WO2017038988A1 - Élément de génération d'énergie thermoélectrique, module de génération d'énergie thermoélectrique le comprenant et procédé de génération d'énergie thermoélectrique l'utilisant - Google Patents
Élément de génération d'énergie thermoélectrique, module de génération d'énergie thermoélectrique le comprenant et procédé de génération d'énergie thermoélectrique l'utilisant Download PDFInfo
- Publication number
- WO2017038988A1 WO2017038988A1 PCT/JP2016/075856 JP2016075856W WO2017038988A1 WO 2017038988 A1 WO2017038988 A1 WO 2017038988A1 JP 2016075856 W JP2016075856 W JP 2016075856W WO 2017038988 A1 WO2017038988 A1 WO 2017038988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- power generation
- thermoelectric
- thermoelectric power
- conversion material
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 166
- 238000000034 method Methods 0.000 title claims description 50
- 239000000463 material Substances 0.000 claims abstract description 156
- 238000006243 chemical reaction Methods 0.000 claims abstract description 115
- 150000002500 ions Chemical class 0.000 claims abstract description 55
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 20
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 20
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 230000020169 heat generation Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 6
- 230000033116 oxidation-reduction process Effects 0.000 abstract description 7
- 239000004065 semiconductor Substances 0.000 description 52
- 229910006585 β-FeSi Inorganic materials 0.000 description 36
- 239000003792 electrolyte Substances 0.000 description 35
- 150000001875 compounds Chemical class 0.000 description 27
- -1 silicide compound Chemical class 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 239000010949 copper Substances 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 229910052732 germanium Inorganic materials 0.000 description 11
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 11
- 239000010416 ion conductor Substances 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 239000000523 sample Substances 0.000 description 10
- 238000005245 sintering Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910052787 antimony Inorganic materials 0.000 description 7
- 239000011244 liquid electrolyte Substances 0.000 description 7
- 239000010955 niobium Substances 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 229910018989 CoSb Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 229910052797 bismuth Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000005525 hole transport Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- 229910005329 FeSi 2 Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 4
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002608 ionic liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- 229910005900 GeTe Inorganic materials 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910002367 SrTiO Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000002798 polar solvent Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910001935 vanadium oxide Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910002665 PbTe Inorganic materials 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 2
- 229910005642 SnTe Inorganic materials 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- VZVHUBYZGAUXLX-UHFFFAOYSA-N azane;azanide;cobalt(3+) Chemical compound N.N.N.[NH2-].[NH2-].[NH2-].[Co+3] VZVHUBYZGAUXLX-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002109 crystal growth method Methods 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- 150000003498 tellurium compounds Chemical class 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910002908 (Bi,Sb)2(Te,Se)3 Inorganic materials 0.000 description 1
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910019974 CrSi Inorganic materials 0.000 description 1
- 229910016347 CuSn Inorganic materials 0.000 description 1
- 229910002531 CuTe Inorganic materials 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 241000877463 Lanio Species 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910020722 Li0.33La0.55TiO3 Inorganic materials 0.000 description 1
- 229910009496 Li1.5Al0.5Ge1.5 Inorganic materials 0.000 description 1
- 229910012050 Li4SiO4-Li3PO4 Inorganic materials 0.000 description 1
- 229910012069 Li4SiO4—Li3PO4 Inorganic materials 0.000 description 1
- 229910012305 LiPON Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-O Piperidinium(1+) Chemical compound C1CC[NH2+]CC1 NQRYJNQNLNOLGT-UHFFFAOYSA-O 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910018321 SbTe Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910008651 TiZr Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910008644 TlTe Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910007657 ZnSb Inorganic materials 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002593 electrical impedance tomography Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 238000002361 inverse photoelectron spectroscopy Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical compound FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000000717 platinum sputter deposition Methods 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000013079 quasicrystal Substances 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001427 strontium ion Inorganic materials 0.000 description 1
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 1
- GKCNVZWZCYIBPR-UHFFFAOYSA-N sulfanylideneindium Chemical compound [In]=S GKCNVZWZCYIBPR-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- PDYNJNLVKADULO-UHFFFAOYSA-N tellanylidenebismuth Chemical compound [Bi]=[Te] PDYNJNLVKADULO-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical group 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
Definitions
- the present invention relates to a thermoelectric power generation element, a thermoelectric power generation module including the same, and a thermoelectric power generation method using the same. According to the present invention, thermal energy can be converted into electrical energy without imparting a temperature gradient to the thermoelectric power generation element.
- thermoelectric power generation using the Seebeck effect has been known as thermoelectric power generation using geothermal heat or factory exhaust heat (Patent Documents 1 and 2, and Non-Patent Document 1) for efficiently using thermal energy.
- Thermoelectric power generation by the Seebeck effect is a power generation principle that utilizes the generation of a voltage when a temperature gradient is provided in a metal or semiconductor. Specifically, it is a thermoelectric power generation system that converts thermal energy into electrical energy by applying a temperature gradient to a thermoelectric conversion element that combines a p-type semiconductor and an n-type semiconductor.
- thermoelectric power generation system does not generate greenhouse gases emitted by thermal power generation. In areas with many volcanoes, geothermal heat can be used as thermal energy, so it is considered a promising power generation method.
- thermoelectric conversion element using a temperature gradient has problems such as a high price of a semiconductor constituting the thermoelectric conversion element, a narrow operating temperature range, and a low conversion efficiency. Furthermore, since a temperature gradient is required for power generation, the installation location is limited, and in some cases, it is necessary to use a cooling device for the temperature gradient. In particular, since one dimension of the thermoelectric conversion module is used for the temperature gradient, it is used two-dimensionally for the heat source, and all the surrounding heat cannot be used three-dimensionally. Accordingly, an object of the present invention is to provide a thermoelectric power generation element that does not require a temperature gradient and a thermoelectric power generation system using the same.
- thermoelectric conversion element that does not require a temperature gradient and a thermoelectric power generation system using the thermoelectric conversion element
- the inventor has surprisingly found that a thermoelectric conversion material that generates thermally excited electrons and holes, and charge transport
- thermoelectric generator combined with a solid electrolyte or electrolyte solution that can move ion pairs
- heat energy can be converted into electrical energy only by raising the temperature of the entire system without giving a temperature difference to the system. It was.
- the present invention is based on these findings.
- thermoelectric conversion material that generates thermally excited electrons and holes
- second layer containing a solid electrolyte or an electrolyte solution capable of moving a charge transport ion pair are laminated, and
- the valence charge potential of the semiconductor that generates thermally excited electrons and holes is more positive than the redox potential of the charge transport ion pair in the second layer, and the two layers at the interface between the first layer and the second layer.
- thermoelectric power generation element characterized by an oxidation reaction of ions that are more easily oxidized among ions, [2]
- the difference between the valence charge position of the thermoelectric conversion material that generates thermally excited electrons and holes in the first layer and the redox potential of the charge transport ion pair in the second layer is 0.5 V or less.
- thermoelectric power generation element The third layer containing the electron transport material is laminated on the surface of the first layer opposite to the laminate surface with the second layer, and the electron conduction charge potential of the electron transport material in the third layer is The thermoelectric power generation element according to [1] or [2], which is the same as or positive with a valence charge position of a thermoelectric conversion material that generates thermally excited electrons and holes in the first layer, [4]
- the difference between the valence charge position of the thermoelectric conversion material that generates thermoelectrons and holes in the first layer and the electron conduction charge position of the electron transport material in the third layer is 0.5 V or less.
- thermoelectric power generation element [5]
- the thermoelectric conversion material that generates thermally excited electrons and holes in the first layer is a thermoelectric conversion material in which a potential difference between thermally excited electrons and holes generated therewith is 0.1 V or more. 1] to [4], [6]
- the thermoelectric conversion material that generates thermally excited electrons and holes in the first layer has a thermally excited electron density of 10 15 / cm 3.
- the power generation method according to [6] wherein the temperature is a temperature at which a thermally excited electron density of the thermoelectric conversion material is 10 18 / cm 3 .
- thermoelectric generator including the thermoelectric generator according to any one of [1] to [5], [9] A thermobattery comprising the thermoelectric generator according to any one of [1] to [5], [10] A thermoelectric power generation module including the thermoelectric power generation element according to any one of [1] to [5], [11] A thermoelectric power generation method including a step of installing the thermoelectric power generation module according to [10] in a heat generation place, and a step of heating the thermoelectric power generation module with heat to generate electric power, and [12] The thermoelectric power generation method according to [11], wherein the heat is geothermal heat or exhaust heat.
- thermoelectric conversion layer including a thermoelectric conversion material that generates holes and electrons
- electron transport layer including an electron transport material and / or a hole transport layer including a hole transport material.
