WO2017042971A1 - 処理システム及びロボットの制御方法 - Google Patents

処理システム及びロボットの制御方法 Download PDF

Info

Publication number
WO2017042971A1
WO2017042971A1 PCT/JP2015/075891 JP2015075891W WO2017042971A1 WO 2017042971 A1 WO2017042971 A1 WO 2017042971A1 JP 2015075891 W JP2015075891 W JP 2015075891W WO 2017042971 A1 WO2017042971 A1 WO 2017042971A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
robot
measurement sensor
position measurement
arm
Prior art date
Application number
PCT/JP2015/075891
Other languages
English (en)
French (fr)
Inventor
拓也 福田
橋口 幸男
研司 松熊
梅野 真
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2015/075891 priority Critical patent/WO2017042971A1/ja
Priority to JP2017538828A priority patent/JP6566037B2/ja
Publication of WO2017042971A1 publication Critical patent/WO2017042971A1/ja
Priority to US15/916,281 priority patent/US10913150B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion

Definitions

  • the present invention relates to a processing system and a robot control method.
  • Patent Document 1 describes a measurement system that measures the height position, planar position, and posture of a load with a laser marker and a CCD camera provided on a robot hand and causes the hand to perform a picking operation.
  • Patent Document 2 describes a scanning operation in which one or a plurality of points of the edge position of each side of a workpiece is measured by a position detection sensor mounted on a robot.
  • Patent Document 3 describes that three points (P1, P2, P3) on two orthogonal sides of the work object are measured by a contact position detection probe provided in the robot.
  • the position of the work target may be measured in advance for alignment.
  • the position measurement may be performed by a position measurement sensor provided on the robot arm as in Patent Documents 1 to 3, for example.
  • the posture of the robot arm at the time of measurement may be different from the posture of the robot arm at the time of work. Even if the posture of the robot arm is different, ideally there should be no deviation in the approach point of the robot arm, but in reality, such as backlash of the gear that constitutes the joint of the robot arm and deflection of the robot arm The approach point of the robot arm may shift due to the influence. If the posture of the robot arm differs between the position measurement and the work, the tool alignment may not be performed accurately.
  • a processing system is used when a robot having at least one arm having a hand at a tip, and being moved by the arm held by the hand and performing processing on a processing target.
  • a first position measurement sensor that measures the position of the device to be measured;
  • a robot control device that causes the hand to hold the first position measurement sensor and measures the position of the device by the first position measurement sensor;
  • the first position measurement sensor is a laser sensor
  • the robot control device holds the tool used for processing the processing target in the hand.
  • the laser sensor may be gripped by the hand such that the central axis of the tool and the optical axis of the laser beam of the laser sensor overlap.
  • the robot control device when the robot control device causes the first position measurement sensor to measure the position of the device, the direction intersecting the longitudinal direction of the hand is the first direction.
  • the first position measurement sensor may be gripped by the hand so as to be within a measurement range by the position measurement sensor.
  • the processing system further includes a position reference instrument fixed at a predetermined position, and the robot control device holds the first position measurement sensor on the hand.
  • the position reference instrument may be measured to have a compensation unit that compensates for a shift in the gripping position of the first position measurement sensor.
  • the first position measurement sensor has a plurality of handles gripped by the hand, and the robot control device applies to the processing target using the device.
  • a selection unit that selects which of the plurality of handles of the first position measurement sensor is to be gripped according to processing may be provided.
  • the plurality of handles are provided to extend in different directions, and the robot control device corresponds to the direction in which the plurality of handles are provided. Any one of the plurality of handles may be grasped as the angle.
  • the robot further includes a second position measurement sensor provided in the robot, and the robot control device includes the device measured by the second position measurement sensor or Based on the position of the processing target, processing for the processing target using the device may be performed.
  • a robot control method wherein a robot having at least one arm having a hand at a tip grips a first position measurement sensor on the hand, and the first position sensor gripped by the hand.
  • One position measurement sensor is moved by the arm, and the position of a device used when the robot performs processing on a processing target is measured.
  • FIG. 1 is a configuration block diagram showing a physical configuration of a robot control apparatus according to an embodiment of the present invention. It is a functional block diagram of a robot control device, a first position measurement sensor, a second position measurement sensor, and a robot according to an embodiment of the present invention. It is a figure which shows the external appearance of the 1st position measurement sensor which concerns on embodiment of this invention. It is a figure showing grasping of the 1st handle of the 1st position measurement sensor by the hand of the robot concerning an embodiment of the present invention. It is a figure which shows holding
  • FIG. 1 is a schematic diagram showing a physical configuration of a processing system 200 according to an embodiment of the present invention.
  • the processing system 200 includes at least a robot controller 1 that controls the robot 3.
  • the robot control device 1 itself may be a dedicated device, but here is realized using a general computer. That is, in a commercially available computer, the computer is used as the robot control device 1 by executing a computer program that causes the computer to operate as the robot control device 1.
  • a computer program is generally provided in the form of application software, and is used by being installed in a computer.
  • the application software may be provided by being recorded on an appropriate computer-readable information recording medium such as a CD-ROM, DVD-ROM, or may be provided through various information communication networks such as the Internet. Alternatively, it may be realized by so-called cloud computing in which the function is provided by a server at a remote place through an information communication network.
  • the processing system 200 includes a robot 3 having at least one arm having a hand 3c at the tip.
  • the robot 3 is an articulated robot, and in this embodiment is a double-arm robot having a first arm 3a and a second arm 3b, and each arm alone or both arms cooperate to perform processing on a processing target.
  • the first arm 3a and the second arm 3b are arms that have joints of seven axes or more and can perform processing on a processing target in a plurality of different postures. The posture of the arm will be described later.
  • the processing target is a target to be subjected to a series of tests, culture, and amplification in the fields of biochemistry, biology, and biotechnology, and refers to, for example, cultured cells and drugs.
  • the processing target may be other than that, and may be a processing / assembly / disassembly part to be subjected to welding or bolt tightening by the robot 3, or a load to be transported such as transportation or palletizing. .
  • the pipette 7 accommodated in the pipette rack 10 is mainly held and operated by the hand 3c provided at the tip of the first arm 3a, etc. Operate laboratory equipment, not shown or shown.
  • the robot 3 holds the microtube 6 stored in the tube rack 5 with a hand provided at the tip of the second arm 3b, and moves the microtube 6 from the tube rack 5 to the vortex mixer 11, the centrifuge 12, or the like.
  • Various containers (not shown or illustrated) are moved, such as being moved.
  • the processing system 200 includes a first position measurement sensor 2 that is gripped by the hand 3c and moved by the first arm 3a, and measures the position of the device used when the robot 3 performs processing on the processing target.
  • the first position measurement sensor 2 is a sensor for specifying the position of the measurement target with respect to the arm of the robot 3.
  • the first position measurement sensor 2 can detect a planar or three-dimensional position of a measurement object alone or with the movement of an arm.
  • the first position measurement sensor 2 is a laser sensor that irradiates a measurement target with laser light and measures the distance to the measurement target.
  • the first position measurement sensor 2 does not have to be a laser sensor.
  • the processing system 200 includes a position reference instrument 9.
  • the position reference instrument 9 will be described in detail later.
  • the processing system 200 includes a second position measurement sensor 4 provided in the robot 3. Similar to the first position measurement sensor 2, the second position measurement sensor 4 is a sensor for specifying the position of the measurement target with respect to the arm of the robot 3. In the present embodiment, the second position measurement sensor 4 is a laser sensor that irradiates the measurement target with laser light and measures the distance to the measurement target. The second position measurement sensor 4 is not a laser sensor but may be a camera or the like, similar to the first position measurement sensor 2.
  • the example shown in FIG. 1 includes a vortex mixer 11, a centrifuge 12, and the like. However, these are examples of instruments used for experiments, and other instruments may be used in addition to or instead of these instruments. May be included.
  • the processing system 200 may include a rack for storing Petri dishes, a magnet rack, and the like.
  • the robot 3 according to the present embodiment is a double-arm robot, and the robot 3 includes a first arm 3a and a second arm 3b. At least one arm included in the processing system 200 includes, for example, a plurality of arms. It may be provided separately and controlled so as to operate cooperatively by the robot control device 1.
  • the processing system 200 uses a plurality of coordinate systems in order to define a point P or the like on the space that the hand 3c provided at the tip of the arm of the robot 3 approaches.
  • One is a robot coordinate system S R associated with the robot 3.
  • Robot coordinate system S R is a coordinate system based on the robot 3, in this example, the origin is an orthogonal coordinate system of the left-handed in the center of the robot 3.
  • An arbitrary point is represented as coordinates (X, Y, Z) with reference to the robot 3.
  • it can represent the tip of the coordinates of the robot arm 3.
  • Coordinates of point P represented by the robot coordinate system S R (X, Y, Z ) is the angle of the joint of a plurality of (N) constituting the arm ( ⁇ 1, ⁇ 2, ... , ⁇ N) corresponding to .
  • the angles ( ⁇ 1 , ⁇ 2 ,..., ⁇ N ) of a plurality of joints constituting the arm are referred to as arm postures.
  • the degree of freedom (number of joints) of the arm is 7 degrees or more
  • the angles of the joints of the arm ( ⁇ 1 , ⁇ 2 , ..., ⁇ N) there is a redundancy not uniquely determined.
  • the origin of the robot coordinate system S R is may be set to a point other than the center of the robot, the type of coordinate system used may be other than the Cartesian coordinate system.
  • an equipment coordinate system SD associated with equipment used when the robot 3 performs processing on the processing target, such as the tube rack 5, is also used.
  • the equipment coordinate system S D1 associated with the tube rack 5 is a left-handed orthogonal coordinate system whose origin is at the upper corner of the tube rack 5, and coordinates (x 1 , y representing the point P with respect to the tube rack 5 as a reference. 1 , z 1 ).
