WO2017041373A1 - 一种通过甲醇羰基化制备乙酸的方法 - Google Patents

一种通过甲醇羰基化制备乙酸的方法 Download PDF

Info

Publication number
WO2017041373A1
WO2017041373A1 PCT/CN2015/096649 CN2015096649W WO2017041373A1 WO 2017041373 A1 WO2017041373 A1 WO 2017041373A1 CN 2015096649 W CN2015096649 W CN 2015096649W WO 2017041373 A1 WO2017041373 A1 WO 2017041373A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
methanol
reaction
acidic
acetic acid
Prior art date
Application number
PCT/CN2015/096649
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
石磊
刘红超
刘勇
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to BR112018004736-8A priority Critical patent/BR112018004736B1/pt
Priority to JP2018512544A priority patent/JP6615324B2/ja
Priority to EP15903476.8A priority patent/EP3330248B1/en
Priority to EA201890652A priority patent/EA035965B1/ru
Priority to US15/758,572 priority patent/US10370318B2/en
Publication of WO2017041373A1 publication Critical patent/WO2017041373A1/zh
Priority to ZA2018/01832A priority patent/ZA201801832B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/67Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0254Nitrogen containing compounds on mineral substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves

Definitions

  • This invention relates to a process for the carbonylation of methanol to produce acetic acid.
  • Acetic acid also known as acetic acid
  • the catalyst system is rhodium or iridium complex (Adv.Catal.53,2010,1.).
  • Fujimoto et al. (Chem. Lett., 1984, 2047.) found that methanol can undergo vapor phase carbonylation under acid catalyzed reaction to form acetic acid.
  • catalyst stability and acetic acid selectivity are very low, mainly due to methanol etherification at low temperature.
  • the water deactivates the active center of the molecular sieve, and methanol is more easily converted to carbon deposits and hydrocarbons at high temperatures.
  • Iglesia et al. Angew. Chem. Int. Ed. 45, 2006, 1617.
  • dimethyl ether to carry out a carbonylation reaction on a molecular sieve catalyst to obtain methyl acetate.
  • CN101613274A discloses a process for the carbonylation of dimethyl ether to produce methyl acetate, wherein a pyridine organic amine modified mordenite molecular sieve is used as a catalyst.
  • this process also requires the combined hydrolysis of methanol to dimethyl ether and methyl acetate to produce acetic acid, which increases the multi-step reaction and separation process and affects economics.
  • WO 2007/128955 A1 discloses a process for the preparation of carboxylic acids and/or their esters by carbonylation of an alcohol and/or its reactive derivative with carbon monoxide under the action of a supported silver/type H-mordenite catalyst.
  • the stability of the catalyst is not ideal and the selectivity of acetic acid is not high.
  • the present invention provides a process for producing acetic acid by methanol carbonylation, which comprises: passing a raw material of methanol, carbon monoxide and water through a reaction zone carrying an acidic molecular sieve adsorbed by an organic amine as a catalyst, in the following reaction The reaction takes place under conditions to prepare acetic acid,
  • the acidic molecular sieve is one or two of a MOR structural molecular sieve and a FER structural molecular sieve;
  • the organic amine is pyridine, aniline, cyclohexylamine, piperidine, pyridine substituted by one or more substituents, aniline substituted by one or more substituents, cyclohexylamine substituted by one or more substituents And one or more of piperidines substituted by one or more substituents independently selected from halogen or C 1-3 alkyl;
  • the reaction zone is comprised of one or more reactors connected by series and/or parallel;
  • the reaction conditions are: a reaction temperature of 150 to 350 ° C, a reaction pressure of 0.5 to 10 MPa, a mass space velocity of methanol of 0.01 to 10 h -1 , a molar ratio of carbon monoxide to methanol of 1:1 to 100:1, and a molar ratio of water to methanol.
  • the ratio is 0.05:1 to 5:1.
  • the acidic molecular sieve is one or both of an acidic mordenite and an acidic ZSM-35 molecular sieve, preferably an acidic mordenite.
  • the acidic molecular sieve contains a metal having a mass fraction of from 0.1 to 10%, preferably from 0.1 to 2%.
  • the metal is one or more of copper, iron, gallium, silver, nickel or cobalt.
  • the metal is introduced by one or more of in situ synthesis, impregnation or ion exchange.
  • the acidic molecular sieve contains a molding agent in a mass fraction of from 1 to 60%, preferably from 10 to 30%.
  • the forming agent is one or more of alumina, silica or kaolin.
  • the reaction conditions are: a reaction temperature of 240 to 300 ° C, a reaction pressure of 3 to 7 MPa, a mass space velocity of methanol of 0.3 to 3.0 h -1 , and a molar ratio of carbon monoxide to methanol of 5:1 to 20 :1, the molar ratio of water to methanol is 0.2:1 to 1:1.
  • the reactor is one or more of a fixed bed reactor, a moving bed reactor or a fluidized bed reactor that effects a continuous reaction.
  • the selectivity of the product acetic acid of the method of the invention is greatly improved, reaching more than 95%, the stability of the catalyst is greatly enhanced, and the activity of the reaction is substantially unchanged for 1000 hours.
  • the application potential is very large.
  • the raw material used in the method of the invention does not contain an iodide auxiliary, does not produce severely corrosive hydroiodic acid (HI), and the product acetic acid does not contain iodine.
  • the compound can save the investment of the reaction equipment and the deep purification cost of the product;
  • the reaction in the method of the invention is a heterogeneous catalytic process, which can greatly save the energy consumption of separation of the catalyst and the product;
  • the molecular sieve catalyst of the method of the invention is relative to a noble metal catalyst such as ruthenium or osmium, The price is very cheap.
  • the present invention provides a process for producing acetic acid by a methanol carbonylation reaction, which comprises: passing a raw material methanol, carbon monoxide and water through a reaction zone carrying an acidic molecular sieve adsorbed by an organic amine as a catalyst, which occurs under the following reaction conditions Reaction, thereby preparing acetic acid;
