WO2017038472A1 - ポリエステルフィルム - Google Patents

ポリエステルフィルム Download PDF

Info

Publication number
WO2017038472A1
WO2017038472A1 PCT/JP2016/074044 JP2016074044W WO2017038472A1 WO 2017038472 A1 WO2017038472 A1 WO 2017038472A1 JP 2016074044 W JP2016074044 W JP 2016074044W WO 2017038472 A1 WO2017038472 A1 WO 2017038472A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester film
light
polyester
less
Prior art date
Application number
PCT/JP2016/074044
Other languages
English (en)
French (fr)
Inventor
巽規行
鈴木維允
東大路卓司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016559471A priority Critical patent/JP6115688B1/ja
Priority to CN201680049079.4A priority patent/CN107922648B/zh
Priority to KR1020187006104A priority patent/KR102559867B1/ko
Publication of WO2017038472A1 publication Critical patent/WO2017038472A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to a polyester film that has excellent concealability and film-forming properties, and also has excellent shrinkability when exposed to light.
  • Polyester (especially polyethylene terephthalate, polyethylene 2,6-naphthalene dicarboxylate, etc.) resins are excellent in mechanical properties, thermal properties, chemical resistance, electrical properties and moldability, and are used in various applications.
  • Polyester films made from polyester, especially biaxially oriented polyester films are used in solar cell backsheet materials, water heater motor electrical insulation materials, hybrid vehicles, etc. due to their mechanical and electrical properties. It is used in various applications such as electric insulation materials for car air conditioner motors and drive motors, tape materials and capacitor materials, packaging materials, building materials, photographic applications, graphic applications, and thermal transfer applications.
  • Patent Documents 1 and 2 when carbon black is added to impart concealability to polyester, carbon black becomes the nucleus of crystallization and the crystallization speed of polyester increases. When a large amount of carbon black is contained, there arises a problem that the film forming property is lowered. For this reason, the methods described in Patent Documents 1 and 2 have a problem in that sufficient concealability cannot be obtained because the carbon black concentration contained in the film is limited. This problem is particularly noticeable in thin films having a thin film thickness. On the other hand, in the method described in Patent Document 3, although sufficient concealment can be obtained even in a thin film, the problem of environmental contamination due to printing ink and the thickness ratio of the polyester film having excellent mechanical properties are small, so light is absorbed. There was a problem that the film contracted by the heat generated from time to time.
  • the problem of the present invention is excellent in concealing property (hereinafter sometimes referred to as light shielding property) and film forming property, and shrinkability when irradiated with light (hereinafter sometimes referred to as light shrink resistance).
  • Another object is to provide an excellent polyester film.
  • the present invention has the following configuration. That is, [I] The ratio of optical density to thickness (optical density (OD) / thickness (T)) is 0.22 or more and 2.0 or less, and the cooling crystallization temperature Tmc in differential scanning calorimetry (hereinafter DSC) is The polyester film which is 180 degreeC or more and 210 degrees C or less. [II] The polyester film according to [I], which contains 4% by mass to 25% by mass of a black pigment.
  • Ten-point average roughness Rz ( ⁇ m) of at least one surface is a ratio of Rz ( ⁇ m) to thickness ( ⁇ m) (ten-point average roughness (Rz) / thickness (T)) is 0.30 or less
  • the polyester film according to [I] or [II], which satisfies [IV] The polyester film according to any one of [I] to [III], wherein the polyester resin constituting the film contains an isophthalic acid component and / or a cyclohexanedimethanol component as a constituent component of the polyester.
  • the polyester constituting the film contains 0.5 to 20 mol% of isophthalic acid component with respect to all dicarboxylic acid components, or 0.5 to 20 mol% of cyclohexanedimethanol component with respect to all diol components.
  • the polyester film as described in [IV] containing below.
  • [VI] The polyester film according to any one of [I] to [V], wherein the film thickness is 28 ⁇ m or less.
  • [VII] The polyester film according to any one of [I] to [VI], which is used as a light-shielding substrate of an electronic device.
  • [VIII] A light-shielding tape using the polyester film according to any one of [I] to [VI].
  • a polyester film that is excellent in concealability and film-forming properties and also excellent in light shrinkage resistance. Furthermore, such a film can be suitably used as a light-shielding substrate used inside an electronic device.
  • the polyester film of the present invention contains a polyester resin as a main component.
  • the main constituent component of the polyester resin indicates that the polyester resin is contained in an amount of 60% by mass or more based on the constituent components of the film.
  • the polyester resin constituting the polyester film of the present invention includes 1) a dicarboxylic acid or an ester-forming derivative thereof (hereinafter collectively referred to as “dicarboxylic acid component”) and a diol component or an ester-forming derivative thereof (hereinafter referred to as “diol component”). )), 2) polycondensation of a compound having a carboxylic acid or a carboxylic acid derivative and a hydroxyl group in one molecule, and 1) a combination of 2).
  • the polymerization of the polyester resin can be performed by a conventional method.
  • dicarboxylic acid component malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid
  • Aliphatic dicarboxylic acids such as ethylmalonic acid
  • alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4
  • a dicarboxy compound obtained by condensing oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid and the like, or a combination of a plurality of such oxyacids, at least one carboxy terminus of the dicarboxylic acid component described above Can also be used.
  • aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, Aromatic diols such as cyclohexanedimethanol, spiroglycol, isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) fluorene Group diols are typical examples. Moreover, these may be used independently or may be used in multiple types as needed. In addition, a dihydroxy compound formed by condensing a diol with at least one hydroxy terminal of the diol component described above can also be used.
  • Examples of the compound having a carboxylic acid or a carboxylic acid derivative and a hydroxyl group in one molecule in 2) include oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, oligomers of oxyacids, The thing etc. which oxy acid condensed to one carboxyl group of dicarboxylic acid are mentioned.
  • a trifunctional component (a trivalent or higher carboxylic acid, a trivalent or higher diol, a trivalent or higher oxyacid and an ester-forming derivative thereof) is used. You may include in the range which does not impair a characteristic.
  • polyester resin examples include homopolymers such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, and polylactic acid, and copolymers thereof, which constitute the polyester film of the present invention.
  • the polyester resin to be used may be selected from one of the homopolymers and copolymers described above, or may be used by blending homopolymers with each other or with a homopolymer and a copolymer.
  • the homopolymer of the polyester resin is preferably polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, or polylactic acid from the viewpoint of film forming properties.
  • polyethylene terephthalate or polyethylene is preferable because of easy processability.
  • -2,6-naphthalate is more preferable, and polyethylene terephthalate is particularly preferable because it is superior in film forming property.
  • the polyester resin copolymer is a copolymer composed of either or both of different dicarboxylic acid components and diol components in less than 50 mol% of the entire polyester resin, and blended with a homopolymer. Is assumed, it is preferable to use a copolymer in which the same molecular structure as that of the target homopolymer constitutes 50 mol% or more of the whole.
  • a copolymer of polyester resin alicyclic dicarboxylic acid, isophthalic acid, naphthalenedicarboxylic acid is a diol component as a dicarboxylic acid component from the viewpoint of excellent polymerization suitability, thermal stability, and compatibility with a homopolymer.
  • those containing butanediol, ethylene glycol, spiroglycol, and cyclohexanedimethanol as co-components are preferably used, and these may be used alone or in combination as necessary.
  • those containing isophthalic acid as a copolymer component as a dicarboxylic acid component and those containing cyclohexanedimethanol as a copolymer component as a diol component are more preferably used from the viewpoint of improving film forming properties.
  • the copolymer and the homopolymers are mixed so that the ratio of the copolymer component is 0.5 mol% or more and 20 mol% or less with respect to the total polyester resin component.
  • the ratio of the copolymerization component is 1.0 mol% or more and 15 mol% or less, more preferably 2.0 mol% or more and 10 mol% or less, and particularly preferably 2.5 mol% or more and 7.5 mol% or less.
  • copolymerization component refers to a polymer other than the first component contained in the polyester resin in an amount of less than 50 mol% when the polymer dicarboxylic acid component and the diol component are used as the first component. The dicarboxylic acid component and the diol component are shown.
  • the copolymer component of the polyester film can be analyzed by proton nuclear magnetic resonance spectroscopy ( 1 H-NMR) or carbon nuclear magnetic resonance spectroscopy ( 13 C-NMR) after solvent extraction of the polyester film. .
  • 1 H-NMR proton nuclear magnetic resonance spectroscopy
  • 13 C-NMR carbon nuclear magnetic resonance spectroscopy
  • the light shrinkage resistance is insufficient because the film shrinks too much due to heat generated when light is irradiated. That is, in the polyester resin constituting the polyester film of the present invention, the film forming property and light shrinkage are improved by setting the ratio of the copolymerization component to 0.5 mol% or more and 20 mol% or less with respect to all polyester resin components. It can be set as the polyester film which was compatible. Further, as the copolymer component, the isophthalic acid component is included in an amount of 0.5 mol% to 20 mol% with respect to the total dicarboxylic acid component, or the cyclohexanedimethanol component is 0.5 mol% to 20 mol% with respect to the total diol component.
  • the polyester resin which comprises the polyester film of this invention is a crystalline polyester resin from a biaxially stretchable viewpoint.
  • crystallity refers to a chart obtained when a polyester film is heated from a solid state to a molten state at a heating rate of 10 ° C./min by differential scanning calorimetry according to JIS K7122 (1987). It shows that an endothermic peak due to thermal crystallization is observed.
  • the polyester film of the present invention preferably contains a color pigment in order to impart concealability.
  • a black pigment is preferable from the viewpoint of excellent light shielding properties.
  • the black pigment include carbon-based compounds such as carbon black, graphite, fullerene, and carbon fiber, and oxide-based inorganic particles such as titanium black.
  • it is preferable to use carbon black because it can achieve both concealing properties and film forming properties, and it is more preferable to use carbon black produced by a furnace method from the viewpoint of being inexpensive and excellent in concealing properties.
  • the particle diameter of the color pigment is preferably 5 nm or more and 100 nm or less as a primary particle diameter, more preferably 10 nm or more and 50 nm or less, and still more preferably 15 nm or more and 30 nm or less.
  • the primary particle diameter of the color pigment is less than 5 nm, the film forming property may be lowered by excessively promoting the generation of defects due to aggregation and the crystallization of the polyester resin.
  • the primary particle size of the color pigment exceeds 100 nm, the concealing property may be lowered, or the film may be easily broken during film formation.
  • the content of the color pigment is preferably 0.5% by mass or more and 40% by mass or less.
  • a black pigment when contained as a colored pigment, it is preferably 3.5% by mass or more and 30% by mass or less, more preferably 4.0% by mass or more and 25% by mass or less, and further preferably 5.0% by mass. % To 15% by mass, particularly preferably 6.0% to 10% by mass.
  • the content of the black pigment when the content of the black pigment is less than 3.5% by mass, the light shielding property may not be satisfied because the concealability is insufficient.
  • the content of the black pigment exceeds 30% by mass, the film forming property may be lowered.
  • the black pigment in the polyester film of the present invention in an amount of 3.5% by mass or more and less than 30% by mass, even if the film thickness is a thin film having a thickness of 28 ⁇ m or less, excellent concealability and film forming properties are achieved. It can be compatible.
  • the polyester film of the present invention has other additives (for example, heat stabilizer, ultraviolet absorber, weather stabilizer, organic lubricant, filler, antistatic agent as long as the effects of the present invention are not impaired. , Flame retardant, etc.) may be contained.
  • additives for example, heat stabilizer, ultraviolet absorber, weather stabilizer, organic lubricant, filler, antistatic agent as long as the effects of the present invention are not impaired.
  • Flame retardant, etc. may be contained.
  • an organic flame retardant such as halogen or phosphorus
  • an inorganic flame retardant such as antimony or metal hydroxide
  • an organic flame retardant is preferably used from the viewpoint of maintaining film forming properties even when used in combination with a color pigment, and among organic flame retardants, a phosphorus flame retardant is more preferably used from the viewpoint of reducing environmental burden. It is done.
  • the polyester film of the present invention needs to have a cooling crystallization temperature Tmc of 180 ° C. or higher and 210 ° C. or lower in differential scanning calorimetry (DSC). More preferably, it is 186 degreeC or more and 206 degrees C or less, More preferably, it is 192 degreeC or more and 203 degrees C or less, More preferably, it is 197 degreeC or more and 201 degrees C or less.
  • the temperature-falling crystallization temperature Tmc in the differential scanning calorimetry as used herein means that the polyester film is heated from 25 ° C. to the melting point Tm + 50 ° C. of the polyester resin at a heating rate of 10 ° C./min in accordance with JIS K7122 (1987).
  • the temperature at the peak top of the exothermic peak obtained when the polyester resin is held in a molten state at Tm + 50 ° C. for 5 minutes and then cooled to 25 ° C. at a temperature decrease rate of 10 ° C./min is shown.
  • the peak top temperature located in the highest temperature side is shown.
  • the melting point Tm of the polyester resin here is the endotherm obtained on the highest temperature side in the chart obtained when the polyester film is heated from the solid state to the molten state at a heating rate of 10 ° C./min by differential scanning calorimetry. Indicates the peak temperature.
  • the temperature-falling crystallization temperature Tmc is used as an index representing the crystallinity of the polyester resin.
  • the crystallinity is high, and the temperature-falling crystallization temperature Tmc is low, or If the temperature drop crystallization temperature Tmc is not detected, the crystallinity is low.
  • the polyester film of the present invention when the temperature-falling crystallization temperature Tmc is less than 180 ° C., the crystallinity is too low. Therefore, when a high-concentration black pigment is included, the film shrinks during light irradiation or the film during stretching. There arises a problem that the stretchability is lowered. This problem is particularly noticeable in a thin film having a film thickness of 28 ⁇ m or less.
  • the temperature drop crystallization temperature Tmc exceeds 210 ° C., the crystallinity is too high, so that film formation becomes difficult.
  • the orientation is easily applied, and the light shrinkage resistance is lowered by the residual stress after stretching. That is, in this invention, it can be set as the polyester film which makes the outstanding film forming property and light shrinkability compatible by making temperature fall crystallization temperature Tmc into the range of 180 degreeC or more and 210 degrees C or less.
