WO2017026259A1 - 塩化水素の製造方法 - Google Patents

塩化水素の製造方法 Download PDF

Info

Publication number
WO2017026259A1
WO2017026259A1 PCT/JP2016/071744 JP2016071744W WO2017026259A1 WO 2017026259 A1 WO2017026259 A1 WO 2017026259A1 JP 2016071744 W JP2016071744 W JP 2016071744W WO 2017026259 A1 WO2017026259 A1 WO 2017026259A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen chloride
chloride
chlorine
crude
Prior art date
Application number
PCT/JP2016/071744
Other languages
English (en)
French (fr)
Inventor
陽祐 谷本
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57984298&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017026259(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP16834956.1A priority Critical patent/EP3336056B1/en
Priority to CN201680041777.XA priority patent/CN107848798B/zh
Priority to KR1020177036346A priority patent/KR102019703B1/ko
Priority to JP2017534162A priority patent/JP6760942B2/ja
Priority to US15/745,880 priority patent/US20180354789A1/en
Publication of WO2017026259A1 publication Critical patent/WO2017026259A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/012Preparation of hydrogen chloride from the elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0712Purification ; Separation of hydrogen chloride by distillation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing hydrogen chloride.
  • High-purity hydrogen chloride (HCl) used as an etching gas, cleaning gas, or film-forming gas when manufacturing semiconductors, etc. is an impurity produced by liquefying and distilling hydrogen chloride obtained using, for example, synthetic hydrochloric acid as a raw material. It is manufactured by removing. In this production method, removal of impurities is largely performed by distillation, but hydrogen bromide (HBr) and carbon dioxide (CO 2 ), among impurities, are close in boiling point to hydrogen chloride, and thus removal by distillation is not easy.
  • Patent Document 1 discloses a technique for producing high-purity hydrogen chloride by reacting chlorine (Cl 2 ) and hydrogen (H 2 ) after purification in advance.
  • Chlorine is purified by removing carbon dioxide by distillation.
  • Patent Document 1 since it is necessary to install a distillation tower or an adsorption tower in order to purify chlorine and hydrogen in advance, the production equipment for high-purity hydrogen chloride is complicated, and high-purity chloride with high efficiency is obtained. There was a problem that it was difficult to produce hydrogen.
  • an object of the present invention is to solve the above-described problems of the prior art and to provide a method capable of efficiently producing hydrogen chloride with simple equipment.
  • one aspect of the present invention is as follows [1] to [3].
  • a method for producing hydrogen chloride is as follows [1] to [3].
  • the dehydration step is a step according to [1] or [2], wherein the crude hydrogen chloride obtained in the reaction step is absorbed into water to form hydrochloric acid, and the hydrogen chloride released from the hydrochloric acid is dehydrated. Of producing hydrogen chloride.
  • hydrogen chloride can be efficiently produced with simple equipment.
  • the method for producing hydrogen chloride of the present embodiment was obtained by an electrolysis process of electrolyzing an inorganic chloride aqueous solution (for example, a sodium chloride aqueous solution) having a pH of 3 or more and 5 or less to obtain chlorine and hydrogen, and an electrolysis process. Reacting chlorine and hydrogen using hydrogen in molar ratio with respect to chlorine at 1000 ° C. or higher and 1500 ° C. or lower to obtain crude hydrogen chloride, and dehydrating the crude hydrogen chloride obtained in the reaction step A dehydration step, and a distillation step of compressing and liquefying the dehydrated crude hydrogen chloride obtained in the dehydration step, and purifying the liquid crude hydrogen chloride by distillation.
  • an inorganic chloride aqueous solution for example, a sodium chloride aqueous solution having a pH of 3 or more and 5 or less to obtain chlorine and hydrogen
  • an electrolysis process Reacting chlorine and hydrogen using hydrogen in molar ratio with respect to chlorine at 1000 ° C. or higher and 1500 ° C.
  • Hydrogen bromide is contained in a certain amount as sodium bromide in sodium chloride, which is a raw material of an aqueous sodium chloride solution.
  • Carbon dioxide is an impurity introduced from sodium chloride, and in particular, chloride is used to precipitate and remove magnesium ions (Mg 2+ ), calcium ions (Ca 2+ ), sulfate ions (SO 4 2 ⁇ ), and the like. Contamination occurs when added to an aqueous sodium solution.
  • These impurities are mixed as bromine (Br 2 ) and carbon dioxide in chlorine (Cl 2 ) generated from the anode in the electrolysis process.
  • chlorine and hydrogen are obtained by electrolyzing a sodium chloride aqueous solution having a pH of 3 or more and 5 or less. If the pH of the aqueous sodium chloride solution is 3 or more and 5 or less, bromine and carbon dioxide are less likely to be generated during electrolysis, so the concentration of bromine and carbon dioxide in the generated chlorine is low.
  • an acid or a base may be added to adjust the pH of the sodium chloride aqueous solution to 3 or more and 5 or less, and then subjected to electrolysis.
  • Bromine has a relatively high solubility in an aqueous sodium chloride solution and is dissolved as bromine molecules in the aqueous sodium chloride solution.
  • chlorine when generated by electrolysis, it dissolves in gaseous chlorine and is taken into the gas phase as bromine. Therefore, if the pH of the aqueous sodium chloride solution before electrolysis is kept high, bromine can be kept in water as bromide ions (Br ⁇ ), so that the bromine concentration in chlorine can be kept low.
  • carbon dioxide has low solubility in an aqueous sodium chloride solution, and cannot be dissolved as carbon dioxide in the aqueous sodium chloride solution, and immediately desorbs as a gas from the aqueous sodium chloride solution. Therefore, if the pH before electrolysis is kept low, the amount of carbon dioxide desorbed before electrolysis increases, so the carbon dioxide concentration in chlorine can be kept low.
  • the efficiency of desorbing carbon dioxide from the sodium chloride aqueous solution may be increased by bubbling the sodium chloride aqueous solution before electrolysis with an inert gas such as nitrogen.
  • an inert gas such as nitrogen.
  • the pH value of the aqueous sodium chloride solution is 3 or more and 5 or less, preferably 3.1 or more and 4.5 or less, and more preferably 3.4 or more. It is necessary to manage it below 4.0.
  • the type of inorganic chloride that is the solute of the aqueous inorganic chloride solution is not limited to sodium chloride, and other types of inorganic chlorides can be used as long as chlorine and hydrogen can be obtained by electrolysis of the aqueous solution. It may be used.
  • metal chlorides such as lithium chloride, potassium chloride, rubidium chloride, beryllium chloride, magnesium chloride, calcium chloride, strontium chloride, and barium chloride can be used.
