WO2017022447A1 - 車両制御装置、車両制御方法、および車両制御プログラム - Google Patents

車両制御装置、車両制御方法、および車両制御プログラム Download PDF

Info

Publication number
WO2017022447A1
WO2017022447A1 PCT/JP2016/070857 JP2016070857W WO2017022447A1 WO 2017022447 A1 WO2017022447 A1 WO 2017022447A1 JP 2016070857 W JP2016070857 W JP 2016070857W WO 2017022447 A1 WO2017022447 A1 WO 2017022447A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
virtual
lane change
target position
Prior art date
Application number
PCT/JP2016/070857
Other languages
English (en)
French (fr)
Inventor
政宣 武田
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2017532460A priority Critical patent/JP6600892B2/ja
Priority to DE112016003585.3T priority patent/DE112016003585B4/de
Priority to US15/748,770 priority patent/US20190009784A1/en
Priority to CN201680042365.8A priority patent/CN107848534B/zh
Publication of WO2017022447A1 publication Critical patent/WO2017022447A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/24Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
    • B62D1/28Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
    • B62D1/286Systems for interrupting non-mechanical steering due to driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a vehicle control device, a vehicle control method, and a vehicle control program.
  • This application claims priority based on Japanese Patent Application No. 2015-156207 filed on Aug. 6, 2015 and Japanese Patent Application No. 2015-179974 filed on Sep. 11, 2015, and the contents thereof. Is hereby incorporated by reference.
  • a support start unit that starts support for lane change based on input from the input device, a host vehicle (hereinafter also referred to as a first vehicle or simply a vehicle), and another vehicle (hereinafter referred to as a second vehicle or other vehicle).
  • a detection unit that detects a relative distance and a relative speed of a vehicle), and a calculation that calculates a collision risk when another vehicle changes lanes based on the relative distance and relative speed detected by the detection unit with respect to another vehicle.
  • the first determination unit that determines whether or not the lane change is possible based on the relative distance, the relative speed, and the collision risk level, and the first determination unit determines that the lane change is not possible, based on the relative distance and the relative speed.
  • a driving support device that includes a setting unit that sets a target speed toward a lane changeable position and a control unit that controls the speed of the host vehicle to become the target speed when it is determined that there is a space. Is known (see, for example, Patent Document 1).
  • An aspect of the present invention has been made in view of such circumstances, and provides a vehicle control device, a vehicle control method, and a vehicle control program capable of performing flexible automatic driving according to the movement of surrounding vehicles.
  • One of the purposes is to do.
  • One aspect of the present invention is a vehicle control device provided in a vehicle, which estimates an lane change by a surrounding vehicle traveling around the vehicle, and a lane by the surrounding vehicle by the estimating unit.
  • a virtual vehicle setting unit that sets a virtual vehicle that virtually simulates the surrounding vehicle to be estimated on the lane of a lane change destination of the surrounding vehicle, and the virtual vehicle setting unit
  • a control plan generation unit that generates a control plan for the vehicle based on the virtual vehicle set by the control unit, and controls acceleration, deceleration, or steering of the vehicle based on the control plan generated by the control plan generation unit A travel control unit.
  • the virtual vehicle setting unit is based on information on the speed of a surrounding vehicle that is a target of the estimation when the estimation unit estimates a lane change by the surrounding vehicle.
  • the state of the virtual vehicle may be set.
  • the virtual vehicle setting unit is configured such that the lane of the lane change destination of the surrounding vehicle when the lane change by the surrounding vehicle is estimated by the estimation unit, When the vehicle is a lane in which the vehicle travels, a non-setting area where the virtual vehicle is not set may be provided forward from the position of the vehicle.
  • the non-setting area may be provided based on a relative speed between the speed of the vehicle and the speed of a surrounding vehicle that is a target of the lane change estimation.
  • the virtual vehicle setting unit is configured to cause the estimation unit to perform the operation between the vehicle and a preceding vehicle traveling in front of the vehicle.
  • the virtual vehicle is set on the lane in which the vehicle travels, and the control plan generation unit is set by the virtual vehicle setting unit instead of the preceding vehicle
  • a control plan for the vehicle may be generated based on the virtual vehicle.
  • the estimation unit may detect a decrease in the lane ahead of the vehicle by referring to map information using the position of the vehicle.
  • Another aspect of the present invention is a vehicle control device provided in a vehicle, and when a decrease in a lane in front of the vehicle is detected, a lane change by a surrounding vehicle traveling around the vehicle
  • the surrounding vehicle that is the object of the estimation is virtually simulated on the lane of the lane change destination of the surrounding vehicle
  • a virtual vehicle setting unit that sets a virtual vehicle
  • a travel control unit that controls acceleration, deceleration, or steering of the vehicle based on the virtual vehicle set by the virtual vehicle setting unit.
  • a computer provided in a vehicle estimates a lane change by a surrounding vehicle traveling around the vehicle and estimates a lane change by the surrounding vehicle
  • a virtual vehicle that virtually imitates the surrounding vehicle that is the estimation target is set, and a control plan for the vehicle is generated based on the set virtual vehicle
  • the vehicle control method controls acceleration, deceleration or steering of the vehicle based on a generated control plan.
  • a computer provided in a vehicle causes a lane change by a surrounding vehicle traveling around the vehicle to be estimated, and a lane change by the surrounding vehicle is estimated
  • a virtual vehicle that virtually imitates the surrounding vehicle that is the estimation target is set on the lane of the lane change destination of the surrounding vehicle, and a control plan for the vehicle is generated based on the set virtual vehicle.
  • a vehicle control program for controlling acceleration, deceleration or steering of the vehicle based on the generated control plan.
  • the non-setting area in which the virtual vehicle is not set is provided forward from the position of the vehicle. Under the control of operation, it is possible to realize a gradual control state transition.
  • the non-setting area where the virtual vehicle is not set is provided based on the relative speed between the speed of the vehicle and the speed of the surrounding vehicle to be estimated. Accordingly, more flexible automatic driving can be performed.
  • the virtual vehicle when a lane change between the vehicle and the preceding vehicle traveling in front of the vehicle is estimated, the virtual vehicle is set on the lane in which the vehicle travels, and the preceding vehicle Since the vehicle control plan is generated based on the virtual vehicle set instead of the vehicle, more flexible automatic driving can be performed according to the movement of the surrounding vehicle.
  • the surrounding vehicle traveling around the vehicle changes the lane based on the distance to the point where the lane decreases or the arrival time. Therefore, more accurate estimation can be performed.
  • FIG. 1 is a diagram illustrating components included in a vehicle M (hereinafter also referred to as a first vehicle M) on which the vehicle control device 100 according to the first embodiment is mounted.
  • the vehicle on which the vehicle control device 100 is mounted is, for example, a motor vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a vehicle using an internal combustion engine such as a diesel engine or a gasoline engine as a power source, or an electric vehicle using a motor as a power source.
  • a hybrid vehicle having an internal combustion engine and an electric motor.
  • the electric vehicle mentioned above drives using the electric power discharged by batteries, such as a secondary battery, a hydrogen fuel cell, a metal fuel cell, and an alcohol fuel cell, for example.
  • the finder 20-4 is attached to a trunk lid or the like, and the finders 20-5 and 20-6 are attached to the side surface of the vehicle body, the interior of the taillight, or the like.
  • the viewfinders 20-1 to 20-6 have a detection area of about 150 degrees in the horizontal direction, for example.
  • the finder 20-7 is attached to a roof or the like.
  • the finder 20-7 has a detection area of 360 degrees in the horizontal direction, for example.
  • Radars 30-1 and 30-4 are, for example, long-distance millimeter-wave radars that have a wider detection area in the depth direction than other radars.
  • Radars 30-2, 30-3, 30-5, and 30-6 are medium-range millimeter-wave radars that have a narrower detection area in the depth direction than radars 30-1 and 30-4.
  • finders 20-1 to 20-7 are not particularly distinguished, they are simply referred to as “finder 20”
  • radars 30-1 to 30-6 are not particularly distinguished, they are simply referred to as “radar 30”.
  • the radar 30 detects an object by, for example, FM-CW (Frequency Modulated Continuous Wave) method.
  • FM-CW Frequency Modulated Continuous Wave
  • FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration may be added.
  • FIG. 2 is a functional configuration diagram of the vehicle M centering on the vehicle control device 100 according to the first embodiment.
  • the vehicle M includes a finder 20, a radar 30, and a camera 40, a navigation device 50, a vehicle sensor 60, a travel driving force output device 72, a steering device 74, a brake device 76, an operation device 78, and an operation.
  • the detection sensor 80, the changeover switch 82, and the vehicle control device 100 are mounted. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • CAN Controller Area Network
  • the configuration for specifying the position of the vehicle M may be provided independently of the navigation device 50.
  • the navigation apparatus 50 may be implement
  • the configuration for specifying the position of the vehicle M may be provided independently of the navigation device 50.
  • the traveling driving force output device 72 includes an engine and an engine ECU (Electronic Control Unit) that controls the engine when the vehicle M is an automobile using an internal combustion engine as a power source, for example.
  • the traveling driving force output device 72 includes a traveling motor and a motor ECU that controls the traveling motor.
  • the traveling driving force output device 72 includes an engine and an engine ECU, a traveling motor, and a motor ECU.
  • the engine ECU adjusts the throttle opening, shift stage, etc.
  • the travel driving force output device 72 includes only the travel motor, the motor ECU adjusts the duty ratio of the PWM signal applied to the travel motor in accordance with information input from the travel control unit 120, and the travel drive described above. Output force.
  • the traveling driving force output device 72 includes an engine and a traveling motor, both the engine ECU and the motor ECU control the traveling driving force in cooperation with each other according to information input from the traveling control unit 120.
  • the steering device 74 includes, for example, an electric motor, a steering torque sensor, a steering angle sensor, and the like.
  • the electric motor changes the direction of the steering wheel by applying a force to a rack and pinion function or the like, for example.
  • the steering torque sensor detects, for example, twisting of the torsion bar when the steering wheel is operated as steering torque (steering force).
  • the steering angle sensor detects, for example, a steering steering angle (or actual steering angle).
  • the steering device 74 drives the electric motor according to the information input from the travel control unit 120 and changes the direction of the steering wheel.
  • the brake device 76 includes a master cylinder that transmits a brake operation performed on the brake pedal as hydraulic pressure, a reservoir tank that stores brake fluid, a brake actuator that adjusts a braking force output to each wheel, and the like.
  • the brake control unit 44 controls the brake actuator and the like so that the brake torque according to the pressure of the master cylinder is output to each wheel according to the information input from the travel control unit 120.
  • the brake device 76 is not limited to the electronically controlled brake device that operates by the hydraulic pressure described above, but may be an electronically controlled brake device that operates by an electric actuator.
  • the automatic operation mode is an operation mode that travels in a state where the driver does not perform an operation (or the operation amount is small or the operation frequency is low compared to the manual operation mode). More specifically, the automatic operation mode is an operation mode in which a part or all of the driving force output device 72, the steering device 74, and the brake device 76 are controlled based on the action plan.
  • the vehicle control device 100 includes, for example, a host vehicle position recognition unit 102, an external environment recognition unit 104, an action plan generation unit 106, a lane change control unit 110, a travel control unit 120, a control switching unit 122, and a storage unit. 130.
  • Some or all of the vehicle position recognition unit 102, the external environment recognition unit 104, the action plan generation unit 106, the lane change control unit 110, the travel control unit 120, and the control switching unit 122 may be a CPU (Central Processing Unit) or the like. It is a software function unit that functions when a processor executes a program.
  • CPU Central Processing Unit
  • the own vehicle position recognition unit 102 It recognizes the lane in which the vehicle is traveling (the traveling lane) and the relative position of the vehicle M with respect to the traveling lane.
  • the map information 132 is, for example, map information with higher accuracy than the navigation map included in the navigation device 50, and includes information on the center of the lane or information on the boundary of the lane. More specifically, the map information 132 includes road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, road lane number, width of each lane, road gradient, road position (longitude, latitude, height). Information including 3D coordinates), curvature of lane curves, lane merging and branch point positions, signs provided on roads, and the like.
  • the traffic regulation information includes information that the lane is blocked due to construction, traffic accidents, traffic jams, or the like.
  • the outside recognition unit 104 estimates whether or not the surrounding vehicle is changing lanes (or whether or not it is about to change) based on the history of the position of the surrounding vehicle and the operating state of the direction indicator. Further, the external environment recognition unit 104 reduces the lane in front of the vehicle M based on the position of the vehicle M acquired from the navigation device 50 and the map information 132, or information input from the finder 20, the radar 30, the camera 40, and the like. When detected, the lane change of the surrounding vehicle is estimated based on the distance to the lane decrease point or the arrival time.
  • the external recognition unit 104 is an example of an “estimation unit”.
  • FIG. 4 is a diagram illustrating a state in which a lane change of a surrounding vehicle is estimated when a decrease in lane is detected by the external recognition unit 104.
  • m is a surrounding vehicle
  • d is a traveling (traveling) direction of each vehicle
  • L1 is a lane in which the vehicle M travels
  • L2 and L3 are adjacent lanes.
  • the road shape is such that the adjacent lane L2 disappears and merges with the lane L1.
  • the external environment recognition unit 104 estimates that the surrounding vehicle m traveling in the adjacent lane L2 changes to the lane L1.