  • the temperature-falling crystallization temperature Tmc in the present invention can be adjusted by the kind and content of the color pigment and the ratio of the copolymerization component in the polyester resin when the polyester resin constituting the polyester film contains the color pigment. Is possible. In order to achieve compatibility with the concealing property, a method of adjusting by the ratio of the copolymerization component in the polyester resin is most preferable.
  • the polyester film of the present invention is suitable for use as a tape base material used in an electronic device that requires thinness, such as a smartphone, because it is excellent in high concealability, film forming property, and light shrinkability even if it is a thin film. Can do.
  • the thickness (T) of the polyester film of the present invention is preferably 28 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 20 ⁇ m or less, and particularly preferably 16 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited, but a thickness of 3.0 ⁇ m or more is realistic because of the concern that the film-forming property is lowered and the light shrinkability is deteriorated.
  • the polyester film of the present invention preferably has an optical density (OD) of 3.5 or more, more preferably 4.0 or more, still more preferably 5.0 or more, and particularly preferably 6.0 or more. .
  • OD optical density
  • the polyester film can be suitably used as a tape base material that requires light-shielding properties used in electronic devices that generate light internally. .
  • count of printing of a black ink layer can be reduced.
  • the upper limit of the optical density is not particularly limited, but 9.0 or less is realistic from the viewpoint of the amount of particles that can be contained in the film.
  • the polyester film of the present invention needs to have an optical density to thickness ( ⁇ m) ratio (optical density (OD) / thickness (T)) of 0.22 or more and 2.0 or less.
  • ⁇ m optical density to thickness
  • OD optical density
  • T thickness
  • the optical density which is an index representing the hiding property of the film, tends to increase as the thickness of the film increases (when the light transmission optical path becomes longer). It is in. Therefore, if only the optical density is increased, the film thickness can be reduced even in the case of a conventional polyester film in which the amount of the color pigment that can be contained in the film is limited from the viewpoint of film forming property and light shrinkage. It could be achieved by increasing the thickness.
  • the ratio (OD / T) of optical density and thickness ( ⁇ m) is set. , 0.22 or more was difficult.
  • the polyester film of the present invention can contain a color pigment at a high concentration by controlling the crystallinity within a suitable range. As a result, the optical density and thickness that could not be achieved conventionally.
  • a polyester film having an optical density to thickness ( ⁇ m) ratio (OD / T) of less than 0.22 indicates that the concealability is insufficient for the thickness.
  • the ratio (OD / T) of the optical density to the thickness ( ⁇ m) exceeds 2.0, it is thin and excellent in concealment property, but the film forming property is lowered and is generated by absorbing light at the time of light irradiation. Since the film shrinks too much due to heat, it is not suitable as a base material used inside an electronic device.
  • the ratio of optical density to thickness ( ⁇ m) (OD / T) is in the range of 0.22 or more and 2.0 or less. And it is possible to set it as the film excellent in film forming property and light shrinkability. Therefore, it can be suitably used as a tape base material inside an electronic device that is required to be as thin as a smartphone and is also required to have light shielding properties.
  • the polyester film of the present invention preferably has a ten-point average roughness Rz ( ⁇ m) of at least one surface of 3.0 ⁇ m or less, more preferably 2.5 ⁇ m or less, and still more preferably 2.0 ⁇ m or less.
  • the ten-point average roughness Rz here is a value obtained by measuring the ten-point average roughness Rz of at least one surface of the polyester film with a contact-type three-dimensional surface roughness meter in the measurement method described later. If the ten-point average roughness Rz exceeds 3.0 ⁇ m, the surface unevenness becomes excessively large, and the film thickness necessary for blocking light may increase.
  • the lower limit of the ten-point average roughness Rz is not particularly limited, but is preferably 0.1 ⁇ m or more in view of a decrease in winding property. Further, it is more preferable that the ten-point average roughness Rz ( ⁇ m) of both surfaces of the film satisfy the above range.
  • the polyester film of the present invention has a ten-point average roughness Rz (nm) of at least one surface, and a ratio of Rz ( ⁇ m) to thickness ( ⁇ m) (ten-point average roughness (Rz) / thickness (T)). It is preferable to satisfy 0.30 or less, more preferably 0.25 or less, and further preferably 0.20 or less.
  • Rz / T) exceeds 0.30, the unevenness of the surface becomes too large, the film thickness necessary for blocking light may be insufficient, and the light shielding property may be lowered. Moreover, the surface unevenness
  • the lower limit of (Rz / T) is not particularly limited, but is preferably 0.07 or more, more preferably 0.10 or more, from the viewpoint of improving the light shielding property by light diffusion on the film surface. 0.12 or more is more preferable.
  • the polyester film of the present invention may be either a single film or a laminated film composed of two or more layers.
  • a manufacturing process can be simplified by making the polyester film of the present invention into a single film.
  • P2 layer shall be a layer which does not contain a color pigment
  • P1 layer contains a color pigment.
  • the polyester resin constituting the polyester film can be produced by the following method.
  • the polyester resin can be obtained by subjecting dicarboxylic acid or its ester derivative and diol to a transesterification reaction or an esterification reaction by a known method.
  • reaction catalysts include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds.
  • an antimony compound, a germanium compound, or a titanium compound is added as a polymerization catalyst at an arbitrary stage before the production method of the polyester resin is completed.
  • a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
  • a method for producing a polyester film a method (melt cast method) is preferably used in which a raw material constituting the polyester film is heated and melted in an extruder and extruded from a die onto a cast drum cooled to be processed into a sheet shape.
  • the polyester film has a laminated structure, the raw materials of each layer to be laminated are put into two extruders, melted and then merged, and co-extruded on a cast drum cooled from a die and processed into a sheet ( Co-extrusion method) can be preferably used.
  • seat which suppressed crystallization can be produced by making a melt-extrusion sheet closely_contact
  • a method of bringing the melt-extruded sheet into close contact with the cast drum a method of ejecting air from the thin groove to the melt-extruded sheet, and a method of attracting the melt-extruded sheet with a vacuum chamber can be selected.
  • the polyester film of the present invention is preferably stretched at least uniaxially, more preferably biaxially stretched.
  • a thin film can be obtained and a polyester film having excellent mechanical properties can be obtained.
  • the unstretched sheet is led to a roll group heated to a temperature of 70 to 140 ° C., stretched in the longitudinal direction (longitudinal direction, that is, the traveling direction of the sheet), and the roll group at a temperature of 20 to 50 ° C.
  • a uniaxially stretched sheet can be obtained by cooling.
  • the both ends of the uniaxially stretched sheet obtained above are guided to a tenter while being gripped by clips, and are perpendicular to the longitudinal direction in an atmosphere heated to a temperature of 70 to 150 ° C.
  • a polyester film that is laterally stretched in the (width direction) and biaxially stretched can be obtained.
  • the draw ratio is 2 to 5 times in each of the longitudinal direction and the width direction, and the area ratio (longitudinal draw ratio ⁇ lateral draw ratio) is preferably 8 times or more, more preferably 9 times or more, and still more preferably. 10 times or more.
  • the lower limit of the surface magnification is not particularly limited, but if it is less than 6 times, the mechanical properties of the film may be insufficient, or thinning may be difficult.
  • a simultaneous biaxial stretching method in addition to the sequential biaxial stretching method in which the longitudinal direction and the width direction are separated separately, a simultaneous biaxial stretching method in which the longitudinal direction and the width direction are simultaneously stretched, or inflation It may be film formation.
  • the film temperature of the first axis is adjusted in the range of 80 ° C. or higher and 100 ° C. or lower, the first axis stretching ratio is 2.8 times or higher and 3.6 times or lower, or the preheating temperature of the second axis is 70 ° C. As mentioned above, it is more preferable to form into a film at 125 degrees C or less.
  • Rz may increase in an unstretched sheet or a uniaxially stretched sheet.
  • the stretching temperature at the time of stretching the first axis exceeds 100 ° C. or when the stretching ratio is less than 2.8 times, thermal crystallization of the polyester is promoted too much, and the ten-point average roughness Rz may be increased.
  • the stretching temperature is less than 80 ° C. or when the stretching ratio exceeds 3.6 times, the orientation crystallization of the first axis may be promoted too much.
  • the polyester crystal formed on the first axis grows by heat and remains on the polyester film as coarse crystals, which may cause large irregularities on the surface.
  • the preheating temperature for the second-axis stretching is less than 70 ° C., the amount of heat is insufficient and stretching breakage may occur.
  • the polyester film of the present invention when the polyester film of the present invention is produced by biaxial stretching, it is possible to suppress polyester crystallization and crystal growth by performing film formation under the above conditions, and the ten-point average roughness of the polyester film. Since Rz can be adjusted to a preferable range, the light-shielding property of the polyester film can be further improved.
  • a raw material obtained by making a color batch of a master batch into a high concentration is prepared, and when it is put into an extruder, a desired concentration is obtained with a polyester resin not containing a color pigment.
  • a method of diluting master batch method is preferably used.
  • the masterbatch obtained by such a method can further improve the dispersibility of the color pigment, thereby preventing light shielding. And film forming property can be improved.
  • the polyester film of the present invention can be produced by the production method described above.
  • the obtained polyester film has the performance of being excellent in concealability and film-forming property and excellent in shrinkability when exposed to light. Therefore, industrial materials such as cover films, solar battery backsheet films, motor insulating films, lithium ion battery exterior films, design films, protective films, etc., as well as light shielding substrates used inside electronic devices Can be suitably used for various applications such as packaging materials, films for ink ribbons, films for building materials, and thermal transfer films.
  • a light-shielding substrate of an electronic device in which the polyester film of the present invention can be suitably used a cellular phone, a smartphone, a desktop PC, a notebook PC, a tablet PC, an electronic dictionary, car navigation, GPS navigation, digital Examples thereof include a light-shielding sheet and a base material for a light-shielding tape that are incorporated and used in electronic devices such as cameras and video cameras.
  • the polyester film of the present invention can be suitably used for a light-shielding tape because of its excellent concealability and film-forming property and excellent shrinkage when exposed to light.
  • a structure of the light shielding tape which can be used for the polyester film of this invention what provided the adhesive layer on the single side
  • an adhesive used for an adhesive layer An acrylic adhesive, a urethane type adhesive, etc. are used preferably.
  • the polyester film and the pressure sensitive adhesive are used in the case where the black ink layer is not provided with the pressure sensitive adhesive layer of the polyester film or in the structure where the pressure sensitive adhesive layer is provided on both sides. It can be provided between the layers. Furthermore, a black pigment can be mixed in the pressure-sensitive adhesive to provide a black pressure-sensitive adhesive layer. Although it does not specifically limit as a black ink component, The component made to contain the black pigment mentioned above in the binder which consists of acrylic resin or urethane type resin is used preferably.
  • a functional layer containing other additives may be newly provided as long as the effects of the present invention are not impaired, and may be combined with the pressure-sensitive adhesive layer or the black ink layer.
  • a light-shielding tape having a matte property can be obtained by providing a polyester film with a layer containing particles having a large particle diameter on the surface opposite to the pressure-sensitive adhesive layer.
  • it can be set as the light shielding tape excellent in heat dissipation by adding a heat dissipation particle to a black ink layer.
  • the surface is subjected to surface treatment such as corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, acid treatment, alkali treatment, and primer coating, and then a roll.
  • surface treatment such as corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, acid treatment, alkali treatment, and primer coating
  • Coating methods such as coating method, dip coating method, bar coating method, die coating method and gravure roll coating method, and printing methods such as offset printing, gravure printing, flexographic printing, silk screen printing, and ink jet printing can be selected.
  • a method using a known coating method in-line during the production of the polyester film is also a preferable method in terms of simplification of the process.
  • the light-shielding tape using the polyester film of the present invention that is thin and excellent in light-shielding properties can eliminate the black ink layer conventionally used for imparting light-shielding properties or reduce the number of layers. Therefore, it is possible to achieve a reduction in environmental burden due to the organic solvent used for the solvent and simplification of the manufacturing process.
  • optical density measurement The optical density of the polyester film was measured using a spectral density measuring device manufactured by X-lite. The measurement was performed five times by selecting a location 5 cm or more apart on a straight line in the longitudinal direction and the width direction, and the average value of 10 times in total was used as the optical density. In addition, when directionality was unknown or there was no concept, the measurement was performed on an arbitrary straight line and a vertical straight line.
  • Ten-point average roughness Rz of polyester film is a three-dimensional surface roughness meter (model ET-4000A) manufactured by Kosaka Laboratory and three-dimensional surface roughness analysis manufactured by Kosaka Laboratory.
  • the stylus has a tip radius of 0.5 ⁇ m, a diameter of 2 ⁇ m, made of diamond, a needle pressure of 100 ⁇ N, measurement conditions of X pitch (measurement direction): 1.00 ⁇ m, Y pitch (measurement) Vertical direction): 5 ⁇ m, X feed rate: 0.1 mm / s, low frequency cut: 0.25 mm, high frequency cut: R + W, measuring force: 100, Z measuring magnification: 20000, hysteresis: 0.006 ⁇ m
  • the three-dimensional surface roughness Rz was set as an average value obtained by measuring twice the measurement direction in the film longitudinal direction and the width direction. The measurement was performed on both surfaces, and the table shows the three-dimensional surface roughness
  • the film-forming property of the polyester film was determined as follows from the stretched surface magnification at which film tearing did not occur during continuous film formation for 1 hour.
  • both the longitudinal stretching and the transverse stretching ratio are at least 2.5 times or more, and the transverse stretching ratio here indicates a mechanical magnification which is a ratio of the tenter entrance width to the maximum width. Further, conditions other than the draw ratio may be freely changed.