  • the device coordinate system SD1 By using the device coordinate system SD1 , the accommodation position of the microtube 6 accommodated in the tube rack 5 can be simply expressed.
  • a coordinate system (spherical coordinates, cylindrical coordinates, etc.) suitable for the device can be set for each device.
  • the device coordinate system SD may be configured and stored in advance on a simulator executed in the robot control device 1 or a computer placed outside.
  • the processing system 200 causes the robot 3 to conduct experiments in the fields of biochemistry, biology, and biotechnology
  • the contents of the experiment can vary, and the equipment used for each experiment can be changed or the arrangement of the equipment can be changed.
  • the tip attached to the tip of the pipette 7 is placed on the wall surface of the microtube 6 to inject the chemical solution, or a small amount of supernatant of the chemical solution contained in the microtube 6 is removed.
  • precise work such as suction is required, and high-precision arm control may be required.
  • the device coordinate system SD is configured on the simulator, the point that the arm actually approaches may be shifted due to the influence of the backlash of the gears constituting each joint of the arm, the deflection of the arm, or the like. . Therefore, in order to perform a precise work, it is desirable to configure the device coordinate system SD in a form in which an influence such as arm deflection is folded.
  • the robot control apparatus 1 causes the hand 3 c to hold the first position measurement sensor 2 and causes the first position measurement sensor 2 to measure the position of the device. Thereby, the difference between the posture of the arm in the processing for the processing target and the posture of the arm in the measurement of the position of the device by the first position measurement sensor 2 is reduced.
  • a small difference in arm posture means that a difference vector ( ⁇ processing) between an N-dimensional vector ⁇ process representing the arm posture during processing and an N-dimensional vector ⁇ measurement representing the arm posture during measurement. This means that the norm of ⁇ measurement )
  • may be any as long as it can evaluate the difference in arm posture.
  • the norm of the vector difference may be evaluated by weighting each vector element representing the angle of each joint.
  • means that the norm value falls within the lower 25% of the possible values of the norm.
  • is equally divided into four numerical intervals from the minimum value to the maximum value, the norm value falls within the interval including the minimum value.
  • the norm of the arm posture difference vector may be used instead of using the other evaluation function.
  • the position of the device is adjusted by the first position measurement sensor 2 in a posture close to the posture of the arm when the arm grips a tool such as the pipette 7 and performs processing. It is possible to measure, and it is possible to prevent the hand 3c from approaching the point where the hand 3c approaches due to the influence of gear backlash and deflection constituting the joint of the arm. Therefore, when the tool is gripped by the hand 3c and the work is performed, the tool gripped by the hand 3c can be precisely aligned.
  • the robot control apparatus 1 calibrates the relationship between the device coordinate system S D and the robot coordinate system S R.
  • the relationship between the device coordinate system S D and the robot coordinate system S R, the position of the processing target in the apparatus, a relationship between the position of the arm, specifically, by the instrument coordinate system S D represented point P of coordinates (x, y, z), refers to the transformation matrix a for converting the robot coordinate system S P output coordinate points represented by R (X, Y, Z) on.
  • the transformation matrix A is generally a 3 ⁇ 3 matrix and is a 6-degree-of-freedom matrix representing translation and rotation.
  • Processing system 200 according to this embodiment, by precisely constitutes the instrument coordinate system S D, the relationship between the device coordinate system S D and the robot coordinate system S R, i.e. calibrating the transformation matrix A, by the arm It enables precise work.
  • FIG. 2 is a block diagram showing a physical configuration of the robot control apparatus 1 according to the embodiment of the present invention.
  • the configuration shown in FIG. 2 shows a general computer used as the robot control device 1, and includes a CPU (Central Processing Unit) 1a, a RAM (Random Access Memory) 1b, an external storage device 1c, and a GC (Graphics Controller).
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • an external storage device 1c a GC (Graphics Controller).
  • Id input device
  • I / O Inpur / Output
  • the external storage device 1c is a device capable of recording information statically such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the signal from the GC 1d is output to a monitor 1h such as a flat panel display where the user visually recognizes the image and displayed as an image.
  • the input device 1e is a device for a user to input information such as a keyboard, a mouse, and a touch panel, and the I / O 1f is an interface for the robot controller 1 to exchange information with an external device.
  • FIG. 3 is a functional block diagram of the robot control device 1, the first position measurement sensor 2, the second position measurement sensor 4, and the robot 3 according to the embodiment of the present invention.
  • the functional blocks shown here are shown paying attention to the functions of the robot control device 1 and the like, and there is not necessarily a one-to-one physical configuration corresponding to each functional block.
  • Some functional blocks are realized by an information processing device such as the CPU 1a of the robot control device 1 executing specific software, and some functional blocks are stored in a specific storage area in an information storage device such as the RAM 1b of the robot control device 1. May be realized by being assigned.
  • the robot control apparatus 1 has an input unit 20 that receives various inputs from the user.
  • the robot control apparatus 1 includes an operation command generation unit 21 that generates an operation command that is a command for controlling the operation of the robot 3 based on an input received by the input unit 20.
  • the robot control apparatus 1 includes an operation command storage unit 27 that stores electronic data of the generated and generated operation commands, and an operation command output that outputs the generated operation commands as an electronic file that can be read by the robot.
  • Unit 28 and an operation command display unit 29 that forms electronic data of the operation command stored in the operation command storage unit 27 and displays it on the monitor 1h.
  • the input unit 20 is normally configured by the input device 1e shown in FIG. 2, but when the robot control apparatus 1 is an application server used for cloud computing, the user's terminal on a remote terminal is used. This corresponds to the I / O 1f to which the operation information is input.
  • the operation command generation unit 21 includes various functional blocks for generating operation commands. Although details will be described later when the operation command generation procedure is described, the operation command generation unit 21 according to the present embodiment moves the arm based on the measured position of the device, and performs processing for the processing target. And a position measurement unit 23 that causes the hand 3c to hold the first position measurement sensor 2 and causes the first position measurement sensor 2 to measure the position of the device. Further, the position measurement unit 23 measures the position of the position reference instrument 9 before measuring the position of the device in a state where the first position measurement sensor 2 is held by the hand 3c, and the first position measurement is performed.
  • a compensation unit 23a that compensates for a shift in the gripping position of the sensor 2 and a selection unit 23b that selects which of the plurality of handles of the first position measurement sensor 2 is gripped in accordance with processing for a processing target using a device. And are included.
  • an operation command is a single job or a collection of jobs in which a plurality of jobs are combined, and is recognized as a unit for a processing target or a container that stores the processing target.
  • the equipment used when the robot 3 performs processing on the processing target includes the tube rack 5, the microtube 6, the pipette 7, the vortex mixer 11, and the centrifuge 12.
  • the tube rack 5 the microtube 6, the pipette 7, the vortex mixer 11, and the centrifuge 12.
  • any device included in the processing system 200 can be a device used when the robot 3 performs processing on a processing target.
  • FIG. 4 is a diagram showing an appearance of the first position measurement sensor 2 according to the embodiment of the present invention.
  • the first position measurement sensor 2 according to the present embodiment is a laser sensor and has a plurality of handles held by the hand 3c.
  • the first position measurement sensor 2 in the example shown in FIG. 4 includes a first handle 2a and a second handle 2b.
  • the optical axis A of the laser light emitted from the first position measurement sensor 2 is shown extending so as to penetrate the first position measurement sensor 2.
  • the first position measuring sensor 2 which is a laser sensor is held by the hand 3c and moved by the first arm 3a, and is used for measuring the position of the equipment such as the tube rack 5.
  • Laser light from the laser sensor is emitted from above toward the equipment such as the tube rack 5 and scanned from the inside to the outside of the equipment. As the laser light crosses the edge of the instrument, a jump occurs in the distance measured by the laser sensor.
  • the position measurement unit 23 acquires the posture of the arm (angle of each joint) and the distance to the device measured by the laser sensor when the laser beam jumps across the edge of the device.
  • the position measuring unit 23 measures the positions of the edges at a plurality of locations on two sides of the device extending in the direction intersecting each other in plan view, and configures the device coordinate system SD based on those measurement points.
  • FIG. 5 is a diagram showing gripping of the first handle 2a of the first position measurement sensor 2 by the hand 3c of the robot 3 according to the embodiment of the present invention.
  • the hand 3 c includes a first grip portion 3 d that is a concave portion provided on the distal end side.
  • the first grip 3d is used when gripping a relatively thin tool such as the pipette 7.
  • the hand 3c has the 2nd holding part 3e which is a recessed part provided in the root side.
  • the second grip 3e is used when gripping relatively thick tools such as the first handle 2a and the second handle 2b of the first position measurement sensor 2.
  • the figure shows the optical axis A of the laser beam emitted from the first position measurement sensor 2 which is a laser sensor.
  • the robot control apparatus 1 has the hand 3c so that the center axis of the tool and the optical axis A of the laser light of the laser sensor overlap when the tool used for processing the processing target is held by the hand 3c. Hold the laser sensor.
  • the robot control apparatus 1 causes the second handle 2e of the hand 3c to hold the first handle 2a of the first position measurement sensor 2, and a tool such as the pipette 7 to the first of the hand 3c.
  • the grip part 2d is gripped.
  • the robot control device 1 overlaps the optical axis A and the center axis of the tool by changing the gripping position in the hand 3 depending on whether the first position measurement sensor 2 is gripped or the tool is gripped. .
  • the central axis of the tool does not necessarily mean a rotationally symmetric axis.