  • Ammonium chloride, quaternary ammonium hydrochloride, amine hydrochloride and the like can also be used.
  • the chlorine and hydrogen obtained in the electrolysis step are reacted at 1000 ° C. or more and 1500 ° C. or less using an excess amount of hydrogen with respect to chlorine in a molar ratio.
  • the reaction temperature is preferably 1200 ° C or higher and 1300 ° C or lower.
  • the molar ratio of chlorine to hydrogen is preferably 1: 1.25 to 1: 1.6, more preferably 1: 1.25 to 1: 1.5, and 1: 1.3 to 1: 1.4 is more preferable.
  • reaction temperature is 1000 ° C. or higher, the equilibrium of the following formula is tilted to the right, and the carbon dioxide concentration in the generated hydrogen chloride is lowered.
  • reaction temperature is 1500 ° C. or less, the loss of heat is small and the cost is low.
  • the reaction step of the hydrogen chloride production method of the present embodiment can be performed at atmospheric pressure, but the pressure is not particularly limited, and may be performed at ⁇ 0.05 MPaG or more and 0.15 MPaG or less. it can.
  • the crude hydrogen chloride obtained in the reaction step is dehydrated, but the dehydration method is not particularly limited.
  • the carrier and crude hydrogen chloride are brought into contact with each other, and moisture is removed from the crude hydrogen chloride by the adsorption action of the carrier, or the crude hydrogen chloride is cooled to condense the moisture.
  • the method of making it you may combine the method using said support
  • the dehydration step of the method for producing hydrogen chloride of the present embodiment may be a step of dehydrating the crude hydrogen chloride obtained in the reaction step as it is as described above, but is not limited thereto, and is obtained in the reaction step.
  • the crude hydrogen chloride may be once absorbed in water to form hydrochloric acid, and the hydrogen chloride released from the hydrochloric acid may be dehydrated.
  • hydrogen bromide can be removed from the crude hydrogen chloride by absorbing it in water, so that the burden on the distillation column related to the removal of hydrogen bromide can be reduced in the distillation step described later.
  • the method for absorbing the crude hydrogen chloride in water is not particularly limited.
  • the temperature at the time of absorbing hydrogen chloride can be 20 ° C. or more and 80 ° C. or less, and the pressure at that time can be close to atmospheric pressure.
  • the apparatus used when absorbing hydrogen chloride is not particularly limited, and a general absorption tower can be used. Examples include a multi-stage absorption tower having a tray tower-type absorption section such as a packed tower and a cap tray, and circulating a liquid phase through a cooler, and a wet wall-type absorption tower.
  • the concentration of hydrogen chloride in hydrochloric acid obtained by the step of absorbing crude hydrogen chloride in water is preferably as high as possible, but considering absorption efficiency and the like, it may be 20% by mass or more and 40% by mass or less. preferable.
  • the obtained hydrochloric acid is sent to, for example, a stripping tower, and hydrogen chloride is recovered in the form of gas from the top of the stripping tower (hereinafter, sometimes referred to as “a stripping step”).
  • the type of the stripping tower is not particularly limited.
  • a stripping tower or a strip tower having a reboiler at the bottom can be used.
  • the conditions for releasing hydrogen chloride in the releasing step are not particularly limited.
  • the temperature may be 90 ° C. or higher and 150 ° C. or lower
  • the pressure may be 50 kPaG or higher and 500 kPaG or lower. It is also possible to perform the emission while supplying the carrier gas to the emission tower.
  • the crude hydrogen chloride dehydrated in the dehydration step is compressed and liquefied, and the liquid crude hydrogen chloride is purified by distillation to obtain hydrogen chloride.
  • the distillation apparatus that can be used in the distillation step may have a function necessary for normal distillation, but it is preferable to use a rectification apparatus such as a plate tower or a packed tower. However, a packed tower is more preferable because of its simple structure. As the packing to be packed in the packed tower, for example, existing ones such as Raschig rings, pole rings, and terrarette (registered trademark) can be used. Further, the distillation can be performed continuously (continuous distillation) or batchwise (batch distillation).
  • Distillation operating conditions are not particularly limited, and various modes are possible depending on the utility and the required quality of hydrogen chloride.
  • the operation pressure can be 0.1 MPa or more and 10 MPa or less, and preferably 0.5 MPa or more and 5 MPa or less.
  • the column top temperature is in the range of about ⁇ 80 ° C. to 60 ° C.
  • the high-purity hydrogen chloride obtained by the method for producing hydrogen chloride according to this embodiment is extremely useful. Furthermore, high-purity hydrogen chloride can be used in the production of various chemicals such as pharmaceuticals and dye intermediates.
  • this embodiment shows an example of this invention and this invention is not limited to this embodiment.
  • various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.
  • the electrolytic cell 10 has two chambers separated by a cation exchange membrane 11 (for example, Nafion membrane (registered trademark) manufactured by DuPont).
  • a cation exchange membrane 11 for example, Nafion membrane (registered trademark) manufactured by DuPont.
  • the anode 13 is in one chamber (the anode chamber 12), and the other is The cathode 15 is arranged in the room (the cathode chamber 14).
  • a sodium chloride aqueous solution was supplied to the anode chamber 12 via a sodium chloride aqueous solution supply pipe 16, and pure water was supplied to the cathode chamber 14 via a water supply pipe 17.
  • a direct current was applied between the electrodes 13 and 15 to electrolyze the sodium chloride aqueous solution, and chlorine (Cl 2 ) was generated from the anode 13 and hydrogen (H 2 ) was generated from the cathode 15.
  • the voltage of the direct current applied between the two electrodes 13 and 15 is 3.1 V, and the current density is 3 kA / m 3 .
  • the sodium chloride aqueous solution in the anode chamber 12 decreases in concentration of sodium chloride to become a low concentration sodium chloride aqueous solution, and the pure water in the cathode chamber 14 becomes a sodium hydroxide aqueous solution. Therefore, the low concentration sodium chloride aqueous solution and the sodium hydroxide aqueous solution are sequentially discharged from the electrolytic cell 10, and electrolysis is performed while supplying a 30 g / L sodium chloride aqueous solution and pure water to the electrolytic cell 10.
  • the low-concentration sodium chloride aqueous solution in the anode chamber 12 is sequentially discharged through the sodium chloride aqueous solution discharge pipe 18 during electrolysis and replaced with the sodium chloride aqueous solution supplied through the sodium chloride aqueous solution supply pipe 16. .