  • Surface magnification is 10 times or more: A Surface magnification is 9 times or more: B Surface magnification is 8 times or more: C Surface magnification is 6 times or more: D Surface magnification is less than 6 times, or no film formation: E The film-forming properties are good from A to D, and among them, A is the best.
  • Light-shielding evaluation Production of pseudo LED lighting stand for light-shielding evaluation LED light source for fiber optic light guide (model: LA-HDF108AS, rated voltage AC100-240V, rated consumption) An optical fiber light guide with a bundling diameter of 4 mm ⁇ manufactured by the same company is connected to an electric power of 20 W and a rated frequency of 50/60 Hz), and LED lighting is prepared with the control scale of the LED light source body set to 8. Next, the light guide is inserted from the lower part of the sample table with a hole of the size of the diameter of the light guide, and fixed so that the tip of the LED illumination is located at a position 5 mm away from the flat part of the sample table. A table was made.
  • (5-2) Pseudo-light blocking evaluation The pseudo LED illumination stand obtained in (5-1) is covered with a polyester film, and the presence or absence of an LED light source that transmits the polyester film when adjusting the input voltage is confirmed visually.
  • the light shielding property of the polyester film was determined as follows.
  • the said evaluation selected the location 5 cm or more apart on the straight line of a longitudinal direction and the width direction, performed it 5 times, and made it the average value of 10 times in total. Further, when the shape of the transmitted light is not circular, the portion having the longest diameter is measured.
  • Transmitted light is not visible even at 5V input voltage: A Transmitted light is not visible when input voltage is 3V or more and less than 5V: B Transmitted light is not visible when input voltage is 2V or more and less than 3V: C Transmitted light is not visible when input voltage is 1V or more and less than 2V: D Transmitted light is visible even with input voltage less than 1V: E The light-shielding properties are A to D, and A is the best among them.
  • Light shrinkage (%) (L0 ⁇ L) / L0 ⁇ 100
  • the light shrinkage resistance of the polyester film was determined from the obtained light shrinkage rate as follows. Light shrinkage is less than 2%: A Light shrinkage is 2% or more and less than 3%: B Light shrinkage is 3% or more and less than 5%: C Light shrinkage is 5% or more and less than 10%: D Light shrinkage of 10% or more, or measurement not possible: E The light shrinkage resistance is good from A to D, and among them, A is the best.
  • the thickness is 16 ⁇ m or less, and both the light shielding property and the light shrink resistance evaluation are A judgment: A The thickness is 20 ⁇ m or less, and both the light shielding property and the light shrinkage resistance evaluation are B determination or more: B The thickness is 25 ⁇ m or less, and both the light shielding property and the light shrinkage resistance evaluation are C judgment or more: C The thickness is 28 ⁇ m or less, and both the light shielding property and the light shrinkage resistance evaluation are D determination or more: D The thickness exceeds 28 ⁇ m, or either the light shielding property or the light shrinkage resistance evaluation is E judgment: E A to D are good as light-shielding substrates for electronic devices, and A is the best among them.
  • PET Polyethylene terephthalate
  • 57.5 parts by mass of ethylene glycol, 0.03 parts by mass of magnesium acetate dihydrate, 0. 03 parts by mass were melted at 150 ° C. in a nitrogen atmosphere. While stirring this melt, the temperature was raised to 230 ° C. over 3 hours to distill methanol, and the transesterification reaction was completed. After completion of the transesterification reaction, an ethylene glycol solution (pH 5.0) in which 0.005 parts by mass of phosphoric acid was dissolved in 0.5 parts by mass of ethylene glycol was added. The intrinsic viscosity of the polyester composition at this time was less than 0.2.
  • polymerization reaction was carried out at a final temperature of 285 ° C. and a degree of vacuum of 0.1 Torr to obtain polyethylene terephthalate having an intrinsic viscosity of 0.65 and a terminal carboxyl group amount of 34 equivalents / ton.
  • Polyethylene naphthalate The above 1. except that 2,6-naphthalenedicarboxylic acid was used as the dicarboxylic acid component. Polymerization was carried out in the same manner as in the term polyethylene terephthalate to obtain polyethylene naphthalate having an intrinsic viscosity of 0.61 and a terminal carboxyl group amount of 36 equivalents / ton.
  • Polyethylene terephthalate-IPA copolymer 1 (PET / I-1) The above 1. except that 82.5 parts by mass of dimethyl terephthalate and 25 parts by mass of dimethyl isophthalate were mixed as the dicarboxylic acid component. Polymerization was carried out in the same manner as in the term polyethylene terephthalate to obtain polyethylene terephthalate copolymerized with 17.5 mol% of isophthalic acid (IPA).
  • PET / I-1 Polyethylene terephthalate-IPA copolymer 1
  • Polyethylene terephthalate-IPA copolymer 2 (PET / I-2) Polymerization was carried out in the same manner as polyethylene terephthalate except that 75 parts by mass of dimethyl terephthalate and 25 parts by mass of dimethyl isophthalate were mixed as a dicarboxylic acid component to obtain polyethylene terephthalate copolymerized with 25 mol% of isophthalic acid (IPA).
  • PET / I-2 Polyethylene terephthalate-IPA copolymer 2
  • Polyethylene terephthalate-NDC copolymer PET / N
  • PET / N Polyethylene terephthalate-NDC copolymer
  • NDC polyethylene terephthalate-NDC copolymer
  • the polyethylene terephthalate copolymerized with 17.5 mol% of naphthalene dicarboxylic acid (NDC) was obtained in the same manner as in the polyethylene terephthalate copolymer of the item.
  • PET-G Polyethylene terephthalate-CHDM copolymer
  • CHDM cyclohexanedimethanol
  • PBT Polybutylene terephthalate
  • BDO butanediol
  • CB masterbatch 1 (CB-MB1) Above 1. 80 parts by mass of polyethylene terephthalate obtained according to the above and 20 parts by mass of carbon black (CB-1) produced by a furnace method with a primary particle size of 18 nm were melt-kneaded in a vented 280 ° C. extruder, and a CB master batch 1 was produced.
  • CB masterbatch 2 (CB-MB2) A CB masterbatch 2 was produced in the same manner as the CB masterbatch 1 except that carbon black (CB-2) produced by the acetylene method having a primary particle size of 23 nm was used.
  • CB masterbatch 3 (CB-MB3) As the base polyester resin, 3. A CB masterbatch 3 was produced in the same manner as the CB masterbatch 1 except that the polyethylene terephthalate-IPA copolymer 1 obtained in the section 1 was used.
  • the mixture was melt-kneaded in an extruder at 280 ° C. in which 50 parts by mass of polyethylene terephthalate obtained according to the above and 50 parts by mass of rutile titanium dioxide particles having a primary particle size of 200 nm were vented to prepare a TiO 2 master batch. (Production method of shading tape) 1.
  • Adhesive layer 98.9 parts by weight of isononyl acrylate, 0.1 part by weight of acrylic acid, 1.0 part by weight of N-vinylcaprolactam, 0.05 part by weight of n-dodecyl mercaptan as a chain transfer agent and 80 parts by weight of ethyl acetate as a solvent was charged into a five-necked flask equipped with a stirrer, a reflux condenser, a thermometer, a dropping funnel and a nitrogen gas inlet, stirred, and then purged with nitrogen gas for about 30 minutes to remove oxygen remaining in the monomer solution. Removed.
  • the acrylic copolymer solution was applied to one side of the polyester film by a die coating method to provide an adhesive layer having a thickness of 8 ⁇ m.
  • Black ink layer Carbon black (CB-1) used in CB masterbatch 1 (CB-MB1) Commercially available ink medium (polyurethane / salt / vinyl acetate copolymer) and solvent (ketone / aromatic hydrocarbon / alcohol) was added and mixed and stirred to prepare a black ink having a carbon content of 50% by weight after drying the solvent. Subsequently, using the black ink, a black ink layer having a thickness of 2 ⁇ m after drying was provided on the polyester film by offset printing a number of times according to the required light shielding properties.
  • Example 1 In order to obtain the composition shown in the table, 34 parts by mass of the polyethylene terephthalate prepared in the previous section as a polyester raw material, 26 parts by mass of the polyethylene terephthalate-isophthalic acid (IPA) copolymer 1, and 40 parts by mass of the CB master batch 1 were blended. Vacuum dried at 180 ° C. for 2 hours. Next, it is melted and discharged in an extruder heated to 280 ° C., and the molten sheet extruded from the T-die is closely cooled and solidified by an electrostatic application method on a casting drum maintained at a surface temperature of 25 ° C. to form an unstretched sheet. Obtained.
  • IPA polyethylene terephthalate-isophthalic acid
  • the light-shielding property evaluation and light-shrinkage evaluation of the obtained polyester film were implemented, it turned out that both have very excellent light-shielding property and light-shrink resistance. Moreover, since it was a very thin film and satisfy
  • Examples 2 to 7 A polyester film was obtained in the same manner as in Example 1 except that the amount of the CB master batch 1 was adjusted to the color pigment concentration described in the table and the film forming conditions were adjusted to the thickness described in the table. In Examples 4 and 5, since film breakage occurred during film formation, film formation was performed at a lower draw ratio than Example 1.
  • the properties of the obtained polyester film were as shown in the table, showing good properties although inferior to Example 1, and were found to be good properties as a light-shielding substrate for electronic devices.
  • Example 1 when a light shielding tape was produced in the same manner as in Example 1, it was found that the light shielding tape had good characteristics as a light shielding tape although it was inferior to Example 1.
  • Example 8 to 13 A polyester film was obtained in the same manner as in Example 1 except that the amount of the polyethylene terephthalate-isophthalic acid (IPA) copolymer 1 was adjusted so that the ratio of the copolymer component shown in the table was obtained. Since film breakage occurred during film formation except for Example 8, film formation was carried out at a lower draw ratio than Example 1, and in particular, Example 13 was in the range of no problem although it was inferior in film formation. As shown in the table, the properties of the polyester film obtained are inferior to those of Example 1 and show good properties, and are good as a light-shielding substrate for electronic equipment. Among them, Example 9 is the most excellent property. I understood. Moreover, it was in the range which is inferior to light shrinkage resistance of Example 12, but has no problem. Moreover, when the light shielding tape was produced similarly to Example 1, it turned out that it is a very excellent light shielding tape.
  • IPA polyethylene terephthalate-isophthalic acid
  • Example 14 to 18 The polyethylene terephthalate-naphthalenedicarboxylic acid (NDC) copolymer, polyethylene terephthalate-cyclohexanedimethanol (CHDM) copolymer, polybutylene terephthalate (PBT) described in the previous section so as to have the types and ratios of the copolymer components described in the table ) was adjusted to obtain a polyester film in the same manner as in Example 1. Except for Example 17, film breakage occurred during film formation, so film formation was performed at a lower draw ratio than Example 1, and Example 14 was in a range where there was no problem, although film formation was inferior. The properties of the obtained polyester film are as shown in the table.
  • NDC polyethylene terephthalate-naphthalenedicarboxylic acid
  • CHDM polyethylene terephthalate-cyclohexanedimethanol
  • PBT polybutylene terephthalate
  • Example 17 in which CHDM was used as the diol component as the copolymer component and the copolymer component ratio was 9 mol% was the same as in Example 1. It was found to have contractility. In addition, the other examples showed good characteristics although being inferior to those in Examples 1 and 17, and were found to be good characteristics as a light-shielding substrate for electronic devices. Moreover, when the light shielding tape was produced similarly to Example 1, it turned out that it is a very excellent light shielding tape.
  • Example 19 As shown in the table, a polyester film was obtained in the same manner as in Example 1 except that the type and content of the color pigment were changed using the CB master batch 2, the CB master batch 3 and the titanium oxide master batch described in the previous section.
  • Example 20 was inferior in film formability, but was in a range where there was no problem.
  • the properties of the polyester film obtained are as shown in the table.
  • Example 19 is superior in light shielding properties and light shrinkage resistance compared to Example 1, but Example 20 is colored compared to Example 1. It was found that the same light shielding property as that of Example 1 was obtained even when the pigment concentration was small.
  • Example 21 was in a range where there was no problem though it was inferior in light shielding property.
  • the light shielding tape was produced similarly to Example 1, although it was inferior to Example 1, it turned out that it is a favorable characteristic as a light shielding tape.
  • Example 22 Except that the polyethylene terephthalate described in the previous section was prepared such that the constituent component was the polyethylene naphthalate described in the previous section and the dicarboxylic acid component was terephthalic acid (TPA) as the copolymerization component so as to have the ratio described in the table.
  • TPA terephthalic acid
  • the obtained polyester film was found to have excellent properties although it was inferior in light shrink resistance as compared with Example 1. Moreover, when the light shielding tape was produced similarly to Example 1, it turned out that it is a very excellent light shielding tape.
  • Example 23 A polyester film was obtained in the same manner as in Example 1 except that the thickness of the film was 10 ⁇ m. The characteristics of the obtained film are as shown in the table, and it was found that the film was excellent although it was inferior in light shielding property as compared with Example 1. Moreover, when the light shielding tape was produced similarly to Example 1, it turned out that it is the outstanding light shielding tape.
  • Examples 24 to 35 As described in the table, a polyester film was obtained in the same manner as in Example 23 except that the film forming conditions were changed.
  • an infrared heater (RH) having a distance between films of 400 mm, a heater capacity of 6.6 kW, and a heat generation length of 800 mm was installed between the preheating roll and the stretching roll to form a film. It was.
  • the resulting polyester film has an optical density, ten-point average roughness Rz ( ⁇ m), and film thickness ( ⁇ m). It was found that the ratio of (Rz / T) changed.
  • Example 35 was inferior to film forming property, it was the range which is satisfactory.
  • Example 25 the properties of the obtained polyester film were found to be superior in light-shielding properties in Examples 25, 34, and 35 as compared with Example 23. Moreover, when the light shielding tape was produced similarly to Example 1, it turned out that Examples 25, 34, and 35 are the light shielding tapes excellent in comparison with Example 23.
  • Example 1 As shown in the table, it was the same as Example 1 except that a polyethylene terephthalate homopolymer was used alone, but it was very inferior in light-shielding properties and light-shrinkage resistance but inferior in film-forming properties.
  • Comparative Example 2 As shown in the table, it was the same as Example 1 except that polyethylene terephthalate-isophthalic acid (IPA) copolymer 2 was used alone, but it had excellent light-shielding properties and good film-forming properties. The shrinkage was inferior.
  • Comparative Example 3 As shown in the table, it was the same as Example 12 except that the concentration of the colored pigment was increased.
  • Example 4 As shown in the table, it was the same as Example 1 except that the concentration of the color pigment was lowered. However, although it was very excellent in film forming property and light shrinkage resistance, it was inferior in light shielding property.
  • the polyester film of the present invention is a thin film, it is excellent in concealability and film-forming property, and has excellent performance of shrinkability when exposed to light, and is not a light-shielding base material used inside an electronic device.
  • industrial materials such as cover films, solar battery backsheet films and motor insulation films, exterior films for lithium-ion batteries, design films, protective films and other packaging materials, ink ribbon films, and building material films It can be suitably used for applications such as thermal transfer films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