  • the center axis of the tool is an axis that passes through a point where the tool and the processing target come into contact with each other, and is an axis along the longitudinal direction of the tool.
  • the first handle 2a of the first position measurement sensor 2 is The distance between the handle 2a and the optical axis A of the laser beam is set to L.
  • the first position measurement sensor 2 is gripped by the second gripping portion 3e, and the tool such as the pipette 7 is gripped by the first gripping portion 3d, so that the tool in the case where the tool is gripped by the hand 3c.
  • the central axis and the optical axis A of the laser beam of the laser sensor overlap.
  • the center axis of the tool You may control the holding position by the hand 3c so that the optical axis A of the laser beam of a laser sensor may overlap.
  • the robot control apparatus 1 when the position of the device is measured by the first position measurement sensor 2, the direction intersecting with the longitudinal direction of the hand 3 c becomes the measurement range by the first position measurement sensor 2.
  • the first position measurement sensor 2 is held by the hand 3c.
  • the robot control apparatus 1 according to the present embodiment is configured so that the optical axis A of the laser beam of the laser sensor that is the first position measurement sensor 2 faces downward in a state where the longitudinal direction of the hand 3c is horizontal.
  • the position measuring sensor 2 is held by the hand 3c. Thereby, the vertical downward direction intersecting with the longitudinal direction of the hand 3c becomes a measurement range by the laser sensor.
  • the measurement range of the first position measurement sensor 2 is downward. can get. Therefore, the measurement by the first position measurement sensor 2 can be performed in the posture in which the arm is most extended, and the measurement is performed as compared with the case in which the measurement by the first position measurement sensor 2 is performed in the posture of the arm with the hand 3c bent. The possible range is widened.
  • FIG. 6 is a diagram illustrating gripping of the second handle 2b of the first position measurement sensor 2 by the hand 3c of the robot 3 according to the embodiment of the present invention.
  • the second handle 2b is gripped by the second grip portion 3e of the hand 3c.
  • the figure shows the optical axis A of the laser beam emitted from the first position measurement sensor 2 which is a laser sensor.
  • the first handle 2a and the second handle 2b of the first position measurement sensor 2 are provided to extend in different directions. That is, the first handle 2a extends in a direction parallel to the optical axis A, while the second handle 2b extends in a direction orthogonal to the optical axis A.
  • the position measuring unit 23 of the robot control apparatus 1 according to the present embodiment causes the hand 3c to hold one of the plurality of handles as an angle corresponding to the direction in which the plurality of handles are provided.
  • the hand 3c sets the angle of the hand 3c as the angle at which the longitudinal direction of the hand 3c is orthogonal to the optical axis A.
  • the handle 2a is gripped.
  • the hand 3c grips the second handle 2b
  • the hand 3c is gripped by setting the angle of the hand 3c so that the longitudinal direction of the hand 3c is parallel to the optical axis A.
  • the posture of the arm when the tool is gripped and processing using the tool is performed, and the first position measurement sensor 2 first
  • the difference between the posture of the arm when the handle 2a is gripped and the position of the device is measured can be reduced.
  • the posture of the arm when the tool is gripped and processing using the tool is performed, and the second position of the first position measurement sensor 2 is determined. The difference between the posture of the arm when the handle 2b is gripped and the position of the device is measured can be reduced.
  • the first measurement sensor 2 can be gripped so as to reproduce the angle of the hand 3c at the time of processing, and when the position of the device is measured and when processing is performed. And the difference in the posture of the arm can be further reduced. Therefore, the position is measured more accurately, and the tool held by the arm can be aligned more accurately.
  • the selection unit 23b of the robot control device 1 selects which of the plurality of handles of the first position measurement sensor 2 is to be gripped in accordance with the processing for the processing target using the device.
  • the selection unit 23b determines whether or not the hand 3c is horizontal in the process for the processing target using the device. If the hand 3c is horizontal in the process, the selection unit 23b selects the first position measurement sensor 2 to hold the first handle 2a. If the hand 3c is vertical in the process, the selection unit 23b selects to hold the second handle 2b of the first position measurement sensor 2.
  • the selection unit 23b determines the angle of the hand 3c between the processing time and the measurement time. Select a hand that can be held without changing as much as possible.
  • the first position measurement sensor 2 can be gripped and the position of the device can be measured so as to better reproduce the posture of the arm during processing using the device. . Therefore, the difference in the posture of the arm between when measuring the position of the device and when performing processing using the device can be made smaller, and the tool held by the arm can be more accurately aligned. .
  • the first handle 2a and the second handle 2b are provided extending in a direction parallel or perpendicular to the optical axis A, but the handle of the first position measuring sensor 2 is These may be provided in directions other than these, or may be provided in a curved manner.
  • the hand 3c is often controlled horizontally or vertically, and the first position measurement sensor 2 has a hand that can be gripped from the horizontal direction or the vertical direction, so that the tool 3c can perform processing.
  • the direction of the hand 3c can be made uniform at the time of measurement by the first position measurement sensor 2.
  • a handle that can be held in the same direction of the hand 3c is provided in the first position measurement sensor 2 so that it can be processed and measured.
  • the difference in the arm posture can be reduced.
  • a plurality of handles in the same direction as the handle of the first position measurement sensor 2 may be provided in different positions depending on the tool.
  • the gripping of the first position measurement sensor 2 by the hand 3c can be performed at the same gripping position for each gripping, and the gripping position is not taken into account.
  • the processing system 200 has the position reference instrument 9 fixed at a predetermined position, and the compensation unit 23a of the robot control device 1 causes the hand 3c to hold the first position measurement sensor 2. In this state, before measuring the position of the device, the position of the position reference instrument 9 is measured, and the shift of the grip position of the first position measurement sensor 2 is compensated.
  • the compensation unit 23a causes the first position measurement sensor 2 gripped by the hand 3c to measure the position of the position reference instrument 9, and the measurement result of the position reference instrument 9 and the fixed position of the position reference instrument 9 stored in advance are measured. And compare. Then, according to the comparison result, the measurement value by the first position measurement sensor 2 is increased or decreased so as to cancel the grip position shift, and the measurement value is compensated.
  • the processing system 200 includes the position reference instrument 9 as an independent member, but other apparatuses may be used as the position reference instrument.
  • the pipette rack 10 may be used as a position reference instrument, or the rack of the first position measurement sensor 2 may be used as a position reference instrument. Thereby, the number of members installed on the work table can be reduced.
  • the displacement of the gripping position of the first position measurement sensor 2 is compensated, and the position of the device is accurately measured even when the gripping position is slightly shifted for each gripping. Is done. Therefore, accurate measurement is possible without strictly controlling the gripping position of the first position measurement sensor 2, and the tool can be precisely aligned.
  • the robot 3 includes the second position measurement sensor 4 provided in the first arm 3a. Based on the position of the device or the processing target measured by the second position measurement sensor 4, the robot control apparatus 1 performs processing on the processing target using the device.
  • the first position measuring sensor 2 and the second position measuring sensor 4 may be the same sensor.
  • the robot control device 1 calibrates the coordinate system by measuring the position of the device using the first position measurement sensor 2 prior to the processing for processing that requires precise arm control.
  • a measurement object that is expected to have a relatively large position change for each process is measured. In this case, the position measurement using the second position measurement sensor 4 is performed.
  • operations such as gripping of the first position measurement sensor 2 can be omitted as compared with the case where the position of the measurement target is uniformly measured by the first position measurement sensor 2.
  • the total time required for processing can be shortened.
  • the position measuring sensor can be properly used according to the processing, and both improvement in work accuracy and reduction in processing time can be achieved.
  • FIG. 7 is a flowchart of a robot control method performed by the robot control apparatus 1 according to the embodiment of the present invention.
  • the direction of the hand 3c is determined by the selection unit 23b of the position measurement unit 23 in the process for the processing target using the device (ST100), and the process branches to a process of selecting a handle corresponding to the direction.
  • the selection unit 23b selects to hold the first handle 2a of the first position measurement sensor 2, and the robot 3 holds the first handle 2a by the hand 3c. (ST101).
  • the selection unit 23b selects to hold the second handle 2b of the first position measurement sensor 2, and the robot 3 holds the second handle 2b with the hand 3c. (ST102).
  • a handle to be gripped may be further selected according to a tool used during processing.
  • the position of the position reference instrument 9 is measured by the compensation unit 23b by the first position measurement sensor 2 held by the hand 3c (ST103). Then, the measured position of the position reference instrument 9 is compared with a predetermined position where the position reference instrument 9 is fixed to compensate for the shift of the grip position (ST104).
  • the position measurement unit 23 moves the first position measurement sensor 2 held by the hand 3c by the first arm 3a, and measures the position of the device used when the robot 3 performs processing on the processing target. (ST105).
  • a device coordinate system SD is constructed based on the measured device position. Then, to calibrate the relationship between the device coordinate system S D and the robot coordinate system S R, performs calibration processing (ST 106).
  • the position of the device is adjusted by the first position measurement sensor 2 in a posture close to the posture of the arm when the arm grips a tool such as the pipette 7 and performs processing. It is possible to measure, and it is possible to prevent the hand 3c from approaching the point where the hand 3c approaches due to the influence of gear backlash and deflection constituting the joint of the arm. Therefore, when the tool is gripped by the hand 3c and the work is performed, the tool gripped by the hand 3c can be precisely aligned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manipulator (AREA)