- thermoelectric generator [14] A thermoelectric generator including the thermoelectric generator, [15] A thermobattery including the thermoelectric generator, [16] a thermoelectric power generation module including the thermoelectric power generation element, and [17] a step of installing the thermoelectric power generation module in a heat generation place, and a step of heating the thermoelectric power generation module with heat to generate electric power.
- thermoelectric power generation element and the thermoelectric power generation module including the thermoelectric power generation element of the present invention thermal energy can be converted into electric energy without giving a temperature gradient to the system.
- thermoelectric power generation can be performed using the exhaust heat of geothermal heat, automobile exhaust heat, factory, etc. without providing a temperature gradient in the system. it can.
- the thermoelectric power generation element of the present invention and the thermoelectric power generation module including the thermoelectric power generation element can be used for a thermoelectric power generation device or a thermobattery that is used as a power generation device or a battery by converting ambient thermal energy into electric energy, and is simple. It is possible to manufacture a power generation device or battery having a simple structure.
- FIG. 6 is a graph showing the temperature dependence of the electron density (calculated value) of ⁇ -FeSi 2 .
- 5 is a graph showing electrical conductivity calculated from measured resistance values according to temperature changes of ⁇ -FeSi 2 which is a thermoelectric conversion material that generates thermally excited electrons and holes.
- ⁇ -FeSi 2 as a thermoelectric conversion material (first layer) that generates thermally excited electrons and holes
- CuZr 2 (PO 4 ) 3 as an electrolyte
- n electron transport material
- thermoelectric conversion material first layer
- CuZr 2 (PO 4 ) 3 as an electrolyte
- n an electron transport material
- thermoelectric conversion material first layer
- CuZr 2 (PO 4 ) 3 as an electrolyte
- n an electron transport material
- thermoelectric conversion material (first layer) that generates thermally excited electrons and holes CuZr 2 (PO 4 ) 3 as an electrolyte (second layer)
- n an electron transport material (third layer) 10 is a graph showing a cell voltage when a thermoelectric power generation element using silicon is 750 ° C. and a constant pressure current is 5 ⁇ A (Example 2).
- a thermoelectric power generation element using ⁇ -FeSi 2 and an electrolyte (second layer) CuZr 2 (PO 4 ) 3 as a thermoelectric conversion material (first layer) for generating thermally excited electrons and holes is maintained at 600 ° C. It is the graph which showed the open circuit voltage of (Example 3).
- thermoelectric power generation element using germanium as a thermoelectric conversion material (first layer) for generating thermally excited electrons and holes and a hexaamminecobalt (III) chloride aqueous solution as an electrolyte (second layer) is maintained at 80 ° C. ( It is the graph which showed the open circuit voltage of Example 4).
- thermoelectric power generation element using germanium as the thermoelectric conversion material (first layer) for generating thermally excited electrons and holes and vanadium oxide (IV) sulfate aqueous solution as the electrolyte (second layer) is maintained at 80 ° C. (implementation) It is the graph which showed the open circuit voltage of Example 5).
- thermoelectric power generation element of the present invention includes a first layer including a thermoelectric conversion material that generates thermally excited electrons and holes, and a second layer including a solid electrolyte or an electrolyte solution to which a charge transport ion pair can move.
- a first layer including a thermoelectric conversion material that generates thermally excited electrons and holes and a second layer including a solid electrolyte or an electrolyte solution to which a charge transport ion pair can move.
- the valence charge potential of the thermoelectric conversion material in the first layer is more positive than the oxidation-reduction potential of the charge transport ion pair in the second layer, and charge transport ions are present at the interface between the first layer and the second layer. The more easily oxidized ion in the pair is oxidized to the other ion.
- thermoelectric generator of the present invention may have a third layer containing an electron transport material, and the third layer is laminated on a surface of the first layer opposite to the laminated surface with the second layer.
- the electron conduction charge position of the electron transport material is the same as or positive with respect to the conduction charge position of the semiconductor that generates thermally excited electrons and holes. That is, the thermoelectric power generation element of the present invention includes (A) a first layer containing a thermoelectric conversion material that generates thermally excited electrons and holes, and a second layer containing a solid electrolyte or an electrolyte solution to which a charge transport ion pair can move.
- thermoelectric conversion material means a material capable of generating thermally excited electrons and holes by heat. Specifically, a semiconductor that generates thermally excited electrons and holes can be given.
- the “charge transport ion pair” is two stable ions having different valences, and one ion is oxidized or reduced to become the other ion and can carry electrons and holes. Means a pair. Ions of the same element having different valences may be used.
- the first layer may be a thermoelectric conversion layer including a thermoelectric conversion material that generates holes and electrons
- the second layer may be a hole transport layer including a hole transporting material
- the third layer may be an electron transport.
- An electron transport layer containing a material may be used.
- the thermoelectric conversion material is preferably a semiconductor
- the hole transporting material is preferably an electrolyte
- the electron transporting material is preferably a semiconductor or a metal.
- thermoelectric power generation element of the present invention includes (1) a thermoelectric conversion layer including a thermoelectric conversion material that generates holes and electrons, and (2) an electron transport layer and / or a hole transfer material including an electron transport material. It may be a thermoelectric power generation element including a hole transport layer.
- the thermoelectric power generation element is provided with a positive electrode and a negative electrode, and heat is applied to the thermoelectric power generation element to generate a sufficient number of thermally excited electrons and holes for power generation.
- a potential difference is generated between the positive electrode and the negative electrode, and a voltage can be generated.
- the excited electron density of the semiconductor increases as the temperature rises.
- the number of thermally excited electrons and holes that are sufficient for power generation is actually expressed by the electron density per unit volume, but may be the same as the number of photoexcited electrons in a semiconductor used in a solar cell.
- Non-patent Document 2 which is a density of photoexcited electrons in amorphous silicon used in a battery. That is, in the thermoelectric conversion material used in the present invention, power generation can be performed under the condition that the thermally excited electron density is 10 15 / cm 3 or more.
- the potential difference between the valence charge position of the thermoelectric conversion material and the redox potential of the charge transport ion pair in the second layer, the electron transfer rate in the first layer, and the second layer Easiness of movement of each charge transport ion in the cell (in the case of a thermoelectric power generation element in which a third layer including an electron transport material is laminated, the valence charge position of the thermoelectric conversion material and the electron transport in the third layer)
- the magnitude of the generated current is determined in relation to the potential difference from the electron conduction charge position of the material and the electron transfer speed in the third layer.
- the temperature at which the thermally excited electron density is 10 15 / cm 3 is important, and it is important that the number of excited thermoelectrons and holes of the thermoelectric conversion material is greater than a certain value.
- the generated current was confirmed by placing a thermoelectric power generation element containing germanium as the thermoelectric conversion material in the first layer at 80 ° C., but the thermally excited electrons of germanium at 80 ° C. and Holes are about 10 18 / cm 3 .
- the generated current was confirmed by placing a thermoelectric power generation element containing ⁇ -FeSi 2 as a thermoelectric conversion material in the first layer at 190 ° C., but thermal excitation of ⁇ -FeSi 2 at 190 ° C.
- Electrons and holes are about 10 21 / cm 3 .
- the thermally excited electrons and the number of holes described here are calculated using the following calculation formula.
- N c and N v are the effective state densities of the conduction band and the valence band
- E g is the band gap
- k is the Boltzmann constant
- T is the temperature.
- the temperature at which the thermoelectric generator of the present invention actually generates electricity is a temperature that generates a sufficient number of thermally excited electrons and holes for power generation of the thermoelectric conversion material in the first layer. It depends on the ease of movement and the ease of electron movement at the interface with the first layer in combination with the second layer (or the second layer and the third layer).
- the first layer constituting the thermoelectric power generation element of the present invention contains a thermoelectric conversion material.
- the first layer can contain components other than the thermoelectric conversion material as long as the thermoelectric conversion material can generate a sufficient number of thermally excited electrons and holes for power generation by applying an appropriate temperature.
- the components include, but are not limited to, binders (polyvinyl alcohol, methylcellulose, acrylic resin, agar, etc.) that bind thermoelectric conversion materials, and sintering aids (magnesium oxide, yttrium oxide) that help to form thermoelectric conversion materials. , Calcium oxide, etc.). Further, the solvent used in the production process may remain.
- the first layer used in the present invention substantially functions as a thermoelectric conversion layer.
- the first layer can be produced by, for example, a squeegee method, a screen printing method, a discharge plasma sintering method, a compression molding method, a sputtering method, a vacuum evaporation method, or a spin coating method.
- a spin coating method When the spin coating method is used, ⁇ -FeSi 2 is dispersed in a polar solvent such as acetone, and the solution is spin-coated on the third layer or the second layer, whereby the first layer can be produced.
- ⁇ -FeSi 2 is produced by a discharge plasma sintering method, and the obtained ⁇ -FeSi 2 powder and a conductive binder (for example, high-temperature conductive coating) are used as the third layer or the second layer. You may squeegee.