光学濃度と厚み(μm)の比(光学濃度(OD)/厚み(T))が0.22以上、2.0以下であり、示差走査熱量測定(DSC)において、溶融状態で5分間保持した後、10℃/分の降温速度で冷却した時の降温結晶化温度Tmcが180℃以上、210℃以下の範囲にピークを有するポリエステルフィルムにより、隠蔽性と製膜性に優れ、光を当てた際の収縮性にも優れ、電子機器の遮光基材として好適に用いられるポリエステルフィルムを提供する。

Description

ポリエステルフィルム
本発明は、隠蔽性と製膜性に優れ、光を当てた際の収縮性にも優れるポリエステルフィルムに関する。
 ポリエステル(特にポリエチレンテレフタレートや、ポリエチレン2,6-ナフタレンジカルボキシレートなど)樹脂は機械特性、熱特性、耐薬品性、電気特性、成形性に優れ、様々な用途に用いられている。そのポリエステルをフィルム化したポリエステルフィルム、中でも二軸配向ポリエステルフィルムは、その機械的特性、電気的特性などから、太陽電池バックシート用材料や給湯器モーター用電気絶縁材料、ハイブリッド車などに使用されるカーエアコン用モーターや駆動モーター用などの電気絶縁材料、テープ材料やコンデンサ用材料、包装材料、建築材料、写真用途、グラフィック用途、感熱転写用途などの各種用途に使用されている。
 これらの用途の中で、太陽電池バックシート用材料や、電子機器内部に使用されるテープ材料では、隠蔽性が要求されている。例えば太陽電池バックシート用材料においては、意匠性の観点から発電素子への配線などが外側から見えないことが好ましい。太陽電池バックシート用材料において、隠蔽性を向上させる検討としては、カーボンブラックなどの黒色顔料を含有させたポリエステルフィルムを用いる方法がなされている(特許文献1、2)。また、テープ材料においては、近年のスマートフォンの普及に伴い、電子機器内部に使用されるテープには、内部の光を遮光するために、高い隠蔽性が要求されている。電子機器の小型化・薄型化に伴い、テープ材料は隠蔽性だけでなく、薄膜であることも求められる。テープ材料において、隠蔽性を向上させる方法としては、フィルム厚みが薄い薄物のポリエステルフィルムの上に黒色顔料を多く含有する印刷層を設ける方法が検討されている(特許文献3)。
特開2008-56871号公報 特開2011-119651号公報 特許第5651012号公報
 しかしながら、特許文献1、2に記載されている方法のように、ポリエステルに隠蔽性を付与するためカーボンブラックを添加すると、カーボンブラックが結晶化の核となってポリエステルの結晶化速度が速くなるため、カーボンブラックを多量に含有せしめると製膜性が低下するという問題が発生する。そのため、特許文献1、2に記載の方法では、フィルム中に含有させるカーボンブラック濃度に制限があるため、充分な隠蔽性が得られないという課題があった。この課題は、特に、フィルム厚みが薄い薄物フィルムにおいて顕著であった。一方、特許文献3に記載の方法では、薄物フィルムにおいても充分な隠蔽性が得られるものの、印刷インキよる環境汚染の問題や、機械特性に優れるポリエステルフィルムの厚み比率が小さいため、光を吸収した時に発生する熱によってフィルムが収縮するという問題があった。
 本発明の課題は、かかる従来技術を鑑み、隠蔽性(以下、遮光性と称する場合がある)と製膜性に優れ、光を当てた際の収縮性(以下、耐光収縮性と称する場合がある)にも優れるポリエステルフィルムを提供することにある。
 上記課題を解決するために、本発明は以下の構成をとる。すなわち、
[I]光学濃度と厚みの比(光学濃度(OD)/厚み(T))が0.22以上、2.0以下であり、示差走査熱量測定(以下、DSC)における降温結晶化温度Tmcが180℃以上、210℃以下であるポリエステルフィルム。
[II]黒色顔料を4質量%以上、25質量%以下含む[I]に記載のポリエステルフィルム。
[III]少なくとも一方の表面の十点平均粗さRz(μm)が、Rz(μm)と厚み(μm)の比(十点平均粗さ(Rz)/厚み(T))が0.30以下であること満たす[I]または[II]に記載のポリエステルフィルム。
[IV]フィルムを構成するポリエステル樹脂が、ポリエステルの構成成分としてイソフタル酸成分および/またはシクロヘキサンジメタノール成分を含む[I]~[III]のいずれかに記載のポリエステルフィルム。
[V]フィルムを構成するポリエステルが、全ジカルボン酸成分に対してイソフタル酸成分を0.5mol%以上20mol%以下含む、または全ジオール成分に対してシクロヘキサンジメタノール成分を0.5mol%以上20mol%以下含む[IV]に記載のポリエステルフィルム。
[VI]フィルム厚みが28μm以下である[I]~[V]のいずれかに記載のポリエステルフィルム。
[VII]電子機器の遮光基材として用いられる[I]~[VI]のいずれかに記載のポリエステルフィルム。
[VIII][I]~[VI]のいずれかに記載のポリエステルフィルムを用いた遮光テープ。
 本発明によれば、隠蔽性と製膜性に優れ、耐光収縮性にも優れるポリエステルフィルムを提供することができる。更にはかかるフィルムは電子機器内部に用いられる遮光基材として好適に用いることができる。
 本発明のポリエステルフィルムはポリエステル樹脂を主たる構成成分とする。ここでポリエステル樹脂を主たる構成成分とするとは、該フィルムを構成する成分に対してポリエステル樹脂が60質量%以上含有されていることを示す。
 本発明のポリエステルフィルムを構成するポリエステル樹脂としては、1)ジカルボン酸もしくはそのエステル形成性誘導体(以下、「ジカルボン酸成分」と総称する)とジオール成分もしくはそのエステル形成性誘導体(以下、「ジオール成分」と総称する)の重縮合、2)一分子内にカルボン酸もしくはカルボン酸誘導体と水酸基を有する化合物の重縮合、および1)2)の組み合わせにより得ることができる。また、ポリエステル樹脂の重合は常法により行うことができる。
 1)において、ジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸などの芳香族ジカルボン酸、もしくはそのエステル誘導体などが代表例としてあげられる。また、これらは単独で用いても、複数種類用いても良い。
 また上述のジカルボン酸成分の少なくとも一方のカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類およびその誘導体や該オキシ酸類が複数個連なったもの等を縮合させたジカルボキシ化合物も用いることができる。
 次にジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオールなどの脂肪族ジオール、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレンなどの芳香族ジオールが代表例としてあげられる。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。また、上述のジオール成分の少なくとも一方のヒドロキシ末端にジオール類を縮合させて形成されるジヒドロキシ化合物も用いることができる。
 また、2)において一分子内にカルボン酸もしくはカルボン酸誘導体と水酸基を有する化合物の例としては、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸、およびその誘導体、オキシ酸類のオリゴマー、ジカルボン酸の一方のカルボキシル基にオキシ酸が縮合したもの等が挙げられる。
 尚、本発明のポリエステルフィルムを構成するポリエステル樹脂として、3官能成分(3価以上のカルボン酸、3価以上のジオール、3価以上のオキシ酸およびそれらのエステル形成性誘導体)を、本発明の特性を損なわない範囲で含んでいても良い。
 ポリエステル樹脂として具体的にはポリエチレンテレフタレート、ポリエチレン-2、6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸等のホモ重合体、およびこれらの共重合体が挙げられ、本発明のポリエステルフィルムを構成するポリエステル樹脂は前記のホモ重合体および共重合体の中から1種類を選択して用いても良く、ホモ重合体同士、またはホモ重合体と共重合体をブレンドして用いても良い。
 ここでポリエステル樹脂のホモ重合体としては、製膜性の観点からポリエチレンテレフタレート、ポリエチレン-2、6-ナフタレート、ポリブチレンテレフタレート、ポリ乳酸が好ましく、中でも加工性が容易であることからポリエチレンテレフタレート、ポリエチレン-2、6-ナフタレート、がより好ましく、製膜性により優れることからポリエチレンテレフタレートが特に好ましい。
 また、ポリエステル樹脂の共重合体とは、ポリエステル樹脂全体の50mol%未満を異なるジカルボン酸成分とジオール成分のいずれか、または両方で構成される共重合体のことを示し、ホモ重合体とのブレンドを想定する場合は、対象のホモ重合体と同じ分子構造が全体の50mol%以上を構成する共重合体を用いることが好ましい。
ここでポリエステル樹脂の共重合体としては、重合適性や熱安定性、ホモ重合体との相溶性に優れる観点からジカルボン酸成分として、脂環族ジカルボン酸、イソフタル酸、ナフタレンジカルボン酸が、ジオール成分としてはブタンジオール、エチレングリコール、スピログリコール、シクロヘキサンジメタノールを共重成分として含むものが好ましく用いられ、これらは単独で用いても、必要に応じて組み合わせて用いても良い。中でも製膜性を向上させる観点からジカルボン酸成分としてイソフタル酸を共重合体成分として含むものや、ジオール成分としてシクロヘキサンジメタノールを共重合体成分として含むものがより好ましく用いられる。
 本発明のポリエステルフィルムを構成するポリエステル樹脂において、共重合成分の比率は、全ポリエステル樹脂成分に対して0.5mol%以上、20mol%以下となるように前記の共重合体、およびホモ重合体同士、またはホモ重合体と共重合体のブレンド比を調整することが好ましい。ポリエステル樹脂に共重合成分を導入することで、ポリエステルの結晶性を低下させることにより、後述する着色顔料を多量に含有しても、製膜性と耐光収縮性に優れたポリエステルフィルムとすることが可能となる。より好ましくは共重合成分の比率が1.0mol%以上、15mol%以下、更に好ましくは2.0mol%以上、10mol%以下、特に好ましくは2.5mol%以上、7.5mol%以下である。
ここでいう共重合成分とは、ポリエステル樹脂全体の50mol%を超えて構成する重合体のジカルボン酸成分、およびジオール成分を第一成分としたとき、ポリエステル樹脂に50mol%未満含まれる第一成分以外のジカルボン酸成分、およびジオール成分を示す。尚、ポリエステルフィルムの共重合成分は、ポリエステルフィルムを溶媒抽出した後、プロトン核磁気共鳴分光法(H-NMR)やカーボン核磁気共鳴分光法(13C-NMR)によって分析を行うことができる。
ポリエステル樹脂の共重合成分の比率が0.5mol%未満の場合、結晶性を抑えられずに製膜性が不足したり延伸時の配向がかかりすぎて耐光収縮性も低化する場合がある。一方でポリエステル樹脂の共重合成分の比率が20mol%越える場合、ポリエステル樹脂の結晶性が低化し過ぎて、かえって製膜性が低化する場合や、配向がかからず機械強度が不足することで、光を照射した際に発生した熱によってフィルムが収縮し過ぎることから、耐光収縮性が不足する場合がある。つまり、本発明のポリエステルフィルムを構成するポリエステル樹脂において、共重合成分の比率を全ポリエステル樹脂成分に対して0.5mol%以上、20mol%以下とすることで、より優れた製膜性と光収縮性を両立したポリエステルフィルムとすることができる。
更には、前記の共重合成分として、全ジカルボン酸成分に対してイソフタル酸成分を0.5mol%以上20mol%以下含む、または全ジオール成分に対してシクロヘキサンジメタノール成分を0.5mol%以上20mol%以下含むことで、ポリエステルフィルムの製膜性と耐光収縮性を更に向上させることができるため、より好ましい。
また、本発明のポリエステルフィルムを構成するポリエステル樹脂は、二軸延伸性の観点から結晶性ポリエステル樹脂であることが好ましい。ここでいう結晶性とは、ポリエステルフィルムを、JIS K7122(1987)に準じて、示差走査熱量測定にて昇温速度10℃/分で固体状態から溶融状態まで加熱した際に得られたチャートにおいて熱結晶化による吸熱ピークが観測されることを示す。
 本発明のポリエステルフィルムは隠蔽性を付与するため、着色顔料を含有する形態が好ましい。着色顔料としては遮光性に優れる観点から黒色顔料が好ましい。黒色顔料としては、具体的にはカーボンブラック、グラファイト、フラーレン、カーボンファイバーなどの炭素系化合物やチタンブラックなどの酸化物系無機粒子が挙げられる。また、隠蔽性と製膜性を両立できることから、カーボンブラックを用いることが好ましく、中でも安価で隠蔽性に優れる観点からファーネス法で製造されたカーボンブラックを用いることがより好ましい。