  • the external recognition unit 104 searches the map information 132 based on the position of the vehicle M acquired from the navigation device 50, and, for example, a first predetermined distance (for example, several hundred [m] to several hundreds from the position of the vehicle M to the front). [Km]), it is determined whether there is a point VP where the lane decreases.
  • a first predetermined distance for example, several hundred [m] to several hundreds from the position of the vehicle M to the front. [Km]
  • the outside world recognition unit 104 determines that there is a point VP where the lane decreases, the distance or arrival time from the surrounding vehicle m traveling on the vehicle M or the disappearing lane to the point VP (the distance is the vehicle M or the surrounding area).
  • the estimated result that the surrounding vehicle m changes lanes is output to other functional units (such as the lane change control unit 110) at the subsequent stage at a timing when the vehicle m divided by the speed of the vehicle m falls within a predetermined value. That is, the lane change timing is estimated based on the distance or arrival time from the vehicle M or the surrounding vehicle m traveling in the disappearing lane to the point VP.
  • the predetermined value is a value with respect to the distance, it is set to, for example, about several tens [m].
  • the predetermined value is a value for the arrival time, for example, it is set to about several seconds.
  • the said numerical value is an example and a predetermined value is not limited to these numerical values.
  • the outside recognition unit 104 may detect a decrease in the lane ahead of the vehicle M based on an image obtained by capturing the front of the vehicle M with the camera 40.
  • the action plan generation unit 106 generates an action plan in a predetermined section.
  • the predetermined section is, for example, a section that passes through a toll road such as an expressway among the routes derived by the navigation device 50. Not only this but the action plan production
  • the action plan is composed of a plurality of events that are executed sequentially, for example.
  • Events include, for example, a deceleration event that decelerates the vehicle M, an acceleration event that accelerates the vehicle M, a lane keep event that causes the vehicle M to travel without departing from the traveling lane, a lane change event that changes the traveling lane, and a vehicle M Passing event for overtaking the preceding vehicle at the time, change to the desired lane at the branch point, or branch event for driving the vehicle M so as not to deviate from the current driving lane, acceleration or deceleration of the vehicle M at the lane junction point Merging events that change the driving lane.
  • the vehicle control device 100 changes the lane so that the vehicle M travels in the direction of the destination in the automatic driving mode, Need to maintain lanes. Therefore, when the action plan generation unit 106 refers to the map information 132 and finds that a junction exists on the route, the action plan generation unit 106 performs a period from the current position (coordinate) of the vehicle M to the position (coordinate) of the junction. Then, a lane change event is set for changing the lane to a desired lane that can proceed in the direction of the destination. Information indicating the action plan generated by the action plan generation unit 106 is stored in the storage unit 130 as action plan information 136.
  • FIG. 5 is a diagram showing an example of an action plan generated for a certain section.
  • the action plan generation unit 106 classifies scenes that occur when traveling according to a route to a destination, and generates an action plan so that an event corresponding to each scene is executed. Note that the action plan generation unit 106 may dynamically change the action plan according to a change in the situation of the vehicle M.
  • the action plan generation unit 106 may change (update) the generated action plan based on the state of the outside world recognized by the outside world recognition unit 104, for example.
  • the state of the outside world constantly changes.
  • the distance interval with other vehicles changes relatively.
  • the action plan generation unit 106 may change the event set for each control section in accordance with the external state change as described above.
  • the action plan generation unit 106 determines that the speed of the other vehicle recognized by the external field recognition unit 104 during the vehicle traveling exceeds a threshold value or the movement direction of the other vehicle traveling in the adjacent lane adjacent to the traveling lane.
  • the event set in the driving section where the vehicle M is scheduled to travel is changed. For example, when the event is set so that the lane change vent is executed after the lane keep event, the vehicle from the rear of the lane to which the lane is changed becomes greater than the threshold during the lane keep event according to the recognition result of the external recognition unit 104.
  • the action plan generation unit 106 changes the event next to the lane keep event from a lane change to a deceleration event, a lane keep event, or the like.
  • the vehicle control device 100 can avoid the vehicle M from colliding with the vehicle to which the lane is changed.
  • the vehicle control device 100 can automatically drive the vehicle M safely even when a change occurs in the external environment.
  • the lane change control unit 110 performs control when the lane change event included in the action plan is performed by the action plan generation unit 106.
  • the lane change control unit 110 includes, for example, a target position candidate setting unit 111, a virtual vehicle setting unit 112, an other vehicle position change estimation unit 113, a control plan generation unit 114, and a target position determination unit 115.
  • the target position candidate setting unit 111 refers to the positions of surrounding vehicles recognized by the external field recognition unit 104, and first sets a large target area for lane change, and the vehicle M travels within the target area.
  • a lane change target position candidate is set as a relative position with respect to a surrounding vehicle traveling in an adjacent lane adjacent to a traveling lane (own lane).
  • the target area will be described as corresponding to the entire detection area of the device.
  • the target area may be a partial area of the device detection area.
  • FIG. 6 is a diagram illustrating a state where the target position candidate setting unit 111 according to the first embodiment sets lane change target position candidates.
  • ma and mb are surrounding vehicles
  • DR is a detection area
  • T1 to T3 are lane change target position candidates.
  • the target position candidate setting unit 111 sets the lane change target position candidate T1 between the vehicle ma and the vehicle mb on the adjacent lane L2, and the vehicle traveling direction d from the rear of the vehicle mb.
  • a lane change target position candidate T2 is set up to the outer edge of the detection region DR on the rear side. That is, when there are a plurality of surrounding vehicles on the adjacent lane, the target position candidate setting unit 111 sets the lane change target position candidate T between the plurality of surrounding vehicles. For example, when there are n nearby vehicles, the target position candidate setting unit 111 sets n + 1 lane change target position candidates T in the detection region DR on the adjacent lane. In the example of FIG.
  • the target position candidate T cannot be set in front of the vehicle ma. Therefore, since there are two vehicles on the adjacent lane L2, the target position candidate setting unit 111 should set three lane change target position candidates T, but the target position candidate T is in front of the vehicle ma. Cannot be set, two lane change target position candidates T are set.
  • the virtual vehicle setting unit 112 uses a virtual vehicle that virtually imitates the monitoring vehicle that is not recognized by the external recognition unit 104 at the outer edge of the device detection area. Set in a predetermined state.
  • the monitoring vehicle includes a vehicle that travels in front of (immediately before) the vehicle M in the travel lane, a vehicle that travels in front of (immediately before) the lane change target position candidate T, and a rear (immediately) of the lane change target position candidate T.
  • Vehicle to travel a vehicle traveling in front of the vehicle M in the travel lane (immediately before) is referred to as a preceding vehicle, and a vehicle traveling in front of the lane change target position candidate T is referred to as a lane change target position candidate preceding vehicle.
  • a vehicle that travels behind the change target position candidate T is referred to as a lane change target position candidate following vehicle.
  • the predetermined state includes a state where the speed of the virtual vehicle is zero, a state where the speed (or acceleration) of the virtual vehicle is equal to or less than a threshold, and a state where the speed of the virtual vehicle is equal to the vehicle M.
  • the virtual vehicle setting unit 112 may set a virtual vehicle that is stopped near the outer edge of the detection region, or may set a virtual vehicle that is traveling at a constant speed.
  • the virtual vehicle setting unit 112 sets the virtual vehicle as a stationary stationary body when the virtual vehicle is set near the outer edge of the detection area on the front side of the vehicle M, and the rear of the vehicle M When a virtual vehicle is set on the side or inside the detection area, the virtual vehicle is set as a moving body having a predetermined speed (acceleration).
  • the virtual vehicle setting unit 112 sets the virtual vehicle speed (or acceleration) in a state that is equal to or higher than a threshold value.
  • the virtual vehicle setting unit 112 may set a virtual vehicle that travels at a constant multiple (including 1 times) of the assumed maximum speed in the vicinity of the outer edge of the detection region DR, and the speed of the vehicle M and surrounding vehicles.
  • a virtual vehicle that travels at a speed that is a constant multiple of (including 1 times) may be set.
  • the virtual vehicle setting unit 112 sets a virtual vehicle as a moving body that travels at the assumed maximum speed.
  • the other vehicle position change estimation unit 113 determines the future position change of the monitoring vehicles (the preceding vehicle, the lane change target position candidate preceding vehicle, and the lane change target position candidate following vehicle) recognized by the external environment recognition unit 104. Is estimated. At this time, if any one or more of the preceding vehicle, the lane change target position candidate preceding vehicle, and the lane change target position candidate following vehicle are not recognized by the external recognition unit 104, these three vehicles Future position changes are estimated for the vehicle recognized by the external recognition unit 104 and the virtual vehicle set by the virtual vehicle setting unit 112 in response to the fact that the vehicle is not recognized.
  • the other vehicle position change estimation unit 113 receives the monitoring vehicle recognized by the external recognition unit 104 and the vehicle not being recognized. Future position changes are estimated for some or all of the virtual vehicle set by the setting unit 112 and the virtual interrupt vehicle set by the virtual vehicle setting unit 112 in response to the vehicle performing a lane change operation. .
  • control plan generation unit 114 For each lane change target position candidate T set by the target position candidate setting unit 111, the control plan generation unit 114 changes the lane based on the position change of the surrounding vehicle estimated by the other vehicle position change estimation unit 113. Generate a control plan for each lane change target position candidate T set by the target position candidate setting unit 111.
  • the target position determination unit 115 selects one of the plurality of lane change target position candidates T set by the target position candidate setting unit 111 based on the control plan generated by the control plan generation unit 114 for each lane change target position candidate T. Two lane change target positions T # are determined.
  • FIG. 7 is a flowchart illustrating an example of a processing flow of the lane change control unit 110 in the first embodiment.
  • the target position candidate setting unit 111 selects one lane change target position candidate T (step S100).
  • the virtual vehicle setting unit 112 performs a virtual vehicle setting process (step S102).
  • FIG. 8 and 9 are flowcharts illustrating an example of the flow of the virtual vehicle setting process according to the first embodiment.
  • the process of this flowchart corresponds to the process of step S102 in the flowchart of FIG. 7 described above.
  • the preceding vehicle is referred to as m1
  • the lane change target position candidate preceding vehicle is referred to as m2
  • the lane change target position candidate subsequent vehicle is referred to as m3.
  • a virtual vehicle corresponding to the preceding vehicle m1 is referred to as vm1
  • a virtual vehicle corresponding to the lane change target position candidate preceding vehicle m2 is referred to as vm2
  • a virtual vehicle corresponding to the lane change target position candidate following vehicle m3 is referred to as vm3.
  • the virtual interrupt vehicle corresponding to the lane change target position candidate preceding vehicle m2 during the lane change operation is referred to as vm2 #
  • the virtual interrupt vehicle corresponding to the lane change target position candidate following vehicle m3 during the lane change operation is referred to as vm3 #.
  • the virtual vehicle setting unit 112 determines whether or not the preceding vehicle m1 is recognized by the external recognition unit 104 (step S200). If the preceding vehicle m1 is not recognized by the external recognition unit 104, the virtual vehicle setting unit 112 sets the virtual vehicle vm1 virtually imitating the preceding vehicle m1 as a stationary body near the outer edge of the detection region ( Step S202).
  • FIG. 10 is a diagram illustrating an example of a scene in which the preceding vehicle m1 is not recognized in the detection area DR.
  • the travel lane (the lane in which the vehicle M travels) is represented as L1
  • the adjacent lane on the right side of the travel lane L1 is represented as L2
  • the adjacent lane on the left side of the travel lane L1 is represented as L3
  • the lane change target position candidate is represented as T.
  • the vehicle m2 is positioned in front of the lane change target position candidate T in the adjacent lane L2, and thus is recognized as a preceding vehicle for the lane change target position candidate.
  • the virtual vehicle setting unit 112 sets the stationary virtual vehicle vm1 in the vicinity of the outer edge of the detection region DR in front of the traveling lane L1.
  • the virtual vehicle setting unit 112 sets the virtual vehicle vm1 so that the rear end portion of the vehicle body is located outside the detection region DR.
  • FIG. 11 is a diagram illustrating an example of a state in which the virtual vehicle vm1 is set near the outer edge of the detection region DR. As illustrated in FIG. 11, the virtual vehicle setting unit 112 arranges the virtual vehicle vm1 outside the outer edge so that the entire vehicle body region is not included in the detection region DR.
  • the virtual vehicle setting unit 112 may set the virtual vehicle vm1 so that the rear end portion of the vehicle body is located inside the detection region DR.
  • FIG. 12 is a diagram illustrating another example of setting the virtual vehicle vm1 near the outer edge of the detection region DR. As illustrated in FIG. 12, the virtual vehicle setting unit 112 arranges the virtual vehicle vm1 on the outer edge so that a part of the vehicle body region is included in the detection region DR. Note that the virtual vehicle setting unit 112 may arrange the virtual vehicle vm1 on the inner side of the outer edge so that the entire vehicle body region is included in the detection region DR.
  • the virtual vehicle setting unit 112 sets the virtual vehicle vm1 at the center CL of the traveling lane, for example, with respect to the lane width direction with respect to the lane traveling direction. Note that the virtual vehicle setting unit 112 may set the virtual vehicle vm1 at a position outside the center CL in the lane width direction.
  • the virtual vehicle setting unit 112 recognizes the following vehicle m3 following the lane change target position candidate by the external recognition unit 104. It is determined whether or not (step S204).
  • the virtual vehicle setting unit 112 detects a virtual vehicle vm3 that virtually simulates the lane change target position candidate following vehicle m3 as a detection region. Is set as a moving object in the vicinity of the outer edge (step S206).
