WO2017038360A1 - 炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法 - Google Patents

炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法 Download PDF

Info

Publication number
WO2017038360A1
WO2017038360A1 PCT/JP2016/072844 JP2016072844W WO2017038360A1 WO 2017038360 A1 WO2017038360 A1 WO 2017038360A1 JP 2016072844 W JP2016072844 W JP 2016072844W WO 2017038360 A1 WO2017038360 A1 WO 2017038360A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
body containing
slurry
calcium carbonate
carbonate
Prior art date
Application number
PCT/JP2016/072844
Other languages
English (en)
French (fr)
Inventor
裕大 坂井
克之 山中
勇介 重光
Original Assignee
株式会社ジーシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジーシー filed Critical 株式会社ジーシー
Priority to ES16841392T priority Critical patent/ES2808965T3/es
Priority to CN201680049585.3A priority patent/CN107922277B/zh
Priority to US15/747,258 priority patent/US20180237300A1/en
Priority to EP16841392.0A priority patent/EP3345885B1/en
Priority to JP2017537682A priority patent/JP6588097B2/ja
Publication of WO2017038360A1 publication Critical patent/WO2017038360A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • C01F11/183Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • C04B38/103Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam the foaming being obtained by the introduction of a gas other than untreated air, e.g. nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering

Definitions

  • the present invention relates to a method for producing a porous body containing calcium carbonate and a method for producing a porous body containing carbonate apatite.
  • bone grafting materials have been used for reconstruction or regeneration of bone defects caused by trauma or the like, or for increasing the thickness of the jawbone during implant treatment.
  • Bone prosthesis using hydroxyapatite is osteoconductive, that is, when bone defect is replenished, it activates the bone-forming cells in the mother bone to regenerate bone tissue and Has the ability to be formed.
  • the bone prosthetic material is required to be replaced with bone.
  • the bone filling material using hydroxyapatite although bone is formed by osteoblasts, it cannot be replaced by bone because it is not absorbed by osteoclasts.
  • carbonate apatite has attracted attention as a material for bone prosthetic materials that can replace bone.
  • Patent Document 1 discloses that at least one of a calcium compound block substantially free of powder and a solution containing phosphate contains a carbonate group.
  • Patent Document 1 also discloses a specific example of a method for producing a medical bone prosthetic material mainly composed of carbonate apatite.
  • a method for producing a medical bone prosthetic material mainly composed of carbonate apatite according to the disclosed example, first, calcium hydroxide is compression-molded as a calcium compound block using a circular mold, and the obtained green compact is carbonated under a carbon dioxide stream with a relative humidity of 100%. To obtain a calcium carbonate block. The calcium carbonate block is immersed in disodium hydrogen phosphate to obtain a block body having the same form as the calcium carbonate block.
  • the bone filling material is made of a porous material
  • cells, blood vessels and the like enter the bone filling material when the bone defect is filled, and preferable bone regeneration can be expected in a shorter time.
  • a porous body containing carbonate apatite is required as a bone prosthetic material, and a porous body containing calcium carbonate has been required to form a porous body containing carbonate apatite.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of one aspect of the present invention is to provide a method for producing a porous body containing calcium carbonate.
  • it contains calcium carbonate having a digestion carbonation step in which a porous body containing calcium oxide is digested and carbonated in the presence of water and in a stream of carbon dioxide-containing gas.
  • a method for producing a porous body is provided.
  • a method for producing a porous body containing calcium carbonate can be provided.
  • the method for producing a porous body containing calcium carbonate according to the present embodiment includes digestion and carbonation of a porous body containing calcium oxide in the presence of water and a gas stream containing carbon dioxide. It can have a conversion process.
  • a porous body containing carbonate apatite is required as a bone grafting material, and a porous body containing calcium carbonate is required to produce a porous body containing such carbonate apatite. It was. Therefore, the inventors of the present invention have intensively studied a method for producing a porous body containing calcium carbonate.
  • the porous body of calcium oxide is brought into contact with or immersed in water or a solution containing water to digest calcium oxide.
  • the porous structure of the brittle calcium hydroxide was destroyed, and a porous body of calcium hydroxide that maintained the structure of the porous body of calcium oxide could not be obtained. This was thought to be due to the fact that the digestion reaction was accompanied by a large exotherm and volume expansion.
  • the porous body of calcium oxide was subjected to digestion reaction (with volume expansion) and carbonation reaction (with volume shrinkage) at the same time. It has been found that by subjecting to carbonation by a reaction method to proceed, a porous body containing the target calcium carbonate can be obtained while maintaining the structure of the porous body containing the starting calcium oxide, and the present invention is Completed.
  • the method for producing a porous body containing calcium carbonate digests and carbonates the porous body containing calcium oxide as described above (hereinafter also referred to as “digested carbonation”). Can be carried out in the presence of water and in an air stream containing carbon dioxide.
  • the composition, pore size, porosity, etc. of the porous material containing calcium oxide used in the digestive carbonation step, and the properties required for the resulting porous material containing calcium carbonate are not limited. It can be arbitrarily selected depending on the case.
  • the content of calcium oxide in the porous body containing calcium oxide is preferably high, for example 90% by weight or more, and more preferably 99% by weight or more.
  • the porous body containing calcium oxide is more preferably a porous body made of calcium oxide.
  • inevitable components such as impurities mixed in preparing a porous body made of calcium oxide may be contained, for example, less than 1% by mass.
  • the presence of water in the digestive carbonation step means that water is present around the porous body containing calcium oxide to be carbonated regardless of the state of water.
  • the digestive carbonation step is performed in an environment where only liquid water exists, that is, for example, when a porous body containing calcium oxide is immersed in water, only the digestion reaction proceeds, The structure may collapse.
  • the digestive carbonation of the porous body containing calcium oxide is preferably carried out in an environment containing gaseous water.
  • the digestive carbonation of the porous material containing calcium oxide is preferably performed in a high humidity environment, that is, in an environment where gaseous water is present.
  • gaseous water and liquid water may coexist.
  • digestive carbonation is preferably performed in an atmosphere having a relative humidity of 60% or more, and digestive carbonation is more preferably performed in an atmosphere having a relative humidity of 80% or more.
  • the digestive carbonation of the porous material containing calcium oxide can be performed in the presence of water and in a stream of carbon dioxide-containing gas.
  • the carbon dioxide-containing gas only needs to contain carbon dioxide, and its specific composition is not particularly limited.
  • the carbon dioxide concentration in the carbon dioxide-containing gas is preferably, for example, 1 vol% or more in order to sufficiently speed up the digestive carbonation reaction rate of the porous body containing calcium oxide. More preferably, it is 10 vol% or more.
  • the upper limit of the carbon dioxide concentration in the carbon dioxide-containing gas is not particularly limited, and since the carbon dioxide-containing gas may be composed of carbon dioxide, it can be set to 100 vol% or less. However, even when the concentration of carbon dioxide in the carbon dioxide-containing gas is higher than 20 vol%, the reaction rate of the digestive carbonation reaction of the porous body containing calcium oxide does not change greatly, so that it is 20 vol% or less. It is preferable.
  • the component of the gas other than carbon dioxide in the carbon dioxide-containing gas is not particularly limited, and any gas can be contained.
  • air, inert gas, etc. are mentioned as components other than the carbon dioxide gas contained in a carbon dioxide containing gas.
  • components other than carbon dioxide gas contained in the carbon dioxide-containing gas are inert gases.
  • the inert gas is preferably one or more kinds of gases selected from, for example, nitrogen, argon, and helium.
  • reaction conditions such as reaction temperature and reaction time in the digestive carbonation step are not particularly limited. However, if the reaction temperature is too low, the digestion carbonation reaction rate may be slow. In addition, if the reaction temperature is too high, volume expansion due to digestion reaction occurs rapidly and the porous structure tends to collapse, or carbonic acid is released from the surface of the porous material containing digested and carbonated calcium oxide. The rate of reaction may increase and the apparent reaction rate may decrease. For this reason, it is preferable that reaction temperature is 0 degreeC or more and 250 degrees C or less, and it is more preferable that they are 20 degreeC or more and 50 degrees C or less.
  • the reaction temperature means a temperature around the porous body containing calcium oxide.
  • the reaction time at least the surface of the porous body containing calcium oxide according to the size and porosity of the porous body containing calcium oxide to be subjected to the digestive carbonation step, the flow rate of the carbon dioxide-containing gas to be supplied, etc. What is necessary is just to select so that digestive carbonation can fully advance about, It does not specifically limit.
  • the method for producing a porous body containing calcium carbonate according to the present embodiment can further include an optional step in addition to the digestive carbonation step described above. Examples of these steps will be described below.
  • the digestive carbonation step can be performed in the presence of water and in a stream of carbon dioxide-containing gas.
  • a digestive carbonation step at least the surface of the porous body containing calcium oxide can be digested and carbonated, but the porous body containing calcium oxide that is not in direct contact with water or a carbon dioxide-containing gas is used.
  • digestive carbonation does not proceed sufficiently to the inside. Since it is not preferable for calcium oxide to remain inside, it is preferable that the digestion reaction proceeds completely.
  • the carbonation reaction is incomplete and calcium hydroxide remains, since the calcium hydroxide can be converted into hydroxyapatite by the phosphorylation step described later, the carbonation reaction may be incomplete. More preferably, it is completely carbonated.
  • the method for producing a porous body containing calcium carbonate according to the present embodiment can further include the following steps. By carrying out the following steps, a porous body containing calcium oxide to be used for the digestive carbonation step described above can be produced.
  • calcium hydroxide and / or calcium carbonate, an organic substance that can be cured by a chemical reaction, and a solvent are mixed to disperse the calcium hydroxide and / or calcium carbonate mixed with the solvent.
  • a solvent is mixed to disperse the calcium hydroxide and / or calcium carbonate mixed with the solvent.
  • calcium hydroxide and / or calcium carbonate can be used as the calcium source. That is, only one of calcium hydroxide and calcium carbonate may be used as the calcium source, or both may be used.
  • calcium compounds other than calcium hydroxide and / or calcium carbonate can also be used as a calcium source. For example, calcium oxide or the like can also be used.
  • examples of the chemical reaction of an organic substance that can be cured by a chemical reaction include a polymerization reaction and a crosslinking reaction. And it does not specifically limit as an organic substance which can be hardened
  • cured by various chemical reactions can be used, for example, (meth) acrylates, such as polyvinyl alcohol and methyl methacrylate, One or more selected from methylcellulose, polyacrylamide, polyethyleneimine, polypropyleneimine, polybutyleneimine, and the like can be used.
  • linear, branched, and block-like polymers containing amino groups are rich in cationic properties, can contribute to the dispersion of raw material powder, and can produce a good slurry, and the reaction start described later Since a good cured product can be obtained in combination with an agent, it can be used more preferably.
  • the solvent is not particularly limited, and for example, water can be used.
  • distilled water is preferably used from the viewpoint of preventing contamination of impurities.
  • additives can be further mixed.
  • a dispersant for example, a foam stabilizer, a thickener and the like can be used.
  • bubbles can be introduced into the slurry prepared in the slurry preparation step. That is, the slurry can be foamed.
  • Bubbles in the bubble introduction step are introduced to form pores of a porous body containing calcium oxide and a porous body containing calcium carbonate formed from the porous body containing calcium oxide. is there. For this reason, it is preferable to adjust the bubble size and the amount of addition according to the pore size, porosity, etc. of the porous body containing the target calcium carbonate.
  • the method for introducing bubbles into the slurry is not particularly limited.
  • bubbles can be introduced by mixing and stirring a foaming agent in the slurry.
  • gas can be supplied into the slurry to introduce bubbles.
  • the mixing and stirring of the foaming agent and the supply of gas into the slurry can be used in combination.
  • the foaming agent is not particularly limited, and various anionic, cationic, amphoteric, and nonionic surfactants can be used.
  • an anionic surfactant is used as an organic substance that can be cured by a chemical reaction, a linear, branched, or block-like polymer containing an amino group such as polyacrylamide is used. Due to the difference in ionicity, an ion complex may be formed and the foaming operation may be difficult. For this reason, when a linear, branched, or block-like polymer containing an amino group is used, it is preferable to use a surfactant other than the anionic surfactant.
  • foaming agent for example, polyoxyethylene lauryl ether or triethanolamine sulfate is preferably used.
  • an organic substance that can be cured by a chemical reaction can be chemically reacted and cured by mixing a reaction initiator with the slurry.