- thermoelectric conversion material The thermoelectric conversion material contained in the first layer is not particularly limited as long as it can generate thermally excited electrons and holes by applying an appropriate temperature.
- a metal semiconductor a tellurium compound semiconductor
- examples include silicon germanium (Si-Ge) compound semiconductors, silicide compound semiconductors, skutterudite compound semiconductors, clathrate compound semiconductors, Heusler compound semiconductors, half-Heusler compound semiconductors, metal oxide semiconductors, organic semiconductors, and other semiconductors.
- the semiconductor used in the present invention functions as a thermoelectric conversion material.
- metal semiconductors include Si semiconductors and Ge semiconductors.
- tellurium compound semiconductors include Bi-Te compounds (for example, Bi 2 Te 3 , Sb 2 Te 3 , CsBi 4 Te 6 , Bi 2 Se 3 , Bi 0.4 Sb 1.6 Te 3 , Bi 2 (Se, Te ) 3 , (Bi, Sb) 2 (Te, Se) 3 , (Bi, Sb) 2 Te 3 , or Bi 2 Te 2.95 Se 0.05 ), Pb-Te compounds (eg, PbTe, or Pb 1 -x Sn x Te), SnTe, GeTe, AgSbTe 2, Ag-Sb-GeTe compound (e.g., GeTe-AgSbTe 2 (TAGS) ), Ga 2 Te 3, (Ga 1-x In x) 2 Te 3 , Tl 2 Te—Ag 2 Te, Tl 2 Te—Cu 2 Te, Tl 2 Te—Sb 2 Te 3 , Tl 2 Te—Bi 2 Te 3 , Ti 2 Te—GeTe,
- Examples of the silicon germanium (Si—Ge) compound semiconductor include Si x Ge 1-x and SiGe—GaP.
- Examples of silicide compound semiconductors include ⁇ -FeSi 2 compounds (for example, ⁇ -FeSi 2 , Fe 1-x Mn x Si 2 , Fe 0.95 Mn 0.05 Si (2-y) Al y , FeSi (2-y ) Al y , Fe 1-y Co y Si 2 ), Mg 2 Si, MnSi 1.75-x , Ba 8 Si 46 , Ba 8 Ga 16 Si 30 , or CrSi 2 .
- TX 3 As the skutterudite compound semiconductor, a compound of formula TX 3 (wherein T is a transition metal selected from the group consisting of Co, Fe, Ru, Os, Rh, and Ir, and X is selected from P, As, and Sb).
- a compound represented by the formula RM 4 X 12 which is a derivative of said compound, wherein R is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, A rare earth selected from the group consisting of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; M is selected from the group consisting of Fe, Ru, Os, and Co; X is P; Selected from the group consisting of As and Sb), Yb y Fe 4-x Co x Sb 12 , (CeFe 3 CoSb 12 ) 1-x (MoO 2 ) x or (CeFe 3 CoSb 12 ) 1-x Mention may be made of WO 2) x.
- the clathrate compound semiconductor is represented by the formula M 8 X 46 (M is selected from the group consisting of Ca, Sr, Ba, and Eu, and X is selected from the group consisting of Si, Ge, and Sn).
- M is selected from the group consisting of Ca, Sr, Ba, and Eu
- X is selected from the group consisting of Si, Ge, and Sn.
- a compound of formula (II) 8 (III) 16 (IV) 30 (wherein II is a group II element, III is a group III element, and IV is a group IV element) ) Can be mentioned.
- Examples of the compound of the formula (II) 8 (III) 16 (IV) 30 include, for example, Ba 8 Ga x Ge 46-x , Ba 8-x (Sr, Eu) x Au 6 Ge 40 , or Ba 8-x Eu. x Cu 6 Si 40 ).
- the Heusler compound semiconductor Fe 2 VAl, (Fe 1-x Re x ) 2 VAl, or Fe 2 (V 1-xy Ti x Ta y ) Al can be given.
- the half-Heusler compound semiconductor is a compound represented by the formula MSiSn (wherein M is selected from the group consisting of Ti, Zr, and Hf), and the formula MNiSn (wherein M is Ti or Zr).
- a compound represented by the formula MCoSb (wherein M is selected from the group consisting of Ti, Zr, and Hf), or a formula LnPdX (wherein Ln consists of La, Gd, and Er) Selected from the group, and X is Bi or Sb).
- Examples of the metal oxide semiconductor include In 2 O 3 —SnO 2 , (CaBi) MnO 3 , Ca (Mn, In) O 3 , Na x V 2 O 5 , V 2 O 5 , ZnMnGaO 4 and derivatives thereof, LaRhO 3, LaNiO 3, SrTiO 3, SrTiO 3: Nb, Bi 2 Sr 2 Co 2 O y, Na x CoO 2, NaCo 2 O 4, CaPd 3 O 4, wherein Ca a M 1 b Co c M 2 d Ag e O f (wherein M 1 is selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y and rare earths) M 2 is one or two elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, Ta, and Bi.
- thermoelectric conversion compounds include alloys containing Co and Sb (for example, CoSb 3 , CeFe 3 CoSb 12 , CeFe 4 CoSb 12 , or YbCo 4 Sb 12 ), alloys containing Zn and Sb (for example, ZnSb, Zn 3 Sb 2 , or Zn 4 Sb 3 ), alloys containing Bi and Sb (eg, Bi 88 Sb 12 ), CeInCu 2 , (Cu, Ag) 2 Se, Gd 2 Se 3 , CeRhAs, or CeFe 4 Sb 12 , Li 7.9 B 105 , BaB 6 , SrB 6 , CaB 6 , AlPdRe compound (for example, Al 71 Pd 20 (Re 1-x Fe x ) 9 ), AlCuFe quasicrystal, Al 82.6-x Re 17.4 Si x 1/1-cubic approximation crystals, YbAl 3, YbMn x Al 3 , ⁇ -CuAgSe
- the temperature applied to the thermoelectric conversion material can be appropriately selected as the temperature at which a sufficient number of thermally excited electrons and holes for power generation are generated in each thermoelectric conversion material.
- a voltage can be generated in the thermoelectric power generation element by giving the thermoelectric conversion material a temperature at which the thermoelectric conversion material generates a sufficient number of thermally excited electrons and holes for power generation.
- the number of heat-excited electrons and holes sufficient for power generation is actually expressed by electron density and may be the same as the number of photoexcited electrons in a semiconductor used for solar cells. For example, amorphous silicon used for solar cells The number of photoexcited electrons at 10 15 / cm 3 is mentioned.
- thermoelectric conversion material used in the present invention it is possible to generate a sufficient number of thermally excited electrons and holes for power generation at a temperature at which the thermally excited electron density is 10 15 / cm 3 or more. Power generation can be performed as described above.
- a general semiconductor as can be seen from the temperature dependence of the excited electron density of ⁇ -FeSi 2 shown in FIG. 2, the excited electron density of the semiconductor increases with increasing temperature.
- the density of excited electrons at a specific temperature that is, the number of thermally excited electrons and holes, is obtained as a value specific to the material from the above-described calculation formula for obtaining the “number of thermally excited electrons”.
- thermoelectric conversion material used as a thermoelectric conversion material in Examples 4 and 5 generates about 10 18 / cm 3 of thermally excited electrons and holes at 80 ° C. where power generation occurs.
- ⁇ -CuAgSe which is a semiconductor, generates thermally excited electrons and holes of about 10 18 / cm 3 at 10 ° C. For this reason, if ⁇ -CuAgSe is used as a thermoelectric conversion material, there is a possibility that power is generated even at room temperature.
- the upper limit of the temperature applied to each thermoelectric conversion material is not particularly limited. In the thermoelectric conversion material, the number of thermally excited electrons and holes generated increases as the temperature rises. Therefore, the upper limit of the temperature applied to the thermoelectric conversion material is defined by the melting point of the heat conversion material or the physical upper limit temperature of the thermoelectric power generation device, thermo battery, or thermoelectric power generation module using the melting point.
- thermoelectric conversion material can generate thermally excited electrons and holes
- the use temperature of the thermoelectric conversion material and thermoelectric power generation element used in the present invention depends on the number of thermally excited electrons and holes at the temperature inherent to the semiconductor used, but the selection is by measuring the resistance value or the electrical conductivity, Can be sought. Specifically, as shown in Reference Example 1, for example, by heating the beta-FeSi 2, raises the temperature of the beta-FeSi 2, identify the temperature range by measuring the resistance of the beta-FeSi 2 May be. As shown in FIG. 3, when the electrical conductivity of ⁇ -FeSi 2 exceeds 190 ° C., it rapidly increases.