Abstract

本発明は、ロボットアームにツールを把持させて作業をさせる場合に、ロボットアームに把持されたツールを精密に位置合わせすることのできる処理システム及びロボットの制御方法を提供することをその課題とする。処理システム(200)は、先端にハンド(3c)を有する少なくとも1のアームを有するロボット(3)と、前記ハンドに把持されて前記アームにより移動され、前記ロボットが処理対象に処理を行う際に使用される機器の位置を測定する第1の位置測定センサ(2)と、前記ハンドに前記第1の位置測定センサを把持させ、前記第1の位置測定センサにより、前記機器の位置を測定させるロボット制御装置(1)と、を有する。

Description

処理システム及びロボットの制御方法
 本発明は、処理システム及びロボットの制御方法に関する。
 従来、物体をロボットアームによって確実に把持するため、物体の位置を計測することがあった。例えば、下記特許文献1には、ロボットのハンドに設けられたレーザマーカー及びCCDカメラによって荷物の高さ位置、平面位置及び姿勢を測定し、ハンドにピッキング動作をさせる計測システムが記載されている。
 また、下記特許文献2には、ロボットに搭載した位置検出センサによって、ワークの各辺のエッジ位置を1点又は複数点測定するスキャン動作が記載されている。さらに、下記特許文献3には、ロボットに設けられた接触位置検出プローブによって、作業対象物の直交する2辺上の3点(P1、P2、P3)を測定することが記載されている。
特開平09-105608号公報 特許第5366018号 特許第5549223号
 ロボットアームにツールを把持させて作業をさせる場合、予め作業対象の位置を測定して位置合わせを行う場合がある。位置の測定は、例えば特許文献1~3のように、ロボットアームに設けられた位置測定センサによって行われる場合がある。しかしながら、ロボットアームに設けられた位置測定センサにより位置を測定する場合、測定時におけるロボットアームの姿勢と、作業時におけるロボットアームの姿勢とは異なる場合がある。ロボットアームの姿勢が異なっても、理想的にはロボットアームのアプローチする点にずれが生じることはないはずだが、実際には、ロボットアームの関節を構成する歯車のバックラッシやロボットアームのたわみ等の影響により、ロボットアームのアプローチする点がずれる場合がある。ロボットアームの姿勢が位置測定時と作業時で異なってしまうと、ツールの位置合わせが精度良く行われない場合がある。
 本発明は、ロボットアームにツールを把持させて作業をさせる場合に、ロボットアームに把持されたツールを精密に位置合わせすることのできる処理システム及びロボットの制御方法を提供することをその課題とする。
 本発明の一の側面による処理システムは、先端にハンドを有する少なくとも1のアームを有するロボットと、前記ハンドに把持されて前記アームにより移動され、前記ロボットが処理対象に処理を行う際に使用される機器の位置を測定する第1の位置測定センサと、前記ハンドに前記第1の位置測定センサを把持させ、前記第1の位置測定センサにより、前記機器の位置を測定させるロボット制御装置と、を有する。
 また、本発明の別の側面による処理システムにおいて、前記第1の位置測定センサは、レーザセンサであり、前記ロボット制御装置は、前記処理対象に対する処理に用いられるツールを前記ハンドに把持する場合における前記ツールの中心軸と、前記レーザセンサのレーザ光の光軸とが重なるように、前記ハンドに前記レーザセンサを把持させてもよい。
 また、本発明の別の側面による処理システムにおいて、前記ロボット制御装置は、前記第1の位置測定センサにより、前記機器の位置を測定させる際、前記ハンドの長手方向と交わる方向が前記第1の位置測定センサによる測定範囲となるように、前記第1の位置測定センサを前記ハンドに把持させてもよい。
 また、本発明の別の側面による処理システムにおいて、所定の位置に固定された位置基準器具をさらに有し、前記ロボット制御装置は、前記第1の位置測定センサを前記ハンドに把持させた状態で、前記機器の位置を測定する前に、前記位置基準器具の位置を測定させ、前記第1の位置測定センサの把持位置のずれを補償させる補償部を有してもよい。
 また、本発明の別の側面による処理システムにおいて、前記第1の位置測定センサは、前記ハンドにより把持される複数のハンドルを有し、前記ロボット制御装置は、前記機器を用いた前記処理対象に対する処理に応じて、前記第1の位置測定センサの前記複数のハンドルのうちいずれを把持させるか選択する選択部を有してもよい。
 また、本発明の別の側面による処理システムにおいて、前記複数のハンドルは、それぞれ異なる方向に延伸して設けられ、前記ロボット制御装置は、前記ハンドを前記複数のハンドルの設けられた方向に対応した角度として、前記複数のハンドルのうちいずれかを把持させてもよい。
 また、本発明の別の側面による処理システムにおいて、前記ロボットに備えられた第2の位置測定センサをさらに有し、前記ロボット制御装置は、前記第2の位置測定センサにより測定された前記機器又は前記処理対象の位置に基づいて、前記機器を用いた前記処理対象に対する処理を行わせてもよい。
 また、本発明の別の側面によるロボットの制御方法は、先端にハンドを有する少なくとも1のアームを有するロボットにより、前記ハンドに第1の位置測定センサを把持し、前記ハンドに把持された前記第1の位置測定センサを前記アームにより移動させ、前記ロボットが処理対象に処理を行う際に使用される機器の位置を測定する。
本発明の実施形態に係る処理システムの物理的な構成を示す概略図である。 本発明の実施形態に係るロボット制御装置の物理的な構成を示す構成ブロック図である。 本発明の実施形態に係るロボット制御装置、第1の位置測定センサ、第2の位置測定センサ及びロボットの機能ブロック図である。 本発明の実施形態に係る第1の位置測定センサの外観を示す図である。 本発明の実施形態に係るロボットのハンドによる第1の位置測定センサの第1のハンドルの把持を示す図である。 本発明の実施形態に係るロボットのハンドによる第1の位置測定センサの第2のハンドルの把持を示す図である。 本発明の実施形態に係るロボットの制御方法についてのフローチャートである。
 図1は、本発明の実施形態に係る処理システム200の物理的な構成を示す概略図である。処理システム200は、少なくともロボット3を制御するロボット制御装置1を含む。ロボット制御装置1自体は、専用の機器であってもよいが、ここでは一般的なコンピュータを使用して実現されている。すなわち、市販のコンピュータにおいて、当該コンピュータをロボット制御装置1として動作させるコンピュータプログラムを実行することによりかかるコンピュータをロボット制御装置1として使用する。かかるコンピュータプログラムは、一般にアプリケーションソフトウェアの形で提供され、コンピュータにインストールされて使用される。当該アプリケーションソフトウェアは、CD-ROMやDVD-ROMその他のコンピュータ読み取り可能な適宜の情報記録媒体に記録されて提供されてよく、また、インターネット等の各種の情報通信ネットワークを通じて提供されてもよい。あるいは、情報通信ネットワークを通じて遠隔地にあるサーバによりその機能が提供される、いわゆるクラウドコンピューティングにより実現されてもよい。
 処理システム200は、先端にハンド3cを有する少なくとも1のアームを有するロボット3を含む。ロボット3は、多関節ロボットであり、本実施形態では第1アーム3a及び第2アーム3bを有する双腕ロボットであり、それぞれのアーム単独で又は両アームを協働させ、処理対象に対する処理を行う。第1アーム3a及び第2アーム3bは、具体的には、7軸以上の関節を有し、複数の異なる姿勢で処理対象に対する処理を行うことのできるアームである。アームの姿勢については後述する。また、本実施形態においては、処理対象は、生化学、生物及び生命工学の分野における一連の検査や培養、増幅といった処理を行う対象であり、例えば培養した細胞や薬剤を指している。もっとも、処理対象はそれ以外のものであってもよく、ロボット3による溶接やボルトの締め付け等の対象となる加工・組立分解部品や、搬送やパレタイジング等の搬送対象となる荷物であってもよい。
 各アームの操作対象は特に限定されないが、本実施形態に係るロボット3では、主として第1アーム3aの先端に備えられたハンド3cによりピペットラック10に収容されたピペット7を把持し操作する等、図示しあるいは図示しない実験器具を操作する。また、ロボット3は、第2アーム3bの先端に備えられたハンドによりチューブラック5に格納されたマイクロチューブ6を把持し、マイクロチューブ6をチューブラック5からボルテックスミキサー11や遠心分離器12等へ移動させるなど、図示しあるいは図示しない各種容器を移動させる。
 処理システム200は、ハンド3cに把持されて第1アーム3aにより移動され、ロボット3が処理対象に処理を行う際に使用される機器の位置を測定する第1の位置測定センサ2を含む。第1の位置測定センサ2は、ロボット3の有するアームに対して、測定対象の位置を特定するためのセンサである。第1の位置測定センサ2は、単体で、又はアームの動作を伴って、測定対象の平面的又は立体的な位置を検出できるものである。本実施形態において、第1の位置測定センサ2は、レーザセンサであって、測定対象にレーザ光を照射し、測定対象までの距離を測定するセンサである。第1の位置測定センサ2は、レーザセンサでなくてもよく、例えば動画や静止画を撮影することのできるカメラによる位置検出や、超音波センサ、接触式センサ又は磁気センサ等を採用することもできる。本実施形態では、第1の位置測定センサ2としてレーザセンサを採用することで、非接触かつ高精度で測定対象までの距離を測定することができる。なお、図1に示す例では、処理システム200は、位置基準器具9を含む。位置基準器具9については後に詳細に説明する。
 処理システム200は、ロボット3に備えられた第2の位置測定センサ4を含む。第2の位置測定センサ4は、第1の位置測定センサ2と同様に、ロボット3の有するアームに対して、測定対象の位置を特定するためのセンサである。本実施形態において、第2の位置測定センサ4は、レーザセンサであって、測定対象にレーザ光を照射し、測定対象までの距離を測定するセンサである。第2の位置測定センサ4は、レーザセンサでなくカメラ等であってもよいことは、第1の位置測定センサ2と同様である。
 図1に示す例では、ボルテックスミキサー11と、遠心分離器12等が含まれるが、これらは実験を行う場合に用いられる器具の一例であり、これらの器具に加えて又は換えて、他の器具が含まれてもよい。例えば、処理システム200には、ペトリ皿を保管するラックや、マグネットラック等が含まれてもよい。また、本実施形態に係るロボット3は双腕ロボットであり、ロボット3は第1アーム3a及び第2アーム3bを備えるが、処理システム200に含まれる少なくとも1のアームは、例えば、複数のアームが別個独立に備えられて、ロボット制御装置1により協調して動作するように制御されるものであってもよい。
 本実施形態に係る処理システム200は、ロボット3のアームの先端に設けられたハンド3cがアプローチする空間上の点P等を規定するために複数の座標系を使用する。1つは、ロボット3に付随するロボット座標系Sである。ロボット座標系Sは、ロボット3を基準とする座標系であり、この例では、原点がロボット3の中心にある左手系の直交座標系である。任意の点は、ロボット3を基準とする座標(X,Y,Z)として表される。少なくともロボット座標系Sを用いることで、ロボット3のアームの先端の座標を表すことができる。ロボット座標系Sによって表される点Pの座標(X,Y,Z)は、アームを構成する複数(N個)の関節の角度(θ,θ,…,θ)に対応する。本明細書では、アームを構成する複数の関節の角度(θ,θ,…,θ)をアームの姿勢と称する。ここで、アームの自由度(関節の数)が7自由度以上ある場合には、点Pに対して所望の方向からハンド3cをアプローチさせる際、アームの関節の角度(θ,θ,…,θ)は一意に定まらず冗長性がある。なお、ロボット座標系Sの原点はロボットの中心以外の点に設定してもよいし、用いる座標系の種類は直交座標系以外であってもよい。