  • the sodium hydroxide aqueous solution in the cathode chamber 14 was discharged
  • the bromine (Br 2 ) concentration in chlorine generated by the electrolysis thus performed was 25 ppm by volume, and the carbon dioxide concentration was 9000 ppm by volume.
  • Hydrogen generated by electrolysis was sent to the hydrogen rinsing tower 20 through the hydrogen pipe 21, and chlorine was sent to the chlorinating water tower 30 through the chlorine pipe 31.
  • hydrogen washing tower 20 hydrogen was washed by countercurrent contact with pure water.
  • chlorine washing tower 30 chlorine was washed by countercurrent contact with pure water.
  • the washed chlorine was sent from the chlorine washing tower 30 to the dehydrating tower 40 via the chlorine pipe 41 and dehydrated by making countercurrent contact with concentrated sulfuric acid.
  • the dehydrated chlorine is sent from the dehydration tower 40 to the synthesis tower 50 via the chlorine pipe 51, and the washed hydrogen is sent from the hydrogen washing tower 20 to the synthesis tower 50 via the hydrogen pipe 52, thereby supplying chlorine and hydrogen. Reaction was performed to obtain crude hydrogen chloride.
  • the flow rate of hydrogen is 240 m 3 / h
  • the flow rate of chlorine is 160 m 3 / h (the molar ratio of chlorine and hydrogen is 1: 1.5)
  • the reaction is performed under atmospheric pressure and temperature of 1200 ° C. It was.
  • the composition of the obtained crude hydrogen chloride was 80 volume% hydrogen chloride, 20 volume% hydrogen, 20 volume ppm hydrogen bromide, 70 volume ppm carbon dioxide, 3500 volume ppm carbon monoxide, and 1000 volume ppm water.
  • the obtained crude hydrogen chloride is sent from the synthesis tower 50 to the condenser 60 through the piping 61 for hydrogen chloride, cooled to ⁇ 10 ° C. to condense the moisture in the crude hydrogen chloride, and one of the moisture in the crude hydrogen chloride is condensed. Part was removed. Further, the crude hydrogen chloride is sent from the condenser 60 to the moisture adsorption tower 70 via the hydrogen chloride pipe 71 and distributed to the adsorbent (for example, molecular sieve 3A manufactured by Union Showa Co., Ltd.) filled in the moisture adsorption tower 70. And dehydrated.
  • the adsorbent for example, molecular sieve 3A manufactured by Union Showa Co., Ltd.
  • the linear velocity LV Linear Velocity
  • the space velocity SV Space Velocity
  • the water concentration of the crude hydrogen chloride at the outlet of the water adsorption tower 70 was 0.5 ppm by volume.
  • the dehydrated crude hydrogen chloride was sent from the moisture adsorption tower 70 to the compressor 80 via the hydrogen chloride pipe 81 and compressed (condensed) by the compressor 80.
  • the liquefied crude hydrogen chloride was sent from the compressor 80 to the distillation column 90 via the hydrogen chloride pipe 91, and low boiling components and high boiling components were removed by distillation to obtain high purity hydrogen chloride.
  • high purity hydrogen chloride was extracted from the middle stage of the distillation column 90 and its composition was measured, the purity was 99.999 mass% or more.
  • the impurity concentrations were 0.2 volume ppm for hydrogen bromide and 0.4 volume ppm for carbon dioxide.
  • Example 2 The high-purity chloride is obtained in the same manner as in Example 1 except that the crude hydrogen chloride obtained in the synthesis tower 50 is not immediately sent to the condenser 60 but the following steps are performed between the synthesis tower 50 and the condenser 60. Hydrogen was produced.
  • the crude hydrogen chloride obtained in the synthesis tower 50 was supplied to an absorption tower (not shown), and pure water was sprayed into the absorption tower to absorb the crude hydrogen chloride in the pure water, whereby hydrochloric acid having a concentration of 35% by mass was obtained.
  • This hydrochloric acid was sent to a stripping tower (not shown), and hydrogen chloride was stripped from the hydrochloric acid.
  • the emission conditions were a column bottom temperature of 110 ° C. and atmospheric pressure.
  • the stripping tower one having a packed bed filled with a packing was used.
  • the composition of hydrogen chloride obtained from the top of the stripping tower was 96 volume% hydrogen chloride, 1 volume ppm hydrogen bromide, 10 volume ppm carbon dioxide, and 4 volume% water.
  • the subsequent steps were performed in the same manner as in Example 1 to obtain high purity hydrogen chloride.
  • high purity hydrogen chloride was extracted from the middle stage of the distillation column 90 and its composition was measured, the purity was 99.999 mass% or more.
  • the impurity concentrations were 0.1 volume ppm for hydrogen bromide and 0.4 volume ppm for carbon dioxide.
  • Example 3 In the same manner as in Example 1, except that the flow rate of hydrogen in the synthesis tower 50 was 180 m 3 / h and the flow rate of chlorine was 160 m 3 / h (the molar ratio of chlorine and hydrogen was 1: 1.13), high-purity chloride Hydrogen was obtained.
  • the composition of the crude hydrogen chloride obtained in the synthesis tower 50 is as follows: hydrogen chloride 80 volume%, hydrogen 6 volume%, hydrogen bromide 25 volume ppm, carbon dioxide 1000 volume ppm, carbon monoxide 3500 volume ppm, water 600 volume ppm. there were.
  • the purity of the high purity hydrogen chloride extracted from the middle stage of the distillation column 90 was 99.999 mass% or more.
  • the impurity concentrations were 0.2 volume ppm for hydrogen bromide and 4 volume ppm for carbon dioxide.
  • Example 4 In the same manner as in Example 1 except that the flow rate of hydrogen in the synthesis tower 50 was 200 m 3 / h and the flow rate of chlorine was 160 m 3 / h (the molar ratio of chlorine and hydrogen was 1: 1.25), high-purity chloride Hydrogen was obtained.
  • the composition of the crude hydrogen chloride obtained in the synthesis tower 50 is as follows: hydrogen chloride 80 volume%, hydrogen 11 volume%, hydrogen bromide 25 volume ppm, carbon dioxide 500 volume ppm, carbon monoxide 3500 volume ppm, water 600 volume ppm. there were.
  • the purity of the high purity hydrogen chloride extracted from the middle stage of the distillation column 90 was 99.999 mass% or more.
  • the impurity concentrations were 0.2 volume ppm for hydrogen bromide and 2 volume ppm for carbon dioxide.
  • Example 1 Hydrogen chloride was obtained in the same manner as in Example 1 except that the pH of the aqueous sodium chloride solution used for electrolysis was set to 2. The bromine concentration in chlorine generated by electrolysis was 80 ppm by volume, and the carbon dioxide concentration was 6000 ppm by volume.
  • the composition of the crude hydrogen chloride obtained in the synthesis tower 50 is as follows: hydrogen chloride 80 volume%, hydrogen 20 volume%, hydrogen bromide 70 volume ppm, carbon dioxide 50 volume ppm, carbon monoxide 2400 volume ppm, water 1000 volume. ppm. And the purity of the hydrogen chloride extracted from the middle stage of the distillation column 90 was 99.999 mass% or more. The impurity concentrations were 1.0 ppm by volume for hydrogen bromide and 0.4 ppm by volume for carbon dioxide.