- thermoelectric conversion material can generate a sufficient number of thermally excited electrons and holes for power generation by performing the experiment of Reference Example 1, and further, It is possible to specify a temperature range in which the conversion material generates a sufficient number of thermally excited electrons and holes for power generation.
- thermoelectric power generation element of the present invention contains a solid electrolyte or an electrolyte solution.
- the second layer is not limited as long as the charge transport ion pair can move. That is, the second layer is not limited as long as holes generated from the thermoelectric conversion material can be transported, and can contain components other than the solid electrolyte or the electrolyte solution.
- the component include, but are not limited to, for example, a polar solvent (water, methanol, toluene, tetrahydrofuran, or the like) that dissolves or disperses the electrolyte when forming the second layer, and a binder (polyvinyl alcohol, Methyl cellulose, acrylic resin, agar, etc.) and sintering aids (magnesium oxide, yttrium oxide, calcium oxide, etc.) that help shape the hole transporting material.
- a polar solvent water, methanol, toluene, tetrahydrofuran, or the like
- a binder polyvinyl alcohol, Methyl cellulose, acrylic resin, agar, etc.
- the second layer used in the present invention substantially functions as a hole transport layer.
- the “charge transport ion pair” is two stable ions having different valences, and one ion is oxidized or reduced to the other ion, and can carry electrons and holes.
- the second layer may include ions other than the charge transport ion pair.
- the second layer can be produced by, for example, a squeegee method, screen printing method, sputtering method, vacuum deposition method, sol-gel method, or spin coating method.
- a squeegee method CuZr 2 (PO 4 ) 3 described later was prepared by a sol-gel method, and a layered second layer was prepared using the obtained sol by a squeegee method.
- the electrolyte is an electrolyte solution (liquid electrolyte)
- the second layer is in a liquid phase.
- the second layer in the thermoelectric power generation element is preferably prepared at the time of manufacturing the thermoelectric power generation device, the thermo battery, or the thermoelectric power generation module. That is, the second layer can be produced by providing a tank for holding the electrolyte solution (liquid electrolyte).
- the electrolyte includes a solid electrolyte or an electrolyte solution.
- the electrolyte is not limited as long as it can transport two ions of the charge transport ion pair. That is, as long as the electrolyte used for the second layer has an oxidation-reduction potential at an appropriate position with respect to the valence charge position of the thermoelectric conversion material used in the thermoelectric power generation element, the charge transport ion pair can travel back and forth in the electrolyte.
- the electrolyte is preferably physically and chemically stable at a temperature at which the thermoelectric conversion material generates a sufficient number of thermally excited electrons and holes for power generation.
- the electrolyte may be a solid electrolyte or an electrolyte solution (liquid electrolyte) depending on the mode.
- the electrolyte may be in the form of an electrolyte solution (liquid electrolyte) or in the form of a solid electrolyte depending on the difference in temperature. That is, the compound contained in the electrolyte solution (liquid electrolyte) and the compound contained in the solid electrolyte overlap.
- the electrolyte includes a molten salt, an ionic liquid, a deep eutectic solvent, or the like.
- Molten salt means a salt composed of a cation and an anion in a molten state.
- molten salts one having a relatively low melting point (for example, one having a melting point of 100 ° C. or lower, or one having a melting point of 150 ° C. or lower) ) Is referred to as an ionic liquid, but in this specification, a molten salt in a solid state is a solid electrolyte, and a solution in a solution is an electrolyte solution (liquid electrolyte).
- an electrolyte solution liquid electrolyte
- the solid electrolyte the solid electrolyte
- the molten salt are shown below, but they may overlap.
- the electrolyte solution a solution (liquid) is used at a temperature at which the thermoelectric conversion material in the first layer generates a sufficient number of thermally excited electrons and holes for power generation.
- the electrolyte solution includes, but is not limited to, methoxide ion, hydrogen ion, ammonium ion, pyridinium ion, lithium ion, sodium ion, potassium ion, calcium ion, magnesium ion, aluminum ion, iron ion.
- the solid electrolyte is in a solid state in which the charge transport ion pair can move inside at a temperature at which the thermoelectric conversion material in the first layer generates a sufficient number of thermally excited electrons and holes for power generation.
- the solid electrolyte is not limited, but sodium ion conductor, copper ion conductor, lithium ion conductor, silver ion conductor, hydrogen ion conductor, strontium ion conductor, aluminum ion Examples thereof include a conductor, a fluorine ion conductor, a chlorine ion conductor, and an oxide ion conductor.
- solid electrolyte examples include RbAg 4 I 5 , Li 3 N, Na 2 O.11Al 2 O 3 , Sr- ⁇ alumina, Al (WO 4 ) 3 , PbF 2 , PbCl 2 , (ZrO 2 ) 0 .9 (Y 2 O 3 ) 0.1 , (Bi 2 O 3 ) 0.75 (Y 2 O 3 ) 0.25 , CuZr 2 (PO 4 ) 3 , CuTi 2 (PO 4 ) 3 , Cu x Nb 1-x Ti 1 + x (PO 4 ) 3 , H 0.5 Cu 0.5 Zr 2 (PO 4 ) 3 , Cu 1 + x Cr x Ti 2-x (PO 4 ) 3 , Cu 0.5 TiZr (PO 4 ) 3 , CuCr 2 Zr (PO 4 ) 3 , Cu 2 ScZr (PO 4 ) 3 , CuSn 2 (PO 4 ) 3 , CuHf 2 (PO 4 ) 3 , Li
- molten salt can be used as a solid electrolyte or electrolyte solution.
- an ionic liquid can be used.
- the ionic liquid deep eutectic solvents (DES) can be used.
- the molten salt includes at least one cation selected from the group consisting of imidazolium cation, pyridinium cation, piperidinium cation, pyrrolidinium cation, phosphonium cation, morpholinium cation, sulfonium cation and ammonium cation, and carboxylic acid Mention may be made of those containing at least one anion selected from the group consisting of anions, sulfonate anions, halogen anions, tetrafluoroborate, hexafluorophosphate, bis (trifluoromethanesulfonyl) imide, and bis (fluorosulfonyl) imide. it can.
- the electrolyte in the present invention functions as a hole transporting material.
- the valence charge position of the thermoelectric material in the first layer is more positive than the redox potential of the charge transport ion pair in the second layer (electrolyte). Therefore, at the interface between the first layer and the second layer of the present invention, the more easily oxidizable ion of the charge transport ion pair is oxidized and becomes the other ion.
- the potential difference between the oxidation-reduction potential of the charge transport ion pair in the electrolyte and the valence charge position of the thermoelectric conversion material is not limited as long as the effect of the present invention is obtained, but is preferably 0 to 1.0 V.
- thermoelectric conversion material more preferably 0.05 to 0.5 V, and still more preferably 0.05 to 0.3 V.
- the potential difference of the redox potential of CuZr 2 (PO 4 ) 3 (Cusicon, copper ion conductor) with respect to the valence charge position of ⁇ -FeSi 2 is about 0.05V.
- the oxidation-reduction potential of the charge transport ion pair and the valence charge position of the thermoelectric conversion material are measured, those skilled in the art will determine the appropriate ion for the thermoelectric conversion material according to the values of the oxidation-reduction potential and the valence charge position. Is appropriately selected, and an electrolyte capable of moving the ions can be selected.
- the valence charge position of the thermoelectric conversion material and the redox potential of the charge transport ion pair can be measured. Accordingly, a person skilled in the art can appropriately select an appropriate charge transport ion-pair electrolyte according to the selected thermoelectric conversion material. Further, “the valence charge position of the thermoelectric conversion material in the first layer is more positive than the oxidation-reduction potential of the charge transport ion pair in the second layer (electrolyte)” means “the valence charge of the thermoelectric conversion material. This means that the redox potential is at an appropriate position relative to the position.
- the thermoelectric generator of the present invention can have a third layer laminated on the first layer.
- the third layer is laminated on the opposite side of the lamination surface (interface) of the first layer and the second layer.
- the third layer includes an electron transport material.
- the third layer can contain components other than the electron transport material as long as thermally excited electrons generated from the thermoelectric conversion material can be transported. Examples of the components include, but are not limited to, binders (polyvinyl alcohol, methylcellulose, acrylic resin, agar, etc.) that bind electron transport materials, and sintering aids (magnesium oxide, yttrium oxide) that help shape electron transport materials. , Calcium oxide, etc.). Further, the solvent used in the production process may remain.
- the third layer used in the present invention substantially functions as an electron transport layer.
- the electron conduction charge level of the electron transport material is the same as or positive with the conduction charge level of the thermoelectric conversion material in the first layer. Therefore, the electron transport material can transport thermally excited electrons.
- the third layer can be produced by, for example, a squeegee method, a screen printing method, a sputtering method, a vacuum deposition method, a single crystal growth method, or a spin coating method.