 本実施形態に係る処理システム200では、チューブラック5等、ロボット3が処理対象に処理を行う際に使用される機器に付随する機器座標系Sも使用される。例えばチューブラック5に付随する機器座標系SD1は、原点がチューブラック5の上部の角にある左手系の直交座標系であり、チューブラック5を基準として点Pを表す座標(x,y,z)である。機器座標系SD1を用いることで、チューブラック5に収容されたマイクロチューブ6の収容位置を簡潔に表すことができる。また、機器座標系Sを用いることで、機器毎に機器に適した座標系(球座標や円筒座標等)を設定することもできる。また、作業台における機器の取り付け位置を変更した場合であっても、処理におけるハンド3cの位置は機器座標系Sで表せば変わらないため、アームの姿勢(θ,θ,…,θ)の書き換えが行いやすいという利点がある。機器座標系Sは、ロボット制御装置1又は外部に置かれたコンピュータにおいて実行されるシミュレータ上で予め構成され、記憶されてよい。
 処理システム200によって、ロボット3に生化学、生物及び生命工学の分野における実験を行わせる場合、実験の内容は様々に変わり得て、実験毎に使用する機器を変更したり、機器の配置を変更したりしたいという要求がある。しかしながら、例えばピペット7を用いた処理では、ピペット7の先端に装着されたチップをマイクロチューブ6の壁面に這わせて薬液の注入を行ったり、マイクロチューブ6に収容された微量の薬液の上澄みを吸引させたりする等、精密な作業が求められる場合があり、高精度なアームの制御が求められる場合がある。そのような場合、シミュレータ上で機器座標系Sを構成したとしても、アームの各関節を構成する歯車のバックラッシやアームのたわみ等の影響によって、アームが実際にアプローチする点がずれるおそれがある。そのため、精密な作業を行うためには、アームのたわみ等の影響を折り込んだ形で機器座標系Sを構成することが望まれる。
 本実施形態に係るロボット制御装置1は、ハンド3cに第1の位置測定センサ2を把持させ、第1の位置測定センサ2により、機器の位置を測定させる。これにより、処理対象に対する処理におけるアームの姿勢と、第1の位置測定センサ2による機器の位置の測定におけるアームの姿勢との差が小さくなる。ここで、アームの姿勢の差が小さいとは、処理時のアームの姿勢を表すN次元のベクトルθ処理と、測定時におけるアームの姿勢を表すN次元のベクトルθ測定との差ベクトル(θ処理-θ測定)のノルム|θ処理-θ測定|が小さいことを意味する。ベクトルの差のノルム|θ処理-θ測定|は、アームの姿勢の差を評価できるものであればどのようなものでもよく、例えば、|(a,a,…,a)|=|a|+|a|+…+|a|というように、各要素の絶対値の総和で算出してよい。また、アームの姿勢に及ぼす各関節の影響の大きさは、関節毎に異なるため、各関節の角度を表すベクトルの要素毎に重み付けを行って、ベクトルの差のノルムを評価してもよい。ベクトルの差のノルム|θ処理-θ測定|が小さいとは、ノルムが取り得る値のうち下位25%以内にノルムの値が収まることをいうものとする。言い換えると、ベクトルの差のノルム|θ処理-θ測定|の最小値から最大値までを4つの数値区間に等分した場合に、最小値を含む区間にノルムの値が収まるということである。なお、アームの姿勢の差の大きさを評価するため、アームの姿勢の差ベクトルのノルムを用いるのではなく、その他の評価関数によって評価することとしてもよい。
 本実施形態に係るロボット制御装置1によれば、アームにピペット7等のツールを把持させて処理を行わせる場合におけるアームの姿勢と近い姿勢で、第1の位置測定センサ2により機器の位置を測定することができ、アームの関節を構成する歯車のバックラッシやたわみ等の影響によりハンド3cのアプローチする点にずれが生じることが防止される。そのため、ハンド3cにツールを把持させて作業をさせる場合に、ハンド3cに把持されたツールを精密に位置合わせすることができる。
 また、本実施形態に係るロボット制御装置1は、機器座標系Sとロボット座標系Sとの間の関係を較正する。ここで、機器座標系Sとロボット座標系Sとの間の関係とは、機器における処理対象の位置と、アームの位置との関係であり、具体的には、機器座標系Sによって表された点Pの座標(x,y,z)を、ロボット座標系Sによって表された点Pの座標(X,Y,Z)に変換する変換行列Aをいう。変換行列Aは、一般に3×3の行列であり、並進と回転を表す6自由度の行列である。本実施形態に係る処理システム200は、機器座標系Sを正確に構成し、機器座標系Sとロボット座標系Sとの間の関係、すなわち変換行列Aを較正することで、アームによる精密な作業を可能にするものである。
 図2は、本発明の実施形態に係るロボット制御装置1の物理的な構成を示すブロック図である。図2に示した構成は、ロボット制御装置1として用いられる一般的なコンピュータを示しており、CPU(Central Processing Unit)1a、RAM(Random Access Memory)1b、外部記憶装置1c、GC(Graphics Controller)1d、入力デバイス1e及びI/O(Inpur/Output)1fがデータバス1gにより相互に電気信号のやり取りができるよう接続されている。ここで、外部記憶装置1cはHDD(Hard Disk Drive)やSSD(Solid State Drive)等の静的に情報を記録できる装置である。またGC1dからの信号はフラットパネルディスプレイ等の、使用者が視覚的に画像を認識するモニタ1hに出力され、画像として表示される。入力デバイス1eはキーボードやマウス、タッチパネル等の、ユーザが情報を入力するための機器であり、I/O1fはロボット制御装置1が外部の機器と情報をやり取りするためのインタフェースである。
 図3は、本発明の実施形態に係るロボット制御装置1、第1の位置測定センサ2、第2の位置測定センサ4及びロボット3の機能ブロック図である。なお、ここで示した機能ブロックは、ロボット制御装置1等が有する機能に着目して示したものであり、必ずしも各機能ブロックに1対1に対応する物理的構成が存在するとは限らない。いくらかの機能ブロックはロボット制御装置1のCPU1a等の情報処理装置が特定のソフトウェアを実行することにより実現され、またいくらかの機能ブロックはロボット制御装置1のRAM1b等の情報記憶装置に特定の記憶領域が割り当てられることにより実現されてよい。
 ロボット制御装置1は、ユーザからの各種の入力を受け付ける入力部20を有する。また、ロボット制御装置1は、入力部20により受けつけられた入力に基づいて、ロボット3の動作を制御する指令である動作指令を生成する動作指令生成部21を有する。さらに、ロボット制御装置1は、生成中及び生成された動作指令の電子データを記憶する動作指令記憶部27と、生成された動作指令をロボットが読み取り可能な形式の電子ファイルとして出力する動作指令出力部28と、動作指令記憶部27に記憶された動作指令の電子データを成形しモニタ1hに表示する動作指令表示部29とを有する。
 入力部20は、通常は図2に示した入力デバイス1eにより構成されるが、ロボット制御装置1がクラウドコンピューティングに用いられるアプリケーションサーバである場合には、遠隔地にある端末上でのユーザの操作情報が入力されるI/O1fが該当することになる。
 動作指令生成部21には動作指令を生成するための種々の機能ブロックが含まれる。詳細は後ほど動作指令の生成手順を説明する際に合わせて説明するが、本実施形態に係る動作指令生成部21には、測定された機器の位置を基準としてアームを移動させ、処理対象に対する処理をさせる処理部22と、ハンド3cに第1の位置測定センサ2を把持させ、第1の位置測定センサ2により、機器の位置を測定させる位置測定部23と、が含まれる。さらに、位置測定部23には、第1の位置測定センサ2をハンド3cに把持させた状態で、機器の位置を測定する前に、位置基準器具9の位置を測定させ、第1の位置測定センサ2の把持位置のずれを補償させる補償部23aと、機器を用いた処理対象に対する処理に応じて、第1の位置測定センサ2の複数のハンドルのうちいずれを把持させるか選択する選択部23bと、が含まれる。
 なお、本明細書において、動作指令とは、単一のジョブ又は複数のジョブが組み合わされたジョブの集合体であって、処理対象又は処理対象が収容される容器に対する一単位のものとして認識される処理を指示する指令をいうものとする。
 また、本実施形態に係る処理システム200において、ロボット3が処理対象に処理を行う際に使用される機器とは、チューブラック5、マイクロチューブ6、ピペット7、ボルテックスミキサー11及び遠心分離器12をいう。これらは例示であって、一般には、これら以外のものが含まれてもよいことは言うまでもない。処理システム200に含まれる機器であれば、ロボット3が処理対象に処理を行う際に使用される機器となり得る。
 図4は、本発明の実施形態に係る第1の位置測定センサ2の外観を示す図である。本実施形態に係る第1の位置測定センサ2は、レーザセンサであり、ハンド3cにより把持される複数のハンドルを有する。図4に示す例の第1の位置測定センサ2は、第1のハンドル2aと、第2のハンドル2bとを有する。また、図4では、第1の位置測定センサ2から出射されるレーザ光の光軸Aを、第1の位置測定センサ2を貫くように延長して図示している。
 レーザセンサである第1の位置測定センサ2は、ハンド3cに把持されて、第1アーム3aによって移動され、チューブラック5等の機器の位置の測定に用いられる。レーザセンサのレーザ光は、チューブラック5等の機器に向けて上方から照射され、機器の内側から外側に向けて走査される。レーザ光が機器の縁を横切る際に、レーザセンサによって測定される距離に飛びが生じる。位置測定部23は、レーザ光が機器の縁を横切って飛びが生じた際のアームの姿勢(各関節の角度)及びレーザセンサにより測定された機器までの距離を取得する。辺の縁におけるアームの姿勢から、ロボット座標で表した辺の縁の平面的な位置が算出でき、レーザセンサにより測定された距離と併せて、辺の縁の3次元的な位置を取得することができる。位置測定部23は、平面視において互いに交わる方向に延びる機器の2辺について、複数箇所で縁の位置の測定を行わせて、それらの測定点に基づいて、機器座標系Sを構成する。
 図5は、本発明の実施形態に係るロボット3のハンド3cによる第1の位置測定センサ2の第1のハンドル2aの把持を示す図である。図5に示す例では、ハンド3cは、先端側に設けられた凹部である第1の把持部3dを有する。第1の把持部3dは、ピペット7等の比較的細いツールを把持する場合に用いられる。また、ハンド3cは、根本側に設けられた凹部である第2の把持部3eを有する。第2の把持部3eは、第1の位置測定センサ2の第1のハンドル2a及び第2のハンドル2b等の比較的太いツールを把持する場合に用いられる。同図には、レーザセンサである第1の位置測定センサ2から出射されるレーザ光の光軸Aが図示されている。
 本実施形態に係るロボット制御装置1は、処理対象に対する処理に用いられるツールをハンド3cに把持する場合におけるツールの中心軸と、レーザセンサのレーザ光の光軸Aとが重なるように、ハンド3cにレーザセンサを把持させる。本実施形態に係るロボット制御装置1は、第1の位置測定センサ2の第1のハンドル2aを、ハンド3cの第2の把持部2eに把持させ、ピペット7等のツールをハンド3cの第1の把持部2dに把持させる。ロボット制御装置1は、第1の位置測定センサ2を把持させる場合とツールを把持させる場合とで、ハンド3における把持させる位置を変えることで、光軸Aとツールの中心軸とを重ねている。ここで、ツールの中心軸とは、必ずしも回転対称軸を意味しない。ツールの中心軸とは、ツールと処理対象とが接触する点を通る軸であって、ツールの長手方向に沿った軸である。