  • the acidic molecular sieve is one or two of a MOR structural molecular sieve and a FER structural molecular sieve;
  • the reaction zone is constituted by one or more reactors connected by series and/or parallel;
  • the organic amine is pyridine, aniline, cyclohexylamine, piperidine, pyridine substituted with one or more substituents, aniline substituted by one or more substituents, and one or more substituents.
  • the reaction conditions are: a reaction temperature of 150 to 350 ° C, a reaction pressure of 0.5 to 10 MPa, a mass space velocity of methanol of 0.01 to 10 h -1 , a molar ratio of carbon monoxide to methanol of 1:1 to 100:1, water and The molar ratio of methanol is from 0.05:1 to 5:1.
  • the halogen is F, Cl, Br, I.
  • the C 1-3 alkyl group is a methyl group, an ethyl group, a n-propyl group, or an isopropyl group.
  • the reaction (1) is achieved by the reactions (2) to (4), and the reaction (4) has a small equilibrium constant, and the addition of an appropriate amount of water to the reaction raw material can increase the selectivity of the acetic acid.
  • the pyridine structural formula is The aniline structure is
  • the structure of cyclohexylamine is Piperidine structure is They may also be substituted by one or more independently selected from halogen (F, Cl, Br or I) or C 1-3 alkyl (eg CH 3 , C 2 H 5 , C 3 H 7 ).
  • the substituted pyridine can be: Etc.
  • the substituted aniline can be: Etc.
  • substituted cyclohexylamine can be: Etc.
  • the substituted piperidine can be: Wait.
  • an organic amine adsorbed acidic molecular sieve as a catalyst can be obtained by charging a catalyst of an acidic molecular sieve into a reaction tube at an adsorption temperature of 200 to 300 ° C. Passing an organic amine having an organic amine molar content of 0.001 to 3% and any one or more mixed gases selected from the group consisting of carbon monoxide, hydrogen, nitrogen, air or argon, adsorbing to saturation, and then selecting at the temperature A mixture of any one or more of carbon monoxide, hydrogen, nitrogen, air or argon is purged for 1 to 6 hours to obtain a catalyst of an organic amine-adsorbed acidic molecular sieve.
  • the catalyst of the organic amine adsorbed acidic molecular sieve mainly contains a chemically adsorbed organic amine.
  • the acidic molecular sieve is one of an acidic mordenite molecular sieve, a ZSM-35 molecular sieve, a eutectic molecular sieve or a mixed crystal molecular sieve containing a MOR structural unit, and a eutectic molecular sieve or a mixed crystal molecular sieve containing a FER structural unit. Or a variety.
  • the eutectic molecular sieve containing the MOR structural unit means that not only the MOR structural layer unit exists in the single crystal of the molecular sieve, but also other molecular sieve structural layer units exist, and the mixed crystal molecular sieve containing the MOR structural unit refers to the molecular sieve.
  • the eutectic molecular sieve containing FER structural units means that not only FER structural layer units but also other molecular sieve structural layer units exist in a single crystal of the molecular sieve, and the inclusion
  • the mixed crystal molecular sieve of the FER structural unit means that not only the FER structure crystal exists in the molecular sieve, but also other molecular sieve structure crystals exist.
  • the acidic molecular sieve is a pure phase mordenite molecular sieve or a ZSM-35 molecular sieve, and the acidic molecular sieve is further preferably a pure phase mordenite molecular sieve.
  • the acidic molecular sieve contains a metal having a mass fraction of 0.1 to 10%; more preferably, the acidic molecular sieve contains a metal having a mass fraction of 0.1 to 2%.
  • the metal is one or more of copper, iron, gallium, silver, nickel, and cobalt.
  • the position of the metal in the molecular sieve is one or more of an ion exchange position of the molecular sieve, or a pore or a surface of the molecular sieve, or a skeleton of the molecular sieve.
  • the manner in which the metal is introduced is one or more of in-situ synthesis, impregnation, or ion exchange.
  • the metal exists in an ion state at an ion exchange position, or exists in a metal oxide state on a pore or a surface of the molecular sieve, or enters the molecular sieve skeleton T atom in an isomorphous substitution.
  • the acidic molecular sieve means a hydrogen type molecular sieve or a metal modified hydrogen type molecular sieve.
  • the acidic molecular sieve may be subjected to desiliconization or dealumination post treatment.
  • the desiliconization post treatment is an alkali solution treatment, and the usual alkali solution is an aqueous solution of sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, or sodium hydrogencarbonate.
  • the post-aluminizing treatment is an acid solution treatment or a steam treatment.
  • Commonly used acid solutions are aqueous solutions of hydrochloric acid, nitric acid, oxalic acid, citric acid, and acetic acid.
  • the commonly used steam treatment temperature is 400 to 700 °C.
  • the acidic molecular sieve may have one or more of a micron structure, a nanostructure, a microporous structure, and a mesoporous-microporous structure.
  • the catalyst contains a molding agent having a mass fraction of 1 to 60%. More preferably, the catalyst contains a molding agent having a mass fraction of 10 to 30%.
  • the molding agent in the catalyst is one or more of alumina, silica, and kaolin.
  • the carbon monoxide raw material may be supplied as a raw material gas containing carbon monoxide.
  • the raw material gas may include carbon monoxide, hydrogen, an inert gas, or the like, wherein the carbon monoxide has a volume content of 50 to 100%, a hydrogen volume content of 0 to 50%, an inert gas volume content of 0 to 50%, and an inert gas containing nitrogen.
  • the feed gas is syngas.
  • the syngas can be obtained by conversion of coal, natural gas, petroleum or biomass.
  • the reaction conditions are preferably: a reaction temperature of 240 to 300 ° C, a reaction pressure of 3 to 7 MPa, a mass space velocity of methanol of 0.3 to 3.0 h -1 , and a molar ratio of carbon monoxide to methanol of 5:1. ⁇ 20:1, the molar ratio of water to methanol is 0.2:1 to 1:1.