  • the reaction initiator is not particularly limited, and a substance that can chemically react with an organic substance that can be cured by a chemical reaction used in the slurry preparation process can be used.
  • Examples of the reaction initiator include a crosslinking agent and a polymerization initiator.
  • sorbitol polyglycidyl ether is used as a crosslinking agent.
  • An epoxy compound having two or more epoxy groups such as polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, and polymethylolpropane polyglycidyl ether can be preferably used.
  • the slurry can be cured in a gel state by mixing a reaction initiator with the slurry.
  • a mold corresponding to the shape required for the porous body containing calcium oxide and the calcium carbonate porous body obtained from the porous body containing calcium oxide. It is preferable to keep it.
  • the sintering conditions in the slurry sintering step are not particularly limited, but it is preferable to heat at a temperature of 500 ° C. or higher and 1200 ° C. or lower. This is because when the temperature is lower than 500 ° C., it takes time to remove organic substances, solvents and the like that can be cured by a chemical reaction, and productivity may be lowered. Moreover, even if it heats to a temperature higher than 1200 degreeC, since there is not much effect which improves the reaction rate of the said reaction, it is preferable to set it as 1200 degrees C or less.
  • the atmosphere at the time of heating the cured slurry is not particularly limited, and may be an air atmosphere or a vacuum atmosphere. Moreover, you may heat the slurry which hardened
  • the heating time is not particularly limited and can be arbitrarily selected according to the size of the cured slurry.
  • a porous body containing calcium oxide can be manufactured by performing the above slurry preparation step, bubble introduction step, curing step, and slurry sintering step. And the porous body containing a calcium carbonate can be manufactured by using the porous body containing the obtained calcium oxide for the digestive carbonation process as stated above.
  • the method for producing a porous body containing calcium carbonate of the present embodiment can further include a pulverization step in addition to the above-described steps.
  • the pulverization step is a step of pulverizing the cured body after the curing step, and can be performed at any time as long as it is after the above-described curing step.
  • the size to be pulverized is not particularly limited, but in consideration of the yield and reaction efficiency in the digestion carbonation step and the phosphorylation step described later, it is preferably 20 cm ⁇ 20 cm ⁇ 20 cm or less, and 5 cm ⁇ 5 cm ⁇ 5 cm or less. More preferred.
  • the pulverization step cutting step
  • the cured body can be pulverized, but the cured body can also be cut with a cutter or the like so as to have a desired shape and size.
  • the porous body containing calcium carbonate can be produced by the method for producing a porous body containing calcium carbonate according to this embodiment described above.
  • porous body containing calcium carbonate After forming the porous body containing calcium oxide, water and carbon dioxide are supplied and digested and carbonated. A porous body containing calcium carbonate that maintains the structure of the porous body can be produced.
  • the porous body containing calcium carbonate of the present embodiment is obtained by digesting a porous body containing calcium oxide obtained by baking a foamed slurry formed by introducing bubbles and then baking the foamed slurry. Is formed. For this reason, it is possible to include spherical pores that communicate with each other.
  • Method for producing porous carbonate apatite Next, a configuration example of the method for producing a porous body containing carbonate apatite according to the present embodiment will be described below.
  • the method for producing a porous body containing carbonate apatite according to the present embodiment contains carbonate apatite using the porous body containing calcium carbonate obtained by the method for producing a porous body containing calcium carbonate described above.
  • a porous body can be manufactured.
  • the manufacturing method of the porous body containing the carbonate apatite of this embodiment can have the following processes.
  • a digestion and carbonation step of obtaining a porous body containing calcium carbonate by performing digestion and carbonation of the porous body containing calcium oxide in the presence of water and in a stream of carbon dioxide-containing gas.
  • the digestion carbonation step can be carried out in the same manner as in the above-described method for producing a porous body containing calcium carbonate, and will not be described here.
  • a porous body containing carbonate apatite can be obtained by phosphoric acid treatment of the porous body containing calcium carbonate.
  • the phosphoric acid treatment can be carried out, for example, by bringing a porous body containing calcium carbonate into contact with a phosphoric acid solution or a phosphate-containing solution (hereinafter also referred to as “phosphate-containing solution etc.”).
  • phosphate containing solution phosphoric acid, triammonium phosphate, tripotassium phosphate, trisodium phosphate, disodium ammonium phosphate, sodium diammonium phosphate, phosphorus Ammonium dihydrogen, potassium dihydrogen phosphate, sodium dihydrogen phosphate, trimagnesium phosphate, sodium ammonium hydrogen phosphate, diammonium hydrogen phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, magnesium hydrogen phosphate 3-diacetyl phosphate, diphenyl phosphate, dimethyl phosphate, cellulose phosphate, ferrous phosphate, ferric phosphate, tetrabutylammonium phosphate, copper phosphate, triethyl phosphate, tricresyl phosphate, tris phosphate Trimethylsilyl, triphenyl phosphate, tributyl phosphate, Phos
  • the phosphate contained in the phosphate-containing solution is not limited to one type, and may contain two or more types of phosphate.
  • the solvent of a phosphoric acid solution and a phosphate solution is not specifically limited, For example, water can be used. For this reason, as a phosphoric acid solution and a phosphate containing solution, phosphoric acid aqueous solution and phosphate containing aqueous solution can be used, for example.
  • the method for bringing the porous body containing calcium carbonate into contact with the phosphate-containing solution or the like is not particularly limited.
  • immersing the porous body containing calcium carbonate in the phosphate-containing solution or the like Can be implemented.
  • a method of applying a phosphate-containing solution or the like to a porous body containing calcium carbonate by spraying or the like can also be used.
  • the porous body containing calcium carbonate is immersed in the phosphate-containing solution or the like. It is preferable to make the containing porous body contact a phosphate-containing solution or the like.
  • the temperature at which the porous body containing calcium carbonate is brought into contact with the phosphate-containing solution or the like is not particularly limited, but is preferably 50 ° C. or higher, for example, 80 ° C. or higher. preferable.
  • carbonate apatite can be rapidly formed at a higher reaction temperature.
  • the reaction is performed at 100 ° C. or higher using a hydrothermal reaction, it is preferable because carbonate apatite can be more reliably formed up to the inside of the porous body.
  • the carbonate apatite formed in the phosphorylation step is apatite in which a part or all of the phosphate group or hydroxyl group of hydroxyapatite represented by Ca 10 (PO 4 ) 6 (OH) 2 is substituted with a carbonate group.
  • Apatite in which a phosphate group is substituted with a carbonate group is also called B-type carbonate apatite
  • apatite in which a hydroxyl group is substituted with a carbonate group is also called A-type carbonate apatite.
  • the method for producing a porous body containing carbonate apatite according to the present embodiment can further include an optional step other than the digestive carbonation step and the phosphorylation step described so far. Examples of these steps will be described below.
  • the surface of the porous body containing calcium oxide can be digested and carbonized, but directly with water or carbon dioxide-containing gas.
  • digestive carbonation does not proceed sufficiently to the inside of the porous body containing calcium oxide that does not come into contact. Since it is not preferable for calcium oxide to remain inside, it is preferable that the digestion reaction proceeds completely.
  • the carbonation reaction is incomplete and calcium hydroxide remains, since the calcium hydroxide can be converted to hydroxyapatite by the phosphorylation step described above, the carbonation reaction may be incomplete. However, it is more preferable to completely carbonate.
  • the porous body containing calcium oxide subjected to the digestion carbonation is treated with hydrogen carbonate.
  • An immersion step of immersing in an aqueous sodium solution can be performed. By carrying out the dipping step, it is possible to completely digest carbonation up to the inside of the porous body containing calcium oxide, which is preferable.
  • the surface of the porous body should just be a carbonate apatite, and the above-mentioned immersion process can be implemented arbitrarily.
  • the method for producing a porous body containing carbonate apatite according to the present embodiment can further include the following steps. By carrying out the following steps, a porous body containing calcium oxide to be used for the digestive carbonation step described above can be produced.
  • the porous body containing carbonate apatite can be produced by the method for producing a porous body containing carbonate apatite according to the present embodiment described so far.
  • the method for producing a porous body containing carbonate apatite of the present embodiment after forming the porous body containing calcium oxide, carbon dioxide is supplied to the surface in the presence of water, and digestion carbonation is performed. Therefore, a porous body containing calcium carbonate that maintains the structure of the porous body containing calcium oxide can be produced. And since the porous body containing the obtained calcium carbonate is phosphorylated, the porous body containing the calcium phosphate which maintained the structure of the porous body containing calcium oxide can be manufactured. Therefore, by controlling the structure of the starting calcium oxide, it is possible to produce a porous body containing calcium carbonate having various structures and a porous body containing carbonate apatite.
  • the porous body containing calcium phosphate of the present embodiment is obtained by digesting and carbonizing the porous body containing calcium oxide obtained by curing foamed slurry formed by introducing bubbles and then baking. It is obtained by phosphorylating the calcium carbonate formed. For this reason, it is possible to include spherical pores that communicate with each other.
  • the porous body containing carbonate apatite obtained by the method for producing a porous body containing carbonate apatite according to the present embodiment has osteoconductivity and can be further replaced with bone. It can be suitably used as a material.
  • the porous body containing such carbonate apatite is a porous body, cells, blood vessels, etc. enter the bone filling material when it is filled in a bone defect portion or the like, and preferable bone regeneration is expected in a shorter period of time. it can.
  • Example 1 In this example, a porous body containing calcium carbonate and a porous body containing carbonate apatite were produced.
  • a porous body containing calcium carbonate was produced by the following procedure.
  • a slurry was prepared by adding 74 parts by weight of calcium hydroxide powder and 6 parts by weight of polyethyleneimine, which is an organic substance that can be cured by a chemical reaction, to 80 parts by weight of distilled water as a solvent and mixing them (slurry preparation step). .
  • polyoxyethylene lauryl ether which is a surfactant
  • triethanolamine sulfate 1 part by weight of triethanolamine sulfate
  • bubbles were introduced into the slurry after adding and mixing the foaming agent using a hand mixer to obtain a foamy slurry (bubble introduction step).
  • the foamed slurry was poured into a 10 cm ⁇ 10 cm ⁇ 5 cm polyethylene mold, 2 parts by weight of sorbitol polyglycidyl ether was added as a crosslinking agent, and the mixture was cured by stirring to form a gel (curing step).
  • the cured slurry lump was cut into 0.5 cm square cubes (pulverization step) and sintered at 1200 ° C. for 3 hours in a nitrogen atmosphere to obtain a porous body containing calcium oxide (slurry) Sintering process).
  • a porous body containing calcium oxide obtained after the slurry sintering step was analyzed from a powder X-ray diffraction pattern (Panalytical type: Empirean), it was 99% by weight or more. It was confirmed that the other components were 0.3 wt% to 0.5 wt%.
  • the obtained porous body containing calcium oxide was put in a CO 2 incubator (model: MCO-18AIC, manufactured by Ikemoto Rika Kogyo Co., Ltd.) maintained at 100% relative humidity and 30 ° C., and the relative humidity and temperature were adjusted. Digestion and carbonation were carried out by placing them under a stream of carbon dioxide-containing gas for 7 days while maintaining them (digestion carbonation step).
  • the porous body containing calcium oxide subjected to the digestive carbonation treatment is taken out from the CO 2 incubator, a part thereof is cut out, and a powder X-ray diffraction pattern (Panalytical model: Empirean), and Evaluation was performed by Fourier transform infrared spectroscopy (manufactured by JASCO Corporation, model: FT / IR-610). As a result, it was confirmed that a porous body containing calcium carbonate maintaining the structure of the porous body containing calcium oxide as a starting material was obtained.
  • porous body containing carbonate apatite was produced from the obtained porous body containing calcium carbonate by the following procedure.
  • the porous body containing calcium carbonate is immersed in a 1 molar aqueous solution of disodium hydrogen phosphate at 60 ° C. for 7 days to bring the porous body containing calcium carbonate into contact with the phosphate-containing aqueous solution. Then, phosphoric acid treatment was performed (phosphorylation step).
  • the porous body obtained by drying was evaluated by a powder X-ray diffraction pattern and a Fourier transform infrared spectrum. As a result, it was confirmed that a porous body containing carbonate apatite that maintained the structure of the porous body containing calcium oxide as a starting material was obtained.
  • Comparative Example 1 By the method similar to Example 1, it performed to the slurry sintering process and obtained the porous body containing a calcium oxide. The obtained porous body containing calcium oxide was immersed in water at 1 ° C., and an attempt was made to obtain a porous body containing calcium hydroxide by a digestion reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials For Medical Uses (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Prostheses (AREA)