- the third layer can be manufactured by dissolving the oxadiazole derivative in a polar solvent such as acetone and spin-coating the solution onto the substrate or the first layer.
- a third layer of n-type silicon to be described later can be obtained by a single crystal growth method, and the first layer can be stacked using the third layer of n-type silicon as a substrate.
- the electron transport material used for the third layer is not particularly limited as long as the electron conduction charge position is the same or positive with respect to the conduction charge position of the thermoelectric conversion material in the first layer. .
- the potential difference between the electron conduction charge position of the electron transport material in the third layer and the conduction charge position of the thermoelectric conversion material in the first layer is not limited as long as the effect of the present invention is obtained, but preferably 0.01 to 1 V, more preferably 0.01 to 0.5 V, still more preferably 0.01 to 0.3 V, and most preferably 0.05 to 0.2 V.
- the potential difference between the conduction charge position of n-type silicon with respect to the conduction charge position of ⁇ -FeSi 2 , that is, the electron conduction charge position is about 0.01V.
- the valence charge potential of the thermoelectric conversion material and the electron conduction charge potential of the electron transport material have been measured, those skilled in the art will recognize an appropriate electron transport material for the thermoelectric conversion material in the first layer according to their potential values. Can be appropriately selected.
- their potential can be measured by, for example, electrochemical measurement or inverse photoelectron spectroscopy XPS. Accordingly, those skilled in the art can appropriately select an appropriate electron transport material according to the thermoelectric conversion material in the first layer used for the thermoelectric power generation element.
- the electron transport material a semiconductor or a metal can be used.
- the electron transport material include N-type metal oxides including at least one selected from the group consisting of niobium, titanium, zinc, tin, vanadium, indium, tungsten, tantalum, zirconium, molybdenum, and manganese, N Type metal sulfides, alkali metal halides, alkali metals, or electron transporting organic materials. More specifically, for example, titanium oxide, tungsten oxide, zinc oxide, niobium oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, or SrTiO 3 can be given.
- Examples of the electron transporting organic substance include an N-type conductive polymer, an N-type low-molecular organic semiconductor, a ⁇ -electron conjugated compound, a surfactant, such as an oxadiazole derivative, a triazole derivative, a perylene derivative, or a quinolinol.
- Metal complex cyano group-containing polyphenylene vinylene, boron-containing polymer, bathocuproine, bathophenanthrene, hydroxyquinolinato aluminum, oxadiazole compound, benzimidazole compound, naphthalene tetracarboxylic acid compound, perylene derivative, phosphine oxide compound, phosphine sulfide compound, fluoro Examples thereof include a group-containing phthalocyanine, fullerene and a derivative thereof, a phenylene vinylene polymer, and a perylene tetracarboxylic imide derivative.
- the semiconductor the “semiconductor” described in the above-mentioned “first layer” can be used as an electron transport material.
- thermoelectric power generation element includes a third layer containing an electron transport material and a second layer containing an electrolyte with a first layer containing a thermoelectric conversion material interposed therebetween. Electrons flow from the negative electrode to the positive electrode by providing an electrode (negative electrode) in the third layer, providing an electrode (positive electrode) in the second layer, and connecting each electrode and applying a load.
- the thermoelectric conversion material is a substance that can generate a sufficient number of thermally excited electrons and holes for power generation at a certain temperature or higher.
- thermoelectric conversion material when a suitable temperature is applied to the thermoelectric conversion material, a sufficient number of thermally excited electrons and holes are generated for power generation.
- the electron conduction charge position of the electron transport material contained in the third layer adjacent to the first layer has a positive potential with respect to the valence charge position of the thermoelectric conversion material, so that electrons are transferred from the first layer to the third layer.
- the electrode since the redox potential of the electrolyte contained in the second layer adjacent to the first layer is negative with respect to the valence charge position of the thermoelectric conversion material in the first layer, the holes are in the first layer. To the electrode (positive electrode).
- thermoelectric generator in the electrolyte, ion redox occurs, electrons are transported from the electrode to the first layer, and holes are transported from the first layer to the electrode (positive electrode). With such a mechanism, electrons move from the negative electrode to the positive electrode, and electricity can be generated. Therefore, a sensitized thermoelectric generator can be manufactured by combining a thermoelectric conversion material, an electron transport material, and an electrolyte that satisfy such conditions.
- the power generation method of the present invention is the temperature at which the thermoelectric power generation element has a thermoexcited electron density of 10 15 / cm 3 of a thermoelectric conversion material that generates thermally excited electrons and holes in the first layer. Power is generated in the above environment.
- the thermally excited electron density is preferably 10 15 / cm 3 or more, more preferably 10 18 / cm 3 or more, still more preferably 10 20 / cm 3 or more, and most preferably 10 22 / cm 3 or more. The higher the thermally excited electron density, the higher the power generation efficiency can be obtained.
- the thermally excited electron density varies depending on the thermoelectric conversion material
- the thermally excited electron density can be calculated by the equation described in the section “[1] Thermoelectric power generation element”.
- the temperature in the power generation method of the present invention is such that the thermally excited electron density is preferably 10 15 / cm 3 , more preferably 10 18 / cm 3 or more, and even more preferably 10 20 / cm 3.
- the temperature is at least 3 cm 3 , and is most preferably at least 10 22 / cm 3 .
- the temperature of power generation basically differs depending on the thermoelectric conversion material, but the calculation of the thermally excited electron density and / or “the thermoelectric conversion material is a thermally excited electron” described in the section “[1] Thermoelectric power generation element”.
- the power generation temperature of the power generation method of the present invention is preferably a temperature at which the charge transport ion pair can move back and forth in the electrolyte.
- it does not limit as specific temperature, For example, it is 50 degreeC or more, Preferably it is 60 degreeC or more, More preferably, it is 80 degreeC or more, More preferably, it is 100 degreeC or more.
- the upper limit of the temperature is not particularly limited as long as it is a temperature at which the charge transport ion pair can move back and forth in the electrolyte, but is, for example, 1500 ° C. or lower, and preferably 1000 ° C. or lower.
- the temperature at which the thermoelectric power generation element of the present invention actually generates electricity is a temperature at which a sufficient number of thermally excited electrons and holes are generated for power generation of the thermoelectric conversion material in the first layer, as well as electrons specific to the material. It depends on the ease of movement and the ease of electron movement at the interface with the first layer in combination with the second layer (or the second and third layers), but these conditions can be examined as appropriate. It is.
- thermoelectric power generation device of the present invention includes the thermoelectric power generation element of the present invention, and preferably includes a positive electrode and / or a negative electrode.
- the thermobattery of the present invention includes the thermoelectric power generation element of the present invention, and preferably includes a positive electrode and / or a negative electrode.
- the thermoelectric power generation module of the present invention includes the thermoelectric power generation element of the present invention, and preferably includes a positive electrode and / or a negative electrode.
- thermoelectric power generation element used in the thermoelectric power generation device, thermo battery, and thermoelectric power generation module of the present invention can serve as a negative electrode, and the second layer can serve as a positive electrode.
- thermoelectric generator, the thermobattery, and the thermoelectric generator module have a positive electrode and a negative electrode.
- the “thermo battery” includes the thermoelectric power generation element of the present invention, and the semiconductor (thermoelectric conversion material) of the thermoelectric power generation element is given a temperature capable of generating thermally excited electrons and holes, thereby generating power.
- a thermo battery is a “battery that generates power if a heat source is present” and is different from a conventional “battery that generates power using a high-temperature part and a low-temperature part”.
- the positive electrode and the negative electrode are not limited as long as they can transport electrons.
- the same material may be used for the positive electrode and the negative electrode.
- the positive electrode and the negative electrode may be provided in the form of a conducting wire, or may be provided as a positive electrode layer or a negative electrode layer.
- the positive electrode layer or the negative electrode layer it can be produced by a vacuum deposition method or a spin coating method.
- a vacuum deposition method or a spin coating method By providing the positive electrode on the third layer side of the thermoelectric power generation element and the positive electrode on the second layer side, electrons can move from the negative electrode to the positive electrode to generate electricity.
- thermoelectric power generation method of the present invention includes a step of installing the thermoelectric power generation module at a heat generation location, and a step of heating the thermoelectric power generation module with heat to generate electric power.
- thermoelectric generation module installation process the thermoelectric generation module of the present invention is installed at a heat generation location.
- the heat generation location is not particularly limited as long as it is a location that generates heat at a temperature equal to or higher than the temperature at which a sufficient number of excited electrons and holes are generated in the thermoelectric conversion material.
- a place having a relatively high temperature is preferable. Therefore, examples of the heat generation place include a geothermal generation place or a waste heat generation place such as a factory.
- Geothermal is not limited to heat in the soil, but includes hot water or steam warmed by geothermal.
