物を示し、mは該所定量の樹脂組成物のアセトン不溶分の質量(抽出後質量ともいう)を示す。
 アクリル系樹脂組成物(Y)は、メルトテンションの値が好ましくは0.03N以上、より好ましくは0.04N以上である。メルトテンションとは、カレンダー成形性、押出成形性、ブロー成形性、発泡成形性等の成形加工性を判断する指標の一つであり、メルトテンションの向上は成形加工性の向上とみなし得る。
 アクリル系樹脂組成物(Y)のメルトテンションが上記範囲内であれば、溶融押出成形やカレンダー成形において引取り性が良好であり、破断し難くなる。また、フィルム状に溶融押出する場合に、吐出量が低下して生産性が悪化することを防止でき、更にフィルムの厚さ精度も良好になる。
 このメルトテンションは、キャピラリー径φ=1mm、L/D=16、温度230℃の条件で、一定速度(1.57cm/分)で押出し、ストランドを一定速度(10m/分)で引取った際の値である。
<配合剤>
 本発明の積層フィルムは、必要に応じて配合剤を含有していてもよい。
 配合剤としては、例えば、安定剤、滑剤、可塑剤、耐衝撃助剤、充填剤、抗菌剤、防カビ剤、発泡剤、離型剤、帯電防止剤、着色剤、艶消し剤、紫外線吸収剤、熱可塑性重合体が挙げられる。
 例えば、重合液のラテックスに配合剤を添加し、配合剤と重合体の混合物を粉体化することができる。また、ラテックスの粉体化後に配合剤を混合してもよい。また、溶融押出によって積層フィルムを製造する場合は、成形機に付随する混練機に、ラテックスを粉体化したものと共に配合剤を供給してもよい。成形機に付随する混練機とは、例えば単軸押出機、二軸押出機である。
 本発明のアクリル系樹脂組成物(Y)は、例えば、まずゴム含有重合体(B)の全量の内の一部、及び必要に応じて配合剤を混合してマスターバッチを作製し、このマスターバッチを更にゴム含有重合体(B)の残部と混合する多段階配合により得ることもできる。
 また、アクリル系樹脂組成物(Y)を溶融押出成形する場合は、まずゴム含有重合体(B)の全量の内の一部、及び必要に応じて配合剤を混合して単軸押出機又は二軸押出機に供給し、溶融混練してマスターバッチペレットを作製し、このマスターバッチペレットとゴム含有重合体(B)の残部とを混合して再び単軸押出機又は二軸押出機に供給し、溶融混練、溶融押出しを行ない、成形体を得ることもできる。
 積層フィルムが基材の保護を目的として基材に積層される場合、(Y)層には耐候性付与のために、紫外線吸収剤を添加することが好ましい。紫外線吸収剤の分子量は300以上が好ましく、400以上がより好ましい。分子量が300以上の紫外線吸収剤を使用すると、例えばフィルムを製造する際に転写ロール等に樹脂が付着してロール汚れが発生する等の不具合を抑制できる。
 紫外線吸収剤の種類は、特に限定されないが、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤が好ましい。
 前者の市販品としては、BASFジャパン(株)製のTinuvin360、Tinuvin234;(株)ADEKA製のアデカスタブLA-31RGが挙げられる。
 後者の市販品としては、BASFジャパン(株)製のTinuvin1577、Tinuvin1600、Tinuvin460;(株)ADEKA製のアデカスタブLA-F70、アデカスタブLA-46が挙げられる。
 紫外線吸収剤の添加量は、アクリル樹脂組成物(Y)100質量部に対して、0.1~10質量部が好ましい。フィルムの製膜時の工程汚れ、耐溶剤性、耐候性の観点から、0.5~5質量部がより好ましい。
 また(Y)層には光安定剤が添加されていることが好ましい。光安定剤としては、特にヒンダードアミン系光安定剤等のラジカル捕捉剤が好ましい。