  • the reactor is a fixed bed reactor, a moving bed reactor or a fluidized bed reactor which realizes a continuous reaction. More preferably, the reactor is one or more fixed bed reactors. Take the form of continuous reaction.
  • the fixed bed reactor may be one or plural. When multiple fixed bed reactors are employed, the reactors may be in series, in parallel, or in a combination of series and parallel.
  • both conversion and selectivity are calculated based on the moles of methanol carbon:
  • Methanol conversion [(methanol carbon moles in feed) - (mole carbon moles in discharge)] ⁇ (moles of methanol in feed) ⁇ (100%)
  • Acetic acid selectivity 1/2 ⁇ (molar mole of acetic acid in the discharge) ⁇ [(mole of methanol carbon in the feed) - (moles of methanol in the discharge)] ⁇ (100%)
  • One kilogram of Si-Al 30 sodium type mordenite was exchanged three times with a 0.8 mol/L aqueous solution of ammonium nitrate at 80 ° C to obtain an ammonium type mordenite.
  • the hydrogen-type mordenite was obtained by calcination at 500 ° C for 4 hours in an air atmosphere, and then pelletized, pulverized, and sieved to prepare particles of 5 to 10 mesh. Then, it was loaded into a stainless steel fixed-bed reactor with a diameter of 32 mm, and treated at 500 ° C under a normal pressure of 500 ml/min with a mixture of 0.3% molar pyridine and nitrogen gas for 6 hours until the adsorption was saturated.
  • the hydrogen type ZSM-35 was obtained by calcination at 500 ° C for 4 hours in an air atmosphere, and then pelletized, pulverized, and sieved to prepare particles of 5 to 10 mesh. Then, it was loaded into a stainless steel fixed-bed reactor with a diameter of 32 mm, and treated at 500 ° C under normal pressure with a mixture of aniline and nitrogen at a concentration of 0.3 ml at a concentration of 500 ml/min for 6 hours until the adsorption was saturated, and then at 280.
  • the hydrogen type ZSM-35 was obtained by calcination at 500 ° C for 4 hours in an air atmosphere, and then pelletized, pulverized, and sieved to prepare particles of 5 to 10 mesh. Then, it was loaded into a stainless steel fixed-bed reactor with a diameter of 32 mm, and treated at 500 ° C under a normal pressure of 500 ml/min with a mixture of 0.3% molar cyclohexylamine and nitrogen gas for 6 hours until the adsorption was saturated.
  • the mixture was purged with 500 ml/min of nitrogen at 280 ° C for 3 hours, and then cooled to room temperature to obtain a cyclohexylamine-adsorbed acidic ZSM-35 molecular sieve as a catalyst D.
  • the preparation method is summarized in Table 1.
  • the mixture was calcined at 500 ° C for 4 h in an air atmosphere to obtain a hydrogen-type eutectic molecular sieve, which was then tableted, pulverized, and sieved to prepare particles of 5 to 10 mesh.
  • the hydrogen type mordenite was obtained by calcination at 500 ° C for 4 hours in an air atmosphere, and then extruded into a rod-shaped zeolite molecular sieve of ⁇ 3 mm ⁇ 3 mm by extrusion with 20% alumina.
  • the ammonium type mordenite was ion-exchanged with a 0.1 mol/L copper nitrate solution at 80 ° C to obtain an ammonium type mordenite having a copper content of 1%.
  • the copper-hydrogen-type mordenite was obtained by calcination at 500 ° C for 4 hours in an air atmosphere, and then extruded into a rod-shaped zeolite molecular sieve of ⁇ 3 mm ⁇ 3 mm by extrusion with 20% alumina.
  • the ammonium type ZSM-35 was ion-exchanged with a 0.1 mol/L silver nitrate solution at 80 ° C to obtain an ammonium type ZSM-35 having a silver content of 0.5%.
  • the silver-hydrogen-containing ZSM-35 was obtained by calcination at 500 ° C for 4 hours in an air atmosphere, and then extruded into a rod-shaped zeolite molecular sieve of ⁇ 3 mm ⁇ 3 mm by extrusion with 20% alumina.
  • reaction temperature 260 ° C
  • reaction pressure 5 MPa
  • methanol mass space velocity 0.5 h -1
  • water: methanol (molar ratio) 0.05:1.
  • reaction temperature 240 ° C
  • reaction pressure 7 MPa
  • methanol mass space velocity 3 h -1
  • water: methanol (molar ratio) 1:1.
  • the product was analyzed by gas chromatography, and the methanol conversion and acetic acid selectivity of the starting materials were calculated. The results are shown in Table 2.
  • reaction temperature 200 ° C
  • reaction pressure 10 MPa
  • methanol mass space velocity 0.3 h -1
  • water: methanol (molar ratio) 0.2:1.
  • reaction temperature 270 ° C
  • reaction pressure 3 MPa
  • methanol mass space velocity 6 h -1
  • water: methanol (molar ratio) 2:1.
  • the product was analyzed by gas chromatography, and the methanol conversion and acetic acid selectivity of the starting materials were calculated. The results are shown in Table 2.
  • reaction temperature 150 ° C
  • reaction pressure 0.5 MPa
  • methanol mass space velocity 0.01 h -1
  • water: methanol (molar ratio) 0.08:1.
  • the product was analyzed by gas chromatography, and the methanol conversion and acetic acid selectivity of the starting materials were calculated. The results are shown in Table 2.
  • reaction temperature 350 ° C
  • reaction pressure 8 MPa
  • methanol mass space velocity 10 h -1
  • water: methanol (molar ratio) 5:1.
  • the product was analyzed by gas chromatography, and the methanol conversion and acetic acid selectivity of the starting materials were calculated. The results are shown in Table 2.
  • reaction temperature 260 ° C
  • reaction pressure 5 MPa
  • methanol mass space velocity 0.5 h -1
  • water: methanol (molar ratio) 0.3:1.
  • reaction temperature 270 ° C
  • reaction pressure 3 MPa
  • methanol mass space velocity 6 h -1
  • water: methanol (molar ratio) 0.5:1.
  • the product was analyzed by gas chromatography, and the methanol conversion and acetic acid selectivity of the starting materials were calculated. The results are shown in Table 2.
  • Example 9 The catalyst in Example 9 was changed to Catalyst I, and the remaining steps and conditions were the same. The results of the reaction are shown in Table 2.
  • Example 12 The catalyst in Example 12 was changed to Catalyst J, and the remaining steps and conditions were the same. The results of the reaction are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供了一种通过甲醇羰基化反应制备乙酸的方法,包括将原料甲醇、一氧化碳和水通过载有作为催化剂的有机胺吸附的酸性分子筛的反应区,在一定条件下发生反应制备乙酸。本发明方法乙酸选择性高、催化剂稳定性好。本发明方法中催化剂不含铑或铱贵金属,不需要含碘助剂,不产生强腐蚀性的氢碘酸等。