- geothermal includes hot water or steam such as sea, lake or river warmed by geothermal.
- the exhaust heat is not particularly limited, and examples thereof include exhaust heat from a steel furnace, a garbage incineration plant, a substation, a subway, and an automobile.
- the waste heat of a steel furnace having a large energy and a waste incineration plant is released without using the energy, and it is preferable to reuse it by the thermoelectric power generation method of the present invention.
- thermoelectric power generation step electric power is generated by heating the thermoelectric power generation module of the present invention.
- Heat generated from the heat generation location causes the thermoelectric conversion material of the thermoelectric power generation module to be heated at a temperature that generates a sufficient number of excited electrons and holes for power generation, thereby generating power from the thermoelectric power generation module. be able to.
- ⁇ Reference Example 1 A ⁇ -FeSi 2 sintered body (0.8 cm square, 2 mm thick) was placed on a hot plate, and the temperature dependence of the resistance value was measured by the four probe method. A decrease in resistance value was confirmed as the temperature increased, and an increase in electrical conductivity calculated from the value was confirmed (FIG. 3). Moreover, when it exceeded 190 degreeC, the electrical conductivity increased rapidly. Abrupt changes in the reduction, when exceeded 190 ° C., in beta-FeSi 2 sintered body, which means that a number of thermally excited electrons and holes occurs.
- Example 1 1.68 g of ⁇ -Fe 2 Si 5 powder was uniaxially pressed at 250 kgf for 1 min to produce a molded product having a diameter of 15 mm, and subjected to SPS sintering at 800 ° C., 30 min, and 55 MPa to obtain ⁇ -FeSi 2 . Further, CuO, ZrOCl ⁇ 8H 2 O, (NH 4 ) H 2 PO 4 were weighed so as to have a stoichiometric ratio, and distilled water and CuO were dissolved in an HNO 3 aqueous solution and then mixed and stirred. . After drying at 80 ° C. for 1 day and a half, heating was performed at 800 ° C.
- the obtained sample was sintered at 400 ° C. for 6 hours. The temperature increase / decrease rate was 2 ° C./min.
- Pt wires were attached to the Cusicon side and n-Si side using Ag paste as an electrode. It was sandwiched between slide glasses and reinforced with insulating adhesive Aron ceramics. Similarly, it was dried at room temperature and 93 ° C. for 2 hours. The prepared sample was placed in an electric furnace. The Cusicon side was the working electrode, the n-Si side was the counter electrode, and the heating rate was 5 ° C./min.
- Example 3 As an example of the combination of the first layer and the second layer, measurement results with ⁇ -FeSi 2 and Cusicon are shown.
- powder 0.0797 obtained by pulverizing ⁇ -FeSi 2 obtained by the SPS sintering method in the same process as in Example 1 was put, and after gently tapping, the same process as in Example 1 was performed.
- 0.2356 g of the prepared Cusicon was added and pressurized at 100 MPa for 5 minutes.
- the obtained sample was sintered at 400 ° C. for 6 hours.
- the temperature increase / decrease rate was 2 ° C./min.
- a Pt wire was attached to the Cusicon side and ⁇ -FeSi 2 side using conductive Ag paste as an electrode. Furthermore, it was sandwiched between slide glasses, reinforced with insulating adhesive Aron ceramics, and then dried at room temperature and 93 ° C. over time.
- a sample prepared in an electric furnace was placed and held at 600 ° C., and CV measurement was performed at a potential scanning speed of 10 mV / sec using the Cusicon side as a working electrode and the ⁇ -FeSi 2 side as a counter electrode (FIG. 8). .
- battery characteristics could be obtained at 600 ° C. for the first layer / second layer.
- thermoelectric power generation element was manufactured using germanium as the semiconductor (first layer) and hexaamminecobalt (III) chloride aqueous solution as the electrolyte (second layer).
- Platinum was sputtered on the exposed conductive surface of the transparent electrode.
- the completed battery was placed on a hot plate, and after reaching 80 ° C. as a whole, it was held at 80 ° C. and measured at a potential scanning speed of 100 mV / sec using a germanium semiconductor as a working electrode and a transparent electrode as a counter electrode (see FIG. 9).
- the open circuit voltage was 0.68V.
- thermoelectric power generation element was manufactured using germanium as the semiconductor (first layer) and vanadium oxide (IV) n hydrate aqueous solution as the electrolyte (second layer).
- 0.0570 g of vanadium oxide VOSO 4 ⁇ nH 2 O (n 3 to 4) was dissolved in 1M sulfuric acid aqueous solution, and the resulting 0.05M vanadium solution was degassed.
- an insulating tape with a 6 mm diameter hole is pasted on the other half, and 2.4 ⁇ L of vanadium aqueous solution is put in the hole. It was dripped.
- the open circuit voltage was 0.23V.
- thermoelectric generator was fabricated using ⁇ -FeSi 2 as a semiconductor (first layer), RbCuCl 2 as an electrolyte (second layer), and n-Si as an electron transport material (third layer). 10 ⁇ 10 ⁇ 0.525 mm n-Si was treated with hydrofluoric acid for 5 minutes. Using a silver paste on n-Si, ⁇ -FeSi 2 powder obtained by the SPS sintering method in the same process as in Example 1 was adhered and dried at 93 ° C. for 2 hours.
- Diameter 10 mm [phi, the RbCuCl 2 shaped body having a thickness of 15 mm, and placed on the n-Si / ⁇ -FeSi 2 conjugate beta-FeSi 2, sandwiched between a slide glass and fixed by using an insulating adhesive, A battery was obtained. A silver paste was applied to the n-Si side, and platinum was sputtered to the RbCuCl 2 side to form an electrode, which was connected to a measuring device using a platinum wire. The resulting battery was placed in an electric furnace and maintained at 190 ° C., and the working electrode was n-Si and the counter electrode was RbCuCl 2 , and measurement was performed at a potential scanning rate of 10 mV / sec (FIG. 11). The open circuit voltage was 0.25V.
- thermoelectric power generation element and the thermoelectric power generation module including the same include a battery, a small portable power generation device, geothermal power generation, thermoelectric power generation using exhaust heat from an automobile, and waste such as a substation, a steel furnace, or a garbage incinerator It can be used for thermoelectric power generation using heat (exhaust heat).