  • FIG. 13 is a diagram illustrating an example of a scene in which the lane change target position candidate succeeding vehicle m3 is not recognized in the detection region DR.
  • the traveling lane is represented as L1
  • the adjacent lane on the right side of the traveling lane L1 is represented as L2
  • the adjacent lane on the left side of the traveling lane L1 is represented as L3
  • the lane change target position candidate is represented as T.
  • the vehicle m1 is located in front of the vehicle M in the travel lane L1, and thus is recognized as a preceding vehicle.
  • the virtual vehicle setting unit 112 sets the virtual vehicle vm3 of the moving body in the vicinity of the outer edge of the detection region DR behind the adjacent lane L2.
  • the arrangement position of the virtual vehicle vm3 is the same as the arrangement position of the virtual vehicle vm1 described above.
  • the virtual vehicle setting unit 112 may set the virtual vehicle vm3 so that the front end portion of the vehicle body is positioned outside the detection region DR, or the front end portion of the vehicle body is positioned inside the detection region DR.
  • a virtual vehicle vm3 may be set.
  • the virtual vehicle setting unit 112 indicates that the lane change target position candidate following vehicle m3 recognized by the outside recognition unit 104 is the driving lane. It is determined whether or not it is estimated that the lane will be changed (or the lane will be changed) (step S208).
  • the virtual vehicle setting unit 112 will be described later. The process of S218 is performed.
  • the virtual vehicle setting unit 112 changes the lane. Whether the lane change target position candidate following vehicle m3 in operation is behind the preceding vehicle m1 or the virtual vehicle vm1 and ahead of the vehicle M, that is, the preceding vehicle m1 or the virtual vehicle vm1. It is determined whether or not the vehicle is located between the vehicle and the vehicle M (step S210).
  • the virtual vehicle setting unit 112 determines in the determination process in step S200 that the preceding vehicle m1 is recognized by the external recognition unit 104, the position of the lane change target position candidate following vehicle m3, the preceding vehicle By comparing the position of m1 and the position of the vehicle M, it is determined whether or not the lane change target position candidate following vehicle m3 during the lane changing operation is located between the preceding vehicle m1 and the vehicle M. . More specifically, the virtual vehicle setting unit 112 is configured such that the front end of the lane change target position candidate rear-running vehicle m3 is located behind the front end of the front-running vehicle m1 and is ahead of the front end of the vehicle M. In the case where the vehicle is located at, it is determined that the lane change target position candidate following vehicle m3 during the lane changing operation is located between the preceding vehicle m1 and the vehicle M.
  • the virtual vehicle setting unit 112 is such that the rear end portion of the lane change target position candidate rear vehicle m3 is positioned behind the rear end portion of the front vehicle m1 and forward of the rear end portion of the vehicle M. In this case, it may be determined that the lane change target position candidate following vehicle m3 during the lane changing operation is located between the preceding vehicle m1 and the vehicle M.
  • the virtual vehicle setting unit 112 is Lane change target position candidate
  • the lane change target position candidate It may be determined that the following vehicle m3 is positioned ahead of the vehicle M.
  • the lane change target position candidate following vehicle m3 recognized by the external recognition unit 104 is behind the virtual vehicle vm1. Will be located. Therefore, when it is determined that the preceding vehicle m1 is not recognized by the external recognition unit 104 in the process of step S200 described above ("No" determination result), the lane change target position candidate is determined in the determination process of step S210. The position of the following vehicle m3 is determined to be behind the position of the virtual vehicle vm1.
  • the virtual vehicle setting unit 112 When the lane change target position candidate following vehicle m3 during the lane changing operation is not located between the preceding vehicle m1 or the virtual vehicle vm1 and the vehicle M, the virtual vehicle setting unit 112 performs processing in step S218 described later. To implement. On the other hand, when the lane change target position candidate following vehicle m3 during the lane changing operation is located between the preceding vehicle m1 or the virtual vehicle vm1 and the vehicle M, the virtual vehicle setting unit 112 sets the virtual vehicle vm1. It is determined whether it has already been set (step S212).
  • the virtual vehicle setting unit 112 deletes the set virtual vehicle vm1 (step S214), and virtually sets the lane change target position candidate following vehicle m3 during the lane change operation.
  • the simulated virtual interrupt vehicle vm3 # is set as a moving object in the detection area DR (step S216).
  • the virtual vehicle setting unit 112 skips the process of step S214 and performs the process of step S216 described above.
  • FIG. 14 is a diagram illustrating an example of a scene in which a virtual interrupt vehicle vm3 # that virtually simulates the lane change target position candidate succeeding vehicle m3 is set.
  • the preceding vehicle m1 and the lane change target position candidate preceding vehicle m2 do not exist, the lane change target position candidate following vehicle m3 exists, and the lane change target position candidate after the detection region DR.
  • the traveling vehicle m3 is positioned in front of the vehicle M, and the lane change target position candidate following traveling vehicle m3 represents a situation in which the lane change from the adjacent lane L2 to the travel lane L1 is about to be performed.
  • the virtual vehicle setting unit 112 performs a virtual interrupt so as to be positioned next to the current lane change target position candidate succeeding vehicle m3 on the travel lane L1 that is the lane change destination of the lane change target position candidate succeeding vehicle m3.
  • the vehicle vm3 # is set. More specifically, for example, the virtual vehicle setting unit 112 is configured such that a perpendicular drawn from a reference point such as the center of gravity of the lane change target position candidate succeeding vehicle m3 and a lane center line on the traveling lane L1 are orthogonal to each other.
  • a virtual interrupt vehicle vm3 # is set.
  • the virtual vehicle setting unit 112 sets the speed or acceleration of the virtual interrupt vehicle vm3 # based on the state of the lane change target position candidate following vehicle m3. For example, the virtual vehicle setting unit 112 sets the virtual interrupt vehicle vm3 # having the same speed as the speed of the lane change target position candidate following vehicle m3.
  • the other vehicle position change estimation unit 113 receives the fact that the lane change target position candidate preceding vehicle m2 has not been recognized, and the virtual vehicle vm2 set by the virtual vehicle setting unit 112 and the lane change target position candidate The virtual interrupt vehicle vm3 # set by the virtual vehicle setting unit 112 in response to the fact that the following vehicle vm3 is in the lane changing operation, and the lane change target position candidate following vehicle that is being recognized by the external recognition unit 104 and is changing the lane A future position change is estimated for m3.
  • the virtual vehicle setting unit 112 performs the process of step S210 described above, compares the positions of the preceding vehicle m1, the lane change target position candidate following vehicle m3, and the vehicle M, and changes the lane. It is determined whether the target position candidate rear-running vehicle m3 is positioned between the front-running vehicle m1 and the vehicle M. In the example of FIG. 15, the lane change target position candidate following vehicle m3 is positioned behind the vehicle M, so the virtual vehicle setting unit 112 virtually simulates the lane change target position candidate following vehicle m3. The vehicle vm3 # is not set in the detection area DR.
  • the other vehicle position change estimating unit 113 determines the future vehicle m1, the lane change target position candidate preceding vehicle m2 and the lane change target position candidate following vehicle m3 recognized by the external field recognition unit 104 in the future. Estimate position change.
  • the virtual vehicle setting unit 112 determines whether or not the lane change target position candidate preceding vehicle m2 has been recognized by the external field recognition unit 104 (step S218). If the lane change target position candidate preceding vehicle m2 is not recognized by the outside recognition unit 104, the virtual vehicle setting unit 112 uses the virtual vehicle vm2 virtually simulating the lane change target position candidate preceding vehicle m2 as the outer edge of the detection region. It is set as a stationary body in the vicinity (step S220).
  • FIG. 16 is a diagram illustrating an example of a scene in which the lane change target position candidate preceding vehicle m2 is not recognized in the detection region DR.
  • the driving lane is L1
  • the adjacent lane on the right side of the driving lane L1 is L2
  • the adjacent lane on the left side of the driving lane L1 is L3
  • the lane change target position candidate is T, as in FIGS. Represents.
  • the vehicle m1 is located in front of the vehicle M in the travel lane L1, and thus is recognized as a preceding vehicle.
  • the virtual vehicle setting unit 112 sets the stationary virtual vehicle vm2 near the outer edge of the detection region DR in front of the adjacent lane L2.
  • the arrangement position of the virtual vehicle vm2 is the same as the arrangement position of the virtual vehicle vm1 and the virtual vehicle vm3 described above.
  • the virtual vehicle setting unit 112 may set the virtual vehicle vm2 so that the rear end portion of the vehicle body is located outside the detection region DR, or the rear end portion of the vehicle body is located inside the detection region DR.
  • the virtual vehicle vm2 may be set.
  • the virtual vehicle setting unit 112 causes the lane change target position candidate preceding vehicle m2 recognized by the outside world recognition unit 104 to travel. It is determined whether or not it is estimated that the lane is changed to the lane (or the lane is to be changed) (step S222).
  • the lane change control unit 110 of the flowchart ends.
  • the virtual vehicle setting unit 112 performs the virtual interrupt It is determined whether or not the vehicle vm3 # has already been set (step S224).
  • the lane change control unit 110 ends the process of this flowchart.
  • the virtual vehicle setting unit 112 indicates that the lane change target position candidate preceding vehicle m2 during the lane changing operation is behind the preceding vehicle m1 or the virtual vehicle vm1.
  • the virtual vehicle setting unit 112 determines the positional relationship of the preceding vehicle lane change target position candidate m2 as in the case of determining the positional relationship of the preceding vehicle lane change target position candidate m3 as described above. Judgment is made by comparing reference points such as the part and the center of gravity.
  • the virtual vehicle setting unit 112 deletes the set virtual vehicle vm1 (step S230), and virtually sets the lane change target position candidate preceding vehicle m2 during the lane change operation.
  • the simulated virtual interrupt vehicle vm2 # is set as a moving object in the detection area DR (step S232).
  • FIG. 17 is a diagram illustrating an example of a scene in which a virtual interrupt vehicle vm2 # virtually simulating the lane change target position candidate preceding vehicle m2 is set.
  • the preceding vehicle m1 does not exist in the detection region DR
  • the lane change target position candidate preceding vehicle m2 and the lane change target position candidate following vehicle m3 exist, and the lane change target position candidate before
  • the traveling vehicle m2 is located in front of the vehicle M
  • the vehicle in front of the lane change target position candidate m2 represents a situation in which the lane is changing from the adjacent lane L2 to the traveling lane L1.
  • the virtual vehicle setting unit 112 sets the speed or acceleration of the virtual interrupt vehicle vm2 # based on the state of the preceding vehicle lane change target position candidate m2. For example, the virtual vehicle setting unit 112 sets a virtual interrupt vehicle vm2 # having the same speed as the speed of the lane change target position candidate preceding vehicle m2.
  • the other vehicle position change estimating unit 113 determines the future vehicle m1, the lane change target position candidate preceding vehicle m2 and the lane change target position candidate following vehicle m3 recognized by the external field recognition unit 104 in the future. Estimate position change.
  • the virtual vehicle setting unit 112 when the vehicles before and after the lane change target position candidate T are both going to change lanes, the vehicle that is traveling closer to the vehicle M (lane change target position candidate following vehicle m3). Is preferentially set in front of the vehicle M.
  • the virtual interrupt vehicle is set when the lane change target position candidate preceding vehicle m2 and the lane change target position candidate following vehicle m3 are about to change lanes, but the present invention is not limited thereto.
  • the virtual vehicle setting unit 112 virtually imitates the vehicle.
  • a virtual interrupt vehicle may be set.
  • a vehicle traveling on an adjacent lane different from the adjacent lane in which the lane change target position candidate T is set will be referred to as a second adjacent lane traveling vehicle m4.
  • FIG. 20 is a diagram illustrating an example of a scene in which a virtual interrupt vehicle vm4 # that virtually simulates the second adjacent lane traveling vehicle m4 is set.
  • the preceding vehicle lane change target position candidate m2 does not exist in the detection region DR
  • the preceding vehicle m1 the lane change target position candidate following vehicle m3, and the second adjacent lane traveling vehicle m4 exist.
  • the second adjacent lane traveling vehicle m4 is positioned between the preceding vehicle m1 and the vehicle M, and the second adjacent lane traveling vehicle m4 is about to change the lane from the adjacent lane L3 to the traveling lane L1.
  • the virtual vehicle setting unit 112 sets a virtual interrupt vehicle vm4 # that virtually simulates the second adjacent lane traveling vehicle m4 as a moving body in the detection region DR.
  • the virtual vehicle setting unit 112 sets the speed or acceleration of the virtual interrupt vehicle vm4 # based on the state of the second adjacent lane traveling vehicle m4. For example, the virtual vehicle setting unit 112 sets the virtual interrupt vehicle vm4 # having the same speed as the speed of the second adjacent lane traveling vehicle m4.
  • the other vehicle position change estimation unit 113 receives the virtual interrupt vehicle vm4 # set by the virtual vehicle setting unit 112 in response to the second adjacent lane traveling vehicle m4 being in the lane change operation, and the lane change target. Future position changes for the virtual vehicle vm2 set by the virtual vehicle setting unit 112 in response to the fact that the position candidate preceding vehicle m2 is not recognized and the lane change target position candidate following vehicle m3 recognized by the external recognition unit 104 Is estimated.
  • the virtual vehicle setting unit 112 sets the second adjacent lane travel vehicle m4 and the lane.
  • the position of the target vehicle m3 following the change target position candidate is compared, and a virtual interrupt vehicle that virtually simulates a vehicle closer to the vehicle M is set.