Abstract

酸化カルシウムを含有する多孔質体の消化、及び炭酸化を、水の存在下、かつ二酸化炭素含有ガスの気流下で行う消化炭酸化工程を有する炭酸カルシウムを含有する多孔質体の製造方法を提供する。

Description

炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法
 本発明は、炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法に関する。
 従来から骨補填材は、外傷等により生じた骨欠損の再建、または再生を行う場合や、インプラント治療の際に顎骨の厚みを増す場合等に用いられている。
 骨補填材の材料としてはハイドロキシアパタイト等が検討されてきた。
 ハイドロキシアパタイトを用いた骨補填材は骨伝導性、すなわち骨欠損部に補填した場合に、母床骨中に存在する骨を作る細胞を活性化して骨組織を新生し、骨補填材表面に骨が形成される能力を有している。
 ところで、骨補填材にはその特性として、上述した骨伝導性に加えて、骨と置換することが求められる。しかしながら、ハイドロキシアパタイトを用いた骨補填材の場合、骨芽細胞により骨が形成されるものの、破骨細胞により吸収されないため、骨と置換することができなかった。
 そこで、骨伝導性に加えて、骨と置換することができる骨補填材の材料として炭酸アパタイトが注目されている。
 炭酸アパタイトを用いた骨補填材の製造方法として、例えば特許文献1には、実質的に粉末を含まないカルシウム化合物のブロックと、リン酸塩を含有する溶液の少なくとも一方が炭酸基を含有しており、カルシウム化合物ブロックとリン酸塩溶液を接触させて炭酸アパタイトを生成させるが、焼結を行わないことを特徴とする炭酸アパタイトを主成分とする医療用骨補填材の製造方法が開示されている。
 また、特許文献1には、炭酸アパタイトを主成分とする医療用骨補填材の製造方法の具体的な例も開示されている。開示された例によれば、まず、カルシウム化合物のブロックとして、水酸化カルシウムを円形金型を用いて圧縮成型し、得られた圧粉体について、相対湿度100%の二酸化炭素気流下で炭酸化を行い、炭酸カルシウムブロックを得る。そして、炭酸カルシウムブロックをリン酸水素二ナトリウムに浸漬して、炭酸カルシウムブロックと同形態のブロック体を得るとされている。
日本国特許第4854300号公報
 特許文献1に具体的に開示された医療用骨補填材の製造方法においては、炭酸カルシウムブロック体を用いている。このため、炭酸カルシウムブロック体と同形態の、炭酸アパタイトのブロック体が得られることとなる。
 しかしながら、骨補填材は、多孔質体とすることにより、骨欠損部等に補填した際に骨補填材の内部に細胞や血管等が入り込み、より短期で好ましい骨再生が期待できる。このため、骨補填材としては、炭酸アパタイトを含有する多孔質体が求められており、係る炭酸アパタイトを含有する多孔質体を形成するため、炭酸カルシウムを含有する多孔質体が求められていた。
 本発明は上記従来技術が有する問題に鑑みてなされたものであって、本発明の一側面では、炭酸カルシウムを含有する多孔質体の製造方法を提供することを目的とする。
 本発明の一態様によれば、酸化カルシウムを含有する多孔質体の消化、及び炭酸化を、水の存在下、かつ二酸化炭素含有ガスの気流下で行う消化炭酸化工程を有する炭酸カルシウムを含有する多孔質体の製造方法を提供する。
 本発明の一態様によれば、炭酸カルシウムを含有する多孔質体の製造方法を提供することができる。
 以下、本発明を実施するための形態について説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形及び置換を加えることができる。
[炭酸カルシウムを含有する多孔質体の製造方法]
 本実施形態では炭酸カルシウムを含有する多孔質体の製造方法の一構成例について説明する。
 本実施形態の炭酸カルシウムを含有する多孔質体の製造方法は、酸化カルシウムを含有する多孔質体の消化、及び炭酸化を、水の存在下、かつ二酸化炭素含有ガスの気流下で行う消化炭酸化工程を有することができる。
 既述のように、骨補填材として、炭酸アパタイトを含有する多孔質体が求められており、係る炭酸アパタイトを含有する多孔質体を製造するため、炭酸カルシウムを含有する多孔質体が求められていた。そこで、本発明の発明者らは、炭酸カルシウムを含有する多孔質体の製造方法について、鋭意検討を行った。
 そこでまず、出発物質として水酸化カルシウムを用いて、水酸化カルシウムの多孔質体を形成した後、水酸化カルシウムの炭酸化反応(反応式:Ca(OH) + CO→CaCO + HO)により該水酸化カルシウムの多孔質体を炭酸化する方法について検討を行った。しかしながら、係る方法によれば、骨補填材として使用するために良好な気孔率及び均一な連通多孔を有する炭酸カルシウムを含有する多孔質体を形成することはできなかった。
 次に、出発物質として酸化カルシウムを用いて、酸化カルシウムの多孔質体を形成した後、該酸化カルシウムの多孔質体を水もしくは水を含む溶液に接触させ、もしくは浸漬し、酸化カルシウムの消化反応(反応式:CaO + HO → Ca(OH))により水酸化カルシウムの多孔質体を得るべく検討を行った。しかしながら、種々条件を検討したものの、脆性の水酸化カルシウムの多孔質構造が崩壊してしまい、酸化カルシウムの多孔質体の構造を維持した水酸化カルシウムの多孔質体を得ることはできなかった。これは消化反応が大きな発熱と体積膨張を伴うことが要因であると考えられた。
 そこでさらに検討を行ったところ、酸化カルシウムの多孔質体を形成した後、該酸化カルシウムの多孔質体を、消化反応(体積膨張を伴う)と、炭酸化反応(体積収縮を伴う)とを同時に進行させる反応方法により炭酸化することで、出発物質の酸化カルシウムを含有する多孔質体の構造を維持しながら、目的とする炭酸カルシウムを含有する多孔質体が得られることを見出し、本発明を完成させた。
 このため、本実施形態の炭酸カルシウムを含有する多孔質体の製造方法は、上述の様に酸化カルシウムを含有する多孔質体の消化及び炭酸化(以下、「消化炭酸化」とも記載する。)を、水の存在下、かつ二酸化炭素を含む気流下で行う消化炭酸化工程を有することができる。
 消化炭酸化工程に供する酸化カルシウムを含有する多孔質体の組成や、気孔径、空隙率等については特に限定されるものではなく、得られる炭酸カルシウムを含有する多孔質体に要求される特性に応じて任意に選択することができる。ただし、酸化カルシウムを含有する多孔質体内の酸化カルシウムの含有率は高いことが好ましく、例えば90重量%以上であることが好ましく、99重量%以上であることがより好ましい。特に酸化カルシウムを含有する多孔質体としては、酸化カルシウムからなる多孔質体であることがさらに好ましい。ただし、この場合でも酸化カルシウムからなる多孔質体を調製する際に混入する不純物等の不可避成分が例えば1質量%未満含まれていてもよい。
 消化炭酸化工程における水の存在下とは、水の状態は問わず、炭酸化を行う酸化カルシウムを含有する多孔質体の周囲に水が存在していればよい。ただし、液体状の水のみが存在する環境下で消化炭酸化工程を行うと、すなわち例えば酸化カルシウムを含有する多孔質体を水に浸漬させると、消化反応のみが進行し、該多孔質体の構造が崩壊する恐れがある。
 このため、消化炭酸化工程では、消化反応と、炭酸化反応とが併存し、消化反応が急激に進行しないように水の存在条件を選択することが好ましい。具体的には、酸化カルシウムを含有する多孔質体の消化炭酸化は、気体状の水を含む環境下で実施することが好ましい。特に、酸化カルシウムを含有する多孔質体の消化炭酸化は高湿の環境下で、すなわち気体状の水が存在する環境下で実施することが好ましい。なお、高湿の環境下で酸化カルシウムを含有する多孔質体の消化炭酸化を行う際、気体状の水と、液体状の水とが併存していてもよい。
 具体的には例えば、相対湿度が60%以上の雰囲気下で消化炭酸化を行うことが好ましく、相対湿度が80%以上の雰囲気下で消化炭酸化を行うことがより好ましい。
 消化炭酸化工程において、酸化カルシウムを含有する多孔質体の消化炭酸化は、水の存在下であるとともに、二酸化炭素含有ガスの気流下で行うことができる。二酸化炭素含有ガスは二酸化炭素を含有していればよく、その具体的な組成は特に限定されるものではない。ただし、消化炭酸化工程において、酸化カルシウムを含有する多孔質体の消化炭酸化の反応速度を十分に速くするため、二酸化炭素含有ガス中の二酸化炭素濃度は例えば1vol%以上であることが好ましく、10vol%以上であることがより好ましい。