 前記の着色顔料の粒子径は1次粒径として5nm以上、100nm以下が好ましく、より好ましくは10nm以上、50nm以下、更に好ましくは15nm以上、30nm以下である。着色顔料の1次粒径が5nm未満の場合、凝集による欠点発生やポリエステル樹脂の結晶化を過剰に促進させることで製膜性が低化する場合がある。一方で着色顔料の1次粒径が100nmを越えると隠蔽性が低化する場合や、製膜時にフィルム破れが起こりやすくなる場合がある。
 また、前記の着色顔料の含有量は、0.5質量%以上、40質量%以下が好ましい。本発明において着色顔料として黒色顔料を含有する場合においては3.5質量%以上、30質量%以下が好ましく、より好ましくは4.0質量%以上、25質量%以下、更に好ましくは5.0質量%以上、15質量%以下、特に好ましくは6.0質量%以上、10質量%以下である。本発明において黒色顔料の含有量が3.5質量%未満では、隠蔽性が不足するため遮光性が満足できない場合がある。一方で黒色顔料の含有量が30質量%を越えると、製膜性が低化する場合がある。つまり、本発明のポリエステルフィルムに黒色顔料を3.5質量%以上、30質量%未満含有させることで、フィルム厚みが28μm以下の薄膜のフィルムであっても、優れた隠蔽性と製膜性を両立することができる。
 また本発明のポリエステルフィルムには、本発明の効果が損なわれない範囲内でその他の添加剤(例えば、耐熱安定剤、紫外線吸収剤、耐候安定剤、有機の易滑剤、充填剤、帯電防止剤、難燃剤など)が含有されていてもよい。例えば、難燃性が要求されるような用途に本発明のポリエステルフィルムを用いる場合、ハロゲン系やリン系などの有機系難燃剤やアンチモン系や水酸化金属系などの無機系難燃剤を含有させることで、ポリエステルフィルムの難燃性を向上させることができる。また難燃剤としては着色顔料と併用しても製膜性を維持する観点から有機系難燃剤が好ましく用いられ、環境負荷低減の観点から有機系難燃剤の中でも、リン系難燃剤がより好ましく用いられる。
 本発明のポリエステルフィルムは、示差走査熱量測定(DSC)における降温結晶化温度Tmcが180℃以上、210℃以下である必要がある。より好ましくは186℃以上、206℃以下、より好ましくは192℃以上、203℃以下、更に好ましくは197℃以上、201℃以下である。ここでいう示差走査熱量測定における降温結晶化温度Tmcとは、ポリエステルフィルムをJIS K7122(1987)に準じて、昇温速度10℃/分で25℃からポリエステル樹脂の融点Tm+50℃まで加熱後、融点Tm+50℃にてポリエステル樹脂を溶融状態で5分間保持してから、降温速度10℃/分で25℃まで冷却した時に得られる発熱ピークのピークトップの温度を示す。尚、発熱ピークを複数有する場合は最も高温側に位置するピークトップ温度を示す。ここでのポリエステル樹脂の融点Tmは、ポリエステルフィルムを示差走査熱量測定にて昇温速度10℃/分で固体状態から溶融状態まで加熱した際に得られたチャートにおいて、最も高温側で得られる吸熱ピークの温度を示す。前記の降温結晶化温度Tmcは、ポリエステル樹脂の結晶性を表す指標として用いられ、降温結晶化温度Tmcの温度が高いと結晶性が高いことを表し、降温結晶化温度Tmcの温度が低い、あるいは降温結晶化温度Tmcが検出されないと結晶性が低いことを表す。
 本発明のポリエステルフィルムにおいて、前記の降温結晶化温度Tmcが180℃未満の場合、結晶性が低すぎるため、高濃度の黒色顔料を含む場合、光照射時にフィルムが収縮したり、延伸時にフィルムが反って延伸性が低化するといった問題が発生する。特にこの問題はフィルム厚みが28μm以下のような薄膜フィルムにおいて顕著に表れる。一方で降温結晶化温度Tmcが210℃を超える場合、結晶性が高すぎるため、製膜が困難となる。また配向がかかりやすくなり延伸後の残留応力によって耐光収縮性が低化する。つまり、本発明において降温結晶化温度Tmcを180℃以上、210℃以下の範囲とすることで、優れた製膜性と光収縮性を両立するポリエステルフィルムとすることができる。
 尚、本発明における降温結晶化温度Tmcは、ポリエステルフィルムを構成するポリエステル樹脂中に着色顔料を含有させる場合、着色顔料の種類や含有量、ポリエステル樹脂中の共重合成分の比率によって調整することが可能である。また隠蔽性との両立を図るためにはポリエステル樹脂中の共重合成分の比率によって調整する方法が最も好ましい。
 本発明のポリエステルフィルムは、薄膜であっても高い隠蔽性と製膜性、光収縮性に優れることから、スマートフォンなどの薄さが要求される電子機器内部に用いるテープ基材として好適に用いることができる。
 本発明のポリエステルフィルムの厚み(T)としては28μm以下が好ましく、より好ましくは25μm以下、更に好ましくは20μm以下、特に好ましくは16μm以下である。尚、厚みの下限については特に限定されるものでは無いが、製膜性の低化や、光収縮性が悪化する懸念から3.0μm以上が現実的である。
 また、本発明のポリエステルフィルムは、光学濃度(OD)が3.5以上であることが好ましく、より好ましくは4.0以上、更に好ましくは5.0以上、特に好ましくは6.0以上である。本発明のポリエステルフィルムの光学濃度(OD)を3.5以上とすることで、内部で光が発生するような電子機器に用いられる遮光性が要求されるテープ基材として好適に用いることができる。また、遮光テープの基材フィルムとして用いた場合、黒色インク層の印刷回数を低減することができる。尚、光学濃度の上限については特に限定されるものでは無いが、フィルムに含有せしめることが可能な粒子量の観点から9.0以下が現実的である。
 本発明のポリエステルフィルムは、光学濃度と厚み(μm)の比(光学濃度(OD)/厚み(T))が0.22以上、2.0以下であることが必要である。フィルムの隠蔽性を表す指標である光学濃度は、ランベルト・ベールの法則からも理解することができるとおり、フィルムの厚みが厚くなれば(光の透過光路が長くなれば)、高い値となる傾向にある。そのため、光学濃度を高くするだけならば、製膜性や光収縮性の観点からフィルム中に含有せしめることが可能な着色顔料の量に制限がある従来のポリエステルフィルムであっても、フィルム厚みを厚くすれば達成することが可能であった。しかしながら、製膜性や光収縮性の観点からフィルム中に含有せしめることが可能な着色顔料の量に制限がある従来のポリエステルフィルムでは、光学濃度と厚み(μm)の比(OD/T)を、0.22以上とすることは困難であった。本発明のポリエステルフィルムは、上述したとおり、結晶性を好適な範囲に制御することにより、着色顔料を高濃度に含有せしめることが可能となった結果、従来では到達し得なかった光学濃度と厚み(μm)の比(OD/T)0.22以上を達成するものであり、好ましくは0.25以上、1.5以下、より好ましくは0.30以上、1.0以下、更に好ましくは0.35以上、0.5以下である。
 本発明において光学濃度と厚み(μm)の比(OD/T)が0.22未満のポリエステルフィルムは、厚みのわりに隠蔽性が不足していることを示す。一方で光学濃度と厚み(μm)の比(OD/T)が2.0を越えると、薄くて隠蔽性には優れる反面、製膜性が低化し、光照射時に光を吸収して発生した熱によってフィルムが収縮し過ぎてしまうため、電子機器の内部に用いられるような基材としては不適である。
 つまり、本発明のポリエステルフィルムにおいて、光学濃度と厚み(μm)の比(OD/T)が0.22以上、2.0以下の範囲とすることで、薄膜であっても遮光性に優れ、かつ、製膜性、光収縮性に優れたフィルムとすることが可能である。そのため、スマートフォンのような薄さが要求され、遮光性も要求される電子機器内部のテープ基材として好適に用いることができる。
 本発明のポリエステルフィルムは、少なくとも一方の表面の十点平均粗さRz(μm)が3.0μm以下であることが好ましく、より好ましくは2.5μm以下、更に好ましくは2.0μm以下である。ここでいう十点平均粗さRzとは、後述する測定方法において、接触式三次元表面粗さ計でポリエステルフィルムの少なくとも一方の表面の十点平均粗さRzを測定した値である。十点平均粗さRzが3.0μmを超えると、表面の凹凸が大きくなり過ぎて光を遮るために必要なフィルム厚みが厚くなる場合がある。尚、十点平均粗さRzの下限については特に限定されるものでは無いが、巻き取り性低下の懸念から0.1μm以上が好ましい。また、フィルム両表面の十点平均粗さRz(μm)がいずれも上記範囲を満たすことがより好ましい。
 本発明のポリエステルフィルムは、少なくとも一方の表面の十点平均粗さRz(nm)が、Rz(μm)と厚み(μm)の比(十点平均粗さ(Rz)/厚み(T))が0.30以下を満たすことが好ましく、0.25以下を満たすことがより好ましく、0.20以下を満たすことがさらに好ましい。(Rz/T)が0.30を超えると、表面の凹凸が大きくなり過ぎて光を遮るために必要なフィルム厚みが不足し、遮光性が低下する場合がある。また、フィルム厚みに対して表面の凹凸が大きくなり過ぎて、製膜性が低下する場合がある。尚、(Rz/T)の下限については特に限定されるものでは無いが、フィルム表面での光拡散によって遮光性を向上させる観点から、0.07以上が好ましく、0.10以上がより好ましく、0.12以上が更に好ましい。
 本発明のポリエステルフィルムの十点平均粗さRz(μm)と厚み(μm)の比(Rz/T)を0.30以下とするには、ポリエステルフィルムを構成するポリエステル樹脂中に着色顔料を含有させる場合、ポリエステルフィルムの製膜条件によって十点平均粗さRz(μm)を調整することができる。詳細は後述する。
 本発明のポリエステルフィルムは単膜フィルムでも、2層以上からなる積層フィルムのどちらの構成を選択しても構わない。本発明のポリエステルフィルムを単膜フィルムとすることで製造工程を簡略化することができる。また2層以上の積層フィルムとする場合、P2層/P1層/P2層の2種3層構成を用いることで、例えばP2層は着色顔料を含まない層とし、P1層には着色顔料を含む層として機能分離することで、隠蔽性と新しい機能を両立したフィルムを創出することができる。また前記のP2層に着色顔料を含有させ、P1層に光拡散性を持つ空洞を含有することで、遮光性をより高めることができる。
 (ポリエステルフィルムの製造方法)
 次に、本発明のポリエステルフィルムの製造方法について具体例を挙げて説明する。本発明は、かかる例によって得られる物のみに限定して解釈されるものではない。
 まず、ポリエステルフィルムを構成するポリエステル樹脂の製造方法は、以下の方法で製造することができる。
 ポリエステル樹脂は、ジカルボン酸、もしくはそのエステル誘導体と、ジオールを周知の方法でエステル交換反応、もしくはエステル化反応させることによって得ることができる。従来公知の反応触媒としてはアルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、リン化合物などを挙げることが出来る。好ましくは前記のポリエステル樹脂の製造方法が完結する以前の任意の段階において、重合触媒としてアンチモン化合物またはゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては例えば、ゲルマニウム化合物を例に取ると、ゲルマニウム化合物粉体をそのまま添加することが好ましい。
 次に、ポリエステルフィルムの製造方法は、ポリエステルフィルムを構成する原料を押出機内で加熱溶融させ、口金から冷却したキャストドラム上に押し出してシート状に加工する方法(溶融キャスト法)が好ましく用いられる。またポリエステルフィルムが積層構成の場合は、積層する各層の原料を二台の押出機に投入し溶融してから合流させて、口金から冷却したキャストドラム上に共押出してシート状に加工する方法(共押出法)を好ましく用いることができる。また溶融押出シートを静電気によりキャストドラムに密着させ冷却固化することで、結晶化を抑えた未延伸シートを作製することができる。またキャストドラムに密着させる方法としては薄溝から溶融押出シートにエアを噴出し密着させる方法やバキュームチャンバーにより、お溶融押出シートを引き付けて密着させる方法も選択することができる。
 次に本発明のポリエステルフィルムは少なくとも一軸に延伸されていることが好ましく、より好ましくは二軸延伸されることが好ましい。本発明のポリエステルフィルムを延伸して得ることによって、薄膜化が可能となり、機械特性にも優れたポリエステルフィルムとすることができる。
その延伸方法として、未延伸シートを70~140℃の温度に加熱されたロール群に導き、長手方向(縦方向、すなわちシートの進行方向)に延伸し、20~50℃の温度のロール群で冷却して一軸延伸シートを得ることができる。
 二軸延伸をする場合は、続いて前記で得られた一軸延伸シートの両端をクリップで把持しながらテンターに導き、70~150℃の温度に加熱された雰囲気中で、長手方向に直角な方向(幅方向)に横延伸して二軸延伸したポリエステルフィルムを得ることができる。
 この際、延伸倍率は長手方向と幅方向それぞれ2~5倍とするが、その面積倍率(縦延伸倍率×横延伸倍率)としては8倍以上が好ましく、より好ましくは9倍以上、更に好ましくは10倍以上である。面倍率の下限としては特に限定されるものでは無いが、6倍未満ではフィルムの機械特性が不足する場合や、薄膜化が困難となる場合がある。