 このような光安定剤の市販品として、BASFジャパン(株)製のChimassorb944、Chimassorb2020、Tinuvin770;(株)ADEKA製のアデカスタブLA-57、アデカスタブLA-72が挙げられる。
 ヒンダードアミン系光安定剤の添加量は、アクリル樹脂組成物(Y)100質量部に対して、0.1~5質量部含有することが好ましい。フィルムの製膜時の工程汚れを防止する観点から、0.15~3質量部がより好ましい。
 さらに、(Y)層には酸化防止剤が添加されていることが好ましい。酸化防止剤としては、公知のものを用いることができるが、特にヒンダードフェノール系酸化防止剤が好ましい。このような酸化防止剤の市販品としては、BASFジャパン(株)製のイルガノックス1076が挙げられる。
 酸化防止剤の添加量は、アクリル樹脂組成物(Y)100質量部に対して、0.01~5質量部含有することが好ましい。積層フィルムの透明性の観点から0.05~3質量部がより好ましい。
<積層フィルムの製造方法>
 本発明の積層フィルムの製造方法としては、製造工程を少なくできるという点から、フッ素系樹脂(X)を含む層と、アクリル系樹脂組成物(Y)の層とを同時に溶融押出しながら積層する共押出法が好ましい。
 複数の溶融樹脂層を積層する具体的な方法としては、(1)フィードブロック法等のダイ通過前に溶融樹脂層を積層する方法、(2)マルチマニホールド法等のダイ内で溶融樹脂層を積層する方法、(3)マルチスロット法等のダイ通過後に溶融樹脂層を積層する方法等が挙げられる。
 尚、フッ素系樹脂(X)を含む層と、アクリル系樹脂組成物(Y)の層とを同時に溶融押出しながら積層する場合、(X)層の表面の艶消し性の点から、(Y)層を冷却ロールに接するように溶融押出することが好ましい。
 具体的には、例えば、以下の工程を含む製造方法により、本発明の積層フィルムを製造することができる。2台の溶融押出機を用意し、それらのシリンダー温度及びダイ温度を200~250℃に設定する。一方の押出機内にてフッ素系樹脂(X)を含む組成物を溶融可塑化する。
 それと同時に、他方の押出機内にてアクリル系樹脂組成物(Y)を溶融可塑化する。両押出機の先端のダイから押し出された溶融樹脂を、50~100℃に設定された冷却ロール上に共押出しする。
<積層フィルムの耐延伸白化性>
 本発明の積層フィルムは、ISO 527-3に従い、厚さ0.05~0.1mm、幅15mmに成形して得られた積層フィルムを試験片とし、温度0℃にて、引張速度500mm/分の条件で、初期チャック間距離25mmから、35mmまで延伸した際の、延伸前後の試験片の白色度(W値)の差(ΔW)が5以下である。耐ストレス白化性の観点から、ΔWは3以下であることが好ましい。
 ここで、W値はJIS Z8722の幾何条件aに従い、C/2°光源を用いて測定した値である。
 延伸前後のΔWが5以下であれば、フィルムを折曲加工した際に、折曲部分が白化しない、又は白化が目立たないため、得られる積層フィルムの外観が良好になる。
<積層フィルムの透明性>
 本発明の積層フィルムの全光線透過率は、JIS K7136に従って測定される。
 ヘーズメーター(日本電色工業(株)製、商品名:NDH4000)を用いて、光源D65、温度25℃の条件で測定した全光線透過率が90%以上である。全光線透過率が90%以上であれば、積層フィルムの外観が良好になる。
<積層成形品>
 本発明の積層フィルムを、各種樹脂成形品、木工製品及び金属成形品等の基材の表面に積層することによって、(X)層を表面に有する積層体(積層成形品)を製造することができる。
 基材は、目的とする積層成形品に応じて適宜選択することができる。例えば、樹脂成形品であれば、ポリ塩化ビニル樹脂、オレフィン系樹脂、ABS樹脂、ポリカーボネート樹脂等の熱可塑性樹脂を用いることができる。
 積層成形品としては、例えば、意匠性を付与する目的で鋼板に貼り付けた形での窓枠、玄関ドア枠、屋根材及びサイディング材等の外壁建材が挙げられる。