Abstract

簡便な設備で効率良く塩化水素を製造することができる塩化水素の製造方法を提供する。pHが3以上5以下の無機塩化物水溶液を電気分解して塩素と水素を得る電気分解工程と、電気分解工程で得られた塩素と水素を、塩素に対して水素をモル比で過剰量用いて1000℃以上1500℃以下で反応させて、粗塩化水素を得る反応工程と、反応工程で得られた粗塩化水素を脱水する脱水工程と、脱水工程で得られた、脱水された粗塩化水素を圧縮して液化し、その液状の粗塩化水素を蒸留により精製する蒸留工程と、を備える方法により、塩化水素を製造する。

Description

塩化水素の製造方法
 本発明は塩化水素の製造方法に関する。
 半導体等の製造時にエッチングガス、クリーニングガス、又は成膜ガスとして使用される高純度の塩化水素(HCl)は、例えば合成塩酸を原料として用いて得た塩化水素を液化し、蒸留することにより不純物を除去して製造される。この製造方法においては、不純物の除去は蒸留によるところが大きいが、不純物のうち臭化水素(HBr)と二酸化炭素(CO)は塩化水素と沸点が近いため、蒸留での除去は容易ではなかった。
 特許文献1には、塩素(Cl)と水素(H)をそれぞれ予め精製した後に反応させて高純度塩化水素を製造する技術が開示されている。塩素は、蒸留で二酸化炭素を除去することにより精製している。しかしながら、特許文献1に開示の技術では、塩素と水素を予め精製するために蒸留塔や吸着塔を設置する必要があるため、高純度塩化水素の製造設備が複雑化し、高い効率で高純度塩化水素を製造することが難しいという問題があった。
日本国特許公表公報 2013年第545704号
 そこで、本発明は、上記のような従来技術が有する問題点を解決し、簡便な設備で効率良く塩化水素を製造することができる方法を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[3]の通りである。
[1] pHが3以上5以下の無機塩化物水溶液を電気分解して塩素と水素を得る電気分解工程と、
 前記電気分解工程で得られた塩素と水素を、塩素に対して水素をモル比で過剰量用いて1000℃以上1500℃以下で反応させて、粗塩化水素を得る反応工程と、
 前記反応工程で得られた粗塩化水素を脱水する脱水工程と、
 前記脱水工程で得られた、脱水された粗塩化水素を圧縮して液化し、その液状の粗塩化水素を蒸留により精製する蒸留工程と、
を備える塩化水素の製造方法。
[2] 前記反応工程で反応させる塩素と水素のモル比が1:1.25~1:1.6である[1]に記載の塩化水素の製造方法。
[3] 前記脱水工程は、前記反応工程で得られた粗塩化水素を水に吸収させて塩酸とし、その塩酸から放散させた塩化水素を脱水する工程である[1]又は[2]に記載の塩化水素の製造方法。
 本発明によれば、簡便な設備で効率良く塩化水素を製造することができる。
塩化水素の製造設備の概略図である。
 前記課題を解決するため本発明者らが鋭意検討した結果、無機塩化物水溶液を電気分解して塩素と水素を得る際の無機塩化物水溶液のpH値と、塩素及び水素を反応させる際の温度及びモル比を調整することにより、不純物(例えば、塩化水素と沸点が近く蒸留による除去が困難な臭化水素、二酸化炭素)の含有量が低い塩化水素を、簡便な設備で効率良く製造可能であることを見出し、本発明を完成するに至った。以下、本発明の一実施形態について詳細に説明する。
 本実施形態の塩化水素の製造方法は、pHが3以上5以下の無機塩化物水溶液(例えば塩化ナトリウム水溶液)を電気分解して塩素と水素を得る電気分解工程と、電気分解工程で得られた塩素と水素を、塩素に対して水素をモル比で過剰量用いて1000℃以上1500℃以下で反応させて、粗塩化水素を得る反応工程と、反応工程で得られた粗塩化水素を脱水する脱水工程と、脱水工程で得られた、脱水された粗塩化水素を圧縮して液化し、その液状の粗塩化水素を蒸留により精製する蒸留工程と、を備える。
 本実施形態においては、塩化水素中の不純物として臭化水素と二酸化炭素に特に着目しているが、これらの混入原因は原料の塩化ナトリウム水溶液にある。臭化水素は、塩化ナトリウム水溶液の原料である塩化ナトリウムに臭化ナトリウムとして一定量含まれている。また、二酸化炭素については、塩化ナトリウムから持ち込まれた不純物であり、特にマグネシウムイオン(Mg2+)、カルシウムイオン(Ca2+)、硫酸イオン(SO 2-)などを沈殿し除去するために、塩化ナトリウム水溶液に対して添加されることにより混入する。これらの不純物は、電気分解工程において陽極から発生する塩素(Cl)中に臭素(Br)、二酸化炭素として混入する。
 本実施形態の塩化水素の製造方法の電気分解工程においては、pHが3以上5以下の塩化ナトリウム水溶液を電気分解して塩素と水素を得る。塩化ナトリウム水溶液のpHが3以上5以下であれば、電気分解時に臭素及び二酸化炭素が発生しにくいので、生成した塩素中の臭素及び二酸化炭素の濃度が低くなる。塩化ナトリウム水溶液のpHが3未満又は5超過である場合には、例えば酸又は塩基を添加し塩化ナトリウム水溶液のpHを3以上5以下に調整して電気分解に供するとよい。
 pHの調整によって塩素中の臭素濃度、二酸化炭素濃度を低減できるのは、下記式に示す平衡反応のためである。すなわち、pHを上げると下記2式の平衡が右側に傾き、臭素及び二酸化炭素がそれぞれイオン化する方向へ進む。
Figure JPOXMLDOC01-appb-C000001
 臭素は塩化ナトリウム水溶液への溶解度が比較的高く塩化ナトリウム水溶液中に臭素分子として溶存していられるが、電気分解によって塩素が発生すると、気体の塩素中に溶けこんで気相に臭素として取り込まれる。そのため、電気分解前の塩化ナトリウム水溶液のpHを高く保つほうが、臭素を臭化物イオン(Br)として水中に留めておくことができるため、塩素中の臭素濃度を低く保つことができる。
 これに対して二酸化炭素は、塩化ナトリウム水溶液中への溶解度が低く、塩化ナトリウム水溶液中に二酸化炭素として溶存していられず、すぐに塩化ナトリウム水溶液中から気体として脱離してしまう。そのため、電気分解前のpHを低く保つ方が、電気分解前に二酸化炭素が脱離する量が多くなるため、塩素中の二酸化炭素濃度を低く保つことができる。なお、電気分解前の塩化ナトリウム水溶液を窒素等の不活性ガスでバブリングすることにより、塩化ナトリウム水溶液から二酸化炭素が脱離する効率を上げてもよい。
 このように、塩素中の臭素濃度と二酸化炭素濃度は、塩化ナトリウム水溶液のpH値に対して相反する傾向を示す。そのため塩素中の臭素濃度と二酸化炭素濃度をともに低く保つためには、塩化ナトリウム水溶液のpH値を3以上5以下に、好ましくは3.1以上4.5以下に、さらに好ましくは3.4以上4.0以下に、管理する必要がある。