 ハンド3cの第1の把持部3dと第2の把持部3eとの間の距離をLと表すとき、本実施形態に係る第1の位置測定センサ2の第1のハンドル2aは、第1のハンドル2aとレーザ光の光軸Aとの間の距離がLとなるように設けられる。これにより、第1の位置測定センサ2を第2の把持部3eで把持させ、ピペット7等のツールを第1の把持部3dで把持させることで、ツールをハンド3cに把持する場合におけるツールの中心軸と、レーザセンサのレーザ光の光軸Aとが重なることとなる。もっとも、第1の把持部3d及び第2の把持部3eのような凹部を有さないハンド3cによってツール及びレーザセンサを把持させて、ツールをハンド3cに把持する場合におけるツールの中心軸と、レーザセンサのレーザ光の光軸Aとが重なるようにハンド3cによる把持位置を制御してもよい。
 本実施形態に係るロボット制御装置1によれば、ハンド3cに第1の位置測定センサ2を把持した場合における測定点と、ハンド3cにツールを把持した場合におけるツールによる作業点(ツールと処理対象が接触する点)とが近くなり、第1の位置測定センサ2を把持する場合のアームの姿勢と、ツールを把持する場合のアームの姿勢との差がより小さくなる。そのため、位置の測定がより正確に行なわれ、アームに把持されたツールの位置合わせをより正確に行うことができる。
 本実施形態に係るロボット制御装置1は、第1の位置測定センサ2により、機器の位置を測定させる際、ハンド3cの長手方向と交わる方向が第1の位置測定センサ2による測定範囲となるように、第1の位置測定センサ2をハンド3cに把持させる。本実施形態に係るロボット制御装置1は、ハンド3cの長手方向を水平にした状態で、第1の位置測定センサ2であるレーザセンサのレーザ光の光軸Aが下方を向くように、第1の位置測定センサ2をハンド3cに把持させる。これにより、ハンド3cの長手方向と交わる鉛直下方向がレーザセンサによる測定範囲となる。
 本実施形態に係るロボット制御装置1によれば、ハンド3cを水平に伸ばしたアームの姿勢で第1の位置測定センサ2を把持した場合に、第1の位置測定センサ2の測定範囲が下方に得られる。そのため、アームを最も伸ばした姿勢で第1の位置測定センサ2による測定を行うことができ、ハンド3cを曲げたアームの姿勢で第1の位置測定センサ2による測定を行う場合に比べて、測定可能な範囲が広くなる。
 図6は、本発明の実施形態に係るロボット3のハンド3cによる第1の位置測定センサ2の第2のハンドル2bの把持を示す図である。第2のハンドル2bは、ハンド3cの第2の把持部3eに把持される。同図には、レーザセンサである第1の位置測定センサ2から出射されるレーザ光の光軸Aが図示されている。
 第1の位置測定センサ2が有する第1のハンドル2aと第2のハンドル2bとは、それぞれ異なる方向に延伸して設けられる。すなわち、第1のハンドル2aは、光軸Aに平行な方向に延伸するのに対して、第2のハンドル2bは、光軸Aに直交する方向に延伸する。本実施形態に係るロボット制御装置1の位置測定部23は、ハンド3cを複数のハンドルの設けられた方向に対応した角度として、複数のハンドルのうちいずれかを把持させる。本実施形態に係るロボット制御装置1は、ハンド3cに第1のハンドル2aを把持させる場合、ハンド3cの角度をハンド3cの長手方向が光軸Aと直交する角度として、ハンド3cによって第1のハンドル2aを把持させる。また、ハンド3cに第2のハンドル2bを把持させる場合、ハンド3cの角度をハンド3cの長手方向が光軸Aと平行になる角度として、ハンド3cによって第2のハンドル2bを把持させる。これにより、ピペット7のようにハンド3cを水平にして把持されるツールについて、ツールを把持してツールを用いた処理を行う場合のアームの姿勢と、第1の位置測定センサ2の第1のハンドル2aを把持して機器の位置を測定する場合のアームの姿勢との差を小さくすることができる。また、マイクロチューブ6のようにハンド3cを垂直にして把持されるツールについて、ツールを把持してツールを用いた処理を行う場合のアームの姿勢と、第1の位置測定センサ2の第2のハンドル2bを把持して機器の位置を測定する場合のアームの姿勢との差を小さくすることができる。
 本実施形態に係る位置測定部23によれば、処理時におけるハンド3cの角度を再現するように第1の測定センサ2を把持させることができ、機器の位置を測定する時と処理を行う時とのアームの姿勢の差をより小さくすることができる。そのため、位置の測定がより正確に行なわれ、アームに把持されたツールの位置合わせをより正確に行うことができる。
 本実施形態に係るロボット制御装置1の選択部23bは、機器を用いた処理対象に対する処理に応じて、第1の位置測定センサ2の複数のハンドルのうちいずれを把持させるか選択する。選択部23bは、機器を用いた処理対象に対する処理において、ハンド3cが水平か否かを判断する。選択部23bは、処理においてハンド3cが水平であれば、第1の位置測定センサ2の第1のハンドル2aを把持させると選択する。また、選択部23bは、処理においてハンド3cが垂直であれば、第1の位置測定センサ2の第2のハンドル2bを把持させると選択する。選択部23bは、第1の位置測定センサ2が、処理時と測定時とでハンド3cの角度を変えずに把持できるハンドルを有していない場合、処理時と測定時とでハンド3cの角度を出来る限り変化させなくても把持できるハンドを選択する。
 本実施形態に係る選択部23bによれば、機器を用いた処理時のアームの姿勢をよりよく再現するように、第1の位置測定センサ2を把持させ、機器の位置を測定させることができる。そのため、機器の位置を測定する時と機器を用いた処理を行う時とのアームの姿勢の差をより小さくすることができ、アームに把持されたツールの位置合わせをより正確に行うことができる。
 なお、本例において、第1のハンドル2a及び第2のハンドル2bは、光軸Aを基準として平行又は直交する方向に延伸して設けられているが、第1の位置測定センサ2のハンドルは、これら以外の方向に設けられてもよいし、湾曲して設けられてもよい。もっとも、ツールを把持する際に、ハンド3cは水平又は垂直に制御される場合が多く、第1の位置測定センサ2が、水平方向又は垂直方向から把持できるハンドを有することで、ツールによる処理時と第1の位置測定センサ2による測定時とで、ハンド3cの向きを揃えることができる。仮に、ハンド3cを水平又は垂直以外の向きとして把持されるツールがある場合には、それと同じハンド3cの向きで把持できるハンドルを第1の位置測定センサ2に設けることで、処理時と測定時におけるアームの姿勢の差を小さくすることができる。また、ツール使用時のアームの姿勢とより近い姿勢で測定するため、ツールに応じて第1の位置測定センサ2のハンドルとして、同じ方向のものを位置が異なるよう複数設けてもよい。
 以上の説明において、ハンド3cによる第1の位置測定センサ2の把持は、把持毎に同じ把持位置で行えるものとして、把持位置がずれることは考慮していなかった。しかしながら、実際には、ハンド3cによる第1の位置測定センサ2の把持位置には、把持毎に僅かなずれが生じるおそれがある。そのため、本実施形態に係る処理システム200は、所定の位置に固定された位置基準器具9を有し、ロボット制御装置1の補償部23aは、第1の位置測定センサ2をハンド3cに把持させた状態で、機器の位置を測定する前に、位置基準器具9の位置を測定させ、第1の位置測定センサ2の把持位置のずれを補償させる。
 補償部23aは、ハンド3cに把持された第1の位置測定センサ2によって位置基準器具9の位置を測定させ、位置基準器具9についての測定結果と、予め記憶された位置基準器具9の固定位置とを比較する。そして、比較結果に応じて、第1の位置測定センサ2による測定値を、把持位置のずれを相殺するように増減させて、測定値を補償する。
 なお、本実施形態に係る処理システム200は、位置基準器具9を独立した部材として有するが、他の機器を位置基準器具として用いてもよい。例えば、ピペットラック10を位置基準器具として用いたり、第1の位置測定センサ2のラックを位置基準器具として用いたりしてもよい。これにより、作業台に設置する部材の数を減らすことができる。
 本実施形態に係る補償部23aによれば、第1の位置測定センサ2の把持位置のずれが補償され、把持位置が把持毎に僅かにずれる場合であっても、機器の位置が正確に測定される。そのため、第1の位置測定センサ2の把持位置を厳密に制御しなくても正確な測定が可能となり、ツールの精密な位置合わせが可能となる。
 本実施形態に係るロボット3は、第1アーム3aに備えられた第2の位置測定センサ4を有する。ロボット制御装置1は、第2の位置測定センサ4により測定された機器又は処理対象の位置に基づいて、機器を用いた処理対象に対する処理を行わせる。第1の位置測定センサ2と第2の位置測定センサ4とは、センサとしては同一のものであってよい。ロボット制御装置1は、精密なアームの制御が要求される処理について、処理に先立って第1の位置測定センサ2を用いた機器の位置の測定を行なわせて、座標系の較正を行う。一方、遠心分離器12にマイクロチューブ6を収容する場合やマイクロチューブ6に収容された処理対象の位置を測定する場合等、処理毎に比較的大きな位置の変動が予想される測定対象を測定する場合には、第2の位置測定センサ4を用いた位置の測定を行わせる。
 本実施形態に係るロボット制御装置1によれば、一律に第1の位置測定センサ2により測定対象の位置を測定させる場合に比べて、第1の位置測定センサ2の把持等の動作を省略でき、処理に要する総時間を短縮することができる。また、処理に応じて位置測定センサを使い分けることができ、作業精度の向上と処理時間の短縮化を両立できる。
 図7は、本発明の実施形態に係るロボット制御装置1によって行なわれるロボットの制御方法のフローチャートである。はじめに、位置測定部23の選択部23bによって、機器を用いた処理対象に対する処理において、ハンド3cの向きを判断し(ST100)、その向きに応じたハンドルを選択する処理へと分岐する。処理においてハンド3cが水平である場合、選択部23bは、第1の位置測定センサ2の第1のハンドル2aを把持させると選択し、ロボット3は、ハンド3cによって第1のハンドル2aを把持する(ST101)。一方、処理においてハンド3cが水平でない場合、選択部23bは、第1の位置測定センサ2の第2のハンドル2bを把持させると選択し、ロボット3は、ハンド3cによって第2のハンドル2bを把持する(ST102)。なお、第1の位置測定センサ2が同じ向きの複数のハンドルを有する場合には、さらに、処理時に用いるツールに応じて把持するハンドルを選択するようにしてもよい。
 次に、補償部23bにより、ハンド3cによって把持された第1の位置測定センサ2によって、位置基準器具9の位置を測定する(ST103)。そして、測定された位置基準器具9の位置と、位置基準器具9が固定された所定の位置とを比較して、把持位置のずれを補償する(ST104)。
 その後、位置測定部23により、ハンド3cに把持された第1の位置測定センサ2を第1アーム3aにより移動させ、ロボット3が処理対象に処理を行う際に使用される機器の位置を測定する(ST105)。測定された機器の位置に基づいて、機器座標系Sが構成される。そして、機器座標系Sとロボット座標系Sとの間の関係を較正する、較正処理を行う(ST106)。
 本実施形態に係るロボットの制御方法によれば、アームにピペット7等のツールを把持させて処理を行わせる場合におけるアームの姿勢と近い姿勢で、第1の位置測定センサ2により機器の位置を測定することができ、アームの関節を構成する歯車のバックラッシやたわみ等の影響によりハンド3cのアプローチする点にずれが生じることが防止される。そのため、ハンド3cにツールを把持させて作業をさせる場合に、ハンド3cに把持されたツールを精密に位置合わせすることができる。
 以上説明した実施形態の構成は具体例として示したものであり、本明細書にて開示される発明をこれら具体例の構成そのものに限定することは意図されていない。当業者はこれら開示された実施形態に種々の変形、例えば、機能や操作方法の変更や追加等を加えてもよく、また、フローチャートに示した制御は、同等の機能を奏する他の制御に置き換えてもよい。本明細書にて開示される発明の技術的範囲は、そのようになされた変形をも含むものと理解すべきである。