- exhaust heat exhaust heat
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hybrid Cells (AREA)
Abstract
La présente invention a pour but de fournir un élément de génération d'énergie thermoélectrique qui ne nécessite pas de gradient de température, et un système de génération d'énergie thermoélectrique dans lequel ledit élément de génération d'énergie thermoélectrique est utilisé. La présente invention peut résoudre le problème susmentionné au moyen d'un élément de génération d'énergie thermoélectrique qui est caractérisé en ce qu'une première couche, comprenant un matériau de conversion d'énergie thermoélectrique qui génère des électrons et des trous excités thermiquement, et qu'une seconde couche, comprenant une solution électrolytique ou un électrolyte solide dans lequel une paire d'ions de transport de charges peuvent se déplacer, sont stratifiées ; en ce que le potentiel de bande de valence du matériau de conversion d'énergie thermoélectrique, qui génère des électrons et des trous excités thermiquement à l'intérieur de la première couche, est plus positif que le potentiel d'oxydoréduction de la paire d'ions de transport de charges à l'intérieur de la seconde couche ; en ce que l'ion le plus facilement oxydé parmi les ions subit une réaction d'oxydation au niveau de la frontière entre la première couche et la seconde couche.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017538137A JP6803076B2 (ja) | 2015-09-04 | 2016-09-02 | 熱電発電素子及びそれを含む熱電発電モジュール、並びにそれを用いた熱電発電方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-175037 | 2015-09-04 | ||
JP2015175037 | 2015-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038988A1 true WO2017038988A1 (fr) | 2017-03-09 |
Family
ID=58187721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075856 WO2017038988A1 (fr) | 2015-09-04 | 2016-09-02 | Élément de génération d'énergie thermoélectrique, module de génération d'énergie thermoélectrique le comprenant et procédé de génération d'énergie thermoélectrique l'utilisant |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6803076B2 (fr) |
TW (1) | TWI739759B (fr) |
WO (1) | WO2017038988A1 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181823A1 (fr) * | 2017-03-30 | 2018-10-04 | Tdk株式会社 | Superconducteur ionique et batterie secondaire entièrement solide |
WO2018181827A1 (fr) * | 2017-03-30 | 2018-10-04 | Tdk株式会社 | Électrolyte solide et batterie secondaire lithium-ion tout solide |
CN109167080A (zh) * | 2018-09-12 | 2019-01-08 | 哈尔滨工业大学(威海) | 一种高电压锂热电池 |
CN110431676A (zh) * | 2017-03-16 | 2019-11-08 | 琳得科株式会社 | 热电转换模块用电极材料及使用其的热电转换模块 |
WO2020031992A1 (fr) * | 2018-08-06 | 2020-02-13 | 国立大学法人東京工業大学 | Batterie de génération d'énergie utilisant de la chaleur et procédé de génération d'énergie utilisant de la chaleur l'utilisant |
WO2020137468A1 (fr) * | 2018-12-28 | 2020-07-02 | 三桜工業株式会社 | Cellule thermoélectrique, procédé de fabrication associé et procédé de fabrication de corps thermoélectrique |
JP2020108308A (ja) * | 2018-12-28 | 2020-07-09 | 三桜工業株式会社 | 熱利用発電モジュール |
CN111640853A (zh) * | 2020-07-17 | 2020-09-08 | 四川大学 | 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法 |
WO2020262165A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Module de génération thermoélectrique |
WO2020262171A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Module de production d'énergie utilisant la chaleur |
WO2020262149A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Dispositif de génération thermoélectrique |
WO2020262166A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Générateur de chaleur |
WO2020262164A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Module de génération d'énergie utilisant de la chaleur et dispositif de génération d'énergie thermique équipé de celui-ci |
CN112735852A (zh) * | 2020-11-27 | 2021-04-30 | 南京航空航天大学 | 基于混合型超级电容器的热电转换与储电的一体化系统及方法 |
CN112838157A (zh) * | 2021-02-22 | 2021-05-25 | 桂林电子科技大学 | 一种SnTe掺Ge热电材料及其制备方法 |
WO2021193481A1 (fr) * | 2020-03-23 | 2021-09-30 | 日立金属株式会社 | Procédé destiné à produire un élément de conversion thermoélectrique |
WO2021241635A1 (fr) * | 2020-05-29 | 2021-12-02 | リンテック株式会社 | Module de conversion thermoélectrique et son procédé de fabrication |
WO2022044835A1 (fr) * | 2020-08-26 | 2022-03-03 | 東京エレクトロン株式会社 | Élément à effet calorique, dispositif de transfert de chaleur, dispositif de fabrication de semi-conducteur et procédé de commande d'élément à effet calorique |
WO2022191101A1 (fr) * | 2021-03-08 | 2022-09-15 | 国立大学法人東京工業大学 | Élément de production d'énergie thermoélectrique, batterie de production d'énergie thermoélectrique et procédé de stabilisation de production d'énergie |
WO2023033062A1 (fr) | 2021-09-03 | 2023-03-09 | 三桜工業株式会社 | Module de production d'énergie utilisant la chaleur et son procédé de fabrication |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7481775B1 (ja) | 2023-12-04 | 2024-05-13 | WhiteLab株式会社 | スマートリング |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04190572A (ja) * | 1990-11-26 | 1992-07-08 | Nippon Telegr & Teleph Corp <Ntt> | 温度差電池 |
JPH06151978A (ja) * | 1992-11-13 | 1994-05-31 | Mutsuko Hasegawa | 熱電発電体 |
JPH08306964A (ja) * | 1995-05-02 | 1996-11-22 | Jinichiro Hasegawa | 熱電発電体 |
WO2001071821A1 (fr) * | 2000-03-24 | 2001-09-27 | Shin-Etsu Chemical Co., Ltd. | Generateur thermoelectrique |
WO2012140856A1 (fr) * | 2011-04-12 | 2012-10-18 | 国立大学法人 筑波大学 | Procédé de conversion thermoélectrique et élément de conversion thermoélectrique dans lequel est utilisée la réaction d'oxydoréduction |
WO2015125823A1 (fr) * | 2014-02-18 | 2015-08-27 | 国立大学法人九州大学 | Monocristal semi-conducteur, et procédé de génération électrique mettant en œuvre celui-ci |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11126917A (ja) * | 1997-10-23 | 1999-05-11 | Fuji Photo Film Co Ltd | 光電変換素子および光再生型光電気化学電池 |
US8053947B2 (en) * | 2005-12-14 | 2011-11-08 | Kriisa Research, Inc. | Device for converting thermal energy into electrical energy |
JP5360549B2 (ja) * | 2009-02-02 | 2013-12-04 | 国立大学法人 香川大学 | 色素増感型太陽電池およびそれに用いる二酸化チタンナノ粒子の製法 |
JP2014170617A (ja) * | 2013-03-01 | 2014-09-18 | Rohm Co Ltd | 色素増感太陽電池およびその製造方法、および電子機器 |
JP5964780B2 (ja) * | 2013-05-13 | 2016-08-03 | 大日本印刷株式会社 | 色素増感型太陽電池および色素増感型太陽電池モジュール |
-
2016
- 2016-09-02 JP JP2017538137A patent/JP6803076B2/ja active Active
- 2016-09-02 WO PCT/JP2016/075856 patent/WO2017038988A1/fr active Application Filing
- 2016-09-02 TW TW105128494A patent/TWI739759B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04190572A (ja) * | 1990-11-26 | 1992-07-08 | Nippon Telegr & Teleph Corp <Ntt> | 温度差電池 |
JPH06151978A (ja) * | 1992-11-13 | 1994-05-31 | Mutsuko Hasegawa | 熱電発電体 |
JPH08306964A (ja) * | 1995-05-02 | 1996-11-22 | Jinichiro Hasegawa | 熱電発電体 |
WO2001071821A1 (fr) * | 2000-03-24 | 2001-09-27 | Shin-Etsu Chemical Co., Ltd. | Generateur thermoelectrique |
WO2012140856A1 (fr) * | 2011-04-12 | 2012-10-18 | 国立大学法人 筑波大学 | Procédé de conversion thermoélectrique et élément de conversion thermoélectrique dans lequel est utilisée la réaction d'oxydoréduction |
WO2015125823A1 (fr) * | 2014-02-18 | 2015-08-27 | 国立大学法人九州大学 | Monocristal semi-conducteur, et procédé de génération électrique mettant en œuvre celui-ci |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7486949B2 (ja) | 2017-03-16 | 2024-05-20 | リンテック株式会社 | 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール |
CN110431676A (zh) * | 2017-03-16 | 2019-11-08 | 琳得科株式会社 | 热电转换模块用电极材料及使用其的热电转换模块 |
JPWO2018168837A1 (ja) * | 2017-03-16 | 2020-01-16 | リンテック株式会社 | 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール |
WO2018181823A1 (fr) * | 2017-03-30 | 2018-10-04 | Tdk株式会社 | Superconducteur ionique et batterie secondaire entièrement solide |
JP7040519B2 (ja) | 2017-03-30 | 2022-03-23 | Tdk株式会社 | 固体電解質及び全固体リチウムイオン二次電池 |
JP7156271B2 (ja) | 2017-03-30 | 2022-10-19 | Tdk株式会社 | 固体電解質及び全固体二次電池 |
JPWO2018181827A1 (ja) * | 2017-03-30 | 2020-02-06 | Tdk株式会社 | 固体電解質及び全固体リチウムイオン二次電池 |