 基材が二次元形状であって、かつ熱融着可能な材質である場合は、熱ラミネーション等の方法により基材と積層フィルムとを積層できる。
 熱融着が困難な金属部材等に対しては、接着剤を用いたり、積層フィルムの片面を粘着加工したりして積層すればよい。
 更に、積層後に折曲加工等を施してもよく、本発明の積層フィルムは白化、割れ等の意匠性の低下を抑えることができる。
 以下に本発明を実施例により具体的に説明するが、本発明はこれに限定されるものではない。以下の記載において、「部」は「質量部」を示し、「%」は「質量%」を示す。略号は以下のものを示す。
  MMA       メチルメタクリレート
  BA        n-ブチルアクリレート
  BDMA      1,3-ブチレングリコールジメタクリレート
  AMA       アリルメタクレート
  MA        メチルアクリレート
  CHP       クメンハイドロパーオキサイド
  tBH       t-ブチルハイドロパーオキサイド
  RS610NA   モノ-n-ドデシルオキシテトラオキシエチレンリン酸ナトリウム (フォスファノールRS-610NA:東邦化学(株)製)
  nOM       n-オクチルメルカプタン
  EDTA      エチレンジアミン四酢酸二ナトリウム
(製造例1)ゴム含有重合体(B-1)
 撹拌器、冷却管、熱電対、窒素導入管を備えた重合容器に、脱イオン水195部を入れた後、MMA0.2部、BA4.5部、AMA0.15部、BDMA0.3部、CHP0.025部、RS610NA1.1部を予備混合したものを投入し、75℃に昇温した。昇温後、脱イオン水5部、ソジウムホルムアルデヒドスルホキシレート0.20部、硫酸第一鉄0.0001部及びEDTA0.0003部からなる混合物を重合容器へ一度に投入し、重合を開始した。温度上昇ピークを確認後、15分間反応を継続させ、第一弾性重合体(B1-1)の重合を完結した。
 続いて、MMA1.0部、BA22.3部、AMA0.74部、BDMA1.5部、CHP0.016部を90分間にわたって重合容器内に滴下した。その後60分間反応を継続させ、第二弾性重合体(B1-2)の重合を完結した。
 第一弾性重合体(B1-1)、第二弾性重合体(B1-2)単独のTgは、どちらも-50.2℃であった。
 続いて、MMA5.9部、BA4.0部、AMA0.074部、CHP0.0125部を45分間にわたって重合容器内に滴下した。その後60分間反応を継続させ、中間重合体(B3)の重合を完結した。中間重合体(B3)単独のTgは19.8℃であった。
 最後に、MMA54.7部、BA4.8部、tBH0.075部、nOM0.24部を140分間にわたって重合容器内に滴下した。その後30分間反応を維持させラテックス状のゴム含有重合体(B-1)を得た。
 硬質重合体(B2)単独のTgは、79.3℃であった。重合後に測定したラテックス状のゴム含有重合体(B-1)の固形分は33%であり、平均粒子径は0.12μmであった。
 得られたラテックス状のゴム含有重合体(B-1)100部を目開き62μmのSUS製メッシュを取り付けた振動型濾過装置で濾過した。次いで、酢酸カルシウム2.5部を含む80℃の熱水100部中に滴下して、ラテックスを凝析した。更に95℃に昇温して5分保持し、固化した。得られた凝析物を分離洗浄し、75℃で24時間乾燥して、粉体状のゴム含有重合体(B-1)を得た。このゴム含有重合体(B-1)のゲル含有率は65%、Mwは53,000であった。
(製造例2)ゴム含有重合体(B-2)
 中間重合体(B3)を形成しなかった以外は製造例1と同様にして、「表1」に記載の添加量に従ってゴム含有重合体(B-2)を得た。このゴム含有重合体(B-2)のゲル含有率は65%、Mwは36,000であった。