 二酸化炭素含有ガス中の二酸化炭素濃度の上限は特に限定されるものではなく、二酸化炭素含有ガスは二酸化炭素から構成されていてもよいことから、100vol%以下とすることができる。ただし、二酸化炭素含有ガス中の二酸化炭素濃度を20vol%よりも高くした場合でも、酸化カルシウムを含有する多孔質体の消化炭酸化反応の反応速度に大きな変化はないことから、20vol%以下とすることが好ましい。
 二酸化炭素含有ガス中の二酸化炭素以外のガスの成分は特に限定されるものではなく、任意のガスを含有することができる。例えば、二酸化炭素含有ガス中に含まれる二酸化炭素ガス以外の成分としては空気や、不活性ガス等が挙げられる。特に、酸化カルシウムを含有する多孔質体の消化炭酸化以外の反応が起きることを抑制することが求められる場合には、二酸化炭素含有ガス中に含まれる二酸化炭素ガス以外の成分は不活性ガスであることが好ましい。二酸化炭素含有ガス中に含まれる二酸化炭素ガス以外の成分が不活性ガスの場合、不活性ガスは、例えば窒素、アルゴン、ヘリウムから選択される一種類以上のガスであることが好ましい。
 消化炭酸化工程における、反応温度や、反応時間等の各種反応条件は特に限定されるものではない。ただし、反応温度が低すぎる場合には消化炭酸化の反応速度が遅くなる恐れがある。また、反応温度が高すぎる場合には、消化反応による体積膨張が急激に起こり、多孔質構造が崩壊しやすくなる、もしくは、消化炭酸化した酸化カルシウムを含有する多孔質体表面からの炭酸の離脱反応の割合が大きくなり、見かけの反応速度が低下する恐れもある。このため、反応温度は0℃以上250℃以下であることが好ましく、20℃以上50℃以下であることがより好ましい。なお、ここでの反応温度とは酸化カルシウムを含有する多孔質体周辺での温度を意味する。
 また、反応時間については消化炭酸化工程に供する酸化カルシウムを含有する多孔質体のサイズや気孔率、供給する二酸化炭素含有ガスの流速等に応じて、酸化カルシウムを含有する多孔質体の少なくとも表面について消化炭酸化を十分に進行できるように選択すればよく、特に限定されるものではない。
 本実施形態の炭酸カルシウムを含有する多孔質体の製造方法は、ここまで説明した消化炭酸化工程以外にもさらに任意の工程を有することもできる。以下にこれらの工程の例について説明する。
 上述の様に消化炭酸化工程は、水の存在下、かつ二酸化炭素含有ガスの気流下で実施することができる。係る消化炭酸化工程においては、少なくとも酸化カルシウムを含有する多孔質体の表面について消化炭酸化を行うことができるが、水や二酸化炭素含有ガスと直接接触しない、酸化カルシウムを含有する多孔質体の内部まで消化炭酸化が十分に進行しない場合もある。内部に酸化カルシウムが残存することは好ましくないので、消化反応については、完全に進行させることが好ましい。一方、炭酸化反応が不完全で、水酸化カルシウムが残存する場合、後述するリン酸化工程により水酸化カルシウムをハイドロキシアパタイトに変換可能であるため、炭酸化反応については不完全であってもよいが、完全に炭酸化させることがより好ましい。このように消化炭酸化反応の進行が不完全な場合、例えば消化炭酸化工程の終了後、消化炭酸化を実施した酸化カルシウムを含有する多孔質体を、炭酸水素ナトリウム水溶液に浸漬する浸漬工程を実施することできる。浸漬工程を実施することにより、酸化カルシウムを含有する多孔質体の内部まで完全に消化炭酸化することができ、好ましい。
 また、本実施形態の炭酸カルシウムを含有する多孔質体の製造方法は、さらに以下の工程を有することもできる。以下の各工程を実施することで、上述の消化炭酸化工程に供する酸化カルシウムを含有する多孔質体を作製することができる。
 水酸化カルシウム及び/または炭酸カルシウム、化学反応により硬化しうる有機物質、及び溶媒を混合してスラリーを調製するスラリー調製工程。 
 前記スラリーに気泡を導入する気泡導入工程。 
 前記有機物質を化学反応させることにより前記スラリーを硬化させる硬化工程。 
 硬化した前記スラリーを焼結し、酸化カルシウムを含有する多孔質体を得るスラリー焼結工程。
 以下に、各工程について説明する。
 スラリー調製工程では、水酸化カルシウム及び/または炭酸カルシウム、化学反応により硬化しうる有機物質、及び溶媒を混合することで、溶媒と混合した水酸化カルシウム及び/または炭酸カルシウム等を分散し、スラリーを調製できる。
 カルシウム源としては水酸化カルシウム及び/または炭酸カルシウムを用いることができる。すなわち、カルシウム源として水酸化カルシウムと、炭酸カルシウムとのいずれか一方のみを用いてもよく、両者を用いてもよい。なお、カルシウム源として水酸化カルシウム及び/または炭酸カルシウム以外のカルシウム化合物もあわせて用いることもでき、例えば酸化カルシウム等もあわせて用いることもできる。
 また、化学反応により硬化しうる有機物質の化学反応としては、例えば重合反応や架橋反応が挙げられる。そして、化学反応により硬化しうる有機物質としては特に限定されるものではなく、種々の化学反応により硬化しうる有機物質を用いることができ、例えばポリビニルアルコール、メタクリル酸メチル等の(メタ)アクリレート、メチルセルロース、ポリアクリルアミド、ポリエチレンイミン、ポリプロピレンイミン、ポリブチレンイミン等から選択された一種類以上を用いることができる。特に、アミノ基を含む線状、分枝状、ブロック状形態を有するポリマーは、カチオン性に富み、原料粉末の分散にも寄与して良好なスラリーを作製することができ、かつ後述する反応開始剤と併用して良好な硬化体を得ることができるため、より好ましく用いることができる。
 溶媒としては特に限定されるものではないが、例えば水を用いることができる。特に不純物の混入等を防ぐ観点から蒸留水を用いることが好ましい。
 スラリー調製工程においては、さらに各種添加剤を混合することもできる。添加剤としては、例えば分散剤、整泡剤、増粘剤等を用いることができる。
 気泡導入工程では、スラリー調製工程で作製したスラリーに気泡を導入することができる。すなわちスラリーを起泡することができる。
 気泡導入工程での気泡は、酸化カルシウムを含有する多孔質体、及び該酸化カルシウムを含有する多孔質体から形成する炭酸カルシウムを含有する多孔質体の気孔部を形成するために導入するものである。このため、目的とする炭酸カルシウムを含有する多孔質体の気孔部のサイズ、気孔率等に応じて気泡のサイズや、添加量を調整することが好ましい。
 スラリーに気泡を導入する方法は特に限定されるものではない。例えば、スラリーに起泡剤を混合、撹拌することで気泡を導入することができる。また、スラリー中に気体を供給し、気泡を導入することもできる。起泡剤の混合、撹拌と、スラリー中への気体の供給とを併用することもできる。
 気泡導入工程で起泡剤を用いる場合、起泡剤としては特に限定されるものではなく、陰イオン性、陽イオン性、両イオン性、ノニオン性の各種界面活性剤を用いることができる。ただし、化学反応により硬化しうる有機物質として、ポリアクリルアミド等のようにアミノ基を含む線状、分枝状、ブロック状形態のポリマーを用いた場合、陰イオン性界面活性剤を用いると、そのイオン性の違いから、イオンコンプレックスを形成し、起泡操作が困難になる場合がある。このため、アミノ基を含む線状、分枝状、ブロック状形態のポリマーを用いた場合、陰イオン界面活性剤以外の界面活性剤を用いることが好ましい。
 起泡剤としては例えばポリオキシエチレンラウリルエーテルや、硫酸トリエタノールアミン等を用いることが好ましい。
 硬化工程では、スラリーに反応開始剤を混合することで、化学反応により硬化しうる有機物質を化学反応させ、硬化させることができる。
 反応開始剤としては特に限定されるものではなく、スラリー調製工程で用いた化学反応により硬化しうる有機物質を化学反応させることができる物質を用いることができる。反応開始剤としては例えば架橋剤や重合開始剤が挙げられる。