 なお、無機塩化物水溶液の溶質である無機塩化物の種類は、塩化ナトリウムに限定されるものではなく、水溶液の電気分解により塩素と水素を得ることができるならば、他種の無機塩化物を用いてもよい。例えば、塩化リチウム、塩化カリウム、塩化ルビジウム、塩化ベリリウム、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウム等の金属塩化物を用いることができる。また、塩化アンモニウム、第四級アンモニウム塩酸塩、アミン塩酸塩等を用いることもできる。
 また、本実施形態の塩化水素の製造方法の反応工程においては、電気分解工程で得られた塩素と水素を、塩素に対して水素をモル比で過剰量用いて1000℃以上1500℃以下で反応させて、粗塩化水素を得る。反応温度は1200℃以上1300℃以下が好ましい。また、塩素と水素のモル比(塩素:水素)は、1:1.25~1:1.6が好ましく、1:1.25~1:1.5がより好ましく、1:1.3~1:1.4がさらに好ましい。
 反応温度が1000℃以上であれば、下記式の平衡が右側に傾くため、生成した塩化水素中の二酸化炭素濃度が低くなる。一方、反応温度が1500℃以下であれば、熱量のロスが少なく低コストである。
Figure JPOXMLDOC01-appb-C000002
 また、塩素に対する水素のモル比が1.25以上であれば、上記式の平衡が右側に傾くため、生成した塩化水素中の二酸化炭素濃度が低くなる。一方、塩素に対する水素のモル比が1.6以下であれば、過剰量の水素のロスが少なく低コストである。
 なお、本実施形態の塩化水素の製造方法の反応工程は、大気圧で実施することができるが、圧力は特に限定されるものではなく、-0.05MPaG以上0.15MPaG以下で実施することができる。
 次に、本実施形態の塩化水素の製造方法の脱水工程においては、反応工程で得られた粗塩化水素を脱水するが、脱水方法は特に限定されない。例えば、活性アルミナ、ゼオライト等の担体を充填した吸収器において担体と粗塩化水素を接触させて、担体の吸着作用によって粗塩化水素から水分を取り除く方法や、粗塩化水素を冷却して水分を凝縮させる方法があげられる。あるいは、上記の担体を用いた方法と水分を凝縮させる方法とを組み合わせてもよい。
 なお、本実施形態の塩化水素の製造方法の脱水工程は、上記のように、反応工程で得られた粗塩化水素をそのまま脱水する工程としてもよいが、これに限らず、反応工程で得られた粗塩化水素を一旦水に吸収させて塩酸とし、その塩酸から放散させた塩化水素を脱水する工程としてもよい。これにより、水に吸収させることにより粗塩化水素から臭化水素を除去することができるので、後述する蒸留工程において、臭化水素の除去に係る蒸留塔の負担を軽減することができる。
 粗塩化水素を水に吸収させる方法は、特に限定されない。例えば、塩化水素を吸収させる際の温度は20℃以上80℃以下とすることができ、その際の圧力は大気圧近傍とすることができる。塩化水素を吸収させる際に使用する装置も特に限定されるものではなく、一般的な吸収塔を使用することができる。充填塔やキャップトレー等の棚段塔形式の吸収部を有し、冷却器を通して液相を循環させる多段の吸収塔や、濡れ壁形式の吸収塔等があげられる。
 粗塩化水素を水に吸収させる工程によって得られる塩酸中の塩化水素濃度は、可及的に高い方が好ましいが、吸収効率等を考慮すれば、20質量%以上40質量%以下であることが好ましい。
 得られた塩酸は例えば放散塔に送られ、該放散塔の塔頂より塩化水素をガス状で回収する(以下「放散工程」と記すこともある)。放散塔の形式は特に限定されるものではないが、例えば、底部にリボイラーを有した充填塔形式や棚段形式等の放散塔を使用することができる。放散工程における塩化水素の放散条件は特に限定されるものではないが、例えば、温度は90℃以上150℃以下、圧力は50kPaG以上500kPaG以下とすることができる。また、放散塔にキャリアーガスを供給しながら放散を行うことも可能である。
 次に、本実施形態の塩化水素の製造方法の蒸留工程においては、脱水工程で脱水された粗塩化水素を圧縮して液化し、その液状の粗塩化水素を蒸留により精製して塩化水素を得る。蒸留工程に使用できる蒸留装置は、通常の蒸留に必要な機能を備えていればよいが、棚段塔、充填塔などの精留装置を使用することが好ましい。ただし、構造が簡単なことから充填塔がより好ましい。充填塔に充填する充填物としては、例えばラシヒリング、ポールリング、テラレット(登録商標)など、既存のものを用いることができる。また、蒸留は、連続式で行なうこともできるし(連続蒸留)、回分式で行なうこともできる(バッチ蒸留)。
 蒸留の操作条件は、ユーティリティ及び要求される塩化水素の品質などにより種々の態様が可能であり、特に限定されるものではない。ただし、蒸留塔の塔頂温度が低くなり過ぎないことを考慮すれば、操作圧力は0.1MPa以上10MPa以下とすることができ、0.5MPa以上5MPa以下であることが好ましい。このような操作条件の場合には、塔頂温度は約-80℃以上60℃以下の範囲内となる。
 このような本実施形態の塩化水素の製造方法により、純度99.999質量%以上の高純度塩化水素を、簡便な設備で効率良く製造することができる。製造された高純度塩化水素は、半導体や薄膜トランジスタの製造時にエッチングガス、クリーニングガスとして使用することができる。特に、Si-Ge(半導体)、GaN(発光ダイオード等)、SiC(パワー半導体)のエピタキシャル成長プロセスでは、クリーニングガスとしての使用のみならず成膜ガスとしても使用されるが、成膜ガス中に不純物があると膜中に不純物が残留するため、本実施形態の塩化水素の製造方法により得られる高純度塩化水素は極めて有用である。さらに、高純度塩化水素は、医薬品、染料中間体等の各種化学薬品の製造にも使用することができる。
 なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 以下に実施例を示して、本発明をより詳細に説明する。
〔実施例1〕
 濃度30g/Lの塩化ナトリウム水溶液を、濃度48質量%の水酸化ナトリウム水溶液と濃度35質量%の塩酸とでpH=3.5に調整した。そして、この塩化ナトリウム水溶液を、陽イオン交換膜を有する電解槽を用いて電気分解した。電気分解の方法について、図1を参照しながら説明する。
 電解槽10は、陽イオン交換膜11(例えばデュポン社製のナフィオン膜(登録商標))によって仕切られた2つの部屋を有しており、一方の部屋(陽極室12)に陽極13が、他方の部屋(陰極室14)に陰極15が配されている。陽極室12には塩化ナトリウム水溶液供給管16を介して塩化ナトリウム水溶液を供給し、また陰極室14には給水管17を介して純水を供給した。そして、両極13、15間に直流電流を印加して塩化ナトリウム水溶液の電気分解を行い、陽極13から塩素(Cl)を、陰極15から水素(H)をそれぞれ発生させた。両極13、15間に印加した直流電流の電圧は3.1Vであり、電流密度は3kA/mである。