Description

一种通过甲醇羰基化制备乙酸的方法 技术领域
本发明涉及一种甲醇羰基化制备乙酸的方法。
背景技术
乙酸,又名醋酸,是一种重要的化工原料,主要用来生产醋酸乙烯、醋酸酐、醋酸酯等,全球年产量近1000万吨。目前乙酸主要通过以Monsanto或CativaTM工艺为代表的甲醇羰化路线进行工业化生产,催化剂体系为铑或铱系配合物(Adv.Catal.53,2010,1.)。这两种工艺还存在以下不足之处,需要进一步改进来提高经济性:第一,催化循环过程中存在强腐蚀性的HI,反应器需要使用非常昂贵的强抗腐蚀性材料;第二,现有工业化过程使用均相催化剂,产物与催化剂的分离能量消耗大;第三,铑或铱等贵金属催化剂价格非常高;第四,产物乙酸中可能含有微量的碘化物,会严重影响乙酸的品质,不利于乙酸下游产品的生产。
Fujimoto等(Chem.Lett.,1984,2047.)发现甲醇能够在酸性分子筛催化作用下发生气相羰化反应生成乙酸,然而催化剂稳定性和乙酸选择性非常低,主要原因是低温时甲醇醚化产生的水使分子筛活性中心钝化,高温时甲醇更容易转化成积碳和烃。为了避免水的影响,Iglesia等(Angew.Chem.Int.Ed.45,2006,1617.)利用二甲醚在分子筛催化剂上进行羰基化反应制取乙酸甲酯。CN101613274A公开了一种二甲醚羰基化制备乙酸甲酯的方法,其中使用吡啶类有机胺改性的丝光沸石分子筛作为催化剂。但是,该过程还需要联合甲醇制二甲醚、乙酸甲酯水解才能制得乙酸,增加了多步反应与分离过程,影响了经济性。
WO 2007/128955A1公开了一种通过使醇和/或其反应性衍生物与一氧化碳在载银/或H型-丝光沸石催化剂作用下羰基化来制备羧酸和/或其酯的方法。但是,催化剂稳定性还不够理想,乙酸选择性不高。
发明内容
本发明的目的在于提供一种新的通过甲醇羰基化制备乙酸的方法。
为此,本发明提供了一种通过甲醇羰基化反应制备乙酸的方法,所述方法包括:将原料甲醇、一氧化碳和水通过载有作为催化剂的有机胺吸附的酸性分子筛的反应区,在以下反应条件下发生反应,由此制备乙酸,
其中,所述酸性分子筛为MOR结构分子筛和FER结构分子筛中的一种或两种;
所述有机胺为吡啶、苯胺、环己胺、哌啶、被一个或多个取代基取代的吡啶、被一个或多个取代基取代的苯胺、被一个或多个取代基取代的环己胺和被一个或多个取代基取代的哌啶中的一种或多种,所述取代基独立地选自卤素或C1-3烷基;
所述反应区由一个或多个通过串联和/或并联方式连接的反应器构成;
所述反应条件为:反应温度150~350℃,反应压力0.5~10MPa,甲醇的质量空速0.01~10h-1,一氧化碳与甲醇的摩尔比为1:1~100:1,水与甲醇的摩尔比为0.05:1~5:1。
所述酸性分子筛为酸性丝光沸石和酸性ZSM-35分子筛中的一种或两种,优选酸性丝光沸石。
在优选实施方案中,所述酸性分子筛中硅和铝的原子比为Si/Al=3~100;优选地,所述酸性分子筛中硅和铝的原子比为Si/Al=5~30。
在优选实施方案中,所述酸性分子筛中含有质量分数为0.1~10%,优选0.1~2%的金属。
在优选实施方案中,所述金属为铜、铁、镓、银、镍或钴中的一种或者多种。
在优选实施方案中,所述金属通过原位合成、浸渍或离子交换中的一种或多种方式引入。
在优选实施方案中,所述酸性分子筛中含有质量分数为1~60%,优选10~30%的成型剂。
在优选实施方案中,所述成型剂是氧化铝、氧化硅或高岭土中的一种或多种。
在优选实施方案中,所述反应条件为:反应温度240~300℃,反应压力3~7MPa,甲醇的质量空速0.3~3.0h-1,并且一氧化碳与甲醇的摩 尔比为5:1~20:1,水与甲醇的摩尔比为0.2:1~1:1。
在优选实施方案中,所述反应器是实现连续反应的固定床反应器、移动床反应器或流化床反应器中的一种或多种。
本发明的有益效果包括,但不限于:
a.与已有分子筛催化剂上甲醇羰化制乙酸技术相比,本发明的方法产物乙酸的选择性大幅提高,达到95%以上,催化剂的稳定性大幅增强,反应1000小时活性基本不变,工业应用潜力非常大。
b.与传统工业中均相法生产乙酸工艺相比,本发明方法使用的原料中不含碘化物助剂,不产生具有严重腐蚀性的氢碘酸(HI),产品乙酸中也不含碘化物,可以节约反应设备投资和产品深度纯化成本;本发明方法中的反应为多相催化过程,可以大幅度节约催化剂与产品分离能耗;本发明方法的分子筛催化剂相对铑或铱等贵金属催化剂,价格非常便宜。
具体实施方式
本发明提供了一种通过甲醇羰基化反应制备乙酸的方法,所述方法包括:将原料甲醇、一氧化碳和水通过载有作为催化剂的有机胺吸附的酸性分子筛的反应区,在以下反应条件下发生反应,由此制备乙酸;
在本发明中,酸性分子筛为MOR结构分子筛和FER结构分子筛中的一种或两种;
在本发明中,所述反应区由一个或多个通过串联和/或并联方式连接的反应器构成;
在本发明中,所述有机胺为吡啶、苯胺、环己胺、哌啶、被一个或多个取代基取代的吡啶、被一个或多个取代基取代的苯胺、被一个或多个取代基取代的环己胺和被一个或多个取代基取代的哌啶中的一种或多种,所述取代基独立地选自卤素或C1-3烷基;
优选地,所述反应条件为:反应温度150~350℃,反应压力0.5~10MPa,甲醇的质量空速0.01~10h-1,一氧化碳与甲醇的摩尔比为1:1~100:1,水与甲醇的摩尔比为0.05:1~5:1。
所述卤素为F、Cl、Br、I。
所述C1-3烷基为甲基、乙基、正丙基、异丙基。
尽管不希望受限于任何理论,本发明的发明人经过研究发现,在上述反应区中主要发生以下反应:
CH3OH+CO=CH3COOH  (1)
2CH3OH=CH3OCH3+H2O  (2)
CH3OCH3+CO=CH3COOCH3  (3)
CH3COOCH3+H2O=CH3COOH+CH3OH  (4)
反应(1)是通过反应(2)~(4)来实现,反应(4)平衡常数较小,反应原料中加入适量的水可以提高乙酸的选择性。
在本发明中,吡啶结构式为
Figure PCTCN2015096649-appb-000001
苯胺结构式为
Figure PCTCN2015096649-appb-000002
环己胺结构式为
Figure PCTCN2015096649-appb-000003
哌啶结构式为
Figure PCTCN2015096649-appb-000004
它们也可以被一个或多个独立地选自卤素(F、Cl、Br或I)或C1-3烷基(例如CH3、C2H5、C3H7)取代。例如,取代的吡啶可以为:
Figure PCTCN2015096649-appb-000005
等;取代的苯胺可以为:
Figure PCTCN2015096649-appb-000006
等;取代的环己胺可以为:
Figure PCTCN2015096649-appb-000007
等;取代的哌啶可以为:
Figure PCTCN2015096649-appb-000008
Figure PCTCN2015096649-appb-000009
等。