 例えば、化学反応により硬化しうる有機物質として、ポリアクリルアミド、ポリエチレンイミン、ポリプロピレンイミン、ポリブチレンイミン等のような、アミノ基を有する有機物質を用いた場合には、架橋剤として、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、グルセロールポリグリシジルエーテル、ポリメチロールプロパンポリグリシジルエーテル等のエポキシ基を2以上もつエポキシ化合物を好ましく用いることができる。
 なお硬化工程で、スラリーに反応開始剤を混合することで、ゲル状に硬化させることができる。このため、硬化工程を実施する前に、酸化カルシウムを含有する多孔質体や、酸化カルシウムを含有する多孔質体から得られる炭酸カルシウム多孔質体について要求される形状に対応した型を用意しておくことが好ましい。そして、硬化工程を実施する前に、スラリーを該用意した型に流し込み、係る型の中のスラリーに反応開始剤を混合し、硬化工程を実施することが好ましい。
 そして、硬化工程で硬化したスラリーを焼結し、酸化カルシウムを含有する多孔質体を得るスラリー焼結工程を実施することができる。
 硬化したスラリーを焼結することで、該スラリーに含まれていた化学反応により硬化しうる有機物質、溶媒等を燃焼させることで除去することができるとともに、該スラリーに含まれていた水酸化カルシウム及び/または炭酸カルシウムを酸化カルシウムとすることができる。スラリー焼結工程における焼結条件は特に限定されるものではないが、500℃以上1200℃以下の温度で加熱することが好ましい。これは、500℃未満では化学反応により硬化しうる有機物質、溶媒等の除去に時間がかかり、生産性が低くなる恐れがあるからである。また、1200℃よりも高い温度まで加熱しても上記反応の反応速度を向上させる効果はあまりないため1200℃以下とすることが好ましい。
 硬化したスラリーを加熱する際の雰囲気については特に限定されるものではなく、大気雰囲気や、真空雰囲気とすることができる。また、大気等の酸素含有ガスや、不活性ガス等の各種ガスの気流下において硬化したスラリーの加熱を実施してもよい。
 特に化学反応により硬化しうる有機物質、溶媒等の除去を促進する観点から、真空雰囲気下、または各種ガスの気流下において加熱を実施することが好ましい。
 加熱の時間は特に限定されるものではなく、硬化したスラリーのサイズ等に応じて任意に選択することができる。
 以上のスラリー調製工程、気泡導入工程、硬化工程、スラリー焼結工程を実施することにより、酸化カルシウムを含有する多孔質体を製造することができる。そして、得られた酸化カルシウムを含有する多孔質体は、既述の消化炭酸化工程に供することで、炭酸カルシウムを含有する多孔質体を製造することができる。
 本実施形態の炭酸カルシウムを含有する多孔質体の製造方法は、前述の工程に加え、さらに粉砕工程を含むことができる。粉砕工程は、硬化工程以降の硬化体を粉砕する工程であり、前述の硬化工程以降であれば、任意の時期に行うことができる。粉砕するサイズは特に限定されないが、消化炭酸化工程や、後述するリン酸化工程における収率や反応効率等を考慮すると、20cm×20cm×20cm以下が好ましく、5cm×5cm×5cm以下とすることがより好ましい。なお、粉砕工程(切断工程)においては、硬化体を粉砕することもできるが、所望の形状、サイズとなるようにカッター等により硬化体を切断することもできる。
 ここまで説明した、本実施形態の炭酸カルシウムを含有する多孔質体の製造方法により、炭酸カルシウムを含有する多孔質体を製造することができる。
 本実施形態の炭酸カルシウムを含有する多孔質体の製造方法によれば、酸化カルシウムを含有する多孔質体を形成後、水及び二酸化炭素を供給し、消化炭酸化するため、酸化カルシウムを含有する多孔質体の構造を維持した炭酸カルシウムを含有する多孔質体を製造することができる。
 また、本実施形態の炭酸カルシウムを含有する多孔質体は、気泡を導入して形成した泡沫状態のスラリーを硬化させた後、焼成して得られた酸化カルシウムを含有する多孔質体を消化炭酸化して形成している。このため、連通した球状の気孔を含むことができる。
[炭酸アパタイト多孔質体の製造方法]
 次に、本実施形態の炭酸アパタイトを含有する多孔質体の製造方法の一構成例について以下に説明する。
 本実施形態の炭酸アパタイトを含有する多孔質体の製造方法は、既述の炭酸カルシウムを含有する多孔質体の製造方法で得られた炭酸カルシウムを含有する多孔質体を用いて炭酸アパタイトを含有する多孔質体を製造することができる。
 このため、本実施形態の炭酸アパタイトを含有する多孔質体の製造方法は、以下の工程を有することができる。
 酸化カルシウムを含有する多孔質体の消化、及び炭酸化を、水の存在下、かつ二酸化炭素含有ガスの気流下で行い炭酸カルシウムを含有する多孔質体を得る消化炭酸化工程。
 炭酸カルシウムを含有する多孔質体をリン酸処理することにより炭酸アパタイトを含有する多孔質体を得るリン酸化工程。
 消化炭酸化工程については、既述の炭酸カルシウムを含有する多孔質体の製造方法の場合と同様にして実施することができるため、ここでは説明を省略する。
 リン酸化工程では、炭酸カルシウムを含有する多孔質体をリン酸処理することで炭酸アパタイトを含有する多孔質体を得ることができる。
 リン酸処理は、例えば炭酸カルシウムを含有する多孔質体を、リン酸溶液またはリン酸塩含有溶液(以下、「リン酸塩含有溶液等」とも記載する)と接触させることにより実施できる。リン酸塩含有溶液等としては特に限定されるものではないが、例えば、リン酸、リン酸三アンモニウム、リン酸三カリウム、リン酸三ナトリウム、リン酸二ナトリウムアンモニウム、リン酸ナトリウム二アンモニウム、リン酸二水素アンモニウム、リン酸二水素カリウム、リン酸二水素ナトリウム、リン酸三マグネシウム、リン酸水素アンモニウムナトリウム、リン酸水素二アンモニウム、リン酸水素二カリウム、リン酸水素二ナトリウム、リン酸水素マグネシウムリン酸三ジアセチル、リン酸ジフェニル、リン酸ジメチル、リン酸セルロース、リン酸第一鉄、リン酸第二鉄、リン酸テトラブチルアンモニウム、リン酸銅、リン酸トリエチル、リン酸トリクレジル、リン酸トリストリメチルシリル、リン酸トリフェニル、リン酸トリブチル、リン酸トリメチル、リン酸グアニジン、リン酸コバルト等のリン酸またはリン酸塩の溶液を好ましく用いることができる。
 なお、リン酸塩含有溶液に含まれるリン酸塩は一種類に限定されるものではなく、二種類以上のリン酸塩を含有することもできる。また、リン酸溶液、リン酸塩溶液の溶媒は特に限定されるものではないが、例えば水を用いることができる。このため、リン酸溶液、リン酸塩含有溶液としては例えばリン酸水溶液、リン酸塩含有水溶液を用いることができる。
 炭酸カルシウムを含有する多孔質体を、リン酸塩含有溶液等と接触させる方法は特に限定されるものではなく、例えばリン酸塩含有溶液等に、炭酸カルシウムを含有する多孔質体を浸漬することにより実施できる。また、それ以外にも、リン酸塩含有溶液等を、スプレー等により、炭酸カルシウムを含有する多孔質体に塗布する方法等を用いることもできる。
 特に炭酸カルシウムを含有する多孔質体の表面全体に、リン酸塩含有溶液等を確実に接触させるため、炭酸カルシウムを含有する多孔質体を、リン酸塩含有溶液等に浸漬し、炭酸カルシウムを含有する多孔質体と、リン酸塩含有溶液等とを接触させることが好ましい。
 炭酸カルシウムを含有する多孔質体と、リン酸塩含有溶液等とを接触させる際の温度は特に限定されるものではないが、例えば50℃以上であることが好ましく、80℃以上であることが好ましい。
 これは、反応温度が高い方が、炭酸アパタイトを迅速に形成することができるためである。特に水熱反応を用いて、100℃以上として反応させた場合、多孔質体の内部までより確実に炭酸アパタイトを形成できるため好ましい。
 なお、リン酸化工程で形成する炭酸アパタイトとは、Ca10(PO(OH)で表されるハイドロキシアパタイトのリン酸基あるいは水酸基の一部あるいは全部が炭酸基に置換しているアパタイトを意味している。リン酸基が炭酸基に置換しているアパタイトをBタイプ炭酸アパタイト、水酸基が炭酸基に置換しているアパタイトをAタイプ炭酸アパタイトともいう。
 本実施形態の炭酸アパタイトを含有する多孔質体の製造方法は、ここまで説明した消化炭酸化工程、及びリン酸化工程以外にもさらに任意の工程を有することもできる。以下にこれらの工程の例について説明する。