Claims (8)

  1.  先端にハンドを有する少なくとも1のアームを有するロボットと、
     前記ハンドに把持されて前記アームにより移動され、前記ロボットが処理対象に処理を行う際に使用される機器の位置を測定する第1の位置測定センサと、
     前記ハンドに前記第1の位置測定センサを把持させ、前記第1の位置測定センサにより、前記機器の位置を測定させるロボット制御装置と、
     を有する処理システム。
  2.  前記第1の位置測定センサは、レーザセンサであり、
     前記ロボット制御装置は、前記処理対象に対する処理に用いられるツールを前記ハンドに把持する場合における前記ツールの中心軸と、前記レーザセンサのレーザ光の光軸とが重なるように、前記ハンドに前記レーザセンサを把持させる、
     請求項1に記載の処理システム。
  3.  前記ロボット制御装置は、前記第1の位置測定センサにより、前記機器の位置を測定させる際、前記ハンドの長手方向と交わる方向が前記第1の位置測定センサによる測定範囲となるように、前記第1の位置測定センサを前記ハンドに把持させる、
     請求項1又は2に記載の処理システム。
  4.  所定の位置に固定された位置基準器具をさらに有し、
     前記ロボット制御装置は、
     前記第1の位置測定センサを前記ハンドに把持させた状態で、前記機器の位置を測定する前に、前記位置基準器具の位置を測定させ、前記第1の位置測定センサの把持位置のずれを補償させる補償部を有する、
     請求項1~3のいずれか1項に記載の処理システム。
  5.  前記第1の位置測定センサは、前記ハンドにより把持される複数のハンドルを有し、
     前記ロボット制御装置は、前記機器を用いた前記処理対象に対する処理に応じて、前記第1の位置測定センサの前記複数のハンドルのうちいずれを把持させるか選択する選択部を有する、
     請求項1~4のいずれか1項に記載の処理システム。
  6.  前記複数のハンドルは、それぞれ異なる方向に延伸して設けられ、
     前記ロボット制御装置は、前記ハンドを前記複数のハンドルの設けられた方向に対応した角度として、前記複数のハンドルのうちいずれかを把持させる、
     請求項5に記載の処理システム。
  7.  前記ロボットに備えられた第2の位置測定センサをさらに有し、
     前記ロボット制御装置は、前記第2の位置測定センサにより測定された前記機器又は前記処理対象の位置に基づいて、前記機器を用いた前記処理対象に対する処理を行わせる、
     請求項1~6のいずれか1項に記載の処理システム。
  8.  先端にハンドを有する少なくとも1のアームを有するロボットにより、前記ハンドに第1の位置測定センサを把持し、
     前記ハンドに把持された前記第1の位置測定センサを前記アームにより移動させ、前記ロボットが処理対象に処理を行う際に使用される機器の位置を測定する、
     ロボットの制御方法。
PCT/JP2015/075891 2015-09-11 2015-09-11 処理システム及びロボットの制御方法 WO2017042971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/075891 WO2017042971A1 (ja) 2015-09-11 2015-09-11 処理システム及びロボットの制御方法
JP2017538828A JP6566037B2 (ja) 2015-09-11 2015-09-11 処理システム及びロボットの制御方法
US15/916,281 US10913150B2 (en) 2015-09-11 2018-03-09 Processing system and method of controlling robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075891 WO2017042971A1 (ja) 2015-09-11 2015-09-11 処理システム及びロボットの制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/916,281 Continuation US10913150B2 (en) 2015-09-11 2018-03-09 Processing system and method of controlling robot