  • FIG. 21 is a diagram illustrating another example of a scene where a virtual interrupt vehicle vm4 # virtually simulating the second adjacent lane traveling vehicle m4 is set.
  • the lane change target position candidate preceding vehicle m2 does not exist in the detection region DR, as in FIG. 20, the preceding vehicle m1, the lane change target position candidate following vehicle m3, the second adjacent vehicle
  • the second adjacent lane traveling vehicle m4 and the lane change target position candidate following vehicle m3 are positioned between the preceding vehicle m1 and the vehicle M
  • the second adjacent lane traveling vehicle m4 is the adjacent lane.
  • the lane change control unit 110 can set various virtual vehicles according to the lane change operation of the surrounding vehicle by the processing of the flowchart described above.
  • the vehicle position change estimation unit 113 estimates future position changes for these three monitored vehicles (step S104).
  • Future position changes can be estimated based on, for example, a constant speed model that is assumed to run while maintaining the current speed, a constant acceleration model that is assumed to run while maintaining the current acceleration, and various other models. it can.
  • the other vehicle position change estimation unit 113 may consider the steering angle of a monitoring vehicle (including a virtual vehicle) that is highly likely to interfere when the vehicle M changes lanes, or may not consider the steering angle.
  • the position change may be estimated on the assumption that the vehicle travels with the travel lane maintained. In the following description, it is assumed that the monitoring vehicle is assumed to travel while maintaining the traveling lane while maintaining the current speed.
  • FIG. 22 is a diagram illustrating an example of the positional relationship between the vehicle M and the surrounding vehicles when the monitoring vehicle to be determined is recognized.
  • M is a vehicle
  • m1 is a preceding vehicle
  • m2 is a preceding vehicle for a lane change target position candidate
  • m3 is a following vehicle for a lane change target position candidate
  • T is a lane change target position candidate.
  • pattern (a) shows a positional relationship of m1-m2-M-m3 in order from the traveling direction side of the vehicle, and shows an example in which the vehicle M changes lanes without changing the relative position with respect to the monitored vehicle.
  • Pattern (b) has a positional relationship of m2-m1-m3-M in order from the traveling direction side of the vehicle, and the lane is changed by increasing the relative position with respect to the monitored vehicle (relatively accelerating). An example is shown.
  • the other vehicle position change estimation unit 113 performs a classification of future position changes based on the speed models of the monitoring vehicles m1, m2, and m3 for each pattern in which the vehicle positional relationship is typified.
  • FIG. 23 is a diagram showing patterns obtained by categorizing changes in the position of surrounding vehicles with respect to the vehicle positional relationship pattern (a).
  • FIG. 24 is a diagram showing patterns obtained by typifying changes in the position of surrounding vehicles with respect to the vehicle positional relationship pattern (b). 23 and 24, the vertical axis represents displacement in the traveling direction with reference to the vehicle M, and the horizontal axis represents elapsed time. 23 and FIG.
  • the possible existence area after the lane change is a displacement in which the vehicle M can exist when the monitored vehicle (m1, m2, m3) continues traveling with the same tendency after the lane change. Shows the area.
  • the lane changeable region is below the displacement of the preceding vehicle m1, that is, the vehicle M is the preceding vehicle before the lane change is performed.
  • it is restricted not to come out before m1 it is shown that there is no problem even if it comes before the preceding vehicle m1 after changing lanes.
  • This possible area after the lane change is used for the processing of the control plan generation unit 114.
  • These patterns may be a pattern representing the positional relationship, and these patterns may be classified according to the number of vehicles. In the case of the above-described example, there are six types of patterns representing the positional relationship of vehicles.
  • the other vehicle position change estimation unit 113 receives the monitoring vehicle recognized by the external recognition unit 104 and the fact that the monitoring vehicle is not recognized and sets the virtual vehicle. A future position change is estimated for the virtual vehicle set by the unit 112 (step S104).
  • the other vehicle position change estimation unit 113 recognizes the recognized lane change target position. Future position changes are estimated for the candidate preceding vehicle, the lane change target position candidate succeeding vehicle, and the virtual vehicle that virtually simulates the unrecognized preceding vehicle.
  • FIG. 25 is a diagram illustrating an example of a positional relationship between the vehicle M and the monitoring vehicle when a part of the monitoring vehicle is not recognized.
  • the preceding vehicle m1 is not recognized, and a virtual vehicle vm1 virtually simulating the preceding vehicle m1 is set.
  • the positional relationship of the vehicle when the virtual vehicle vm1 is set will be described as a pattern (c).
  • the pattern (c) has a positional relationship of vm1-m2-Mm3 in order from the vehicle traveling direction side, and the vehicle M changes the lane without changing the relative position with the surrounding vehicle (monitoring vehicle). An example is shown.
  • FIG. 26 is a diagram showing patterns obtained by typifying changes in the position of surrounding vehicles with respect to the vehicle positional relationship pattern (c).
  • the vertical axis in FIG. 24 represents the displacement in the traveling direction with reference to the vehicle M, and the horizontal axis represents the elapsed time, as in FIGS.
  • the future position change is estimated by a model in which the virtual vehicle vm1 is assumed to be a stationary body of zero speed.
  • the other vehicle position change estimation unit 113 determines that all the surrounding vehicles The future position change is estimated for the virtual vehicle corresponding to. In such a case, the other vehicle position change estimation unit 113 estimates a future position change based on a speed model according to the speed of each virtual vehicle set by the virtual vehicle setting unit 112.
  • the other vehicle position change estimation unit 113 is not limited to the preceding vehicle, the preceding vehicle for the lane change target position candidate, and the following vehicle for the lane change target position candidate, for example, the preceding vehicle that travels in the traveling lane.
  • the future position change may be estimated in consideration of a vehicle different from the vehicle ahead of the lane change target position candidate preceding vehicle and the lane change target position candidate following vehicle traveling in the adjacent lane.
  • the other vehicle position change estimation unit 113 may estimate a future position change in consideration of a vehicle (for example, the second adjacent lane vehicle m4) traveling on a lane adjacent to the adjacent lane.
  • control plan generation unit 114 lanes based on the position change of the surrounding vehicle estimated by the other vehicle position change estimation unit 113.
  • a control plan for change is generated (step S106).
  • step S106 the process of step S106 will be described.
  • the control plan generation unit 114 determines the start time and the end time of the lane change based on the position change of the surrounding vehicle (monitoring vehicle) estimated by the other vehicle position change estimation unit 113, and from this start time The speed of the vehicle M is determined so as to change the lane during the period up to the end point (the lane changeable period P).
  • the control plan generation unit 114 determines the start time of the lane change.
  • the control plan generation unit 114 detects that the lane change target position candidate following vehicle m3 catches up with the lane change target position candidate preceding vehicle m2, and the lane change target position candidate following vehicle m3 and the lane change target position candidate preceding vehicle m2. When the distance between and a predetermined distance is determined as the end point. In this way, the control plan generation unit 114 derives the lane changeable period P by determining the start time and the end time of the lane change.
  • the control plan generation unit 114 obtains a restriction on the speed of the vehicle M that can enter the lane changeable area within the derived lane changeable period P, and generates a control plan for changing the lane according to the restriction on the speed.
  • FIG. 27 is a diagram illustrating an example of a control plan for changing lanes generated by the control plan generation unit 114.
  • the vertical axis in FIG. 27 represents the displacement in the traveling direction with reference to the vehicle M, and the horizontal axis represents the elapsed time.
  • the preceding vehicle is represented as m1
  • the lane change target position candidate preceding vehicle is represented as m2
  • the lane change target position candidate following vehicle is represented as m3.
  • m1 the preceding vehicle
  • m2 the lane change target position candidate preceding vehicle
  • m3 the lane change target position candidate following vehicle
  • the lane changeable area is smaller than the displacement of the preceding vehicle m1, smaller than the displacement of the lane change target position candidate preceding vehicle m2, and the displacement of the lane change target position candidate following vehicle m3. Is a larger area. That is, the speed limitation of the vehicle M is that the vehicle M is in the preceding vehicle m1 in the period (lane changeable period P) until the lane change target position candidate following vehicle m3 catches up with the lane change target position candidate preceding vehicle m2. It is set in a speed range in which the vehicle M overtakes the lane change target position candidate succeeding vehicle m3.
  • the restriction on the speed of the vehicle M is that the lane change that becomes the preceding vehicle after the lane change (a state that is located between the lane change target position candidate preceding vehicle m2 and the lane change target position candidate following vehicle m3). It may include following the target position candidate preceding vehicle m2. In this case, the vehicle M may deviate from the lane changeable area and enter the lane changeable area when the follow-up running is started. As shown in FIG. 27, the possible area after the lane change is an area where the displacement of the preceding vehicle m1 is smaller than the displacement of the preceding vehicle m2 of the lane change target position candidate.
  • entering the lane changeable area from the lane changeable area maintains the state where the vehicle M does not come out ahead of the preceding vehicle m1 due to the speed restriction before the lane change. From time to time, after changing the lane, the vehicle M transitions to a state where the vehicle M comes out ahead of the preceding vehicle m1.
  • the control plan generation unit 114 determines that the displacement of the vehicle M is the lane change target position candidate following vehicle m3.
  • the speed limit of the vehicle M is set so that the lane change is started at a point sufficiently larger than the displacement (for example, CP in FIG. 27).
  • the control plan generation unit 114 draws a trajectory (trajectory) representing a change in the displacement of the vehicle M shown in FIG. 27 so as to satisfy the speed constraint set in this manner, and uses this trajectory (trajectory) as a control plan. To derive.
  • the control plan generation unit 114 may generate a control plan such that the vehicle M follows the preceding vehicle at a speed at which the relative position between the vehicle M and the preceding vehicle is constant, for example. .
  • the lane change control unit 110 determines whether or not the processing of steps S100 to S106 has been performed for all lane change target position candidates T (step S108). When the processes of steps S100 to S106 are not performed for all lane change target position candidates T, the process returns to step S100, the next lane change target position candidate T is selected, and the subsequent processes are performed.
  • the target position determination unit 116 determines the lane change target position T # by evaluating the corresponding control plan (step S110). .
  • the traveling control unit 120 sets the control mode to the automatic operation mode or the manual operation mode under the control of the control switching unit 122, and the traveling driving force output device 72, the steering device 74, and the brake device 76 are set according to the set control mode. Control a controlled object including part or all of it.
  • the traveling control unit 120 reads the action plan information 136 generated by the action plan generation unit 106 in the automatic driving mode, and controls a control target based on an event included in the read action plan information 136. When this event is a lane change event, the travel control unit 120 follows the control plan generated by the control plan generation unit 114, the control amount (for example, the rotation speed) of the electric motor in the steering device 92, and the travel driving force output device.
  • a control amount of the ECU at 90 (for example, an engine throttle opening degree, a shift stage, etc.) is determined.
  • the traveling control unit 120 outputs information indicating the control amount determined for each event to the corresponding control target.
  • each device (72, 74, 76) to be controlled can control the device to be controlled according to the information indicating the control amount input from the travel control unit 120.
  • the traveling control unit 120 appropriately adjusts the determined control amount based on the detection result of the vehicle sensor 60.
  • the traveling control unit 120 controls the control target based on the operation detection signal output from the operation detection sensor 80 in the manual operation mode. For example, the traveling control unit 120 outputs the operation detection signal output by the operation detection sensor 80 to each device to be controlled as it is.
  • the control switching unit 122 changes the control mode of the vehicle M by the travel control unit 120 from the automatic driving mode to the manual driving mode based on the behavior plan information 136 generated by the behavior plan generating unit 106 and stored in the storage unit 130. Or switch from manual operation mode to automatic operation mode. Further, the control switching unit 122 changes the control mode of the vehicle M by the travel control unit 120 from the automatic operation mode to the manual operation mode, or from the manual operation mode to the automatic operation based on the control mode designation signal input from the changeover switch 82. Switch to mode. That is, the control mode of the traveling control unit 120 can be arbitrarily changed during traveling or stopping by an operation of a driver or the like.
  • the switching unit 122 switches the control mode of the travel control unit 120 from the automatic operation mode to the manual operation mode.
  • the vehicle control device 100 does not go through the operation of the changeover switch 82 by the operation performed by the driver when an object such as a person jumps out on the roadway or the preceding vehicle suddenly stops. You can immediately switch to manual operation mode.
  • the vehicle control device 100 can cope with an emergency operation by the driver, and can improve safety during traveling.
  • the outside recognition unit 104 that estimates the lane change by the surrounding vehicle that travels around the vehicle M
  • the outside recognition unit A virtual vehicle setting unit 112 that sets a virtual vehicle that virtually simulates a peripheral vehicle to be recognized on the lane of a lane change destination of the peripheral vehicle when the lane change by the peripheral vehicle is estimated by A control plan generation unit 114 that generates a control plan for the vehicle M based on the virtual vehicle set by the setting unit 112, and an acceleration, deceleration, or the like of the vehicle M based on the control plan generated by the control plan generation unit 114
  • the traveling control unit 120 that controls the steering, it is possible to perform flexible automatic driving according to the movement of the surrounding vehicle.
  • the vehicle control device 100 when the surrounding vehicle that is changing lanes is closer to the vehicle M than the preceding vehicle, the virtual interrupt vehicle Is set in front of the vehicle M, and the control plan of the vehicle M is generated with reference to the virtual interrupt vehicle set instead of the preceding vehicle, so that more flexible automatic driving is performed according to the movement of the surrounding vehicles. Can do.