(製造例3)ゴム含有重合体(B-3)
 「表1」に記載の添加量に従って製造例1と同様にゴム含有重合体(B-3)を得た。このゴム含有重合体(B-3)のゲル含有率は62%、Mwは60,000であった。
(製造例4)アクリル系樹脂組成物(Y-1)
 上記ゴム含有重合体(B-1)100部、加工助剤(三菱レイヨン(株)製、商品名:メタブレンP551A)2.0部、紫外線吸収剤((株)ADEKA製、商品名:アデカスタブLA-31)2.36部、光安定剤(BASFジャパン(株)製、商品名:Chimassorb2020)0.51部、フェノール系酸化防止剤(BASFジャパン(株)製、商品名:イルガノックス1076)0.1部を、ヘンシェルミキサーを用いて混合した。
 この粉体状混合物を脱気式押出機(東芝機械(株)製、商品名:TEM-35、以下同様)を用いてシリンダー温度100~240℃、ダイ温度240℃で溶融混練してアクリル系樹脂組成物(Y-1)のペレットを得た。
(製造例5)アクリル系樹脂組成物(Y-2)、(Y-3)
 「表2」に記載の添加量に従って製造例4と同様に、アクリル系樹脂組成物(Y-2)及び(Y-3)のペレットを得た。
(製造例6)ポリマーブレンド(1)
 フッ化ビニリデン系樹脂(F)として、(株)クレハ製、商品名:KFポリマーT#850(異種結合の比率8.5%)90部、アクリル系樹脂(A)としてMMA/MA共重合体(MMA/MA=99/1(質量比)、Mw:10万、Tg:105℃)10部、酸化防止剤として(株)ADEKA製、商品名:アデカスタブAO-60 0.1部を、ヘンシェルミキサーを用いて混合した。
 得られた混合物を、脱気式押出機を用いてシリンダー温度100~240℃、ダイ温度240℃で溶融混練してポリマーブレンド(1)のペレットを得た。
(製造例7)ポリマーブレンド(2)
 KFポリマーT#850を85部、MMA/MA共重合体を15部としたこと以外は、製造例6と同様にしてポリマーブレンド(2)のペレットを得た。
(製造例8)ポリマーブレンド(3)
 KFポリマーT#850を68部、MMA/MA共重合体を32部としたこと以外は、製造例6と同様にしてポリマーブレンド(3)のペレットを得た。
(製造例9)ポリマーブレンド(4)
 KFポリマーT#850を100部とし、MMA/MA共重合体及びAO-60を配合しないこと以外は、製造例6と同様にしてポリマーブレンド(4)のペレットを得た。
(製造例10)ポリマーブレンド(5)
 フッ化ビニリデン系樹脂(F)として、アルケマ(株)製のKynar720を使用したこと以外は、製造例9と同様にしてポリマーブレンド(5)のペレットを得た。
<評価方法>
(1)延伸前後の白色度の差
 ISO 527-3に従い、厚さ0.05~0.1mm、幅15mmに成形して得られた積層フィルムを試験片とし、温度0℃にて、引張速度500mm/分の条件で、初期チャック間距離25mmから、35mmまで10mm延伸した際の、延伸前後の試験片の白色度(W値)の差(ΔW)を測定した。
 W値はJIS Z8722の幾何条件aに従い、C/2°光源を用いて色差計(日本電色工業(株)製、商品名:SE-2000)で測定した。
 尚、試験片はMD方向で採取した。
(2)全光線透過率
 JIS K7136に従って、積層フィルムの全光線透過率を測定した。ヘーズメーター(日本電色工業(株)製、)商品名:NDH4000)を用いて、光源D65、温度25℃の条件で測定した。
(3)折曲白化
 厚さ0.5~1.0mmの鋼板に厚さ0.1~0.3mmの塩ビ層を積層した鋼板化粧シートに、積層フィルムを140℃で熱プレスして積層成形品を得る。
 得られた積層成形品を-30℃に調温した後、鋼板側を内側にして2秒間かけて90°に折曲げ、積層成形品の外観の変化を以下の基準により目視で評価した。