Publications (1)

Publication Number Publication Date
WO2017042971A1 true WO2017042971A1 (ja) 2017-03-16

Family

ID=58239323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075891 WO2017042971A1 (ja) 2015-09-11 2015-09-11 処理システム及びロボットの制御方法

Country Status (3)

Country Link
US (1) US10913150B2 (ja)
JP (1) JP6566037B2 (ja)
WO (1) WO2017042971A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614181A (zh) * 2020-12-01 2021-04-06 深圳乐动机器人有限公司 一种基于高亮目标的机器人定位方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795684B (zh) * 2020-10-22 2023-03-11 仁寶電腦工業股份有限公司 感測系統及其配對方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593749U (ja) * 1992-05-13 1993-12-21 株式会社椿本チエイン チャックとロボットハンドの相対位置確認装置
JPH09319420A (ja) * 1996-05-31 1997-12-12 Ricoh Co Ltd 組立ロボット
JPH11347985A (ja) * 1998-06-10 1999-12-21 Honda Motor Co Ltd 視覚センサ付ロボットシステムのトラブル診断方法
JP2007188615A (ja) * 2006-01-16 2007-07-26 Fujitsu Ltd ライブラリ装置、ライブラリ装置のカートリッジ型センサおよびライブラリ装置のカートリッジ型センサ位置付け方法
JP2011194493A (ja) * 2010-03-18 2011-10-06 Ihi Corp カメラ脱着ロボット装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128506A (ja) 1983-12-16 1985-07-09 Fujitsu Ltd ロボット座標系の較正方法
JPH09105608A (ja) 1995-10-09 1997-04-22 Nippon Steel Corp 荷物の位置計測方法
JPH10301609A (ja) * 1997-04-28 1998-11-13 Denso Corp ロボットの位置誤差検出方法及びその装置
JPH1142579A (ja) * 1997-07-30 1999-02-16 Nippon Telegr & Teleph Corp <Ntt> 位置決め位置オフセット補正方法及び装置
JP2000006067A (ja) 1998-06-23 2000-01-11 Nippon Telegr & Teleph Corp <Ntt> マニピュレータ用教示データ作成方法及び装置並びにプログラムを記録した記録媒体
WO2008073168A2 (en) * 2006-08-25 2008-06-19 The Trustees Of Columbia University In The City Of New York Systems and methods for high-throughput radiation biodosimetry
JP2009032189A (ja) 2007-07-30 2009-02-12 Toyota Motor Corp ロボットの動作経路生成装置
WO2009025271A2 (ja) 2007-08-22 2009-02-26 Kabushiki Kaisha Yaskawa Denki ロボットの制御装置および制御方法
EP2271465A1 (en) 2008-03-31 2011-01-12 Abb Research Robot parts assembly on a workpiece moving on an assembly line
JP2010036293A (ja) 2008-08-04 2010-02-18 Jtekt Corp 多関節ロボット
JP5232124B2 (ja) 2009-10-28 2013-07-10 本田技研工業株式会社 脚式移動ロボットの制御装置
CN102145490A (zh) * 2010-02-08 2011-08-10 鸿富锦精密工业(深圳)有限公司 机械手臂装置
JP2011177845A (ja) 2010-03-02 2011-09-15 Seiko Epson Corp ロボットのキャリブレーション方法及びロボット用キャリブレーション装置
JP5366018B2 (ja) 2010-04-28 2013-12-11 株式会社安川電機 ロボットの教示手順校正装置および方法
JP5516974B2 (ja) * 2010-07-07 2014-06-11 株式会社Ihi 視覚センサのマウント装置と方法
JP5523392B2 (ja) 2011-05-23 2014-06-18 三菱電機株式会社 キャリブレーション装置及びキャリブレーション方法
JP6195333B2 (ja) 2012-08-08 2017-09-13 キヤノン株式会社 ロボット装置
JP5652445B2 (ja) * 2012-08-31 2015-01-14 株式会社安川電機 ロボット
JP5582427B2 (ja) 2012-12-18 2014-09-03 株式会社安川電機 教示データ作成装置、ロボットシステム、及び教示データ作成方法
JP6130242B2 (ja) 2013-06-26 2017-05-17 Dmg森精機株式会社 測定装置を備えた工作機械
JP2015085481A (ja) * 2013-11-01 2015-05-07 セイコーエプソン株式会社 ロボット、ロボットシステム、ロボット制御部及び把持方法
JP2015089575A (ja) 2013-11-05 2015-05-11 セイコーエプソン株式会社 ロボット、制御装置、ロボットシステム及び制御方法
JP6415190B2 (ja) * 2014-09-03 2018-10-31 キヤノン株式会社 ロボット装置、ロボット制御プログラム、記録媒体、およびロボット装置の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593749U (ja) * 1992-05-13 1993-12-21 株式会社椿本チエイン チャックとロボットハンドの相対位置確認装置
JPH09319420A (ja) * 1996-05-31 1997-12-12 Ricoh Co Ltd 組立ロボット
JPH11347985A (ja) * 1998-06-10 1999-12-21 Honda Motor Co Ltd 視覚センサ付ロボットシステムのトラブル診断方法
JP2007188615A (ja) * 2006-01-16 2007-07-26 Fujitsu Ltd ライブラリ装置、ライブラリ装置のカートリッジ型センサおよびライブラリ装置のカートリッジ型センサ位置付け方法
JP2011194493A (ja) * 2010-03-18 2011-10-06 Ihi Corp カメラ脱着ロボット装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614181A (zh) * 2020-12-01 2021-04-06 深圳乐动机器人有限公司 一种基于高亮目标的机器人定位方法及装置
CN112614181B (zh) * 2020-12-01 2024-03-22 深圳乐动机器人股份有限公司 一种基于高亮目标的机器人定位方法及装置

Also Published As

Publication number Publication date
US20180194004A1 (en) 2018-07-12
JPWO2017042971A1 (ja) 2018-03-29
JP6566037B2 (ja) 2019-08-28
US10913150B2 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
JP6555351B2 (ja) 処理システム及びロボットの制御方法
US9061421B2 (en) Robotic work object cell calibration method
JP5444209B2 (ja) フレームマッピングおよびフォースフィードバックの方法、装置およびシステム
CN108453785B (zh) 机器人系统、机器人控制装置以及机器人控制方法
JP5946859B2 (ja) 力に応じて動かすロボットのロボット制御装置およびロボットシステム
JP5533727B2 (ja) ワークピッキングシステム
US9669546B2 (en) Robotic work object cell calibration method
KR20150015405A (ko) 로봇 시스템 및 피가공물의 제조 방법
JP2010149267A (ja) ロボットのキャリブレーション方法および装置
JP2014128845A (ja) ロボットシステム表示装置
JP5450242B2 (ja) マニピュレータのキャリブレーション方法及びロボット制御システム
JP7258516B2 (ja) キャリブレーション方法および把持システム
JP6566037B2 (ja) 処理システム及びロボットの制御方法
US20140277729A1 (en) Robot system and method for producing workpiece
JP2013013987A (ja) ロボットシステム
JP5574805B2 (ja) 視覚センサを有するマニピュレータのセンサキャリブレーション方法及びロボット制御システム
JP5316396B2 (ja) ロボットのばね定数同定方法およびロボットのばね定数同定装置
JPH05111897A (ja) 複数台のロボツトの相対位置関係取得方式
CN107009360A (zh) 一种六轴多关节工业机器人的校准装置及方法
JP2019063879A (ja) シミュレーション装置、ロボット制御装置およびロボット
JP2024512827A (ja) 適応コンプライアンスに基づいたロボット組立のためのシステムおよび方法
JP5942720B2 (ja) 状態判別方法、ロボット、制御装置、及びプログラム
US11654562B2 (en) Apparatus, robot control device, robot system, and method of setting robot coordinate system
WO2023223410A1 (ja) ロボット装置及びその制御方法
Blank Robot Calibration Based on Position Sensitive Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538828

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903633

Country of ref document: EP

Kind code of ref document: A1