 電気分解を進めると、陽極室12内の塩化ナトリウム水溶液は、塩化ナトリウムの濃度が低下して低濃度の塩化ナトリウム水溶液となり、陰極室14内の純水は水酸化ナトリウム水溶液となる。そこで、低濃度の塩化ナトリウム水溶液と水酸化ナトリウム水溶液は電解槽10から逐次排出し、濃度30g/Lの塩化ナトリウム水溶液と純水を電解槽10に供給しつつ電気分解を行う。
 すなわち、陽極室12内の低濃度の塩化ナトリウム水溶液は、電気分解中に塩化ナトリウム水溶液排出管18を介して逐次排出し、塩化ナトリウム水溶液供給管16を介して供給される塩化ナトリウム水溶液と入れ替えた。また、陰極室14内の水酸化ナトリウム水溶液は電気分解中に水酸化ナトリウム水溶液排出管19を介して逐次排出し、給水管17を介して供給される純水と入れ替えた。このようにして行った電気分解により発生した塩素中の臭素(Br)濃度は25体積ppmで、二酸化炭素濃度は9000体積ppmであった。
 電気分解により発生した水素は水素用配管21を介して水素用水洗塔20に送り、塩素は塩素用配管31を介して塩素用水洗塔30に送った。水素用水洗塔20では、純水との向流接触により水素を洗浄した。また、塩素用水洗塔30では、純水との向流接触により塩素を洗浄した。洗浄した塩素は塩素用配管41を介して塩素用水洗塔30から脱水塔40に送り、濃硫酸と向流接触させることにより脱水した。
 脱水した塩素を塩素用配管51を介して脱水塔40から合成塔50に送るとともに、洗浄した水素を水素用配管52を介して水素用水洗塔20から合成塔50に送って、塩素と水素を反応させ、粗塩化水素を得た。合成塔50では、水素の流量を240m/h、塩素の流量を160m/h(塩素と水素のモル比は1:1.5)とし、大気圧、温度1200℃の条件下で反応させた。得られた粗塩化水素の組成は、塩化水素80体積%、水素20体積%、臭化水素20体積ppm、二酸化炭素70体積ppm、一酸化炭素3500体積ppm、水1000体積ppmであった。
 得られた粗塩化水素を塩化水素用配管61を介して合成塔50から凝縮器60に送り、-10℃に冷却して粗塩化水素中の水分を凝縮させ、粗塩化水素中の水分の一部を除去した。
 さらに、粗塩化水素を塩化水素用配管71を介して凝縮器60から水分吸着塔70に送り、水分吸着塔70内に充填された吸着剤(例えばユニオン昭和株式会社製のモレキュラーシーブ3A)に流通させて脱水した。粗塩化水素の流通速度は、線速度LV(Linear Velocity)が10m/min、空間速度SV(Space Velocity)が1000/hである。水分吸着塔70の出口の粗塩化水素の水分濃度は0.5体積ppmであった。
 脱水された粗塩化水素を塩化水素用配管81を介して水分吸着塔70からコンプレッサー80に送り、コンプレッサー80で圧縮して凝縮(液化)した。液化された粗塩化水素を塩化水素用配管91を介してコンプレッサー80から蒸留塔90に送り、蒸留により低沸成分及び高沸成分をそれぞれ除去して高純度塩化水素を得た。高純度塩化水素を蒸留塔90の中段から抜き出し、その組成を測定したところ、純度は99.999質量%以上であった。また、不純物濃度は、臭化水素が0.2体積ppm、二酸化炭素が0.4体積ppmであった。
〔実施例2〕
 合成塔50で得られた粗塩化水素を直ちに凝縮器60に送らず合成塔50と凝縮器60との間で下記の工程を行うことを除いては、実施例1と同様にして高純度塩化水素を製造した。
 合成塔50で得られた粗塩化水素を図示しない吸収塔に供給し、吸収塔内に純水を散布して純水に粗塩化水素を吸収させ、濃度35質量%の塩酸を得た。この塩酸を図示しない放散塔に送り、塩酸から塩化水素を放散させた。放散条件は、塔底温度110℃、大気圧下とした。放散塔としては、充填物を充填した充填層を有するものを用いた。放散塔の塔頂から得られた塩化水素の組成は、塩化水素が96体積%、臭化水素が1体積ppm、二酸化炭素が10体積ppm、水が4体積%であった。
 これ以降の工程は実施例1と同様にして、高純度塩化水素を得た。高純度塩化水素を蒸留塔90の中段から抜き出し、その組成を測定したところ、純度は99.999質量%以上であった。また、不純物濃度は、臭化水素が0.1体積ppm、二酸化炭素が0.4体積ppmであった。
〔実施例3〕
 合成塔50における水素の流量を180m/h、塩素の流量を160m/h(塩素と水素のモル比は1:1.13)とした以外は実施例1と同様にして、高純度塩化水素を得た。合成塔50で得られた粗塩化水素の組成は、塩化水素80体積%、水素6体積%、臭化水素25体積ppm、二酸化炭素1000体積ppm、一酸化炭素3500体積ppm、水600体積ppmであった。そして、蒸留塔90の中段から抜き出した高純度塩化水素の純度は99.999質量%以上であった。また、不純物濃度は、臭化水素が0.2体積ppm、二酸化炭素が4体積ppmであった。
〔実施例4〕
 合成塔50における水素の流量を200m/h、塩素の流量を160m/h(塩素と水素のモル比は1:1.25)とした以外は実施例1と同様にして、高純度塩化水素を得た。合成塔50で得られた粗塩化水素の組成は、塩化水素80体積%、水素11体積%、臭化水素25体積ppm、二酸化炭素500体積ppm、一酸化炭素3500体積ppm、水600体積ppmであった。そして、蒸留塔90の中段から抜き出した高純度塩化水素の純度は99.999質量%以上であった。また、不純物濃度は、臭化水素が0.2体積ppm、二酸化炭素が2体積ppmであった。
〔比較例1〕
 電気分解に供する塩化ナトリウム水溶液のpHを2とした以外は実施例1と同様にして、塩化水素を得た。電気分解により発生した塩素中の臭素濃度は80体積ppmで、二酸化炭素濃度は6000体積ppmであった。また、合成塔50で得られた粗塩化水素の組成は、塩化水素80体積%、水素20体積%、臭化水素70体積ppm、二酸化炭素50体積ppm、一酸化炭素2400体積ppm、水1000体積ppmであった。そして、蒸留塔90の中段から抜き出した塩化水素の純度は99.999質量%以上であった。また、不純物濃度は、臭化水素が1.0体積ppm、二酸化炭素が0.4体積ppmであった。
〔比較例2〕
 合成塔50における水素の流量を160m/h、塩素の流量を160m/h(塩素と水素のモル比は1:1)とした以外は実施例1と同様にして、塩化水素を得た。合成塔50で得られた粗塩化水素の組成は、塩化水素80体積%、水素100体積ppm、臭化水素25体積ppm、二酸化炭素4500体積ppm、一酸化炭素10体積ppm、水600体積ppmであった。そして、蒸留塔90の中段から抜き出した塩化水素の純度は99.997質量%であった。また、不純物濃度は、臭化水素が0.2体積ppm、二酸化炭素が18体積ppmであった。
   10    電解槽
   50    合成塔
   60    凝縮器
   70    水分吸着塔
   80    コンプレッサー
   90    蒸留塔