  ○:折曲支点部が白化していない。
  △:折曲支点部が少し白化している。
  ×:折曲支点部が白化している。
(4)耐薬品性
 メチルエチルケトン(MEK)、酢酸エチルを脱脂綿に浸み込ませ、積層フィルムの(X)層の上で20往復した後、積層フィルムの外観の変化を以下の基準により目視で評価した。
  ○:外観の変化がない。
  ×:外観の変化(膨潤又は白濁)がある。
[実施例1]
 40mmφ単軸押出機1と30mmφ単軸押出機2の先端部にマルチマニホールドダイを設置した。
 製造例4で得られたアクリル系樹脂組成物(Y-1)のペレットをシリンダー温度230~240℃の単軸押出機1に供給して、溶融可塑化した。また製造例9で得られたポリマーブレンド(4)のペレットを、シリンダー温度200~230℃の単軸押出機2に供給し、溶融可塑化した。
 これらの溶融可塑化物を250℃に加熱したマルチマニホールドダイに供給して、(X)層の厚さが5.0μm、(Y)層の厚さが45.0μmの2層の積層フィルムを得た。
 その際、冷却ロールの温度を90℃とし、(Y)層が冷却ロールに接するようにして積層フィルムを得た。得られた積層フィルムの評価結果を「表2」に示した。
[実施例2]
 ポリマーブレンド(4)のペレットを、製造例6で得られたポリマーブレンド(1)のペレットとしたこと以外は、実施例1と同様にして積層フィルムを得た。評価結果を「表2」に示した。
[実施例3]
 ポリマーブレンド(4)のペレットを、製造例7で得られたポリマーブレンド(2)のペレットとしたこと以外は、実施例1と同様にして積層フィルムを得た。評価結果を「表2」に示した。
[実施例4]
 ポリマーブレンド(4)のペレットを、製造例8で得られたポリマーブレンド(3)のペレットとしたこと以外は、実施例1と同様にして積層フィルムを得た。評価結果を「表2」に示した。
[実施例5]
 アクリル系樹脂組成物(Y-1)のペレットを、製造例5で得られたアクリル系樹脂組成物(Y-2)のペレットとしたこと以外は、実施例1と同様にして積層フィルムを得た。評価結果を「表2」に示した。
[実施例6]
 ポリマーブレンド(4)のペレットを、製造例10で得られたポリマーブレンド(5)のペレットとしたこと以外は、実施例1と同様にして積層フィルムを得た。評価結果を「表2」に示した。
[比較例1]
 アクリル系樹脂組成物(Y-1)のペレットを、製造例5で得られたアクリル系樹脂組成物(Y-3)のペレットとしたこと以外は、実施例6と同様にして積層フィルムを得た。評価結果を「表2」に示した。
[比較例2]
 アクリル系樹脂組成物(Y-1)のペレットを、製造例5で得られたアクリル系樹脂組成物(Y-3)のペレットとしたこと以外は、実施例2と同様にして積層フィルムを得た。評価結果を「表2」に示した。
[比較例3]
 アクリル系樹脂組成物(Y-1)のペレットを、製造例5で得られたアクリル系樹脂組成物(Y-3)のペレットとしたこと以外は、実施例3と同様にして積層フィルムを得た。評価結果を「表2」に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の実施例及び比較例により、次のことが明らかとなった。
 本発明の積層フィルムは、延伸前後の白色度の差(ΔW)が5以下であり、耐ストレス白化性に優れる。また、鋼板化粧シートに積層して折曲白化試験を実施した場合も、白化しないため、成形加工性に優れている。
 従って、本発明の積層フィルムを、金属製の基材等に貼り合わせ、この基材を玄関ドア等の各種部材の形状にするために折曲げ加工を施しても、割れや剥れ、白化等の問題が生じることのない、意匠性の高い積層成形品を製造することができる。
 本発明の積層フィルムは、透明性、耐ストレス白化性、耐薬品性に優れている。特に、建材用の積層成形品、車輌用部材用の積層成形品に適している。