 炭酸カルシウムを含有する多孔質体の製造方法で既述のように、消化炭酸化工程では少なくとも酸化カルシウムを含有する多孔質体の表面について消化炭酸化を行えるが、水や二酸化炭素含有ガスと直接接触しない、酸化カルシウムを含有する多孔質体の内部まで消化炭酸化が十分に進行しない場合もある。内部に酸化カルシウムが残存することは好ましくないので、消化反応については、完全に進行させることが好ましい。一方、炭酸化反応が不完全で、水酸化カルシウムが残存する場合、既述のリン酸化工程により水酸化カルシウムをハイドロキシアパタイトに変換可能であるため、炭酸化反応については不完全であってもよいが、完全に炭酸化させることがより好ましい。このように消化炭酸化反応の進行が不完全な場合、例えば消化炭酸化工程の終了後、リン酸化工程の実施前に、消化炭酸化を実施した酸化カルシウムを含有する多孔質体を、炭酸水素ナトリウム水溶液に浸漬する浸漬工程を実施できる。浸漬工程を実施することにより、酸化カルシウムを含有する多孔質体の内部まで完全に消化炭酸化することができ、好ましい。
 なお、骨補填材としては、少なくとも多孔質体の表面が炭酸アパタイトとなっていればよく、上述の浸漬工程は任意に実施することができる。
 また、本実施形態の炭酸アパタイトを含有する多孔質体の製造方法は、さらに以下の工程を有することもできる。以下の各工程を実施することで、上述の消化炭酸化工程に供する酸化カルシウムを含有する多孔質体を作製することができる。
 水酸化カルシウム及び/または炭酸カルシウム、化学反応により硬化しうる有機物質、及び溶媒を混合してスラリーを調製するスラリー調製工程。 
 前記スラリーに気泡を導入する気泡導入工程。 
 前記有機物質を化学反応させることにより前記スラリーを硬化させる硬化工程。 
 硬化した前記スラリーを焼結し、酸化カルシウムを含有する多孔質体を得るスラリー焼結工程。
 上述の各工程については、炭酸カルシウムを含有する多孔質体の製造方法で説明したものと同様にして実施することができるため、ここでは説明を省略する。
 ここまで説明した、本実施形態の炭酸アパタイトを含有する多孔質体の製造方法により、炭酸アパタイトを含有する多孔質体を製造することができる。
 本実施形態の炭酸アパタイトを含有する多孔質体の製造方法によれば、酸化カルシウムを含有する多孔質体を形成後、水の存在下、その表面に対して二酸化炭素を供給し、消化炭酸化するため、酸化カルシウムを含有する多孔質体の構造を維持した炭酸カルシウムを含有する多孔質体を製造できる。そして、得られた炭酸カルシウムを含有する多孔質体をリン酸化するため、酸化カルシウムを含有する多孔質体の構造を維持したリン酸カルシウムを含有する多孔質体を製造できる。よって、出発物質の酸化カルシウムの構造を制御することにより、様々な構造の炭酸カルシウムを含有する多孔質体及び炭酸アパタイトを含有する多孔質体の製造が可能となる。
 また、本実施形態のリン酸カルシウムを含有する多孔質体は、気泡を導入して形成した泡沫状態のスラリーを硬化させた後、焼成して得られた酸化カルシウムを含有する多孔質体を消化炭酸化して形成した炭酸カルシウムをリン酸化して得られている。このため、連通した球状の気孔を含むことができる。
 そして、本実施形態の炭酸アパタイトを含有する多孔質体の製造方法により得られた炭酸アパタイトを含有する多孔質体は、骨伝導性を有し、さらに骨と置換することができるため、骨補填材として好適に用いることができる。特に、係る炭酸アパタイトを含有する多孔質体は、多孔質体であるため、骨欠損部等に補填した際に骨補填材の内部に細胞や血管等が入り込み、より短期で好ましい骨再生が期待できる。
 以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によって、なんら限定されるものではない。
[実施例1]
 本実施例では、炭酸カルシウムを含有する多孔質体、及び炭酸アパタイトを含有する多孔質体を作製した。
 まず、以下の手順により、炭酸カルシウムを含有する多孔質体を製造した。
 水酸化カルシウム粉末74重量部と、化学反応により硬化しうる有機物質であるポリエチレンイミン6重量部と、を溶媒である蒸留水80重量部に添加、混合し、スラリーを調製した(スラリー調製工程)。
 次に、得られたスラリーに起泡剤として、界面活性剤である、ポリオキシエチレンラウリルエーテル1重量部と、硫酸トリエタノールアミン1重量部とを添加し、さらに混合した。
 そして、起泡剤を添加、混合した後のスラリーに、ハンドミキサーを用いて気泡を導入し泡沫状態スラリーとした(気泡導入工程)。
 泡沫状態スラリーを10cm×10cm×5cmのポリエチレン製の型に流し込み、架橋剤として、ソルビトールポリグリシジルエーテルを2重量部添加し、撹拌することで硬化させ、ゲル状にした(硬化工程)。
 硬化させたスラリー塊を0.5cm角の立方体に切り出し(粉砕工程)、窒素雰囲気下、1200℃で3時間焼成することにより、焼結させ、酸化カルシウムを含有する多孔質体を得た(スラリー焼結工程)。なお、スラリー焼結工程後に得られた、酸化カルシウムを含有する多孔質体中の酸化カルシウム含有量を、粉末X線回折パターン(パナリティカル社製 型式:Empyrean)から分析したところ、99重量%以上であり、その他の成分が0.3重量%~0.5重量%であることが確認できた。
 得られた酸化カルシウムを含有する多孔質体を、相対湿度100%、30℃に保たれたCOインキュベータ(池本理化工業社製 型式:MCO-18AIC)内に入れ、上記相対湿度、及び温度を保持したまま二酸化炭素含有ガスの気流下で7日間置くことで消化及び炭酸化を行った(消化炭酸化工程)。
 なお、二酸化炭素含有ガスとしては、二酸化炭素を10vol%含有し、残部が空気であるガスを用いた。
 消化炭酸化工程終了後、COインキュベータから消化炭酸化処理を行った酸化カルシウムを含有する多孔質体を取り出し、一部を切り出し、粉末X線回折パターン(パナリティカル社製 型式:Empyrean)、及びフーリエ変換赤外分光スペクトル(日本分光社製 型式:FT/IR-610)により評価を行った。その結果、出発物質の酸化カルシウムを含有する多孔質体の構造を維持した炭酸カルシウムを含有する多孔質体が得られていることを確認できた。
 次に、以下の手順により、得られた炭酸カルシウムを含有する多孔質体から、炭酸アパタイトを含有する多孔質体を製造した。
 炭酸カルシウムを含有する多孔質体を、60℃の1モル濃度のリン酸水素二ナトリウム水溶液に7日間浸漬することで、炭酸カルシウムを含有する多孔質体と、リン酸塩含有水溶液とを接触させ、リン酸処理を行った(リン酸化工程)。
 リン酸化工程後、乾燥させて得られた多孔質体について、粉末X線回折パターン、及びフーリエ変換赤外分光スペクトルにより評価を行った。その結果、出発物質の酸化カルシウムを含有する多孔質体の構造を維持した炭酸アパタイトを含有する多孔質体が得られていることを確認できた。
[比較例1]
 実施例1と同様の方法で、スラリー焼結工程まで行い、酸化カルシウムを含有する多孔質体を得た。得られた酸化カルシウムを含有する多孔質体を1℃の水に浸漬し、消化反応により水酸化カルシウムを含有する多孔質体を得ることを試みた。(水酸化カルシウムを含有する多孔質体が得られれば、炭酸化することにより炭酸カルシウム多孔質体が得られる。)しかし、水に触れると酸化カルシウムを含有する多孔質体は激しく反応して崩壊し、目的とする炭酸カルシウム多孔質体を得ることはできなかった。
[比較例2]
 実施例1と同様の方法で、スラリー焼結工程まで行い、酸化カルシウムを含有する多孔質体を得た。得られた酸化カルシウムを含有する多孔質体を1℃の炭酸水素ナトリウム水溶液に浸漬し、消化反応と炭酸化反応を同時に進行させ、炭酸カルシウム多孔質体を得ることを試みた。炭酸水素ナトリウム水溶液に触れると酸化カルシウムを含有する多孔質体は激しく反応して崩壊し、目的とする炭酸カルシウム多孔質体を得ることはできなかった。
 以上に炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法を、実施形態、実施例等で説明したが、本発明は上記実施形態、実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
 本出願は、2015年8月31日に日本国特許庁に出願された特願2015-171064号に基づく優先権を主張するものであり、特願2015-171064号の全内容を本国際出願に援用する。