Claims (3)

  1.  pHが3以上5以下の無機塩化物水溶液を電気分解して塩素と水素を得る電気分解工程と、
     前記電気分解工程で得られた塩素と水素を、塩素に対して水素をモル比で過剰量用いて1000℃以上1500℃以下で反応させて、粗塩化水素を得る反応工程と、
     前記反応工程で得られた粗塩化水素を脱水する脱水工程と、
     前記脱水工程で得られた、脱水された粗塩化水素を圧縮して液化し、その液状の粗塩化水素を蒸留により精製する蒸留工程と、
    を備える塩化水素の製造方法。
  2.  前記反応工程で反応させる塩素と水素のモル比が1:1.25~1:1.6である請求項1に記載の塩化水素の製造方法。
  3.  前記脱水工程は、前記反応工程で得られた粗塩化水素を水に吸収させて塩酸とし、その塩酸から放散させた塩化水素を脱水する工程である請求項1又は請求項2に記載の塩化水素の製造方法。
PCT/JP2016/071744 2015-08-10 2016-07-25 塩化水素の製造方法 WO2017026259A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16834956.1A EP3336056B1 (en) 2015-08-10 2016-07-25 Method for producing hydrogen chloride
CN201680041777.XA CN107848798B (zh) 2015-08-10 2016-07-25 氯化氢的制造方法
KR1020177036346A KR102019703B1 (ko) 2015-08-10 2016-07-25 염화수소의 제조 방법
JP2017534162A JP6760942B2 (ja) 2015-08-10 2016-07-25 塩化水素の製造方法
US15/745,880 US20180354789A1 (en) 2015-08-10 2016-07-25 Method for producing hydrogen chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015158341 2015-08-10
JP2015-158341 2015-08-10

Publications (1)

Publication Number Publication Date
WO2017026259A1 true WO2017026259A1 (ja) 2017-02-16

Family

ID=57984298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071744 WO2017026259A1 (ja) 2015-08-10 2016-07-25 塩化水素の製造方法

Country Status (7)