 二軸延伸する方法としては、前記の長手方向と幅方向の延伸とを分離して行う逐次二軸延伸方法の他に、長手方向と幅方向の延伸を同時に行う同時二軸延伸方法やインフレショーン製膜であっても構わない。
 ここで、ポリエステルフィルムの十点平均粗さRz(μm)を好ましい範囲に調整するためには、二軸延伸を選択することが好ましく、一軸延伸直前の(同時二軸の場合は同時延伸を開始する直前)のフィルム温度を80℃以上、100℃以下の範囲に調整し、一軸目の延伸倍率を2.8倍以上3.6倍以下、もしく二軸目の延伸の予熱温度を70℃以上、125℃以下範囲で製膜することがより好ましい。
 ポリエステルフィルムの十点平均粗さRzを小さくするためには、延伸時に粗大結晶の生成を抑えることが重要であるため、未延伸シートや一軸延伸シートではRzが大きくなることがある。また一軸目の延伸時の延伸温度100℃を超える場合や、延伸倍率が2.8倍未満の場合はポリエステルの熱結晶化が促進され過ぎ、かえって十点平均粗さRzが大きくなる場合がある。また延伸温度が80℃未満の場合や、延伸倍率が3.6倍を超える場合は、一軸目の配向結晶化が促進され過ぎることがある。更には二軸目の延伸の予熱温度が125℃を超えると、一軸目に形成されたポリエステルの結晶が熱によって成長し、粗大結晶としてポリエステルフィルムに残ることで、表面の凹凸が大きくことがある。一方で二軸目の延伸の予熱温度を70℃未満とすると、熱量が不足し延伸破れが発生する場合がある。
 つまり、本発明のポリエステルフィルムを二軸延伸によって製造する場合、前記の条件で製膜を行うことで、ポリエステルの結晶化と結晶の成長を抑えることが可能となり、ポリエステルフィルムの十点平均粗さRzを好ましい範囲に調整することができることから、ポリエステルフィルムの遮光性を更に向上させることができる。
 本発明のポリエステルフィルムに着色顔料を含有させる方法としては、着色顔料を高濃度でマスターバッチ化した原料を作製し、押出機に投入する際に着色顔料を含まないポリエステル樹脂で希望の濃度になるように希釈する方法(マスターバッチ法)が好ましく用いられる。
 更に本発明においては、マスターバッチ化するベース原料に共重合されたポリエステル樹脂を用いることがより好ましく、かかる方法で得られたマスターバッチは着色顔料の分散性をより高めることが可能となり、遮光性と製膜性を高めることができる。
 本発明のポリエステルフィルムは前記の製造方法によって製造することができる。得られたポリエステルフィルムは、隠蔽性と製膜性に優れ、光を当てた際の収縮性にも優れるという性能を有するものである。そのため、電子機器内部に用いられる遮光基材はさることながら、カバーフィルムや太陽電池バックシート用フィルムやモーター用絶縁フィルムなどの工業材料、リチウムイオンバッテリー用の外装フィルム、意匠性フィルム、保護フィルムなどの包装材料、インクリボン用フィルム、建築材料用フィルム、感熱転写フィルム等、様々な用途に好適に用いることができる。
 また本発明のポリエステルフィルムが好適に用いることができる電子機器の遮光基材としては、携帯電話、スマートフォン、ディスクトップ型PC、ノート型PC、タブレット型PC、電子辞書、カーナビゲーション、GPSナビゲーション、デジタルカメラ、ビデオカメラなどの電子機器の内部に組み込まれて使用される遮光シートや遮光テープの基材が挙げられる。本発明のポリエステルフィルムを用いることで、内部の光を電子機器の外部に漏れ出すことを防止しながら、より小型化、もしくは薄型化が可能となる。
 本発明のポリエステルフィルムは、隠蔽性と製膜性に優れ、光を当てた際の収縮性にも優れるという性能を有するため遮光テープに好適に用いることができる。本発明のポリエステルフィルムに用いることができる遮光テープの構成としては、例えば、本発明のポリエステルフィルムの片面、もしくは両面に粘着剤層を設けたものを挙げることができる。粘着剤層に用いられる粘着剤としては、特に限定されるものでは無いが、アクリル系粘着剤、ウレタン系粘着剤などが好ましく用いられる。
 本発明の遮光テープの遮光性が不足する場合は黒色インク層をポリエステルフィルムの粘着剤層が設けられていない方の面や、両面に粘着剤層が設けられている構成ではポリエステルフィルムと粘着剤層の間に設けることができる。更には粘着剤中に黒色顔料を混合して黒色粘着剤層として設けることもできる。黒色インク成分としては特に限定されるものでは無いが、アクリル系樹脂やウレタン系樹脂からなるバインダーに前述した黒色顔料を含有させた成分が好ましく用いられる。
また、本発明の効果が損なわれない範囲で、その他の添加剤を含有する機能層を新たに設けても良く、前記の粘着剤層や黒色インク層に組み合わせても良い。例えば、粘着剤層の反対側の面に粒径の大きい粒子を含有する層をポリエステルフィルムに設けることで、艶消し性を持つ遮光テープとすることができる。また黒色インク層に放熱性粒子を添加することで、放熱性に優れる遮光テープとすることができる。
 次に、ポリエステルフィルム上に前記の層を設ける方法としては、表面にコロナ放電処理、プラズマ処理、紫外線照射処理、酸処理、アルカリ処理、下塗り剤の塗付等の表面処理を行った後、ロールコーティング法、ディップコーティング法、バーコーティング法、ダイコーティング法およびグラビアロールコーティング法などのコーティング方法や、オフセット印刷、グラビア印刷、フレキソ印刷、シルクスクリーン印刷、インクジェット印刷などの印刷方法を選択することができる。また、ポリエステルフィルムの製膜中に、インラインにて公知のコーティング手法を用いる方法も、工程の簡略化という点で好ましい方法である。
 以上のように、薄くて遮光性に優れる本発明のポリエステルフィルムを用いた遮光テープは、従来、遮光性付与のために用いられている黒色インク層を無くす、または層数を低減することができるため、溶媒に用いられる有機溶剤による環境負荷低減や製造工程の簡略化を達成することができる。
 〔特性の測定方法および評価方法〕
(1)示差走査熱量測定(DSC)
 JIS K7122(1987)に準じて、セイコー電子工業(株)製示差走査熱量測定装置”ロボットDSC-RDC220”を、データ解析にはディスクセッション”SSC/5200”を用い、ポリエステルフィルム5mgをサンプルパンに秤量し、昇温速度10℃/分で室温から300℃まで加熱(1stRUNと称する)し、その状態で5分間保持し、次いで降温速度10℃/分で25℃まで冷却し、昇温過程と降温過程の測定チャートを得た。
(1-1)降温結晶化温度Tmcの測定
(1)で得られた、降温過程に現れる発熱ピークについて、ピークトップの温度をポリエステルフィルムの降温結晶化温度Tmcとした。尚、発熱ピークが複数現れる場合は、最も高温側のピークを降温結晶化温度Tmcとする。
 (2)光学濃度測定
 ポリエステルフィルムの光学濃度はX-lite社製の分光濃度測定器を用いて、光学濃度測定を行った。測定は長手方向、および幅方向の直線上に5cm以上離れた箇所を選択して5回づつ行い、計10回の平均値を光学濃度とした。尚、方向性が不明な場合や概念が無い場合は任意の直線上と、その垂直方向の直線上の測定を実施した。
 (3)三次元表面粗さRzの測定
 ポリエステルフィルムの十点平均粗さRzは小坂研究所製の3次元表面粗さ計(型式ET-4000A)と小坂研究所製の3次元表面粗さ解析システム(型式TDA-31)を用いて、触針は先端半径0.5μmR、径2μm、ダイヤモンド製、針圧を100μNとし、測定条件をXピッチ(測定方向):1.00μm、Yピッチ(測定方向の垂直方向):5μm、X送り速さ:0.1mm/s、低域カット:0.25mm、高域カット:R+W、測定力:100、Z測定倍率:20000、ヒステリシス:0.006μmに設定して、測定方向をフィルム長手方向、および幅方向で2回測定を行った平均値を三次元表面粗さRzとした。尚、測定は両表面について行い、表には値が低い方の三次元表面粗さを記載した。尚、方向性が不明な場合や概念が無い場合は任意の直線上と、その垂直方向の直線上の測定を実施した。
 (4)製膜性
 ポリエステルフィルムの製膜性は、1時間連続製膜時にフィルム破れが発生しない延伸面倍率から以下の通り判定した。尚、縦延伸、横延伸倍率はいずれも最低2.5倍以上とし、ここでの横延伸倍率はテンター入り口幅と最大幅の比である機械倍率のことを示す。また延伸倍率以外の条件は自由に変更しても良い。
面倍率が10倍以上:A
面倍率が9倍以上:B
面倍率が8倍以上:C
面倍率が6倍以上:D
面倍率が6倍未満、または製膜不可:E
 製膜性はA~Dが良好であり、その中でもAが最も優れている。
 (5)遮光性評価
(5-1)遮光性評価用擬似LED照明台の作製
 林時計工業(株)製の光ファイバーライトガイド用LED光源(型式:LA-HDF108AS、定格電圧AC100~240V、定格消費電力20W、定格周波数50/60Hz)に同社製の結束径4mmφの光ファイバーライトガイドを接続し、LED光源本体のコントロール目盛りを8としてLED照明を準備する。次いでライトガイド先端の径のサイズの穴を開けたサンプル台の下部からライトガイドを挿入し、サンプル台の平面部から5mm離れた位置にLED照明の先端が位置するように固定し、擬似LED照明台を作製した。
(5-2)擬似光遮光性評価
 (5-1)で得られた擬似LED照明台にポリエステルフィルムを被せて、入力電圧の調整時にポリエステルフィルムを透過するLED光源の有無を目視で確認し、ポリエステルフィルムの遮光性を以下の通り判定した。尚、前記評価は長手方向、および幅方向の直線上に5cm以上離れた箇所を選択して5回づつ行い、計10回の平均値とした。また透過光の形状が円形では無い場合は、最も長径となる箇所を測長する。
入力電圧5Vでも透過光が見えない:A
入力電圧3V以上、5V未満で透過光が見えない:B
入力電圧2V以上、3V未満で透過光が見えない:C
入力電圧1V以上、2V未満で透過光が見えない:D
入力電圧1V未満でも透過光が見える:E
 遮光性はA~Dが良好であり、その中でもAが最も優れている。
 (6)耐光収縮性評価
 ポリエステルフィルムの片面に1辺1cmの正方形を記入し、対角線2本の長さを(株)テクノニーズ製万能投影器(AMM-1号機)を用いて測定し、2本の長さの平均値をL0とする。次いで、(4)で用いた擬似LED照明台に正方形の中心がLED照明の中心となるように、ポリエステルフィルムを被せて、入力電圧を5Vに設定し30秒間ライトを当てた後に正方形の対角線2本の長さを同様に測定した時の平均値をLとし、下記式から光収縮率を算出した。尚、前記評価は長手方向、および幅方向の直線上に5cm以上離れた箇所を選択して5回行い、計10回の平均値とした。
 光収縮率(%)=(L0-L)/L0×100
得られた光収縮率からポリエステルフィルムの耐光収縮性を以下の通り判定した。
光収縮率が2%未満:A
光収縮率が2%以上、3%未満:B
光収縮率が3%以上、5%未満:C
光収縮率が5%以上、10%未満:D
光収縮率が10%以上、または測定不可:E
 耐光収縮性はA~Dが良好であり、その中でもAが最も優れている。
 (7)電子機器用の遮光基材要求特性
 ポリエステルフィルムの厚みと、(5)項の遮光性、(6)項の耐光収縮性評価から、下記の通り判定した。
厚みが16μm以下で、遮光性と耐光収縮性評価がいずれもA判定:A
厚みが20μm以下で、遮光性と耐光収縮性評価のいずれもB判定以上:B
厚みが25μm以下で、遮光性と耐光収縮性評価のいずれもC判定以上:C
厚みが28μm以下で、遮光性と耐光収縮性評価のいずれもD判定以上:D
厚みが28μmを越える、または遮光性と耐光収縮性評価のいずれかがE判定:E
 電子機器用の遮光基材としてはA~Dが良好であり、その中でAが最も優れている。
 (8)黒色インク層の印刷回数
ポリエステルフィルムを用いた遮光テープにおいて、(5)遮光性評価の(5-1)擬似光遮光性評価でAを達成するために、ポリエステルフィルム上に黒色インク層を印刷する回数から、遮光テープ評価を以下の通り、判定した。評価は5回行い、その平均値にて判定した。
印刷不要:A
印刷回数が2回未満:B
印刷回数が2回以上、4回未満:C
印刷回数が4回以上、6回未満:D
印刷回数が6回以上:E
 遮光テープ評価としては、環境負荷低減や製造工程簡略化の観点からA~Dが良好であり、その中でもAが最も優れている。
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。
 (ポリエステル樹脂の製造方法)
1.ポリエチレンテレフタレート(PET)
 テレフタル酸ジメチル100質量部、エチレングリコール57.5質量部、酢酸マグネシウム2水和物0.03質量部、三酸化アンチモン0 .03質量部を150℃、窒素雰囲気下で溶融した。この溶融物を撹拌しながら230℃まで3時間かけて昇温し、メタノールを留出させ、エステル交換反応を終了した。エステル交換反応終了後、リン酸0.005質量部をエチレングリコール0.5質量部に溶解したエチレングリコール溶液(pH5.0)を添加した。このときのポリエステル組成物の固有粘度は0.2未満であった。この後、重合反応を最終到達温度285℃、真空度0.1Torrで行い、固有粘度0.65、末端カルボキシル基量が34当量/トンのポリエチレンテレフタレートを得た。