 

Claims (15)

  1.  フッ素系樹脂(X)を含む層と、アクリル系樹脂組成物(Y)を含む層とからなり、下記の条件(1)及び(2)を満足する積層フィルム;
     (1)ISO527-3に従い、温度0℃、引張速度500mm/分で、チャック間距離25mmから35mmまで延伸した際の、延伸前後の試験片の白色度の差(ΔW)が5以下である、
     (2)アクリル系樹脂組成物(Y)が弾性重合体(B1)を30質量%以上含有するゴム含有重合体(B)からなる。
  2.  フッ素系樹脂(X)がフッ化ビニリデン系樹脂(F)である、請求項1に記載の積層フィルム。
  3.  フッ素系樹脂(X)を含む層が、フッ化ビニリデン系樹脂(F)とアクリル系樹脂(A)のポリマーブレンドからなる、請求項1に記載の積層フィルム。
  4.  アクリル系樹脂組成物(Y)を含む層が、ゴム含有重合体(B)を80質量%以上含む、請求項1に記載の積層フィルム。
  5.  アクリル系樹脂(A)のガラス転移温度が95~120℃であり、
     フッ化ビニリデン系樹脂(F)/アクリル系樹脂(A)の含有比が50/50~95/5(質量比)である、請求項3に記載の積層フィルム。
  6.  ゴム含有重合体(B)が、炭素数1~8のアルキル基を有するアルキルアクリレート(a1)及び炭素数1~4のアルキル基を有するアルキルメタクリレート(a2)から選ばれる1種以上の単量体と、架橋性単量体(a4)とを含む単量体(a)を重合して得られた弾性重合体(B1)の存在下で、炭素数1~4のアルキル基を有するアルキルメタクリレート(b1)を含む単量体(b)を重合して得られた、請求項1に記載の積層フィルム。
  7.  ゴム含有重合体(B)がグラフト重合体であり、弾性重合体(B1)100質量%中のグラフト交叉剤単位の含有率が1.2質量%以上である、請求項1に記載の積層フィルム。
  8.  弾性重合体(B1)中の、アルキルアクリレート(a1)単量体単位とアルキルメタクリレート(a2)単量体単位の合計の含有率が80質量%以上である、請求項6に記載の積層フィルム。
  9.  弾性重合体(B1)中の、アルキルアクリレート(a1)単量体単位/アルキルメタクリレート(a2)単量体単位の含有比が、50/50~100/0(質量比)である、請求項6に記載の積層フィルム。
  10.  弾性重合体(B1)が、他のビニル単量体(a3)単位を含有し、
    弾性重合体(B1)中の、単量体(a3)単位の含有率が12質量%以下である、請求項6に記載の積層フィルム。
  11.  単量体(b)中の、アルキルメタクリレート(b1)単量体の含有率が70質量%以上である、請求項6に記載の積層フィルム。
  12.  全光線透過率が90%以上である、請求項1に記載の積層フィルム。
  13.  フッ素系樹脂(X)を含む層/アクリル系樹脂組成物(Y)を含む層の厚さの比率が、5/95~50/50である、請求項1に記載の積層フィルム。
  14.  請求項1に記載の積層フィルムを基材に積層した、積層成形品。
  15.  請求項1に記載の積層フィルムを金属部材に積層した、積層成形品。