WO2018181827A1 (fr) * | 2017-03-30 | 2018-10-04 | Tdk株式会社 | Électrolyte solide et batterie secondaire lithium-ion tout solide |
JPWO2018181823A1 (ja) * | 2017-03-30 | 2020-03-05 | Tdk株式会社 | 固体電解質及び全固体二次電池 |
WO2020031992A1 (fr) * | 2018-08-06 | 2020-02-13 | 国立大学法人東京工業大学 | Batterie de génération d'énergie utilisant de la chaleur et procédé de génération d'énergie utilisant de la chaleur l'utilisant |
JP7329517B2 (ja) | 2018-08-06 | 2023-08-18 | 国立大学法人東京工業大学 | 熱利用発電池、及びそれを用いた熱利用発電方法 |
US11758814B2 (en) | 2018-08-06 | 2023-09-12 | Tokyo Institute Of Technology | Heat-utilizing power generation battery and heat-utilizing power generation method using same |
TWI803679B (zh) * | 2018-08-06 | 2023-06-01 | 國立大學法人東京工業大學 | 熱力發電電池,及使用此之熱力發電方法 |
CN112689907A (zh) * | 2018-08-06 | 2021-04-20 | 国立大学法人东京工业大学 | 热利用发电电池及使用该热利用发电电池的热利用发电法 |
JPWO2020031992A1 (ja) * | 2018-08-06 | 2021-08-12 | 国立大学法人東京工業大学 | 熱利用発電池、及びそれを用いた熱利用発電方法 |
CN109167080A (zh) * | 2018-09-12 | 2019-01-08 | 哈尔滨工业大学(威海) | 一种高电压锂热电池 |
JP7300267B2 (ja) | 2018-12-28 | 2023-06-29 | 三桜工業株式会社 | 熱利用発電モジュール |
CN113169683A (zh) * | 2018-12-28 | 2021-07-23 | 三樱工业株式会社 | 热发电电池、热发电电池的制造方法以及热发电体的制造方法 |
CN113169683B (zh) * | 2018-12-28 | 2024-07-19 | 三樱工业株式会社 | 热发电电池、热发电电池的制造方法以及热发电体的制造方法 |
WO2020137468A1 (fr) * | 2018-12-28 | 2020-07-02 | 三桜工業株式会社 | Cellule thermoélectrique, procédé de fabrication associé et procédé de fabrication de corps thermoélectrique |
JP7389426B2 (ja) | 2018-12-28 | 2023-11-30 | 三桜工業株式会社 | 熱発電電池、熱発電電池の製造方法及び熱発電体の製造方法 |
JP2020108308A (ja) * | 2018-12-28 | 2020-07-09 | 三桜工業株式会社 | 熱利用発電モジュール |
US11737363B2 (en) | 2018-12-28 | 2023-08-22 | Sanoh Industrial Co., Ltd. | Thermoelectric cell, thermoelectric cell manufacturing method, and thermoelectric body manufacturing method |
JP2020108315A (ja) * | 2018-12-28 | 2020-07-09 | 三桜工業株式会社 | 熱発電電池、熱発電電池の製造方法及び熱発電体の製造方法 |
US20220077373A1 (en) * | 2018-12-28 | 2022-03-10 | Sanoh Industrial Co., Ltd. | Thermoelectric cell, thermoelectric cell manufacturing method, and thermoelectric body manufacturing method |
US20220254979A1 (en) * | 2019-06-26 | 2022-08-11 | Sanoh Industrial Co., Ltd. | Heat generator |
EP3993255A4 (fr) * | 2019-06-26 | 2023-08-23 | Sanoh Industrial Co., Ltd. | Dispositif de génération thermoélectrique |
JP2021005651A (ja) * | 2019-06-26 | 2021-01-14 | 三桜工業株式会社 | 熱利用発電モジュール |
JP2021005649A (ja) * | 2019-06-26 | 2021-01-14 | 三桜工業株式会社 | 熱利用発電モジュール及びそれを備える熱発電装置 |
JP2021005650A (ja) * | 2019-06-26 | 2021-01-14 | 三桜工業株式会社 | 熱利用発電モジュール |
JP7374624B2 (ja) | 2019-06-26 | 2023-11-07 | 三桜工業株式会社 | 熱発電装置 |
WO2020262149A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Dispositif de génération thermoélectrique |
JP2021005964A (ja) * | 2019-06-26 | 2021-01-14 | 三桜工業株式会社 | 熱発電装置 |
JP2021005963A (ja) * | 2019-06-26 | 2021-01-14 | 三桜工業株式会社 | 熱発電装置 |
WO2020262166A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Générateur de chaleur |
WO2020262171A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Module de production d'énergie utilisant la chaleur |
US20220359805A1 (en) * | 2019-06-26 | 2022-11-10 | Sanoh Industrial Co., Ltd. | Heat-utilizing power generation module and thermal power generation device equipped with same |
WO2020262164A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Module de génération d'énergie utilisant de la chaleur et dispositif de génération d'énergie thermique équipé de celui-ci |
WO2020262165A1 (fr) | 2019-06-26 | 2020-12-30 | 三桜工業株式会社 | Module de génération thermoélectrique |
EP3968392A4 (fr) * | 2019-06-26 | 2023-07-12 | Sanoh Industrial Co., Ltd. | Module de génération d'énergie utilisant de la chaleur et dispositif de génération d'énergie thermique équipé de celui-ci |
US11963448B2 (en) | 2020-03-23 | 2024-04-16 | Proterial, Ltd. | Method for producing thermoelectric conversion element |
WO2021193481A1 (fr) * | 2020-03-23 | 2021-09-30 | 日立金属株式会社 | Procédé destiné à produire un élément de conversion thermoélectrique |
WO2021241635A1 (fr) * | 2020-05-29 | 2021-12-02 | リンテック株式会社 | Module de conversion thermoélectrique et son procédé de fabrication |
CN111640853A (zh) * | 2020-07-17 | 2020-09-08 | 四川大学 | 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法 |
CN111640853B (zh) * | 2020-07-17 | 2022-08-09 | 四川大学 | 通过Sb和Cu2Te共掺杂提高n型PbTe热电性能的方法 |
WO2022044835A1 (fr) * | 2020-08-26 | 2022-03-03 | 東京エレクトロン株式会社 | Élément à effet calorique, dispositif de transfert de chaleur, dispositif de fabrication de semi-conducteur et procédé de commande d'élément à effet calorique |
JP7503968B2 (ja) | 2020-08-26 | 2024-06-21 | 東京エレクトロン株式会社 | 熱量効果素子、伝熱装置、半導体製造装置及び熱量効果素子の制御方法 |
CN112735852A (zh) * | 2020-11-27 | 2021-04-30 | 南京航空航天大学 | 基于混合型超级电容器的热电转换与储电的一体化系统及方法 |
CN112838157B (zh) * | 2021-02-22 | 2023-08-01 | 桂林电子科技大学 | 一种SnTe掺Ge热电材料及其制备方法 |
CN112838157A (zh) * | 2021-02-22 | 2021-05-25 | 桂林电子科技大学 | 一种SnTe掺Ge热电材料及其制备方法 |
WO2022191101A1 (fr) * | 2021-03-08 | 2022-09-15 | 国立大学法人東京工業大学 | Élément de production d'énergie thermoélectrique, batterie de production d'énergie thermoélectrique et procédé de stabilisation de production d'énergie |
WO2023033062A1 (fr) | 2021-09-03 | 2023-03-09 | 三桜工業株式会社 | Module de production d'énergie utilisant la chaleur et son procédé de fabrication |
Also Published As
Publication number | Publication date |
---|---|
TWI739759B (zh) | 2021-09-21 |
JP6803076B2 (ja) | 2021-01-06 |
TW201725765A (zh) | 2017-07-16 |
JPWO2017038988A1 (ja) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6803076B2 (ja) | 熱電発電素子及びそれを含む熱電発電モジュール、並びにそれを用いた熱電発電方法 | |
Salah et al. | A comprehensive simulation study of hybrid halide perovskite solar cell with copper oxide as HTM | |
Wakasugi et al. | Effect of gold layer on interface resistance between lithium metal anode and Li6. 25Al0. 25La3Zr2O12 solid electrolyte | |
Walia et al. | MnO2-based thermopower wave sources with exceptionally large output voltages | |
Selvan et al. | Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators | |
JP5988172B2 (ja) | 酸化還元反応を利用した熱電変換方法および熱電変換素子 | |
JPWO2018079325A1 (ja) | 熱化学電池 | |
Kanas et al. | All-oxide thermoelectric module with in situ formed non-rectifying complex p–p–n junction and transverse thermoelectric effect | |
JP2024014924A (ja) | 熱発電電池、熱発電電池の製造方法及び熱発電体の製造方法 | |
JP7526483B2 (ja) | 熱電池 | |
WO2004105144A1 (fr) | Materiau thermoelectrique et son procede de production | |
Kumar et al. | Investigation of the cobalt-additive role in improving the performance of formamidium lead triiodide based solar cells | |
JP6359525B2 (ja) | 太陽光発電モジュール | |
EP3968394A1 (fr) | Module de production d'énergie utilisant la chaleur | |
WO2020031992A1 (fr) | Batterie de génération d'énergie utilisant de la chaleur et procédé de génération d'énergie utilisant de la chaleur l'utilisant | |
WO2022191101A1 (fr) | Élément de production d'énergie thermoélectrique, batterie de production d'énergie thermoélectrique et procédé de stabilisation de production d'énergie | |
Bhuiyan et al. | Opportunities for thermoelectric generators in supporting a low carbon economy | |
WO2024219443A1 (fr) | Élément de production d'énergie utilisant la chaleur entièrement en résine | |
US5989721A (en) | Device and method for generating electrical energy | |
Lin et al. | Dilute Element Compounds: A Route to Enriching Inorganic Functional Materials | |
JP2004288841A (ja) | オキシカルコゲナイドおよび熱電材料 | |
Sonawane et al. | Studies on antimony telluride thin films as buffer layer for solar cell applications | |
EP3968393A1 (fr) | Module de génération thermoélectrique | |
WO2023033062A1 (fr) | Module de production d'énergie utilisant la chaleur et son procédé de fabrication | |
He et al. | A New Class of Bifunctional Perovskites BaMX4 (M= Co, Ni, Fe, Mn; X= F, Cl, Br, I): An n-Type Semiconductor with Combined Multiferroic and Photovoltaic Properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16842017 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017538137 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16842017 Country of ref document: EP Kind code of ref document: A1 |