 2.ポリエチレンナフタレート(PEN)
 ジカルボン酸成分として、2,6-ナフタレンジカルボン酸を用いた以外は前記1.項のポリエチレンテレフタレートと同様に重合を行い、固有粘度0.61、末端カルボキシル基量が36当量/トンのポリエチレンナフタレートを得た。
 3.ポリエチレンテレフタレート-IPA共重合体1(PET/I-1)
 ジカルボン酸成分として、テレフタル酸ジメチル82.5質量部とイソフタル酸ジメチル25質量部を混合した以外は前記1.項のポリエチレンテレフタレートと同様に重合を行い、イソフタル酸(IPA)が17.5mol%共重合されたポリエチレンテレフタレートを得た。
 4.ポリエチレンテレフタレート-IPA共重合体2(PET/I-2)
 ジカルボン酸成分として、テレフタル酸ジメチル75質量部とイソフタル酸ジメチル25質量部を混合した以外はポリエチレンテレフタレートと同様に重合を行い、イソフタル酸(IPA)が25mol%共重合されたポリエチレンテレフタレートを得た。
 5.ポリエチレンテレフタレート-NDC共重合体(PET/N)
ジカルボン酸成分として2,6-ナフタレンジカルボン酸を用いた以外は前記3.項のポリエチレンテレフタレート共重合体と同様にナフタレンジカルボン酸(NDC)が17.5mol%共重合されたポリエチレンテレフタレートを得た。
 6.ポリエチレンテレフタレート-CHDM共重合体(PET-G)
 シクロヘキサンジメタノール(CHDM)が30mol%共重合されたポリエチレンテレフタレートとして、イーストマンケミカル社製ポリエステル樹脂「EastarTMCopolyester6763」を用いた。
 7.ポリブチレンテレフタレート(PBT)
 ジオール成分がブタンジオール(BDO)であるポリブチレンテレフタレートとして、東レ(株)社製「トレコン1200S」を用いた。
 8.CBマスターバッチ1(CB-MB1)
 上記1.項によって得られたポリエチレンテレフタレート80質量部と、一次粒径18nmのファーネス法によって製造されたカーボンブラック(CB-1)20質量部を、ベントした280℃の押出機内で溶融混練し、CBマスターバッチ1を作製した。
 9.CBマスターバッチ2(CB-MB2)
 一次粒径23nmのアセチレン法によって製造されたカーボンブラック(CB-2)を用いた以外は、CBマスターバッチ1と同様の方法でCBマスターバッチ2を作製した。
 10.CBマスターバッチ3(CB-MB3)
 ベースのポリエステル樹脂として、上記3.項で得られたポリエチレンテレフタレート-IPA共重合体1を用いた以外は、CBマスターバッチ1と同様の方法でCBマスターバッチ3を作製した。
 11.酸化チタンマスターバッチ(TiO-MB)
 上記1.項によって得られたポリエチレンテレフタレート50質量部と、一次粒径200nmのルチル型二酸化チタン粒子50質量部をベントした280℃の押出機内で溶融混練し、TiOマスターバッチを作製した。
(遮光テープの作製方法)
 1.粘着剤層
イソノニルアクリレート98.9重量部、アクリル酸0.1重量部、N-ビニルカプロラクタム1.0重量部、連鎖移動剤としてn-ドデシルメルカプタン0.05重量部及び溶剤として酢酸エチル80重量部を、攪拌機、還流冷却管、温度計、滴下ロート及び窒素ガス導入口を備えた五つ口フラスコに仕込み、攪拌した後、窒素ガスで約30分間パージし、モノマー溶液中に残存する酸素を除去した。しかる後、窒素ガスでフラスコ内の空気を置換し、攪拌しつつ昇温し70℃に保持し、熱重合開始剤としてベンゾイルパーオキサイド0.03重量部を1重量部の酢酸エチルに溶解したものを、滴下ロートから滴下した。反応開始後、そのままの温度で10時間反応させ、アクリル系共重合体溶液を得た。
 続いて、ポリエステルフィルムの片面に前記のアクリル系共重合体溶液をダイコーティング方法で塗布し、厚み8μmの粘着剤層を設けた。
 2.黒色インク層
CBマスターバッチ1(CB-MB1)で用いたカーボンブラック(CB-1)に市販のインク用メジウム(ポリウレタン系/塩・酢ビコポリマー)と溶剤(ケトン/芳香族炭化水素/アルコール)を加えて混合・撹拌し、溶剤乾燥後のカーボン含有率が50重量%となる黒色インクを調合した。
続いて、ポリエステルフィルム上に前記の黒色インクを用いて、乾燥後の厚みが2μmの黒色インク層を遮光性の要求特性に応じた回数、オフセット印刷にて設けた。
(実施例1)
 表に示す組成となるように、ポリエステル原料として前項で作製したポリエチレンテレフタレート34質量部とポリエチレンテレフタレート-イソフタル酸(IPA)共重合体1を26質量部、CBマスターバッチ1を40質量部ブレンドし、180℃で2時間真空乾燥した。次いで280℃に昇温した押出機内で溶融させて吐出し、Tダイから押出した溶融シートを表面温度25℃に保たれたキャスティングドラム上に静電印加法で密着冷却固化させて未延伸シートを得た。
続いて、得られた未延伸シートを80℃の温度に加熱したロール群で予熱した後、85℃の温度に加熱したロールと25℃の温度に調整したロール間で3倍の速度差をつけることで長手方向(縦方向)に3倍に延伸した後、25℃の温度のロール群で冷却して一軸延伸シートを得た。更に得られた一軸延伸シートの両端をクリップで把持しながらテンター内の80℃の温度の予熱ゾーンに導き、引き続き連続的に90℃に保たれた加熱ゾーンで長手方向に直角な方向(幅方向)に3.6倍に延伸した。更に引き続いて、テンター内の熱処理ゾーンにて230℃で20秒間の熱処理を施し、さらに6%幅方向に弛緩処理を行いながら均一に徐冷し、ポリエステルフィルムを製膜した。
引き続き、製膜後のポリエステルフィルムの厚みが16μmとなるように押出機の吐出量とキャスティングドラム以降のライン速度を調整して、実施例1に記載のポリエステルフィルムを得た。製膜性は非常に優れており、前記条件で1時間連続製膜を実施しても一度もフィルム破れが発生しなかった。
得られたポリエステルフィルムの遮光性評価と光収縮性評価を実施したところ、いずれも非常に優れた遮光性と耐光収縮性を有することが分かった。
また非常に薄膜でありながら、前記特性を満足することから、電子機器に用いられる遮光基材として好適に用いることができるポリエステルフィルムであることが分かった。
更に、ポリエステルフィルムの片面に粘着剤層を設けて遮光テープを作製した。得られた遮光テープは非常に遮光性に優れ、黒色インク層を設ける必要が無いことから、環境負荷低減や製造工程簡略化の観点で、非常に優れる遮光テープであることが分かった。
 (実施例2~7)
 表に記載の着色顔料濃度となるようにCBマスターバッチ1の量と、表に記載の厚みとなるように製膜条件を調整した以外は実施例1と同様にポリエステルフィルムを得た。実施例4、5については製膜時にフィルム破れが発生したため、実施例1に比べて延伸倍率を下げて製膜を行った。
 得られたポリエステルフィルムの特性は表に示す通り、実施例1には劣るものの良好な特性を示し、電子機器用の遮光基材としても良好な特性であることが分かった。
 また、実施例1と同様に遮光テープを作製したところ、実施例1には劣るものの遮光テープとして良好な特性であることが分かった。
 (実施例8~13)
 表に記載の共重合成分の比率となるようにポリエチレンテレフタレート-イソフタル酸(IPA)共重合体1の量を調整した以外は実施例1と同様にポリエステルフィルムを得た。実施例8以外については製膜時にフィルム破れが発生したため、実施例1に比べて延伸倍率を下げて製膜を行い、中でも実施例13は製膜性に劣るが問題ない範囲であった。
得られたポリエステルフィルムの特性は表に示す通り、実施例1には劣るものの良好な特性を示し、電子機器用の遮光基材としても良好で、中でも実施例9は最も優れる特性であることが分かった。また実施例12耐光収縮性に劣るが問題ない範囲であった。
また、実施例1と同様に遮光テープを作製したところ、非常に優れる遮光テープであることが分かった。
 (実施例14~18)
 表に記載の共重合成分の種類と比率となるように前項に記載のポリエチレンテレフタレート-ナフタレンジカルボン酸(NDC)共重合体、ポリエチレンテレフタレート-シクロヘキサンジメタノール(CHDM)共重合体、ポリブチレンテレフタレート(PBT)の量を調整した以外は実施例1と同様にポリエステルフィルムを得た。実施例17以外については製膜時にフィルム破れが発生したため、実施例1に比べて延伸倍率を下げて製膜を行い、中でも実施例14は製膜性に劣るが問題ない範囲であった。
得られたポリエステルフィルムの特性は表に示す通り、共重合成分としてジオール成分にCHDMを用い、共重合成分比率9mol%とした実施例17は実施例1と同様に非常に優れた遮光性と耐光収縮性を有することが分かった。またその他の実施例については、実施例1や17には劣るものの良好な特性を示し、電子機器用の遮光基材としても良好な特性であることが分かった。
また、実施例1と同様に遮光テープを作製したところ、非常に優れる遮光テープであることが分かった。
 (実施例19~21)
 表の通り、前項に記載のCBマスターバッチ2、CBマスターバッチ3、酸化チタンマスターバッチを用いて着色顔料の種類と含有量を変更した以外は実施例1と同様にポリエステルフィルムを得た。実施例20は製膜性に劣るが問題ない範囲であった。
得られたポリエステルフィルムの特性は表に示す通り、実施例19は実施例1に比べて遮光性と耐光収縮性に劣るものの優れた特性であること、実施例20は実施例1に比べて着色顔料濃度が少量であっても実施例1と同等の遮光性が得られることがわかった。また実施例21は遮光性に劣るが問題無い範囲であった。
また、実施例1と同様に遮光テープを作製したところ、実施例1には劣るものの遮光テープとして良好な特性であることが分かった。
 (実施例22)
 構成成分を前項に記載のポリエチレンナフタレートとし、共重合成分としてジカルボン酸成分がテレフタル酸(TPA)である前項に記載のポリエチレンテレフタレートを表に記載の比率となるように調製した以外は、実施例1と同様にポリエステルフィルムを得たところ、製膜性に劣るが問題ない範囲であった。
 得られたポリエステルフィルムの特性は表に示す通り、実施例1に比べて耐光収縮性に劣るものの優れた特性であることがわかった。
また、実施例1と同様に遮光テープを作製したところ、非常に優れる遮光テープであることが分かった。
 (実施例23)
 フィルムの厚みを10μmとした以外は実施例1と同様にポリエステルフィルムを得た。得られたフィルムの特性は表に示す通りであり、実施例1に比べて遮光性に劣るものの優れた特性であることがわかった。
また、実施例1と同様に遮光テープを作製したところ、優れた遮光テープであることが分かった。
 (実施例24~35)
 表に記載の通り、製膜条件を変更した以外は実施例23と同様にポリエステルフィルムを得た。尚、実施例25~35は縦延伸の際、予熱ロールから延伸ロールの間に、フィルム間距離400mm、ヒーター容量6.6kW、発熱長800mmの赤外線ヒーター(RH)を設置して製膜を行った。得られたポリエステルフィルムは製膜条件における、縦延伸時のフィルム温度と延伸倍率、横延伸時における予熱温度を変えることで、光学濃度と十点平均粗さRz(μm)とフィルム厚み(μm)の比(Rz/T)が変化することがわかった。また実施例35を製膜性に劣るが問題ない範囲であった。
 得られたポリエステルフィルムの特性は表に示す通り、実施例25、34、35は実施例23に比べて遮光性に優れることがわかった。
また、実施例1と同様に遮光テープを作製したところ、実施例25、34、35は実施例23に比べて優れた遮光テープであることが分かった。
 (比較例1)
 表の通り、ポリエチレンテレフタレートのホモ重合体を単独で用いた以外は実施例1と同様であったが、遮光性と耐光収縮性には非常に優れるものの、製膜性に劣るものであった。
(比較例2)
 表の通り、ポリエチレンテレフタレート-イソフタル酸(IPA)共重合体2を単独で用いた以外は実施例1と同様であったが、遮光性には非常に優れ、製膜性は良好なものの、耐光収縮性に劣るものであった。
(比較例3)
 表の通り、着色顔料を高濃度化した以外は実施例12と同様であったが、遮光性には優れるものの、製膜性と耐光収縮性に劣るものであった。
(比較例4)
 表の通り、着色顔料を低濃度化した以外は実施例1と同様であったが、製膜性と耐光収縮性には非常に優れるものの、遮光性に劣るものであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
本発明のポリエステルフィルムは、薄膜でありながら隠蔽性と製膜性に優れ、光を当てた際の収縮性にも優れるという性能を有するものであり、電子機器内部に用いられる遮光基材はさることながら、カバーフィルムや太陽電池バックシート用フィルムやモーター用絶縁フィルムなどの工業材料、リチウムイオンバッテリー用の外装フィルム、意匠性フィルム、保護フィルムなどの包装材料、インクリボン用フィルム、建築材料用フィルム、感熱転写フィルム等の用途に好適に用いることができる。