Country Link
US (1) US20180354789A1 (ja)
EP (1) EP3336056B1 (ja)
JP (2) JP6760942B2 (ja)
KR (1) KR102019703B1 (ja)
CN (1) CN107848798B (ja)
TW (1) TWI615356B (ja)
WO (1) WO2017026259A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252168A (zh) * 2018-11-29 2019-01-22 珠海市智宝化工有限公司 一种高效活化酸性蚀刻液的装置及其方法
CN109956452A (zh) * 2019-04-13 2019-07-02 成都华融化工有限公司 一种试剂盐酸的制备方法及其装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023535427A (ja) 2020-07-22 2023-08-17 エスジーエル・カーボン・エスイー 塩化水素ガスの高圧脱離
CN115198108B (zh) * 2021-04-13 2024-03-29 浙江新化化工股份有限公司 锂的萃取方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589804A (ja) * 1981-07-03 1983-01-20 Asahi Chem Ind Co Ltd 塩化水素の精製法
JPS63203781A (ja) * 1987-02-17 1988-08-23 Mitsui Toatsu Chem Inc イオン交換膜式電解法による臭素の濃縮製造方法
JPH06345410A (ja) * 1993-06-01 1994-12-20 Kanegafuchi Chem Ind Co Ltd 高純度塩酸の製造方法
JP2006063410A (ja) * 2004-08-27 2006-03-09 Toagosei Co Ltd 臭素低含有塩素の製造方法
JP2008307453A (ja) * 2007-06-13 2008-12-25 Tsurumi Soda Co Ltd 塩水精製装置及び塩水精製方法
JP2013545704A (ja) * 2011-10-11 2013-12-26 ホンインケミカル シーオー.,エルティディ. 高純度塩化水素の製造方法及び製造システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920529A (en) * 1974-05-28 1975-11-18 Olin Corp Control of alkali metal chlorates in mercury cell brine
DE2726370C2 (de) 1977-06-10 1981-09-24 Basf Ag, 6700 Ludwigshafen Meßverfahren und Meßeinrichtung zur Bestimmung der Homogenität von Magnetdispersionen
JPS5929521B2 (ja) * 1980-02-20 1984-07-21 チッソ株式会社 精製塩酸の製造法
FR2691479B1 (fr) * 1992-05-20 1994-08-19 Atochem Elf Sa Procédé de fabrication de chlorate de métal alcalin et dispositif pour sa mise en Óoeuvre.
JP3606051B2 (ja) * 1997-06-03 2005-01-05 住友化学株式会社 塩素の製造方法
US6103092A (en) * 1998-10-23 2000-08-15 General Electric Company Method for reducing metal ion concentration in brine solution
JP5041769B2 (ja) * 2006-09-06 2012-10-03 住友化学株式会社 スタートアップ方法
CN101657379A (zh) * 2007-02-16 2010-02-24 雅宝公司 联合生产溴、氯化钙、和氯的工艺
WO2009073860A1 (en) * 2007-12-05 2009-06-11 Ch2M Hill Engineers, Inc. Systems and methods for supplying chlorine to and recovering chlorine from a polysilicon plant
JP5315578B2 (ja) * 2008-12-22 2013-10-16 住友化学株式会社 塩素の製造方法
US20120186989A1 (en) * 2011-01-26 2012-07-26 Yuri Alexeevich Omelchenko Process for producing chlorine with low bromine content
EP2730905B1 (en) * 2012-11-12 2019-01-02 Sensata Technologies, Inc. A pressure-measuring plug for a combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589804A (ja) * 1981-07-03 1983-01-20 Asahi Chem Ind Co Ltd 塩化水素の精製法
JPS63203781A (ja) * 1987-02-17 1988-08-23 Mitsui Toatsu Chem Inc イオン交換膜式電解法による臭素の濃縮製造方法
JPH06345410A (ja) * 1993-06-01 1994-12-20 Kanegafuchi Chem Ind Co Ltd 高純度塩酸の製造方法
JP2006063410A (ja) * 2004-08-27 2006-03-09 Toagosei Co Ltd 臭素低含有塩素の製造方法
JP2008307453A (ja) * 2007-06-13 2008-12-25 Tsurumi Soda Co Ltd 塩水精製装置及び塩水精製方法
JP2013545704A (ja) * 2011-10-11 2013-12-26 ホンインケミカル シーオー.,エルティディ. 高純度塩化水素の製造方法及び製造システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336056A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252168A (zh) * 2018-11-29 2019-01-22 珠海市智宝化工有限公司 一种高效活化酸性蚀刻液的装置及其方法
CN109252168B (zh) * 2018-11-29 2024-01-12 珠海市智宝化工有限公司 一种高效活化酸性蚀刻液的装置及其方法
CN109956452A (zh) * 2019-04-13 2019-07-02 成都华融化工有限公司 一种试剂盐酸的制备方法及其装置

Also Published As

Publication number Publication date
EP3336056A1 (en) 2018-06-20
EP3336056A4 (en) 2018-10-31
JP2020117815A (ja) 2020-08-06
CN107848798A (zh) 2018-03-27
JP6876849B2 (ja) 2021-05-26
KR102019703B1 (ko) 2019-09-09
US20180354789A1 (en) 2018-12-13
TWI615356B (zh) 2018-02-21
CN107848798B (zh) 2020-12-22
EP3336056B1 (en) 2022-05-11
KR20180008729A (ko) 2018-01-24
JP6760942B2 (ja) 2020-09-23
TW201718397A (zh) 2017-06-01
JPWO2017026259A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6876849B2 (ja) 塩化水素の製造方法
KR100654286B1 (ko) Nf3의 정제 방법
KR100641603B1 (ko) 고순도 불소의 제조방법
RU2592794C2 (ru) Способ и система для производства хлористого водорода высокой чистоты
JP2008532904A (ja) 炭酸ナトリウム結晶を得るための方法
TWI603917B (zh) Hydrogen chloride production methods
US20100036180A1 (en) Method of obtaining 1,2-dichloroethane by direct chlorination with a step of separation from the catalyst by direct evaporation, and facility for the implementation thereof
KR101203490B1 (ko) 고순도 염화수소 제조방법 및 제조 시스템
JP2006143571A (ja) 塩素ガス、次亜塩素酸ナトリウム水溶液および液体塩素の製造方法
JPH0360761B2 (ja)
TW201816205A (zh) 多結晶矽之製造方法
KR20010006624A (ko) 고순도의 3불화질소가스의 제조방법
JP5847104B2 (ja) 多結晶シリコンの製造方法及び該製造方法に還元剤として用いる水素ガスの製造方法
JP3115426B2 (ja) ペルフルオロ有機化合物の製造方法
JP2006232561A (ja) 水素の製造装置及び水素の製造方法
KR101462751B1 (ko) 삼불화질소 제조 방법
CN102666451A (zh) 生产烯丙基氯和二氯丙醇的方法
JPH1018071A (ja) 食塩水溶液の電解方法
JP2011016686A (ja) 二フッ化カルボニルの精製方法
JP2010241644A (ja) 二フッ化カルボニルの製造方法
TW202413269A (zh) 高純度鹽酸之製造方法
KR101462752B1 (ko) 배가스 중의 삼불화질소 회수 방법
JPS59208085A (ja) 高純度水素の製造方法
KR20170037186A (ko) 테트라플루오르메탄의 고순도 정제방법
JP2007084370A (ja) 三フッ化窒素の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177036346

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016834956

Country of ref document: EP