  • the vehicle control device 100 according to the second embodiment is different from the first and second embodiments in that the virtual vehicle is set based on the relative speed Vr between the speed of the monitored vehicle and the speed of the vehicle M.
  • Vr the relative speed between the speed of the monitored vehicle and the speed of the vehicle M.
  • the virtual vehicle setting unit 112 in the second embodiment determines whether or not the lane change destination of the monitoring vehicle is a travel lane, and when the lane change destination of the monitoring vehicle is a travel lane, the speed of the monitoring vehicle Based on the relative speed Vr with respect to the speed of the vehicle M, an area in which the virtual vehicle is not set (hereinafter referred to as “non-setting area NSR”) is set in front of the vehicle M.
  • FIG. 28 and FIG. 29 are flowcharts illustrating an example of a processing flow of the lane change control unit 110 in the second embodiment.
  • the process of this flowchart corresponds to the process of step S102 of the flowchart of FIG. 7 described in the first embodiment.
  • the virtual vehicle setting unit 112 recognizes the following vehicle m3 following the lane change target position candidate by the external recognition unit 104. It is determined whether or not (step S304).
  • the virtual vehicle setting unit 112 detects a virtual vehicle vm3 that virtually simulates the lane change target position candidate following vehicle m3 as a detection region. Is set as a moving object in the vicinity of the outer edge (step S306).
  • the virtual vehicle setting unit 112 indicates that the lane change target position candidate following vehicle m3 recognized by the outside recognition unit 104 is the driving lane. It is determined whether or not it is estimated that the lane will be changed (or the lane is to be changed) (step S308).
  • the virtual vehicle setting unit 112 changes the lane. Whether the lane change target position candidate following vehicle m3 in operation is behind the preceding vehicle m1 or the virtual vehicle vm1 and ahead of the vehicle M, that is, the preceding vehicle m1 or the virtual vehicle vm1. It is determined whether the vehicle is located between the vehicle M and the vehicle M (step S310).
  • the virtual vehicle setting unit 112 When the lane change target position candidate following vehicle m3 during the lane changing operation is not located between the preceding vehicle m1 or the virtual vehicle vm1 and the vehicle M, the virtual vehicle setting unit 112 performs the process of step S322 described later. To implement.
  • the speed of the lane change target position candidate following vehicle m3 during the lane change operation is located between the preceding vehicle m1 or the virtual vehicle vm1 and the vehicle M, the speed of the lane change target position candidate following vehicle m3. It is determined whether or not the relative speed Vr between the vehicle speed and the speed of the vehicle M is greater than or equal to zero (step S312).
  • the relative speed Vr is a value obtained by subtracting the speed value of the vehicle M from the speed value of the following vehicle lane change target position candidate m3.
  • the virtual vehicle setting unit 112 sets the non-setting area NSR in front of the vehicle M when the relative speed Vr is greater than or equal to zero (step S314).
  • FIG. 30 is a diagram schematically showing whether or not to set the non-setting area NSR.
  • the vertical axis represents the distance (position) on the traveling direction side
  • the horizontal axis represents the relative speed Vr.
  • a point O shown in FIG. 30 is an origin coordinate, and a zero relative speed Vr and a position of the vehicle M are used as reference coordinates. Therefore, when the monitoring vehicle is positioned ahead of the vehicle M, the vertical axis takes a positive value. Moreover, when the speed of the monitoring vehicle is larger than the speed of the vehicle M, the relative speed Vr becomes zero or more and takes a positive value on the horizontal axis.
  • the virtual vehicle setting unit 112 sets the non-setting area NSR when taking a positive value on both the vertical axis and the horizontal axis. That is, the virtual vehicle setting unit 112 sets the non-setting area NSR when the monitoring vehicle is positioned ahead of the vehicle M and the speed of the monitoring vehicle is higher than the speed of the vehicle M.
  • the virtual vehicle setting unit 112 determines the area area of the non-setting area NSR based on the relative speed Vr. For example, the distance component NSRy in the lane width direction and the distance component NSRx in the lane length direction of the non-setting area NSR are respectively determined, and the area area of the non-setting area NSR is determined.
  • FIG. 31 is a diagram showing an example of the relationship between the distance component NSRx in the lane length direction in the non-setting area NSR and the relative speed Vr.
  • Point O in the figure is the origin coordinate, and the reference coordinate is when the relative velocity Vr is zero and when the distance component NSRx is zero.
  • the distance component NSRx increases exponentially with the increase of the relative velocity Vr in the range from the origin O to a certain inflection point IP, and in the range after the certain inflection point IP, It is expressed by a function F that increases logarithmically (or positive square root function) as the relative velocity Vr increases and saturates along an asymptote.
  • Such a function F may be represented by a graph-like map as shown in FIG. 31, for example, or as table data in which the distance component NSRx and the relative velocity Vr are associated with each other for some sample points. May be represented.
  • Such a function F (or map or table data) is stored in the storage unit 130 as non-setting area derivation information 138. Therefore, the virtual vehicle setting unit 112 refers to the non-setting area derivation information 138, for example, substitutes the relative speed Vr into the function F, and determines the distance component NSRx in the lane length direction in the non-setting area NSR. .
  • the function described above is merely an example, and may be represented by another function.
  • the virtual vehicle setting unit 112 determines whether or not the lane change target position candidate preceding vehicle m2 has been recognized by the external world recognition unit 104 (step S322). If the lane change target position candidate preceding vehicle m2 is not recognized by the outside recognition unit 104, the virtual vehicle setting unit 112 uses the virtual vehicle vm2 virtually simulating the lane change target position candidate preceding vehicle m2 as the outer edge of the detection region. A stationary object is set in the vicinity (step S324).
  • the virtual vehicle setting unit 112 causes the lane change target position candidate preceding vehicle m2 recognized by the outside world recognition unit 104 to travel. It is determined whether or not an operation of changing the lane to the lane (or changing the lane) is performed (step S326).
  • the virtual vehicle setting unit 112 It is determined whether or not the interrupting vehicle vm3 # has already been set (step S328).
  • the lane change control unit 110 ends the process of this flowchart.
  • the virtual vehicle setting unit 112 indicates that the lane change target position candidate preceding vehicle m2 during the lane changing operation is behind the preceding vehicle m1 or the virtual vehicle vm1.
  • the virtual vehicle setting unit 112 determines whether or not the virtual vehicle vm1 has already been set when the relative speed Vr is not greater than or equal to zero or when the non-setting area NSR is set (step S336). If the virtual vehicle vm1 has already been set, the virtual vehicle setting unit 112 deletes the set virtual vehicle vm1 (step S338), and virtually sets the lane change target position candidate preceding vehicle m2 during the lane change operation.
  • the simulated virtual interrupt vehicle vm2 # is set as a moving body in the detection area DR excluding the non-setting area NSR (step S340).
  • the virtual vehicle setting unit 112 skips the process of step S338 and performs the process of step S340 described above. Thereby, the process of this flowchart is complete