     
PCT/JP2016/076105 2015-09-11 2016-09-06 積層フィルム及び積層成形品 WO2017043467A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016561026A JP6361741B2 (ja) 2015-09-11 2016-09-06 積層フィルム及び積層成形品
CN202310018006.0A CN116423949A (zh) 2015-09-11 2016-09-06 层叠膜和层叠成型品
KR1020207006725A KR102374802B1 (ko) 2015-09-11 2016-09-06 적층 필름 및 적층 성형품
EP16844328.1A EP3348395A4 (en) 2015-09-11 2016-09-06 Multilayer film and multilayer molded article
CN201680052127.5A CN108025540A (zh) 2015-09-11 2016-09-06 层叠膜和层叠成型品
US15/758,569 US10737466B2 (en) 2015-09-11 2016-09-06 Multilayer film and multilayer molded article
KR1020187004928A KR20180032609A (ko) 2015-09-11 2016-09-06 적층 필름 및 적층 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-179186 2015-09-11
JP2015179186 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043467A1 true WO2017043467A1 (ja) 2017-03-16

Family

ID=58239729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076105 WO2017043467A1 (ja) 2015-09-11 2016-09-06 積層フィルム及び積層成形品

Country Status (6)

Country Link
US (1) US10737466B2 (ja)
EP (1) EP3348395A4 (ja)
JP (1) JP6361741B2 (ja)
KR (2) KR20180032609A (ja)
CN (2) CN108025540A (ja)
WO (1) WO2017043467A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107302A1 (ja) * 2017-11-28 2019-06-06 デンカ株式会社 フッ化ビニリデン系樹脂多層フィルム
WO2020137116A1 (ja) * 2018-12-27 2020-07-02 株式会社クレハ 樹脂組成物、樹脂組成物の製造方法、成形体および成形体の製造方法
WO2021039533A1 (ja) * 2019-08-26 2021-03-04 デンカ株式会社 フッ化ビニリデン系樹脂多層フィルム、自動車内外装用フィルム、自動車用部品及び自動車

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171437A (ja) * 1997-08-28 1999-03-16 Kuraray Co Ltd アクリル系多層構造粒状複合体
JP2003236998A (ja) * 2002-02-14 2003-08-26 Bando Chem Ind Ltd 装飾用シート
JP2004204188A (ja) * 2002-12-26 2004-07-22 Kanegafuchi Chem Ind Co Ltd 低温加工特性、耐擦り傷性に優れるメタクリル系樹脂組成物
JP2004331866A (ja) * 2003-05-09 2004-11-25 Kanegafuchi Chem Ind Co Ltd 低温加工特性および耐擦り傷性に優れる熱可塑性樹脂組成物
WO2013039119A1 (ja) * 2011-09-12 2013-03-21 三菱レイヨン株式会社 積層フィルム及び積層成形品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60231343D1 (de) 2002-10-15 2009-04-09 Kaneka Corp Acrylfolie und diese enthaltende laminate
JP4291993B2 (ja) 2002-10-15 2009-07-08 株式会社カネカ アクリルフィルムおよびその積層品
KR101346872B1 (ko) 2008-06-10 2014-01-02 가부시키가이샤 가네카 불소 수지 필름 및 불소 수지 적층 아크릴계 수지 필름
WO2011093300A1 (ja) 2010-01-26 2011-08-04 三菱レイヨン株式会社 フッ素艶消しフィルム、フッ素艶消し積層フィルム、フッ素艶消し加飾積層フィルム、積層シート、及びこれらを積層した積層成形品、並びに、その製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171437A (ja) * 1997-08-28 1999-03-16 Kuraray Co Ltd アクリル系多層構造粒状複合体
JP2003236998A (ja) * 2002-02-14 2003-08-26 Bando Chem Ind Ltd 装飾用シート
JP2004204188A (ja) * 2002-12-26 2004-07-22 Kanegafuchi Chem Ind Co Ltd 低温加工特性、耐擦り傷性に優れるメタクリル系樹脂組成物
JP2004331866A (ja) * 2003-05-09 2004-11-25 Kanegafuchi Chem Ind Co Ltd 低温加工特性および耐擦り傷性に優れる熱可塑性樹脂組成物
WO2013039119A1 (ja) * 2011-09-12 2013-03-21 三菱レイヨン株式会社 積層フィルム及び積層成形品