Claims (8)

  1.  光学濃度と厚み(μm)の比(光学濃度(OD)/厚み(T))が0.22以上、2.0以下であり、示差走査熱量測定(DSC)において、溶融状態で5分間保持した後、10℃/分の降温速度で冷却した時の降温結晶化温度Tmcが180℃以上、210℃以下であるポリエステルフィルム。
  2.  黒色顔料を3.5質量%以上、30質量%以下含む請求項1に記載のポリエステルフィルム。
  3.  少なくとも一方の表面の十点平均粗さRz(μm)が、Rz(μm)と厚み(μm)の比(十点平均粗さ(Rz)/厚み(T))が0.30以下であること満たす請求項1または2に記載のポリエステルフィルム。
  4.  フィルムを構成するポリエステル樹脂が、ポリエステルの構成成分としてイソフタル酸成分および/またはシクロヘキサンジメタノール成分を含む請求項1~3のいずれかに記載のポリエステルフィルム。
  5.  フィルムを構成するポリエステルが、全ジカルボン酸成分に対してイソフタル酸成分を0.5mol%以上20mol%以下含む、または全ジオール成分に対してシクロヘキサンジメタノール成分を0.5mol%以上20mol%以下含む請求項4に記載のポリエステルフィルム。
  6.  フィルム厚みが28μm以下である請求項1~5のいずれかに記載のポリエステルフィルム。
  7.  電子機器の遮光基材として用いられる請求項1~6のいずれかに記載のポリエステルフィルム。
  8.  請求項1~6のいずれかに記載のポリエステルフィルムを用いた遮光テープ。
PCT/JP2016/074044 2015-08-28 2016-08-17 ポリエステルフィルム WO2017038472A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016559471A JP6115688B1 (ja) 2015-08-28 2016-08-17 ポリエステルフィルム
CN201680049079.4A CN107922648B (zh) 2015-08-28 2016-08-17 聚酯膜
KR1020187006104A KR102559867B1 (ko) 2015-08-28 2016-08-17 폴리에스테르 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-168784 2015-08-28
JP2015168784 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038472A1 true WO2017038472A1 (ja) 2017-03-09

Family

ID=58188874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074044 WO2017038472A1 (ja) 2015-08-28 2016-08-17 ポリエステルフィルム

Country Status (5)

Country Link
JP (1) JP6115688B1 (ja)
KR (1) KR102559867B1 (ja)
CN (1) CN107922648B (ja)
TW (1) TWI710587B (ja)
WO (1) WO2017038472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433262A (zh) * 2017-11-22 2020-07-17 Sk化学株式会社 聚酯树脂组合物和包含该聚酯树脂组合物的双轴拉伸的聚酯膜

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220063766A (ko) * 2019-09-24 2022-05-17 미쯔비시 케미컬 주식회사 폴리에스테르 필름
KR102526933B1 (ko) * 2021-02-09 2023-05-02 에스케이마이크로웍스 주식회사 폴리에스테르계 필름 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129820A (ja) * 2011-11-21 2013-07-04 Toray Ind Inc ポリエステル組成物、ポリエステルフィルム、並びそれを用いたおよび太陽電池バックシート、ならびに、それらの製造方法
JP2013163815A (ja) * 2013-04-03 2013-08-22 Toray Ind Inc 遮光性ポリエステルフィルム
JP2015070021A (ja) * 2013-09-27 2015-04-13 東レ株式会社 太陽電池バックシート用ポリエステルフィルムおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336478Y2 (ja) 1979-09-25 1988-09-27
DE10036407A1 (de) * 2000-07-26 2002-02-07 Mitsubishi Polyester Film Gmbh Mehrschichtige, transparente, biaxial orientierte Polyesterfolie
CN100434452C (zh) * 2002-12-27 2008-11-19 三菱化学株式会社 聚对苯二甲酸丁二酯及其制造方法以及其组合物和膜
CN1823124A (zh) * 2003-05-21 2006-08-23 韦尔曼公司 慢结晶聚酯树脂
CN100480305C (zh) * 2003-09-11 2009-04-22 帝人杜邦菲林日本株式会社 聚酯薄膜
EP1764206B1 (en) * 2004-05-14 2009-09-09 Teijin Dupont Films Japan Limited Oriented polyester film for a flexible electronics device substrate
WO2007094382A1 (ja) * 2006-02-15 2007-08-23 Toray Industries, Inc. 成形部材用ポリエステルフィルム
JP5298414B2 (ja) 2006-09-04 2013-09-25 東レ株式会社 遮光性ポリエステルフィルム
JP5651012B2 (ja) * 2009-03-17 2015-01-07 積水化学工業株式会社 表示装置組み立て用テープ基材及びこれを用いた表示装置組み立て用粘着シート並びに表示モジュールユニット
JP2011119651A (ja) 2009-11-04 2011-06-16 Mitsubishi Plastics Inc 太陽電池裏面封止用二軸配向ポリエステルフィルム
DE102011009819A1 (de) * 2011-01-31 2012-02-16 Mitsubishi Polyester Film Gmbh Biaxial gestreckte Polyesterfolie mit einem hohen Cyclohexandimethanolanteil und einem sekundären Diolanteil sowie einem primären und sekundären Dicarbonsäureanteil sowie ein Verfahren zu ihrer Herstellung und ihre Verwendung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129820A (ja) * 2011-11-21 2013-07-04 Toray Ind Inc ポリエステル組成物、ポリエステルフィルム、並びそれを用いたおよび太陽電池バックシート、ならびに、それらの製造方法
JP2013163815A (ja) * 2013-04-03 2013-08-22 Toray Ind Inc 遮光性ポリエステルフィルム
JP2015070021A (ja) * 2013-09-27 2015-04-13 東レ株式会社 太陽電池バックシート用ポリエステルフィルムおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433262A (zh) * 2017-11-22 2020-07-17 Sk化学株式会社 聚酯树脂组合物和包含该聚酯树脂组合物的双轴拉伸的聚酯膜

Also Published As

Publication number Publication date
TW201714933A (zh) 2017-05-01
JPWO2017038472A1 (ja) 2017-09-07
TWI710587B (zh) 2020-11-21
CN107922648B (zh) 2023-03-28
KR20180048671A (ko) 2018-05-10
KR102559867B1 (ko) 2023-07-26
JP6115688B1 (ja) 2017-04-19
CN107922648A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP5428553B2 (ja) ポリエステルフィルム
US8216704B2 (en) Biaxially oriented laminated film
JP6115688B1 (ja) ポリエステルフィルム
JP2007111923A (ja) 離型フィルム
JP2019044155A (ja) ポリエステルフィルム
JP2011192970A (ja) ポリエステルフィルムおよびそれを用いた太陽電池バックシート、太陽電池
JP5861266B2 (ja) 電子デバイス基材用積層フィルム
JP5460481B2 (ja) 積層ポリエステルフィルム
JP2013256554A (ja) 難燃性ポリエステルおよび難燃性ポリエステルフィルム
JP2020117700A (ja) 二軸配向ポリエステルフィルム
JP7081186B2 (ja) ポリエステルフィルム
JP5014616B2 (ja) 光学用積層ポリエステルフィルム
JP2007045024A (ja) 積層ポリエステルフィルム
JP4692819B2 (ja) 積層ポリエステルフィルム
JP4896454B2 (ja) 積層フィルム
JP4916132B2 (ja) 離型フィルム
JP6481725B2 (ja) グリーンシート成形用離型フィルム
JP6299491B2 (ja) 導電性フィルム用離型フィルム基材
JP2004107471A (ja) 二軸配向ポリエステルフィルム
JP2012018733A (ja) 塗布型磁気記録テープ用積層2軸配向ポリエステルフィルム
JP2020075965A (ja) 配向ポリエステルフィルム
JP2007177002A (ja) 脂肪族ポリエステル系樹脂反射フィルム及び該反射フィルムを備えた反射板
JP5421158B2 (ja) 太陽電池裏面保護膜用積層フィルム
JP2014184657A (ja) 離型用積層ポリエステルフィルムおよび離型フィルム
JP2007176999A (ja) 脂肪族ポリエステル系樹脂反射フィルム及び該反射フィルムを備えた反射板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559471

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006104

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16841504

Country of ref document: EP

Kind code of ref document: A1