在本发明中,作为催化剂的有机胺吸附的酸性分子筛可以如下制得:将酸性分子筛的催化剂装填到反应管中,在200~300℃的吸附温度下, 通入有机胺摩尔含量为0.001~3%的有机胺与选自一氧化碳、氢气、氮气、空气或氩气中的任意一种或多种混合气,吸附至饱和,然后在该温度下用选自一氧化碳、氢气、氮气、空气或氩气的任意一种或多种混合气吹扫1~6小时,得到有机胺吸附的酸性分子筛的催化剂。所述有机胺吸附的酸性分子筛的催化剂中主要含化学吸附的有机胺。
优选地,在本发明中,酸性分子筛为酸性丝光沸石分子筛、ZSM-35分子筛、含有MOR结构单元的共晶分子筛或混晶分子筛和含有FER结构单元的共晶分子筛或混晶分子筛中的一种或多种。其中,所述含有MOR结构单元的共晶分子筛是指在分子筛单个晶体中不仅存在MOR结构层单元,还存在其它分子筛结构层单元,而所述含有MOR结构单元的混晶分子筛是指在分子筛中不仅存在MOR结构晶体,还存在其它分子筛结构晶体;并且所述含有FER结构单元的共晶分子筛是指在分子筛单个晶体中不仅存在FER结构层单元,还存在其它分子筛结构层单元,而所述含有FER结构单元的混晶分子筛是指在分子筛中不仅存在FER结构晶体,还存在其它分子筛结构晶体。
进一步优选地,在本发明中,所述酸性分子筛为纯相的丝光沸石分子筛或者ZSM-35分子筛,酸性分子筛进一步优选纯相的丝光沸石分子筛。
优选地,在本发明中,所述酸性分子筛中硅和铝的原子比为Si/Al=3~100;更优选地,所述酸性分子筛中硅和铝的原子比优选Si/Al=5~30。
优选地,在本发明中,所述酸性分子筛中含有质量分数为0.1~10%的金属;更优选地,所述酸性分子筛中含有质量分数为0.1~2%的金属。
优选地,在本发明中,所述金属为铜、铁、镓、银、镍、钴中的一种或者多种。
优选地,在本发明中,所述金属在分子筛中的位置是分子筛的离子交换位置,或分子筛的孔道或表面上,或分子筛的骨架上的一种或者多种。
优选地,在本发明中,所述金属引入的方式是原位合成、浸渍或者离子交换中的一种或者多种。
在本发明中,所述金属以离子状态存在与离子交换位置,或以金属氧化物状态存在于分子筛的孔道或表面上,或以同晶取代的形式进入分子筛骨架T原子上。
本发明中,酸性分子筛是指氢型分子筛或金属改性的氢型分子筛。
在本发明中,所述酸性分子筛可以经过脱硅或脱铝后处理。所述脱硅后处理是碱溶液处理,并且常用碱溶液有氢氧化钠、氢氧化钾、氢氧化铵、碳酸钠、碳酸氢钠的水溶液。所述脱铝后处理是酸溶液处理或水蒸气处理。常用酸溶液有盐酸、硝酸、草酸、柠檬酸、醋酸的水溶液。常用水蒸气处理温度为400~700℃。
在本发明中,所述酸性分子筛可以具有微米结构、纳米结构、微孔结构、介孔-微孔结构中的一种或几种。
优选地,在本发明中,所述催化剂中含有质量分数为1~60%的成型剂。更优选地,所述催化剂中含有质量分数为10~30%的成型剂。
优选地,在本发明中,所述催化剂中成型剂是氧化铝、氧化硅、高岭土中的一种或多种。
在本发明中,尽管以一氧化碳作为原料,但是该一氧化碳原料也可以以含有一氧化碳的原料气提供。并且,所述原料气可以包含一氧化碳、氢气和惰性气体等,其中一氧化碳体积含量为50~100%,氢气体积含量为0~50%,惰性气体体积含量为0~50%;惰性气体包含氮气,氦气,氩气,二氧化碳、甲烷和乙烷中的任意一种或任意几种的混合。优选地,所述原料气为合成气。所述合成气可以通过煤、天然气、石油或生物质转化得到。
优选地,在本发明中,所述反应条件优选:反应温度240~300℃,反应压力3~7MPa,甲醇的质量空速0.3~3.0h-1,并且一氧化碳与甲醇的摩尔比为5:1~20:1,水与甲醇的摩尔比为0.2:1~1:1。
优选地,在本发明中,所述反应器是实现连续反应的固定床反应器、移动床反应器或流化床反应器。更优选地,所述反应器为一个或多个固定床反应器。采用连续反应的形式。固定床反应器可以为一个,也可以为多个。当采用多个固定床反应器时,反应器之间可以是串联、并联、或者串联与并联相结合的形式。
实施例
下面结合具体的实施例,进一步阐述本发明。应理解,这些实施例仅 用于举例说明本发明而不用于限制本发明的范围。
如无特殊说明,本申请的实施例中的原料和催化剂均通过商业途径购买并直接使用。
实施例中分析方法以及转化率、选择性计算如下:
利用带有气体自动进样器、FID检测器以及FFAP毛细管柱的Agilent7890气相色谱仪进行自动分析。
在本发明的一些实施例中,转化率和选择性都基于甲醇碳摩尔数进行计算:
甲醇转化率=[(进料中甲醇碳摩尔数)-(出料中甲醇碳摩尔数)]÷(进料中甲醇碳摩尔数)×(100%)
乙酸选择性=1/2×(出料中乙酸碳摩尔数)÷[(进料中甲醇碳摩尔数)-(出料中甲醇碳摩尔数)]×(100%)
下面通过实施例详述本发明,但本发明并不局限于这些实施例。
催化剂制备
实施例1
将一公斤Si/Al=7的钠型丝光沸石用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型丝光沸石。在空气气氛下500℃煅烧4h得到氢型丝光沸石,然后压片成型、粉碎、筛分,制备成5~10目的颗粒。然后将其载入直径为32mm的不锈钢固定床反应器中,在280℃,常压下,用500ml/min含0.3%摩尔浓度的吡啶与氮气混合气处理6小时至吸附饱和,然后再在280℃,常压下用500ml/min氮气吹扫3小时,然后降到室温,制得吡啶吸附的酸性丝光沸石分子筛,作为催化剂A,其组成参见表1。
实施例2
将一公斤Si/Al=30的钠型丝光沸石用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型丝光沸石。在空气气氛下500℃煅烧4h得到氢型丝光沸石,然后压片成型、粉碎、筛分,制备成5~10目的颗粒。然后将其载入直径为32mm的不锈钢固定床反应器中,在280℃,常压下,用500ml/min含0.3%摩尔浓度的吡啶与氮气混合气处理6小时至吸附饱和, 然后再在280℃,常压下用500ml/min氮气吹扫3小时,然后降到室温,制得吡啶吸附的酸性丝光沸石分子筛,作为催化剂B,其组成参见表1。
实施例3
将一公斤Si/Al=3的钠型ZSM-35用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型ZSM-35。在空气气氛下500℃煅烧4h得到氢型ZSM-35,然后压片成型、粉碎、筛分,制备成5~10目的颗粒。然后将其载入直径为32mm的不锈钢固定床反应器中,在280℃,常压下,用500ml/min含0.3%摩尔浓度的苯胺与氮气混合气处理6小时至吸附饱和,然后再在280℃,常压下用500ml/min氮气吹扫3小时,然后降到室温,制得苯胺吸附的酸性ZSM-35分子筛,作为催化剂C,其组成参见表1。
实施例4
将一公斤Si/Al=15的钠型ZSM-35用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型ZSM-35。在空气气氛下500℃煅烧4h得到氢型ZSM-35,然后压片成型、粉碎、筛分,制备成5~10目的颗粒。然后将其载入直径为32mm的不锈钢固定床反应器中,在280℃,常压下,用500ml/min含0.3%摩尔浓度的环己胺与氮气混合气处理6小时至吸附饱和,然后再在280℃,常压下用500ml/min氮气吹扫3小时,然后降到室温,制得环己胺吸附的酸性ZSM-35分子筛,作为催化剂D,制备方法归纳与表1中。