  • the virtual vehicle setting unit 112 sets the virtual interrupt vehicle vm2 #. At this time, the virtual vehicle setting unit 112 sets the non-setting region NSR with reference to the front end portion of the vehicle M using the function F as shown in FIG. The virtual vehicle setting unit 112 sets the virtual interrupt vehicle vm2 # in an area excluding the non-setting area NSR.
  • the other vehicle position change estimation unit 113, the virtual interrupt vehicle vm2 # set by the virtual vehicle setting unit 112, the lane change target position candidate preceding vehicle m2 and the lane change recognized by the external world recognition unit 104 A future position change is estimated for the target position candidate rear-running vehicle m3.
  • the vehicle control apparatus 100 when the monitoring vehicle traveling in the adjacent lane changes the lane on the traveling lane, the non-set area on the traveling lane Since the NSR is set, the virtual vehicle is not set near the vehicle M.
  • the vehicle control apparatus 100 according to the second embodiment can realize a gradual transition of the control state even when the monitored vehicle interrupts the traveling lane and changes the lane.
  • the vehicle control apparatus 100 in the second embodiment can smoothly control the traveling of the vehicle M.
  • FIG. 33 is a functional configuration diagram of the vehicle M around the vehicle control device 100A according to the third embodiment.
  • the same reference numerals are given to the functional units common to the first embodiment, and the description thereof will be omitted.
  • the external environment recognition unit 104 of the vehicle control device 100A determines whether or not the surrounding vehicle has changed lanes based on the history of the position of the surrounding vehicle, the operating state of the direction indicator, or the like (or Or not).
  • the external environment recognition unit 104 reduces the lane in front of the vehicle M based on the position of the vehicle M acquired from the navigation device 50 and the map information 132, or information input from the finder 20, the radar 30, the camera 40, and the like. When detected, the lane change of the surrounding vehicle is estimated based on the distance to the lane decrease point or the arrival time.
  • the external world recognition unit 104 is another example of an “estimation unit”.
  • the virtual vehicle setting unit 112 sets, in a predetermined state, a virtual vehicle that virtually simulates the surrounding vehicle when there is a surrounding vehicle estimated to be changed to the lane in which the vehicle M travels by the external recognition unit 104. To do.
  • the predetermined state is, for example, a state in which the current speed of surrounding vehicles is maintained.
  • the traveling control unit 120A is a vehicle out of the surrounding vehicles that travel in front of the vehicle M or the virtual vehicles that are set in front of the vehicle M when the automatic operation mode is set. Control is performed to maintain a constant inter-vehicle distance for peripheral vehicles closer to M. As a result, the vehicle control device 100A can perform safer control than that in which the inter-vehicle distance control is performed only on a vehicle that actually travels in front of the vehicle M.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)

Abstract

車両制御装置は、車両の周辺を走行する周辺車両による車線変更を推定する推定部と、前記推定部によって前記周辺車両の車線変更が推定された場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定する仮想車両設定部と、前記仮想車両設定部によって設定された仮想車両に基づいて、前記車両の制御計画を生成する制御計画生成部と、前記制御計画生成部によって生成された制御計画に基づいて、前記車両の加速、減速または操舵を制御する走行制御部と、を備える。

Description

車両制御装置、車両制御方法、および車両制御プログラム
 本発明は、車両制御装置、車両制御方法、および車両制御プログラムに関する。
 本願は、2015年8月6日に出願された日本国特許出願2015-156207号及び2015年9月11日に出願された日本国特許出願2015-179974号に基づき優先権を主張し、その内容をここに援用する。
 近年、自車両(以下、第1車両又は単に車両ともいう)と周辺車両との相対関係によって走行時に車線変更を自動で行う技術が望まれている。
 これに関連して、入力装置の入力に基づいて車線変更の支援を開始する支援開始部と、自車(以下、第1車両又は単に車両ともいう)と他車(以下、第2車両又は他車両ともいう)の相対距離及び相対速度を検出する検出部と、検出部が検出した相対距離及び相対速度に基づいて自車が車線変更した時の衝突危険度を他車に対して算出する算出部と、相対距離,相対速度及び衝突危険度に基づいて車線変更の可否を判断する第1の判断部と、第1の判断部が車線変更できないと判断した場合、相対距離及び相対速度に基づいて車線変更する目標スペースを決定する決定部と、目標スペースに車線変更できるスペースがあるか否かを判断する第2の判断部と、第2の判断部が前記スペースがないと判断した場合、車線変更待機位置へ向けて目標速度を設定し、スペースがあると判断した場合、車線変更可能位置へ向けて目標速度を設定する設定部と、自車の速度が目標速度となるように制御する制御部とを備える走行支援装置が知られている(例えば、特許文献1参照)。
日本国特開2009-078735号公報
 しかしながら、従来の技術では、レーダやカメラ等の検出部による検出結果に基づいて車両の走行を制御する場合、周辺車両の動きに応じて柔軟な自動運転を行うことができない場合があった。
 本発明の態様は、このような事情を考慮してなされたものであり、周辺車両の動きに応じて柔軟な自動運転を行うことができる車両制御装置、車両制御方法、および車両制御プログラムを提供することを目的の一つとする。
 (1)本発明の一態様は、車両に設けられた車両制御装置であって、前記車両の周辺を走行する周辺車両による車線変更を推定する推定部と、前記推定部によって前記周辺車両による車線変更が推定された場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定する仮想車両設定部と、前記仮想車両設定部によって設定された仮想車両に基づいて、前記車両の制御計画を生成する制御計画生成部と、前記制御計画生成部によって生成された制御計画に基づいて、前記車両の加速、減速または操舵を制御する走行制御部と、を備える。
 (2)上記(1)の態様では、前記仮想車両設定部は、前記推定部によって前記周辺車両による車線変更が推定された際の前記推定の対象である周辺車両の速度に関する情報に基づいて、前記仮想車両の状態を設定してもよい。
 (3)上記(1)又は(2)の態様では、前記仮想車両設定部は、前記推定部によって前記周辺車両による車線変更が推定された際の前記周辺車両の車線変更先の車線が、前記車両が走行する車線である場合に、前記車両の位置から前方に、前記仮想車両を設定しない非設定領域を設けてもよい。
 (4)上記(3)の態様では、前記非設定領域は、前記車両の速度と、前記車線変更の推定の対象である周辺車両の速度との相対速度に基づいて設けられてもよい。
 (5)上記(1)から(4)のいずれか一項の態様では、前記仮想車両設定部は、前記推定部により、前記車両と前記車両の前方を走行する前走車両との間に対する前記周辺車両の車線変更が推定された場合に、前記車両が走行する車線上において前記仮想車両を設定し、前記制御計画生成部は、前記前走車両の代わりに前記仮想車両設定部によって設定された仮想車両に基づいて、前記車両の制御計画を生成してもよい。
 (6)上記(1)から(5)のいずれか一項の態様では、前記推定部は、前記車両の前方における車線の減少を検知した場合に、前記車両の周辺を走行する周辺車両が車線変更をすると推定してもよい。
 (7)上記(6)の態様では、前記推定部は、前記車両の位置を用いて地図情報を参照することにより、前記車両の前方における車線の減少を検知してもよい。
 (8)上記(6)又は(7)の態様では、前記推定部は、前記車両の前方における車線の減少を検知した場合に、前記車両または前記周辺車両から前記車線の減少する地点までの距離または到達時間に基づいて、前記車両の周辺を走行する周辺車両が車線変更をするタイミングを推定してもよい。
 (9)本発明の別の一態様は、車両に設けられた車両制御装置であって、前記車両の前方における車線の減少を検知した場合に、前記車両の周辺を走行する周辺車両による車線変更を推定する推定部と、前記推定部によって前記周辺車両による車線変更が推定された場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定する仮想車両設定部と、前記仮想車両設定部によって設定された仮想車両に基づいて、前記車両の加速、減速または操舵を制御する走行制御部と、を備える。
 (10)本発明のさらに別の一態様は、車両に設けられたコンピュータが、前記車両の周辺を走行する周辺車両による車線変更を推定し、前記周辺車両による車線変更を推定した場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定し、前記設定した仮想車両に基づいて、前記車両の制御計画を生成し、前記生成した制御計画に基づいて、前記車両の加速、減速または操舵を制御する車両制御方法である。
 (11)本発明のさらに別の一態様は、車両に設けられたコンピュータに、前記車両の周辺を走行する周辺車両による車線変更を推定させ、前記周辺車両による車線変更を推定させた場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定させ、前記設定させた仮想車両に基づいて、前記車両の制御計画を生成させ、前記生成させた制御計画に基づいて、前記車両の加速、減速または操舵を制御させる車両制御プログラムである。
 上記(1)、(2)、(10)、(11)の態様によれば、車両の周辺を走行する周辺車両が車線変更をすると推定される場合に、周辺車両の車線変更先の車線上に、周辺車両を仮想的に擬した仮想車両を設定し、設定した仮想車両に基づいて車両の制御計画を生成し、制御計画に基づいて、車両の加速、減速または操舵を制御するため、周辺車両の動きに応じて柔軟な自動運転を行うことができる。
 上記(3)の態様によれば、周辺車両の車線変更先の車線が、車両が走行する車線である場合に、車両の位置から前方に、仮想車両を設定しない非設定領域を設けるため、自動運転の制御下において、緩やかな制御状態の遷移を実現することができる。
 上記(4)の態様によれば、仮想車両を設定しない非設定領域は、車両の速度と、推定の対象である周辺車両の速度との相対速度に基づいて設けられるため、周辺車両の動きに応じて、より柔軟な自動運転を行うことができる。
 上記(5)の態様によれば、車両と車両の前方を走行する前走車両との間に対する車線変更が推定された場合に、車両が走行する車線上において仮想車両を設定し、前走車両の代わりに設定した仮想車両に基づいて、車両の制御計画を生成するため、周辺車両の動きに応じて、より柔軟な自動運転を行うことができる。
 上記(6)、(7)の態様によれば、車両の前方における車線の減少を検知した場合に、車両の周辺を走行する周辺車両が車線変更をすると推定するため、周辺車両から得られる情報のみで周辺車両の車線変更を推定する場合に比して、より迅速かつ正確な推定を行うことができる。
 上記(8)の態様によれば、車両の前方における車線の減少を検知した場合に、車線の減少する地点までの距離または到達時間に基づいて、車両の周辺を走行する周辺車両が車線変更をするタイミングを推定するため、更に正確な推定を行うことができる。
 上記(9)の態様によれば、車両の周辺を走行する周辺車両が車線変更をすると推定される場合に、周辺車両の車線変更先の車線上に、周辺車両を仮想的に擬した仮想車両を設定し、設定した仮想車両に基づいて車両の加速、減速または操舵を制御するため、周辺車両の動きに応じて、より安全な制御を行うことができる。
第1の実施形態に係る車両制御装置が搭載された車両の有する構成要素を示す図である。 第1の実施形態に係る車両制御装置を中心とした車両の機能構成図である。 自車位置認識部102により走行車線に対する車両の相対位置が認識される様子を示す図である。 外界認識部により、車線減少が検知された場合に周辺車両の車線変更が推定される様子を示す図である。 ある区間について生成された行動計画の一例を示す図である。 第1の実施形態におけるターゲット位置候補設定部が車線変更ターゲット位置候補を設定する様子を示す図である。 第1の実施形態における車線変更制御部の処理の流れの一例を示すフローチャートである。 第1の実施形態における仮想車両の設定処理の流れの一例を示すフローチャート(その1)である。 第1の実施形態における仮想車両の設定処理の流れの一例を示すフローチャート(その2)である。 検出領域内において前走車両が認識されていない場面の一例を示す図である。 検出領域の外縁付近に仮想車両を設定する様子の一例を示す図である。 検出領域の外縁付近に仮想車両を設定する様子の他の例を示す図である。 検出領域内において車線変更ターゲット位置候補後走車両が認識されていない場面の一例を示す図である。 車線変更ターゲット位置候補後走車両を仮想的に擬した仮想割込み車両が設定される場面の一例を示す図である。 車線変更ターゲット位置候補後走車両を仮想的に擬した仮想割込み車両が設定されない場面の一例を示す図である。 検出領域内において車線変更ターゲット位置候補前走車両が認識されていない場面の一例を示す図である。 車線変更ターゲット位置候補前走車両を仮想的に擬した仮想割込み車両が設定される場面の一例を示す図である。 車線変更ターゲット位置候補前走車両を仮想的に擬した仮想割込み車両が設定されない場面の一例を示す図である。 車線変更ターゲット位置候補後走車両を仮想的に擬した仮想割込み車両が設定される場面の他の例を示す図である。 第2隣接車線走行車両を仮想的に擬した仮想割込み車両が設定される場面の一例を示す図である。 第2隣接車線走行車両を仮想的に擬した仮想割込み車両が設定される場面の他の例を示す図である。 判定の対象となる周辺車両が認識されている場合における車両と周辺車両との位置関係の一例を示す図である。 車両位置関係のパターン(a)について周辺車両の位置変化を類型化した各パターンを示す図である。 車両位置関係のパターン(b)について周辺車両の位置変化を類型化した各パターンを示す図である。 監視車両の一部が認識されていない場合における車両と監視車両との位置関係の一例を示す図である。 車両位置関係のパターン(c)について周辺車両の位置変化を類型化した各パターンを示す図である。 制御計画生成部により生成される車線変更のための制御計画の一例を示す図である。 第2の実施形態における車線変更制御部の処理の流れの一例を示すフローチャート(その1)である。 第2の実施形態における車線変更制御部の処理の流れの一例を示すフローチャート(その2)である。 非設定領域を設定するか否かを模式的に表した図である。 非設定領域における車線長さ方向の距離成分と、相対速度との関係の一例を示した図である。 非設定領域の前方の検出領域内に、車線変更ターゲット位置候補前走車両を仮想的に擬した仮想割込み車両を設定する場面を模式的に示した図である。 第3の実施形態に係る車両制御装置を中心とした車両の機能構成図である。