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107302A1 (ja) * 2017-11-28 2019-06-06 デンカ株式会社 フッ化ビニリデン系樹脂多層フィルム
KR20200086712A (ko) * 2017-11-28 2020-07-17 덴카 주식회사 불화 바이닐리덴계 수지 다층 필름
JPWO2019107302A1 (ja) * 2017-11-28 2020-12-03 デンカ株式会社 フッ化ビニリデン系樹脂多層フィルム
US11173693B2 (en) 2017-11-28 2021-11-16 Denka Company Limited Vinylidene fluoride-based resin multi-layered film
JP7232770B2 (ja) 2017-11-28 2023-03-03 デンカ株式会社 フッ化ビニリデン系樹脂多層フィルム
KR102582233B1 (ko) * 2017-11-28 2023-09-22 덴카 주식회사 불화 바이닐리덴계 수지 다층 필름
WO2020137116A1 (ja) * 2018-12-27 2020-07-02 株式会社クレハ 樹脂組成物、樹脂組成物の製造方法、成形体および成形体の製造方法
JP2020105381A (ja) * 2018-12-27 2020-07-09 株式会社クレハ 樹脂組成物、樹脂組成物の製造方法、成形体および成形体の製造方法
JP7177694B2 (ja) 2018-12-27 2022-11-24 株式会社クレハ 樹脂組成物、樹脂組成物の製造方法、成形体および成形体の製造方法
WO2021039533A1 (ja) * 2019-08-26 2021-03-04 デンカ株式会社 フッ化ビニリデン系樹脂多層フィルム、自動車内外装用フィルム、自動車用部品及び自動車

Also Published As

Publication number Publication date
JPWO2017043467A1 (ja) 2017-09-07
US10737466B2 (en) 2020-08-11
CN116423949A (zh) 2023-07-14
KR20200029055A (ko) 2020-03-17
EP3348395A4 (en) 2018-10-03
JP6361741B2 (ja) 2018-07-25
EP3348395A1 (en) 2018-07-18
KR20180032609A (ko) 2018-03-30
KR102374802B1 (ko) 2022-03-15
US20180244019A1 (en) 2018-08-30
CN108025540A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
JP4958552B2 (ja) フッ化ビニリデン系樹脂フィルム
JP5681488B2 (ja) フッ素樹脂フィルム及びそれを含む成形品
JP6716916B2 (ja) アクリル樹脂組成物、アクリル樹脂フィルム及び成形体
JPWO2007004670A1 (ja) メタクリル系樹脂組成物
CN106103584B (zh) 丙烯酸类树脂组合物及其制造方法、以及丙烯酸类树脂薄膜
WO2012165526A1 (ja) アクリル樹脂組成物、その成形体、製膜方法、及びアクリル樹脂フィルム
JP5786711B2 (ja) アクリル樹脂組成物及びアクリル樹脂成形体
JP6361741B2 (ja) 積層フィルム及び積層成形品
JP5534650B2 (ja) 外観意匠性を改善したアクリル系樹脂フィルム
EP2784107A1 (en) Acryl-based laminate film having good weatherability and formability and method for manufacturing same
JP6666835B2 (ja) メタクリル系樹脂組成物
WO2018174260A1 (ja) 樹脂組成物、フッ素系フィルム、フッ素系積層フィルム及び積層成形体
WO2022210029A1 (ja) 樹脂組成物、成形体及びフィルム
JP2009235236A (ja) 自動車用フィルム
WO2004035683A1 (ja) アクリルフィルムおよびその積層品
JP2019189849A (ja) アクリル樹脂組成物及びフィルム、並びに積層体
JP2001064469A (ja) アクリル系樹脂組成物フィルムおよびその積層体
JP2024007545A (ja) 積層体
JP2022137004A (ja) アクリル樹脂組成物、フィルム、及びフィルムの製造方法
JP5473309B2 (ja) 浴室内装材の被覆用アクリル樹脂フィルム
JP2011153291A (ja) 多層重合体粒子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016561026

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187004928

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15758569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016844328

Country of ref document: EP