实施例5
将一公斤Si/Al=100的丝光沸石用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型共晶分子筛。在空气气氛下500℃煅烧4h得到氢型共晶分子筛,然后压片成型、粉碎、筛分,制备成5~10目的颗粒。然后将其载入直径为32mm的不锈钢固定床反应器中,在280℃,常压下,用500ml/min含0.3%摩尔浓度的哌啶与氮气混合气处理6小时至吸附饱和,然后再在280℃,常压下用500ml/min氮气吹扫3小时,然后降到室温,制得哌啶吸附的酸性丝光沸石,作为催化剂E,其组成参见表1。
实施例6
将一公斤Si/Al=20的钠型丝光沸石,用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型混晶分子筛。在空气气氛下500℃煅烧4h得到氢型丝光沸石,然后用20%氧化铝挤条成型为Ф3mm×3mm的棒状沸石分子筛。然后将其载入直径为32mm的不锈钢固定床反应器中,在280℃,常压下,用500ml/min含0.3%摩尔浓度的4-甲基吡啶与氮气混合气处理6小时至吸附饱和,然后再在280℃,常压下用500ml/min氮气吹扫3小时,然后降到室温,制得4-甲基吡啶吸附的酸性丝光沸石,作为催化剂F,其组成参见表1。
实施例7
将一公斤Si/Al=7的钠型丝光沸石用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型丝光沸石。铵型丝光沸石与0.1mol/L的硝酸铜溶液在80℃离子交换,得到铜含量为1%的铵型丝光沸石。在空气气氛下500℃煅烧4h得到含铜氢型丝光沸石,然后用20%氧化铝挤条成型为Ф3mm×3mm的棒状沸石分子筛。然后将其载入直径为32mm的不锈钢固定床反应器中,在280℃,常压下,用500ml/min含0.3%摩尔浓度的4-氯吡啶与氮气混合气处理6小时至吸附饱和,然后再在280℃,常压下用500ml/min氮气吹扫3小时,然后降到室温,制得4-氯吡啶吸附的含铜酸性丝光沸石分子筛,作为催化剂G,其组成参见表1。
实施例8
将一公斤Si/Al=15的钠型ZSM-35用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型ZSM-35。铵型ZSM-35与0.1mol/L的硝酸银溶液在80℃离子交换,得到银含量为0.5%的铵型ZSM-35。在空气气氛下500℃煅烧4h得到含银氢型ZSM-35,然后用20%氧化铝挤条成型为Ф3mm×3mm的棒状沸石分子筛。然后将其载入直径为32mm的不锈钢固定床反应器中,在280℃,常压下,用500ml/min含0.3%摩尔浓度的环己胺与氮气混合气处理6小时至吸附饱和,然后再在280℃,常压下用 500ml/min氮气吹扫3小时,然后降到室温,制得环己胺吸附的含银酸性ZSM-35分子筛,作为催化剂H,其组成参见表1。
对比例1
将一公斤Si/Al=7的钠型丝光沸石用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型丝光沸石。在空气气氛下500℃煅烧4h得到氢型丝光沸石,然后压片成型、粉碎、筛分,制备成5~10目的颗粒,作为催化剂I,其组成参见表1。
对比例2
将一公斤Si/Al=15的钠型ZSM-35用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型ZSM-35。在空气气氛下500℃煅烧4h得到氢型ZSM-35,然后压片成型、粉碎、筛分,制备成5~10目的颗粒,作为催化剂J,其组成参见表1。
表1 实施例1~8和对比例1~2中的催化剂组成
Figure PCTCN2015096649-appb-000010
甲醇羰基化制备乙酸
实施例9
将100g催化剂A装入内径为32mm的不锈钢反应管内,在以下条件下反应:反应温度=260℃,反应压力=5MPa,甲醇质量空速=0.5h-1,一氧化碳:甲醇(摩尔比)=10:1,水:甲醇(摩尔比)=0.05:1。反应稳定后,用气相色谱分析产物,计算原料甲醇转化率和乙酸选择性,反应结果见表2。
实施例10
将100g催化剂B装入内径为32mm的不锈钢反应管内,在以下条件下反应:反应温度=240℃,反应压力=7MPa,甲醇质量空速=3h-1,一氧化碳:甲醇(摩尔比)=70:1,水:甲醇(摩尔比)=1:1。反应稳定后,用气相色谱分析产物,计算原料甲醇转化率和乙酸选择性,反应结果见表2。
实施例11
将100g催化剂C装入内径为32mm的不锈钢反应管内,在以下条件下反应:反应温度=200℃,反应压力=10MPa,甲醇质量空速=0.3h-1,一氧化碳:甲醇(摩尔比)=20:1,水:甲醇(摩尔比)=0.2:1。反应稳定后,用气相色谱分析产物,计算原料甲醇转化率和乙酸选择性,反应结果见表2。
实施例12
将100g催化剂D装入内径为32mm的不锈钢反应管内,在以下条件下反应:反应温度=270℃,反应压力=3MPa,甲醇质量空速=6h-1,一氧化碳:甲醇(摩尔比)=15:1,水:甲醇(摩尔比)=2:1。反应稳定后,用气相色谱分析产物,计算原料甲醇转化率和乙酸选择性,反应结果见表2。
实施例13
将100g催化剂E装入内径为32mm的不锈钢反应管内,在以下条件下反应:反应温度=150℃,反应压力=0.5MPa,甲醇质量空速=0.01h-1,一氧化碳:甲醇(摩尔比)=100:1,水:甲醇(摩尔比)=0.08:1。反应稳定 后,用气相色谱分析产物,计算原料甲醇转化率和乙酸选择性,反应结果见表2。
实施例14
将100g催化剂F装入内径为32mm的不锈钢反应管内,在以下条件下反应:反应温度=350℃,反应压力=8MPa,甲醇质量空速=10h-1,一氧化碳:甲醇(摩尔比)=1:1,水:甲醇(摩尔比)=5:1。反应稳定后,用气相色谱分析产物,计算原料甲醇转化率和乙酸选择性,反应结果见表2。
实施例15
将100g催化剂G装入内径为32mm的不锈钢反应管内,在以下条件下反应:反应温度=260℃,反应压力=5MPa,甲醇质量空速=0.5h-1,一氧化碳:甲醇(摩尔比)=5:1,水:甲醇(摩尔比)=0.3:1。反应稳定后,用气相色谱分析产物,计算原料甲醇转化率和乙酸选择性,反应结果见表2。
实施例16
将100g催化剂H装入内径为32mm的不锈钢反应管内,在以下条件下反应:反应温度=270℃,反应压力=3MPa,甲醇质量空速=6h-1,一氧化碳:甲醇(摩尔比)=50:1,水:甲醇(摩尔比)=0.5:1。反应稳定后,用气相色谱分析产物,计算原料甲醇转化率和乙酸选择性,反应结果见表2。
对比例3
将实施例9中的催化剂换为催化剂I,其余步骤和条件都一样,反应结果见表2。
对比例4
将实施例12中的催化剂换为催化剂J,其余步骤和条件都一样,反应结果见表2。
表2 实施例9~16和对比例3~4中的催化反应结果
Figure PCTCN2015096649-appb-000011
以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具体实施方式。本领域技术人员理解,在不背离本发明范围的情况下,可以作出其他更改和变形。本发明的范围由所附权利要求限定。