 

Claims (4)

  1.  酸化カルシウムを含有する多孔質体の消化、及び炭酸化を、水の存在下、かつ二酸化炭素含有ガスの気流下で行う消化炭酸化工程を有する炭酸カルシウムを含有する多孔質体の製造方法。
  2.  水酸化カルシウム及び/または炭酸カルシウム、化学反応により硬化しうる有機物質、及び溶媒を混合してスラリーを調製するスラリー調製工程と、
     前記スラリーに気泡を導入する気泡導入工程と、
     前記有機物質を化学反応させることにより前記スラリーを硬化させる硬化工程と、
     硬化した前記スラリーを焼結し、酸化カルシウムを含有する多孔質体を得るスラリー焼結工程と、
    をさらに有する請求項1に記載の炭酸カルシウムを含有する多孔質体の製造方法。
  3.  酸化カルシウムを含有する多孔質体の消化、及び炭酸化を、水の存在下、かつ二酸化炭素含有ガスの気流下で行い炭酸カルシウムを含有する多孔質体を得る消化炭酸化工程と、
     前記炭酸カルシウムを含有する多孔質体をリン酸処理にすることにより炭酸アパタイトを含有する多孔質体を得るリン酸化工程と、を有する炭酸アパタイトを含有する多孔質体の製造方法。
  4.  水酸化カルシウム及び/または炭酸カルシウム、化学反応により硬化しうる有機物質、及び溶媒を混合してスラリーを調製するスラリー調製工程と、
     前記スラリーに気泡を導入する気泡導入工程と、
     前記有機物質を化学反応させることにより前記スラリーを硬化させる硬化工程と、
     硬化した前記スラリーを焼結し、酸化カルシウムを含有する多孔質体を得るスラリー焼結工程と、
    をさらに有する請求項3に記載の炭酸アパタイトを含有する多孔質体の製造方法。
PCT/JP2016/072844 2015-08-31 2016-08-03 炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法 WO2017038360A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES16841392T ES2808965T3 (es) 2015-08-31 2016-08-03 Procedimiento de fabricación de material poroso, que incluye carbonato de calcio, y procedimiento de fabricación de material poroso, que incluye carbonato-apatito
CN201680049585.3A CN107922277B (zh) 2015-08-31 2016-08-03 含有碳酸钙的多孔质体的制造方法、含有碳酸磷灰石的多孔质体的制造方法
US15/747,258 US20180237300A1 (en) 2015-08-31 2016-08-03 Method for manufacturing porous material including calcium carbonate, and method for manufacturing porous material including carbonate apatite
EP16841392.0A EP3345885B1 (en) 2015-08-31 2016-08-03 Method for manufacturing porous material including calcium carbonate and method for manufacturing porous material including carbonate apatite
JP2017537682A JP6588097B2 (ja) 2015-08-31 2016-08-03 炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015171064 2015-08-31
JP2015-171064 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038360A1 true WO2017038360A1 (ja) 2017-03-09

Family

ID=58187086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072844 WO2017038360A1 (ja) 2015-08-31 2016-08-03 炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法

Country Status (6)