 以下、図面を参照し、本発明の実施形態に係る車両制御装置、車両制御方法、および車両制御プログラムについて説明する。
 <第1の実施形態>
 [車両構成]
 図1は、第1の実施形態に係る車両制御装置100が搭載された車両M(以下、第1車両Mとも称する)の有する構成要素を示す図である。車両制御装置100が搭載される車両は、例えば、二輪や三輪、四輪等の自動車であり、ディーゼルエンジンやガソリンエンジン等の内燃機関を動力源とした自動車や、電動機を動力源とした電気自動車、内燃機関および電動機を兼ね備えたハイブリッド自動車等を含む。また、上述した電気自動車は、例えば、二次電池、水素燃料電池、金属燃料電池、アルコール燃料電池等の電池により放電される電力を使用して駆動する。
 図1に示すように、車両Mには、ファインダ20-1から20-7、レーダ30-1から30-6、およびカメラ40等のセンサと、ナビゲーション装置50と、車両制御装置100とが搭載される。ファインダ20-1から20-7は、例えば、照射光に対する散乱光を測定し、対象までの距離を測定するLIDAR(Light Detection andRanging、或いはLaser Imaging Detection and Ranging)である。例えば、ファインダ20-1は、フロントグリル等に取り付けられ、ファインダ20-2および20-3は、車体の側面やドアミラー、前照灯内部、側方灯付近等に取り付けられる。ファインダ20-4は、トランクリッド等に取り付けられ、ファインダ20-5および20-6は、車体の側面や尾灯内部等に取り付けられる。ファインダ20-1から20-6は、例えば、水平方向に関して150度程度の検出領域を有している。また、ファインダ20-7は、ルーフ等に取り付けられる。ファインダ20-7は、例えば、水平方向に関して360度の検出領域を有している。
 レーダ30-1および30-4は、例えば、奥行き方向の検出領域が他のレーダよりも広い長距離ミリ波レーダである。また、レーダ30-2、30-3、30-5、30-6は、レーダ30-1および30-4よりも奥行き方向の検出領域が狭い中距離ミリ波レーダである。以下、ファインダ20-1から20-7を特段区別しない場合は、単に「ファインダ20」と記載し、レーダ30-1から30-6を特段区別しない場合は、単に「レーダ30」と記載する。レーダ30は、例えば、FM-CW(Frequency Modulated Continuous Wave)方式によって物体を検出する。
 カメラ40は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の個体撮像素子を利用したデジタルカメラである。カメラ40は、フロントウィンドシールド上部やルームミラー裏面等に取り付けられる。カメラ40は、例えば周期的に繰り返し車両Mの前方を撮像する。
 なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
 図2は、第1の実施形態に係る車両制御装置100を中心とした車両Mの機能構成図である。車両Mには、ファインダ20、レーダ30、およびカメラ40の他、ナビゲーション装置50と、車両センサ60と、走行駆動力出力装置72、ステアリング装置74、およびブレーキ装置76と、操作デバイス78と、操作検出センサ80と、切替スイッチ82と、車両制御装置100とが搭載される。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。
 ナビゲーション装置50は、GNSS(Global Navigation Satellite System)受信機や地図情報(ナビ地図)、ユーザインターフェースとして機能するタッチパネル式表示装置、スピーカ、マイク等を有する。ナビゲーション装置50は、GNSS受信機によって車両Mの位置を特定し、その位置からユーザによって指定された目的地までの経路を導出する。ナビゲーション装置50により導出された経路は、経路情報134として記憶部130に格納される。車両Mの位置は、車両センサ60の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。また、ナビゲーション装置50は、車両制御装置100が手動運転モードを実行している際に、目的地に至る経路について音声やナビ表示によって案内を行う。なお、車両Mの位置を特定するための構成は、ナビゲーション装置50とは独立して設けられてもよい。また、ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の一機能によって実現されてもよい。この場合、端末装置と車両制御装置100との間で無線または通信によって情報の送受信が行われる。なお、車両Mの位置を特定するための構成は、ナビゲーション装置50とは独立して設けられてもよい。
 車両センサ60は、車速を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、車両Mの向きを検出する方位センサ等を含む。
 走行駆動力出力装置72は、例えば、車両Mが内燃機関を動力源とした自動車である場合、エンジンおよびエンジンを制御するエンジンECU(Electronic Control Unit)を備える。走行駆動力出力装置72は、例えば、車両Mが電動機を動力源とした電気自動車である場合、走行用モータおよび走行用モータを制御するモータECUを備える。走行駆動力出力装置72は、例えば、車両Mがハイブリッド自動車である場合、エンジンおよびエンジンECUと走行用モータおよびモータECUを備える。走行駆動力出力装置72がエンジンのみを含む場合、エンジンECUは、後述する走行制御部120から入力される情報に従って、エンジンのスロットル開度やシフト段等を調整し、車両が走行するための走行駆動力(トルク)を出力する。また、走行駆動力出力装置72が走行用モータのみを含む場合、モータECUは、走行制御部120から入力される情報に従って、走行用モータに与えるPWM信号のデューティ比を調整し、上述した走行駆動力を出力する。また、走行駆動力出力装置72がエンジンおよび走行用モータを含む場合、エンジンECUおよびモータECUの双方は、走行制御部120から入力される情報に従って、互いに協調して走行駆動力を制御する。
 ステアリング装置74は、例えば、電動モータと、ステアリングトルクセンサと、操舵角センサ等を備える。電動モータは、例えば、ラックアンドピニオン機能等に力を作用させてステアリングホイールの向きを変更する。ステアリングトルクセンサは、例えば、ステアリングホイールを操作したときのトーションバーのねじれをステアリングトルク(操舵力)として検出する。操舵角センサは、例えば、ステアリング操舵角(または実舵角)を検出する。ステアリング装置74は、走行制御部120から入力される情報に従って、電動モータを駆動させ、ステアリングホイールの向きを変更する。
 ブレーキ装置76は、ブレーキペダルになされたブレーキ操作が油圧として伝達されるマスターシリンダー、ブレーキ液を蓄えるリザーバータンク、各車輪に出力される制動力を調節するブレーキアクチュエータ等を備える。制動制御部44は、走行制御部120から入力される情報に従って、マスターシリンダーの圧力に応じたブレーキトルクが各車輪に出力されるように、ブレーキアクチュエータ等を制御する。なお、ブレーキ装置76は、上記説明した油圧により作動する電子制御式ブレーキ装置に限らず、電動アクチュエーターにより作動する電子制御式ブレーキ装置であってもよい。
 操作デバイス78は、例えば、アクセルペダルやステアリングホイール、ブレーキペダル、シフトレバー等を含む。操作デバイス78には、運転者による操作の有無や量を検出する操作検出センサ80が取り付けられている。操作検出センサ80は、例えば、アクセル開度センサ、ステアリングトルクセンサ、ブレーキセンサ、シフト位置センサ等を含む。操作検出センサ80は、検出結果としてのアクセル開度、ステアリングトルク、ブレーキ踏量、シフト位置等を走行制御部120に出力する。なお、これに代えて、操作検出センサ80の検出結果が、直接的に走行駆動力出力装置72、ステアリング装置74、またはブレーキ装置76に出力されてもよい。
 切替スイッチ82は、運転者等によって操作されるスイッチである。切替スイッチ82は、例えば、ステアリングホイールやガーニッシュ(ダッシュボード)等に設置される機械式のスイッチであってもよいし、ナビゲーション装置50のタッチパネルに設けられるGUI(Graphical User Interface)スイッチであってもよい。切替スイッチ82は、運転者等の操作を受け付け、走行制御部120による制御モードを自動運転モードまたは手動運転モードのいずれか一方に指定する制御モード指定信号を生成し、制御切替部122に出力する。自動運転モードとは、上述したように、運転者が操作を行わない(或いは手動運転モードに比して操作量が小さい、または操作頻度が低い)状態で走行する運転モードである。自動運転モードとは、より具体的には、行動計画に基づいて走行駆動力出力装置72、ステアリング装置74、およびブレーキ装置76の一部または全部を制御する運転モードである。
 [車両制御装置]
 以下、車両制御装置100について説明する。車両制御装置100は、例えば、自車位置認識部102と、外界認識部104と、行動計画生成部106と、車線変更制御部110と、走行制御部120と、制御切替部122と、記憶部130とを備える。自車位置認識部102、外界認識部104、行動計画生成部106、車線変更制御部110、走行制御部120、および制御切替部122のうち一部または全部は、CPU(Central Processing Unit)等のプロセッサがプログラムを実行することにより機能するソフトウェア機能部である。また、これらのうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。また、記憶部130は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。プロセッサが実行するプログラムは、予め記憶部130に格納されていてもよいし、車載インターネット設備等を介して外部装置からダウンロードされてもよい。また、プログラムを格納した可搬型記憶媒体が図示しないドライブ装置に装着されることで記憶部130にインストールされてもよい。
 自車位置認識部102は、記憶部130に格納された地図情報132と、ファインダ20、レーダ30、カメラ40、ナビゲーション装置50、または車両センサ60から入力される情報とに基づいて、車両Mが走行している車線(走行車線)、および、走行車線に対する車両Mの相対位置を認識する。地図情報132は、例えば、ナビゲーション装置50が有するナビ地図よりも高精度な地図情報であり、車線の中央の情報あるいは車線の境界の情報等を含んでいる。より具体的には、地図情報132には、道路情報と、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報等が含まれる。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。交通規制情報には、工事や交通事故、渋滞等によって車線が封鎖されているといった情報が含まれる。
 図3は、自車位置認識部102により走行車線L1に対する車両Mの相対位置が認識される様子を示す図である。自車位置認識部102は、例えば、車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する車両Mの相対位置として認識する。なお、これに代えて、自車位置認識部102は、走行車線L1(車両Mが走行する車線)のいずれかの側端部に対する車両Mの基準点の位置などを、走行車線に対する車両Mの相対位置として認識してもよい。
 外界認識部104は、ファインダ20、レーダ30、カメラ40等から入力される情報に基づいて、周辺車両の位置、および速度、加速度等の状態を認識する。本実施形態における周辺車両とは、車両Mの周辺を走行する車両であって、車両Mと同じ方向に走行する車両である。周辺車両の位置は、他車両(以下、第2車両ともいう)の重心やコーナー等の代表点で表されてもよいし、他車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、上記各種機器の情報に基づいて周辺車両の加速度、車線変更をしているか否か(あるいはしようとしているか否か)を含んでもよい。また、外界認識部104は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者その他の物体の位置を認識してもよい。
 外界認識部104は、周辺車両の位置の履歴や方向指示器の作動状態等に基づいて、周辺車両が車線変更をしているか否か(あるいはしようとしているか否か)を推定する。また、外界認識部104は、ナビゲーション装置50から取得される車両Mの位置および地図情報132、あるいはファインダ20、レーダ30、カメラ40等から入力される情報に基づいて車両Mの前方における車線減少を検知した場合に、その車線減少地点までの距離または到達時間に基づいて、周辺車両の車線変更を推定する。外界認識部104は、「推定部」の一例である。
 図4は、外界認識部104により、車線減少が検知された場合に周辺車両の車線変更が推定される様子を示す図である。図中、mは周辺車両であり、dは各車両の進行(走行)方向であり、L1は車両Mが走行する車線であり、L2、L3は隣接車線である。図示するように、車両Mの前方における地点VPにおいて、隣接車線L2が消失して車線L1に合流するような道路形状となっている。この場合、外界認識部104は、隣接車線L2を走行する周辺車両mが車線L1に車線変更すると推定する。
 外界認識部104は、ナビゲーション装置50から取得される車両Mの位置に基づいて地図情報132を検索し、例えば車両Mの位置から前方に向けて第1所定距離(例えば数百[m]~数[km])以内に車線の減少する地点VPがあるか否かを判定する。そして、外界認識部104は、車線の減少する地点VPがあると判定した場合に、車両Mまたは消失する車線を走行する周辺車両mから地点VPまでの距離または到達時間(距離を車両Mまたは周辺車両mの速度で除算したもの)が所定値以内となったタイミングで、周辺車両mが車線変更をするという推定結果を後段の他の機能部(車線変更制御部110等)に出力する。すなわち、車両Mまたは消失する車線を走行する周辺車両mから、地点VPまでの距離または到達時間に基づいて、車線変更のタイミングを推定する。所定値は、距離に対する値である場合は、例えば数十[m]程度に設定される。所定値は、到達時間に対する値である場合は、例えば数秒程度に設定される。なお、上記数値は一例であり、所定値はこれらの数値に限定されない。
 また、外界認識部104は、カメラ40により車両Mの前方を撮像した画像に基づいて、車両Mの前方における車線の減少を検知してもよい。
 行動計画生成部106は、所定の区間における行動計画を生成する。所定の区間とは、例えば、ナビゲーション装置50により導出された経路のうち、高速道路等の有料道路を通る区間である。なお、これに限らず、行動計画生成部106は、任意の区間について行動計画を生成してもよい。
 行動計画は、例えば、順次実行される複数のイベントで構成される。イベントには、例えば、車両Mを減速させる減速イベントや、車両Mを加速させる加速イベント、走行車線を逸脱しないように車両Mを走行させるレーンキープイベント、走行車線を変更させる車線変更イベント、車両Mに前走車両を追い越させる追い越しイベント、分岐ポイントにおいて所望の車線に変更させたり、現在の走行車線を逸脱しないように車両Mを走行させたりする分岐イベント、車線合流ポイントにおいて車両Mを加速又は減速させ、走行車線を変更させる合流イベント等が含まれる。例えば、有料道路(例えば高速道路等)においてジャンクション(分岐点)が存在する場合、車両制御装置100は、自動運転モードにおいて、車両Mを目的地の方向に進行するように車線を変更したり、車線を維持したりする必要がある。従って、行動計画生成部106は、地図情報132を参照して経路上にジャンクションが存在していると判明した場合、現在の車両Mの位置(座標)からそのジャンクションの位置(座標)までの間に、目的地の方向に進行することができる所望の車線に車線変更するための車線変更イベントを設定する。なお、行動計画生成部106によって生成された行動計画を示す情報は、行動計画情報136として記憶部130に格納される。
 図5は、ある区間について生成された行動計画の一例を示す図である。図示するように、行動計画生成部106は、目的地までの経路に従って走行した場合に生じる場面を分類し、個々の場面に即したイベントが実行されるように行動計画を生成する。なお、行動計画生成部106は、車両Mの状況変化に応じて動的に行動計画を変更してもよい。
 行動計画生成部106は、例えば、生成した行動計画を、外界認識部104によって認識された外界の状態に基づいて変更(更新)してもよい。一般的に、車両が走行している間、外界の状態は絶えず変化する。特に、複数の車線を含む道路を車両Mが走行する場合、他車両との距離間隔は相対的に変化する。例えば、前方の他車両が急ブレーキを掛けて減速したり、隣の車線を走行する他車両が車両M前方に割り込んで来たりする場合、車両Mは、前方の他車両の挙動や、隣接する車線の他車両の挙動に合わせて速度や車線を適宜変更しつつ走行する必要がある。従って、行動計画生成部106は、上述したような外界の状態変化に応じて、制御区間ごとに設定したイベントを変更してもよい。
 具体的には、行動計画生成部106は、車両走行中に外界認識部104によって認識された他車両の速度が閾値を超えたり、走行車線に隣接する隣接車線を走行する他車両の移動方向が走行車線方向に向いたりした場合に、車両Mが走行予定の運転区間に設定されたイベントを変更する。例えば、レーンキープイベントの後に車線変更ベントが実行されるようにイベントが設定されている場合において、外界認識部104の認識結果によってそのレーンキープイベント中に車線変更先の車線後方から車両が閾値以上の速度で進行してきたことが判明した場合、行動計画生成部106は、レーンキープイベントの次のイベントを車線変更から減速イベントやレーンキープイベント等に変更する。これによって、車両制御装置100は、車両Mが車線変更先の車両に衝突することを回避することができる。この結果、車両制御装置100は、外界の状態に変化が生じた場合においても、安全に車両Mを自動走行させることができる。