Claims (10)

  1. 一种通过甲醇羰基化反应制备乙酸的方法,所述方法包括:将原料甲醇、一氧化碳和水通过载有作为催化剂的有机胺吸附的酸性分子筛的反应区,在以下反应条件下发生反应,由此制备乙酸,
    其中,所述酸性分子筛为MOR结构分子筛和FER结构分子筛中的一种或两种;
    所述有机胺为吡啶、苯胺、环己胺、哌啶、被一个或多个取代基取代的吡啶、被一个或多个取代基取代的苯胺、被一个或多个取代基取代的环己胺和被一个或多个取代基取代的哌啶中的一种或多种,所述取代基独立地选自卤素或C1-3烷基;
    所述反应区由一个或多个通过串联和/或并联方式连接的反应器构成;
    所述反应条件为:反应温度150~350℃,反应压力0.5~10MPa,甲醇的质量空速0.01~10h-1,一氧化碳与甲醇的摩尔比为1:1~100:1,水与甲醇的摩尔比为0.05:1~5:1。
  2. 根据权利要求1所述的方法,其特征在于,所述酸性分子筛为酸性丝光沸石分子筛和酸性ZSM-35分子筛中的一种或两种,优选酸性丝光沸石分子筛。
  3. 根据权利要求1所述的方法,其特征在于,所述酸性分子筛中硅和铝的原子比为Si/Al=3~100;优选地,所述酸性分子筛中硅和铝的原子比为Si/Al=5~30。
  4. 根据权利要求1所述的方法,其特征在于,所述酸性分子筛中含有质量分数为0.1~10%,优选0.1~2%的金属。
  5. 根据权利要求4所述的方法,其特征在于,所述金属为铜、铁、镓、银、镍或钴中的一种或者多种;
  6. 根据权利要求4所述的方法,其特征在于,所述金属通过原位合成、浸渍或离子交换中的一种或多种方式引入。
  7. 根据权利要求1所述的方法,其特征在于,所述酸性分子筛中含有质量分数为1~60%,优选10~30%的成型剂。
  8. 根据权利要求7所述的方法,其特征在于,所述成型剂是氧化铝、氧化硅或高岭土中的一种或多种。
  9. 根据权利要求1所述的方法,其特征在于,所述反应条件为:反应温度240~300℃,反应压力3~7MPa,甲醇的质量空速0.3~3.0h-1,并且一氧化碳与甲醇的摩尔比为5:1~20:1,水与甲醇的摩尔比为0.2:1~1:1。
  10. 根据权利要求1所述的方法,其特征在于,所述反应器是实现连续反应的固定床反应器、移动床反应器或流化床反应器中的一种或多种。
PCT/CN2015/096649 2015-09-11 2015-12-08 一种通过甲醇羰基化制备乙酸的方法 WO2017041373A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112018004736-8A BR112018004736B1 (pt) 2015-09-11 2015-12-08 Método para a preparação de ácido acético por carbonilação de metanol
JP2018512544A JP6615324B2 (ja) 2015-09-11 2015-12-08 メタノールカルボニル化によって酢酸を製造する方法
EP15903476.8A EP3330248B1 (en) 2015-09-11 2015-12-08 Method for preparing acetic acid by carbonylation of methanol
EA201890652A EA035965B1 (ru) 2015-09-11 2015-12-08 Способ получения уксусной кислоты карбонилированием метанола
US15/758,572 US10370318B2 (en) 2015-09-11 2015-12-08 Method for preparing acetic acid by carbonylation of methanol
ZA2018/01832A ZA201801832B (en) 2015-09-11 2018-03-19 Method for preparing acetic acid by carbonylation of methanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510578383.5A CN106518657B (zh) 2015-09-11 2015-09-11 一种通过甲醇羰基化制备乙酸的方法
CN201510578383.5 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017041373A1 true WO2017041373A1 (zh) 2017-03-16

Family

ID=58240529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096649 WO2017041373A1 (zh) 2015-09-11 2015-12-08 一种通过甲醇羰基化制备乙酸的方法

Country Status (8)