Country Link
US (1) US20180237300A1 (ja)
EP (1) EP3345885B1 (ja)
JP (1) JP6588097B2 (ja)
CN (1) CN107922277B (ja)
ES (1) ES2808965T3 (ja)
WO (1) WO2017038360A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155681A1 (ja) * 2017-02-27 2018-08-30 株式会社白石中央研究所 炭酸カルシウム多孔質焼結体の製造方法
WO2018173915A1 (ja) * 2017-03-21 2018-09-27 国立大学法人九州大学 炭酸カルシウムブロックの製造方法
WO2019035361A1 (ja) * 2017-08-17 2019-02-21 株式会社白石中央研究所 アパタイト体及びその製造方法
JP2020152600A (ja) * 2019-03-19 2020-09-24 株式会社白石中央研究所 炭酸カルシウム焼結体及びその製造方法並びに骨補填材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061039A1 (en) * 2018-09-17 2020-03-26 Graymont (Pa) Inc. Production of calcium carbonate via solid-state calcium hydroxide particles and carbon dioxide, and associated systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50117698A (ja) * 1974-02-28 1975-09-13
JPH08268717A (ja) * 1995-03-30 1996-10-15 Ishikawajima Harima Heavy Ind Co Ltd 脱硫用石灰石の前処理方法
JPH1036106A (ja) * 1996-07-26 1998-02-10 Taihei Kagaku Sangyo Kk 多孔質塊状炭酸アパタイトおよびその製造方法
JP2002348182A (ja) * 2001-05-25 2002-12-04 Toto Ltd 多孔質材の製造方法
WO2004112856A1 (ja) * 2003-06-24 2004-12-29 Kyushu Tlo Company Limited 医療用骨補填材およびその製造方法
JP2012066952A (ja) * 2010-09-22 2012-04-05 Denki Kagaku Kogyo Kk 消石灰ブリケット及びその用途
JP2014177363A (ja) * 2013-03-13 2014-09-25 Gifu Prefecture 揮発性有機ガス分解用フィルタの製造方法および揮発性有機ガス分解用フィルタ
WO2016052502A1 (ja) * 2014-09-30 2016-04-07 株式会社ジーシー 炭酸カルシウムブロックの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US117698A (en) * 1871-08-01 Improvement in weft stop-motions
JPS5645814A (en) * 1979-09-25 1981-04-25 Kureha Chem Ind Co Ltd Hydroxyapatite, its ceramic material and its manufacture
JPH0316973A (ja) * 1989-02-07 1991-01-24 Asahi Chem Ind Co Ltd 多孔質生石灰及びその製造方法
US5558850A (en) * 1990-07-27 1996-09-24 Ecc International Limited Precipitated calcium carbonate
US5292495A (en) * 1991-05-27 1994-03-08 Kowa-Chemical Industry Co., Ltd. Porous particles of calcium carbonate and method for the preparation thereof
JP3381948B2 (ja) * 1992-12-02 2003-03-04 鈴木工業株式会社 高活性酸化カルシウム多孔質体の製造方法
FI105470B (fi) * 1997-09-08 2000-08-31 Fp Pigments Oy Menetelmä ja laitteisto saostetun kalsiumkarbonaatin tuottamiseksi
EP1712523A1 (en) * 2005-04-11 2006-10-18 Omya Development AG Precipitated calcium carbonate pigment, especially for use in inkjet printing paper coatings
JP5673072B2 (ja) * 2010-06-29 2015-02-18 王子ホールディングス株式会社 軽質炭酸カルシウムの製造方法
CN101920947A (zh) * 2010-09-20 2010-12-22 上海师范大学 一种片状b型碳酸根型磷灰石的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50117698A (ja) * 1974-02-28 1975-09-13
JPH08268717A (ja) * 1995-03-30 1996-10-15 Ishikawajima Harima Heavy Ind Co Ltd 脱硫用石灰石の前処理方法
JPH1036106A (ja) * 1996-07-26 1998-02-10 Taihei Kagaku Sangyo Kk 多孔質塊状炭酸アパタイトおよびその製造方法
JP2002348182A (ja) * 2001-05-25 2002-12-04 Toto Ltd 多孔質材の製造方法
WO2004112856A1 (ja) * 2003-06-24 2004-12-29 Kyushu Tlo Company Limited 医療用骨補填材およびその製造方法
JP2012066952A (ja) * 2010-09-22 2012-04-05 Denki Kagaku Kogyo Kk 消石灰ブリケット及びその用途
JP2014177363A (ja) * 2013-03-13 2014-09-25 Gifu Prefecture 揮発性有機ガス分解用フィルタの製造方法および揮発性有機ガス分解用フィルタ
WO2016052502A1 (ja) * 2014-09-30 2016-04-07 株式会社ジーシー 炭酸カルシウムブロックの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGEKI MATSUYA ET AL.: "Tansan Calcium no Rinsanka ni yoru Tansan Apatite Kokatai no Chosei", THE JOURNAL OF THE JAPANESE SOCIETY FOR DENTAL MATERIALS AND DEVICES, vol. 22, no. 5, 25 August 2003 (2003-08-25), pages 406, XP009508783 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097987B2 (en) 2017-02-27 2021-08-24 Shiraishi Central Laboratories Co. Ltd. Production method of calcium carbonate porous sintered body
JP2018140890A (ja) * 2017-02-27 2018-09-13 株式会社白石中央研究所 炭酸カルシウム多孔質焼結体の製造方法
WO2018155681A1 (ja) * 2017-02-27 2018-08-30 株式会社白石中央研究所 炭酸カルシウム多孔質焼結体の製造方法
WO2018173915A1 (ja) * 2017-03-21 2018-09-27 国立大学法人九州大学 炭酸カルシウムブロックの製造方法
JP7108317B2 (ja) 2017-03-21 2022-07-28 国立大学法人九州大学 炭酸カルシウムブロックの製造方法
JPWO2018173915A1 (ja) * 2017-03-21 2020-01-30 国立大学法人九州大学 炭酸カルシウムブロックの製造方法
US11167060B2 (en) 2017-03-21 2021-11-09 Kyushu University, National University Corporation Method for producing calcium carbonate block
WO2019035361A1 (ja) * 2017-08-17 2019-02-21 株式会社白石中央研究所 アパタイト体及びその製造方法
EP3670446A4 (en) * 2017-08-17 2021-04-21 Shiraishi Central Laboratories Co. Ltd. APATITE BODY AND ITS PREPARATION METHOD
JP2019034869A (ja) * 2017-08-17 2019-03-07 株式会社白石中央研究所 アパタイト体及びその製造方法
WO2020189366A1 (ja) * 2019-03-19 2020-09-24 株式会社白石中央研究所 炭酸カルシウム焼結体及びその製造方法並びに骨補填材
JP2020152600A (ja) * 2019-03-19 2020-09-24 株式会社白石中央研究所 炭酸カルシウム焼結体及びその製造方法並びに骨補填材
JP7330484B2 (ja) 2019-03-19 2023-08-22 株式会社白石中央研究所 炭酸カルシウム焼結体及び骨補填材

Also Published As

Publication number Publication date
JPWO2017038360A1 (ja) 2018-06-14
EP3345885A1 (en) 2018-07-11
CN107922277B (zh) 2020-12-22
ES2808965T3 (es) 2021-03-02
JP6588097B2 (ja) 2019-10-09
US20180237300A1 (en) 2018-08-23
CN107922277A (zh) 2018-04-17
EP3345885B1 (en) 2020-07-15
EP3345885A4 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6588097B2 (ja) 炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法
CN1240637C (zh) 多孔磷酸钙生物陶瓷材料及其制备方法
JP2002179478A (ja) 多孔質リン酸カルシウム系セラミックス焼結体及びその製造方法
KR101268408B1 (ko) 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 분말용 조성물 및 그 제조방법
WO2004112856A1 (ja) 医療用骨補填材およびその製造方法
CN114630685A (zh) 医疗用碳酸钙组合物及相关医疗用组合物、以及它们的制造方法
JP6609311B2 (ja) 多孔質カルシウム欠損ヒドロキシアパタイト顆粒を製造するための方法
US10016457B2 (en) Composites of hydroxyapatite and calcium carbonate and related methods of preparation and use
EP3202714B1 (en) Method for producing calcium carbonate blocks
KR20170028065A (ko) 페놀수지에 무기광물 첨가를 통한 중금속 흡착용 탄소폼의 제조방법
Belyakov et al. Porous materials made from calcium phosphates
CN108310456B (zh) 一种氧化石墨烯/纳米羟基磷灰石复合硅胶改性多孔支架材料的制备方法
US20100015025A1 (en) Process for preparing hydroxylapatite
JP6788166B2 (ja) アパタイト体の製造方法
EP1855991B1 (en) Process for the preparation of a biomimetic bone substitute and its uses
JP4231217B2 (ja) セラミックス前駆体及びその加熱処理体、並びにそれらを用いる多孔質リン酸カルシウム系セラミックス焼結体の製造方法
JP4465217B2 (ja) リン酸カルシウムウィスカーの製造方法
CN117228644A (zh) 一种复相磷酸钙及其制备方法和应用
JP2015066087A (ja) 炭酸アパタイト成形体の製造方法、及び、それにより製造される炭酸アパタイト成形体
CN117159792A (zh) 一种速凝氯氧镁骨水泥及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537682

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15747258

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016841392

Country of ref document: EP