Country Link
US (1) US10370318B2 (zh)
EP (1) EP3330248B1 (zh)
JP (1) JP6615324B2 (zh)
CN (1) CN106518657B (zh)
BR (1) BR112018004736B1 (zh)
EA (1) EA035965B1 (zh)
WO (1) WO2017041373A1 (zh)
ZA (1) ZA201801832B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552085B (zh) * 2017-08-24 2020-07-10 中国烟草总公司郑州烟草研究院 一种碳改性分子筛催化剂及其制备方法和应用
WO2020008506A1 (ja) * 2018-07-02 2020-01-09 株式会社ダイセル 酢酸の製造方法
CN109908947B (zh) * 2019-03-14 2021-03-30 厦门大学 一种合成气高选择性转化制乙酸的催化剂及其应用
CN111822041B (zh) * 2019-04-15 2021-11-09 中国科学院大连化学物理研究所 一种复合催化剂、其制备方法及其应用
CN115536040B (zh) * 2022-09-27 2023-08-15 厦门大学 一种纳米荷叶状富铝型丝光沸石分子筛及合成方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091119A (zh) * 1992-11-05 1994-08-24 英国石油化学品有限公司 羧酸的制备方法
CN101421039A (zh) * 2006-04-12 2009-04-29 英国石油化学品有限公司 制备羰基化产物的方法
CN101421219A (zh) * 2006-04-12 2009-04-29 英国石油化学品有限公司 制备羧酸和/或其衍生物的方法
CN101613274A (zh) * 2008-06-25 2009-12-30 中国科学院大连化学物理研究所 一种二甲醚羰基化制备乙酸甲酯的方法
CN102215959A (zh) * 2008-11-19 2011-10-12 英国石油化学品有限公司 通过承载在无机氧化物上的丝光沸石催化的羰基化方法
CN102847550A (zh) * 2012-09-17 2013-01-02 浙江大学 一种甲醇羰基化制乙酸和乙酸甲酯的催化剂及其制备方法
CN103896769A (zh) * 2012-12-25 2014-07-02 中国科学院大连化学物理研究所 一种二甲醚羰基化制备乙酸甲酯的方法
CN103896768A (zh) * 2012-12-25 2014-07-02 中国科学院大连化学物理研究所 一种制备乙酸甲酯的方法
CN103896766A (zh) * 2012-12-25 2014-07-02 中国科学院大连化学物理研究所 一种生产乙酸甲酯的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123446A (en) * 1977-04-11 1978-10-31 Allied Chemical Corporation Synthesis of metal alkyl carbonates
US4300011A (en) * 1980-04-28 1981-11-10 Mobil Oil Corporation Selective production of aromatics
JP4410481B2 (ja) * 2003-04-18 2010-02-03 三菱重工業株式会社 酢酸の製造方法、及び酢酸の製造装置
US6846951B1 (en) * 2003-10-09 2005-01-25 Acetex (Cyprus) Limited Integrated process for acetic acid and methanol
US7767848B2 (en) * 2005-02-08 2010-08-03 Celanese International Corporation Method of controlling acetic acid process
EP2072492A1 (en) * 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons to ethanol
EP2072491A1 (en) * 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of alcohol(s) into alcohol(s) with increased carbon-chain
EP2085375A1 (en) * 2007-12-20 2009-08-05 BP Chemicals Limited Process for the production of acetic acid and/or methyl acetate in the presence of a zeolite of structure type MOR
EP2174713A1 (en) * 2008-10-13 2010-04-14 BP Chemicals Limited Dealumination process
EP2198963A1 (en) * 2008-12-10 2010-06-23 BP Chemicals Limited Bound mordenite zeolite carbonylation catalyst
EP2251082A1 (en) * 2009-05-14 2010-11-17 BP Chemicals Limited Carbonylation catalyst and process
EP2251314A1 (en) * 2009-05-14 2010-11-17 BP Chemicals Limited Carbonylation process
EP2251083A1 (en) * 2009-05-14 2010-11-17 BP Chemicals Limited Carbonylation catalyst and process
TW201235099A (en) * 2011-01-27 2012-09-01 Bp Chem Int Ltd Process
BR112015014700B1 (pt) * 2012-12-25 2021-06-29 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Método para preparar acetato de metila
US9387469B2 (en) * 2013-12-30 2016-07-12 Eastman Chemical Company Carbonylation catalyst and process using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091119A (zh) * 1992-11-05 1994-08-24 英国石油化学品有限公司 羧酸的制备方法
CN101421039A (zh) * 2006-04-12 2009-04-29 英国石油化学品有限公司 制备羰基化产物的方法
CN101421219A (zh) * 2006-04-12 2009-04-29 英国石油化学品有限公司 制备羧酸和/或其衍生物的方法
CN101613274A (zh) * 2008-06-25 2009-12-30 中国科学院大连化学物理研究所 一种二甲醚羰基化制备乙酸甲酯的方法
CN102215959A (zh) * 2008-11-19 2011-10-12 英国石油化学品有限公司 通过承载在无机氧化物上的丝光沸石催化的羰基化方法
CN102847550A (zh) * 2012-09-17 2013-01-02 浙江大学 一种甲醇羰基化制乙酸和乙酸甲酯的催化剂及其制备方法
CN103896769A (zh) * 2012-12-25 2014-07-02 中国科学院大连化学物理研究所 一种二甲醚羰基化制备乙酸甲酯的方法
CN103896768A (zh) * 2012-12-25 2014-07-02 中国科学院大连化学物理研究所 一种制备乙酸甲酯的方法
CN103896766A (zh) * 2012-12-25 2014-07-02 中国科学院大连化学物理研究所 一种生产乙酸甲酯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3330248A4 *

Also Published As

Publication number Publication date
EA035965B1 (ru) 2020-09-07
ZA201801832B (en) 2019-07-31
US10370318B2 (en) 2019-08-06
BR112018004736B1 (pt) 2022-04-19
US20180244599A1 (en) 2018-08-30
EP3330248A4 (en) 2018-08-08
EA201890652A1 (ru) 2018-10-31
CN106518657B (zh) 2019-03-29
EP3330248B1 (en) 2019-08-28
BR112018004736A2 (pt) 2019-11-12
CN106518657A (zh) 2017-03-22
EP3330248A1 (en) 2018-06-06
JP6615324B2 (ja) 2019-12-04
JP2018526406A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
EP2349972B1 (en) Integrated process for the production of vinyl acetate from acetic acid via ethylene
TWI304806B (en) Process for carbonylation of alkyl ethers
WO2017041373A1 (zh) 一种通过甲醇羰基化制备乙酸的方法
JP5108980B2 (ja) 担持金属触媒を用いる酢酸からのアセトアルデヒドの直接及び選択的な製造
WO2017012246A1 (zh) 一种乙酸甲酯的生产方法
BRPI0510374B1 (pt) Processo para preparar um ácido carboxílico alifático
JP2011529497A (ja) 単一の反応区域において酢酸から直接にエチレンを触媒的に製造する方法
TW201031633A (en) Integrated process for the production of vinyl acetate from acetic acid via acetaldehyde
CN105358521B (zh) 羰基化方法
US20110060176A1 (en) Method for the dehydroaromatisation of mixtures containing methane by regenerating the corresponding catalysts that are devoid of precious metal
TW201434810A (zh) 用於製造乙酸之整合方法
WO2012077724A1 (ja) オレフィン製造用触媒及びオレフィンの製造方法
TW201429942A (zh) 用於製造甲醇及乙酸甲酯之整合方法(三)
WO2017012244A1 (zh) 一种低级脂肪羧酸烷基酯的生产方法
TW201427940A (zh) 用於製造甲醇及乙酸甲酯之整合方法(一)
CN106518646B (zh) 一种通过甲酸甲酯异构化制备乙酸的方法
CN109476579A (zh) 生产乙酸甲酯的羰基化工艺
CN112206775A (zh) 一种加氢催化剂的制备方法以及制得的催化剂的应用
TWI419871B (zh) 由醋酸經乙烯而產製醋酸乙烯酯之整合性製程
CN112209831A (zh) 一种生产乙醇酸酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015903476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018512544

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15758572

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018004736

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 201890652

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112018004736

Country of ref document: BR

Free format text: VIDE PARECER

ENP Entry into the national phase

Ref document number: 112018004736

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180309

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112018004736

Country of ref document: BR

Kind code of ref document: A2

Free format text: VIDE PARECER

ENP Entry into the national phase

Ref document number: 112018004736

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180309