 [車線変更イベント]
 車線変更制御部110は、行動計画生成部106により行動計画に含まれる車線変更イベントが実施される際の制御を行う。車線変更制御部110は、例えば、ターゲット位置候補設定部111と、仮想車両設定部112と、他車位置変化推定部113と、制御計画生成部114と、ターゲット位置決定部115とを備える。
 (ターゲット位置候補の設定)
 ターゲット位置候補設定部111は、外界認識部104によって認識された周辺車両の位置を参照し、まず車線変更の対象となる大枠の対象領域を設定し、対象領域内において、車両Mが走行している走行車線(自車線)に隣接する隣接車線を走行する周辺車両に対する相対位置として、車線変更ターゲット位置候補を設定する。本実施形態では、一例として、対象領域を機器の全検出領域に相当するものとして説明する。なお、対象領域は、機器の検出領域の一部領域であってもよい。
 図6は、第1の実施形態におけるターゲット位置候補設定部111が車線変更ターゲット位置候補を設定する様子を示す図である。図6中、ma、mbは周辺車両であり、DRは検出領域であり、T1からT3は車線変更ターゲット位置候補である。いずれの車線変更ターゲット位置候補であるかを区別しないときは、単に車線変更ターゲット位置候補Tと表記する。
 図6の例の場合、ターゲット位置候補設定部111は、隣接車線L2上において、車両maと車両mbとの間に、車線変更ターゲット位置候補T1を設定し、車両mbの後方から車両進行方向dに対して後方側の検出領域DRの外縁までの間に、車線変更ターゲット位置候補T2を設定している。すなわち、ターゲット位置候補設定部111は、隣接車線上に周辺車両が複数台存在している場合には、これら複数台の周辺車両間に車線変更ターゲット位置候補Tを設定する。例えば、ターゲット位置候補設定部111は、周辺車両がn台存在している場合には、この隣接車線上の検出領域DRにおいてn+1個の車線変更ターゲット位置候補Tを設定する。なお、図6の例では、車両maの前方は、検出領域Dの境界であるため、車両maの前方にはターゲット位置候補Tは設定できない。従って、ターゲット位置候補設定部111は、隣接車線L2上において車両が2台存在することから、3つの車線変更ターゲット位置候補Tを設定するべきであるが、車両maの前方にはターゲット位置候補Tが設定できないため、2つの車線変更ターゲット位置候補Tを設定している。
 また、ターゲット位置候補設定部111は、隣接車線L3上に周辺車両が存在しないことから、隣接車線L3上において、車両進行方向dに対して前方側の検出領域DRの外縁から、車両進行方向dに対して後方側の検出領域DRの外縁までの間に、車線変更ターゲット位置候補T3を設定している。すなわち、ターゲット位置候補設定部111は、隣接車線上に周辺車両が存在しない場合には、この隣接車線上の検出領域DR全体に(隣接車線L3全てに)1つの車線変更ターゲット位置候補Tを設定する。なお、以下の説明では、特段の記載がない限り、行動計画によって走行車線L1の右側に延在する隣接車線L2に車線変更することが指示されているものとする。
 (仮想車両の設定)
 仮想車両設定部112は、監視車両が外界認識部104によって認識されていない場合、外界認識部104によって認識されていない監視車両を仮想的に擬した仮想車両を、機器の検出領域の外縁に、所定の状態で設定する。
 監視車両とは、走行車線において車両Mの前方(直前)を走行する車両と、車線変更ターゲット位置候補Tの前方(直前)を走行する車両と、車線変更ターゲット位置候補Tの後方(直後)を走行する車両とを含む。以下、走行車線において車両Mの前方(直前)を走行する車両を、前走車両と称し、車線変更ターゲット位置候補Tの前方を走行する車両を、車線変更ターゲット位置候補前走車両と称し、車線変更ターゲット位置候補Tの後方を走行する車両を、車線変更ターゲット位置候補後走車両と称する。
 また、所定の状態とは、仮想車両の速度がゼロである状態や、仮想車両の速度(或いは加速度)が閾値以下である状態、仮想車両の速度が車両Mと等速度である状態を含む。例えば、仮想車両設定部112は、検出領域の外縁付近に、停止している仮想車両を設定してもよいし、一定の速度で徐行しているような仮想車両を設定してもよい。本実施形態では、仮想車両設定部112は、車両Mの前方側の検出領域の外縁付近に仮想車両を設定する場合、停止している静止体として仮想車両を設定するものとし、車両Mの後方側、或いは検出領域内部に仮想車両を設定する場合、所定の速度(加速度)を有する移動体として仮想車両を設定するものとする。
 仮想車両設定部112は、移動体として仮想車両を設定する場合、仮想車両の速度(或いは加速度)が閾値以上である状態で設定する。例えば、仮想車両設定部112は、検出領域DRの外縁付近に、想定する最高速度の定数倍(1倍も含む)で走行する仮想車両を設定してもよいし、車両Mや周辺車両の速度の定数倍(1倍も含む)の速度で走行する仮想車両を設定してもよい。本実施形態では、一例として、仮想車両設定部112は、想定される最高速度で走行する移動体として仮想車両を設定するものとする。
 また、仮想車両設定部112は、外界認識部104により監視車両の車線変更が推定された場合に、監視車両による車線変更先の車線上に、監視車両を仮想的に擬した仮想車両を所定の状態で設定する。本実施形態では、監視車両の車線変更は、検出領域内において外界認識部104により推定されるため、車線変更をしようとしている、或いは車線変更をしている監視車両を仮想的に擬した仮想車両は、移動体として設定されるものとする。
 以下、車線変更をしようとしている、或いは車線変更をしている監視車両を仮想的に擬した仮想車両を、特に仮想割込み車両と称して説明する。
 (周辺車両の位置変化の推定)
 他車位置変化推定部113は、外界認識部104によって認識されている監視車両(前走車両、車線変更ターゲット位置候補前走車両、および車線変更ターゲット位置候補後走車両)について、将来の位置変化を推定する。この際、前走車両、車線変更ターゲット位置候補前走車両、および車線変更ターゲット位置候補後走車両のうちいずれか1つ以上の車両が外界認識部104によって認識されていない場合、これら3つの車両のうちの外界認識部104によって認識されている車両と、車両が認識されていないことを受けて仮想車両設定部112が設定した仮想車両とについて、将来の位置変化を推定する。
 また、他車位置変化推定部113は、仮想車両設定部112によって仮想割込み車両が設定された場合、外界認識部104によって認識されている監視車両、車両が認識されていないことを受けて仮想車両設定部112が設定した仮想車両、および車両が車線変更動作をしていることを受けて仮想車両設定部112が設定した仮想割込み車両のうちの一部または全部について、将来の位置変化を推定する。
 制御計画生成部114は、ターゲット位置候補設定部111により設定された車線変更ターゲット位置候補Tごとに対して、他車位置変化推定部113により推定された周辺車両の位置変化に基づいて、車線変更のための制御計画を生成する。
 ターゲット位置決定部115は、制御計画生成部114によって車線変更ターゲット位置候補Tごとに生成された制御計画に基づいて、ターゲット位置候補設定部111によって設定された複数の車線変更ターゲット位置候補Tから1つの車線変更ターゲット位置T#を決定する。
 以下、フローチャートに即して、車線変更制御部110の具体的な処理について説明する。図7は、第1の実施形態における車線変更制御部110の処理の流れの一例を示すフローチャートである。
 まず、ターゲット位置候補設定部111は、車線変更ターゲット位置候補Tを1つ選択する(ステップS100)。次に、仮想車両設定部112は、仮想車両の設定処理を実施する(ステップS102)。
 以下、ステップS102の処理である仮想車両の設定処理について説明する。図8および図9は、第1の実施形態における仮想車両の設定処理の流れの一例を示すフローチャートである。本フローチャートの処理は、上述した図7のフローチャートにおけるステップS102の処理に相当する。以下の説明では、前走車両をm1、車線変更ターゲット位置候補前走車両をm2、車線変更ターゲット位置候補後走車両をm3と称する。前走車両m1に対応する仮想車両をvm1、車線変更ターゲット位置候補前走車両m2に対応する仮想車両をvm2、車線変更ターゲット位置候補後走車両m3に対応する仮想車両をvm3と称する。車線変更動作中の車線変更ターゲット位置候補前走車両m2に対応する仮想割込み車両をvm2#、車線変更動作中の車線変更ターゲット位置候補後走車両m3に対応する仮想割込み車両をvm3#と称する。
 まず、仮想車両設定部112は、外界認識部104によって前走車両m1が認識されたか否かを判定し(ステップS200)する。仮想車両設定部112は、外界認識部104によって前走車両m1が認識されていない場合、前走車両m1を仮想的に擬した仮想車両vm1を、検出領域の外縁付近に静止体として設定する(ステップS202)。
 図10は、検出領域DR内において前走車両m1が認識されていない場面の一例を示す図である。図10の例では、走行車線(車両Mが走行する車線)をL1、走行車線L1の右側の隣接車線をL2、走行車線L1の左側の隣接車線をL3、車線変更ターゲット位置候補をTとして表している。図10の例の場合、車両m2は、隣接車線L2において車線変更ターゲット位置候補Tの前方に位置しているため、車線変更ターゲット位置候補前走車両であると認識される。また、車両m3は、隣接車線L2において車線変更ターゲット位置候補Tの後方に位置しているため、車線変更ターゲット位置候補後走車両であると認識される。また、走行車線L1において車両Mの前方に位置する車両が検出されていないため前走車両m1は認識されていない。従って、仮想車両設定部112は、走行車線L1の前方における検出領域DRの外縁付近に、静止体の仮想車両vm1を設定する。
 具体的には、仮想車両設定部112は、検出領域DRの外側に車体の後端部が位置するように仮想車両vm1を設定する。図11は、検出領域DRの外縁付近に仮想車両vm1を設定する様子の一例を示す図である。図11に示すように、仮想車両設定部112は、全ての車体領域が検出領域DR内に含まれないように仮想車両vm1を外縁よりも外側に配置する。
 また、仮想車両設定部112は、検出領域DRの内側に車体の後端部が位置するように仮想車両vm1を設定してもよい。図12は、検出領域DRの外縁付近に仮想車両vm1を設定する様子の他の例を示す図である。図12に示すように、仮想車両設定部112は、一部の車体領域が検出領域DR内に含まれるように仮想車両vm1を外縁上に配置する。なお、仮想車両設定部112は、全部の車体領域が検出領域DR内に含まれるように仮想車両vm1を外縁よりも内側に配置してもよい。また、仮想車両設定部112は、車線進行方向に対する車線幅方向に関して、例えば、走行車線の中央CLに仮想車両vm1を設定する。なお、仮想車両設定部112は、車線幅方向に関して、中央CLから外れた位置に仮想車両vm1を設定してもよい。
 一方、外界認識部104によって前走車両m1が認識された場合、或いは仮想車両vm1を設定した場合、仮想車両設定部112は、外界認識部104によって車線変更ターゲット位置候補後走車両m3が認識されたか否かを判定する(ステップS204)。外界認識部104によって車線変更ターゲット位置候補後走車両m3が認識されていない場合、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想車両vm3を、検出領域の外縁付近に移動体として設定する(ステップS206)。
 図13は、検出領域DR内において車線変更ターゲット位置候補後走車両m3が認識されていない場面の一例を示す図である。図13の例では、図10と同様に、走行車線をL1、走行車線L1の右側の隣接車線をL2、走行車線L1の左側の隣接車線をL3、車線変更ターゲット位置候補をTとして表している。図13の例の場合、車両m1は、走行車線L1において車両Mの前方に位置しているため、前走車両であると認識される。また、車両m2は、隣接車線L2において車線変更ターゲット位置候補Tの前方に位置しているため、車線変更ターゲット位置候補前走車両であると認識される。また、隣接車線L2において車線変更ターゲット位置候補Tの後方に位置する車両が検出されていないため車線変更ターゲット位置候補後走車両m3は認識されていない。従って、仮想車両設定部112は、隣接車線L2の後方における検出領域DRの外縁付近に、移動体の仮想車両vm3を設定する。
 仮想車両vm3の配置位置は、上述した仮想車両vm1の配置位置と同様である。例えば、仮想車両設定部112は、検出領域DRの外側に車体の前端部が位置するように仮想車両vm3を設定してもよいし、検出領域DRの内側に車体の前端部が位置するように仮想車両vm3を設定してもよい。
 一方、外界認識部104によって車線変更ターゲット位置候補後走車両m3が認識された場合、仮想車両設定部112は、外界認識部104によって認識されている車線変更ターゲット位置候補後走車両m3が走行車線に車線変更する(或いは車線変更しようとする)と推定されたか否かを判定する(ステップS208)。
 外界認識部104によって認識されている車線変更ターゲット位置候補後走車両m3が走行車線に車線変更する(或いは車線変更しようとする)と推定されていない場合、仮想車両設定部112は、後述するステップS218の処理を実施する。一方、外界認識部104によって認識されている車線変更ターゲット位置候補後走車両m3が走行車線に車線変更する(或いは車線変更しようとする)と推定された場合、仮想車両設定部112は、車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1或いは仮想車両vm1よりも後方であり、且つ車両Mよりも前方であるか否か、すなわち、前走車両m1或いは仮想車両vm1と車両Mとの間に位置しているか否かを判定する(ステップS210)。
 例えば、仮想車両設定部112は、ステップS200の判定処理において、前走車両m1が外界認識部104によって認識されていると判定した場合、車線変更ターゲット位置候補後走車両m3の位置、前走車両m1の位置、および車両Mの位置を比較して、車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1と車両Mとの間に位置しているか否かを判定する。より具体的には、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3の前端部が、前走車両m1の前端部よりも後方に位置し、且つ車両Mの前端部よりも前方に位置する場合、車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1と車両Mとの間に位置していると判定する。
 なお、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3の後端部が前走車両m1の後端部よりも後方に位置し、且つ車両Mの後端部よりも前方に位置する場合に、車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1と車両Mとの間に位置していると判定してもよい。また、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3の重心等の基準点が、前走車両m1の基準点、前端部、または後端部よりも後方に位置する場合に、車線変更ターゲット位置候補後走車両m3が前走車両m1よりも後方に位置すると判定し、車両Mの基準点、前端部、または後端部よりも前方に位置する場合に、車線変更ターゲット位置候補後走車両m3が車両Mよりも前方に位置すると判定してもよい。
 なお、本実施形態では、仮想車両vm1は、検出領域DR前方の外縁付近に設定されるため、外界認識部104によって認識される車線変更ターゲット位置候補後走車両m3は、仮想車両vm1よりも後方に位置することになる。従って、上述したステップS200の処理において、前走車両m1が外界認識部104によって認識されていないと判定された場合(“No”の判定結果)、ステップS210の判定処理では、車線変更ターゲット位置候補後走車両m3の位置が、仮想車両vm1の位置に対して、後方であると判定される。
 車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1或いは仮想車両vm1と車両Mとの間に位置していない場合、仮想車両設定部112は、後述するステップS218の処理を実施する。一方、車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1或いは仮想車両vm1と車両Mとの間に位置している場合、仮想車両設定部112は、仮想車両vm1を既に設定したか否かを判定する(ステップS212)。
 仮想車両設定部112は、仮想車両vm1を既に設定していた場合、設定した仮想車両vm1を消去して(ステップS214)、車線変更動作中の車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想割込み車両vm3#を、検出領域DR内に移動体として設定する(ステップS216)。
 一方、仮想車両設定部112は、仮想車両vm1を設定していない場合、ステップS214の処理をスキップして、上述したステップS216の処理を実施する。
 図14は、車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想割込み車両vm3#が設定される場面の一例を示す図である。図14の例は、検出領域DR内に、前走車両m1および車線変更ターゲット位置候補前走車両m2が存在せず、車線変更ターゲット位置候補後走車両m3が存在し、車線変更ターゲット位置候補後走車両m3が車両Mの前方に位置し、車線変更ターゲット位置候補後走車両m3が隣接車線L2から走行車線L1に車線変更しようとしている状況を表している。このような場合、仮想車両設定部112は、上述したステップS216の処理を行って、車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想割込み車両vm3#を、検出領域DR内に移動体として設定する。この際、図14中に示す仮想車両vm1は、仮想割込み車両vm3#の設定時に消去される。
 例えば、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3の車線変更先である走行車線L1上において、現在の車線変更ターゲット位置候補後走車両m3の隣に位置するように仮想割込み車両vm3#を設定する。より具体的には、例えば、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3の重心等の基準点から引いた垂線と走行車線L1上の車線中央線とが直行する点に、仮想割込み車両vm3#を設定する。
 この際、仮想車両設定部112は、仮想割込み車両vm3#の速度あるいは加速度等を、車線変更ターゲット位置候補後走車両m3の状態に基づいて設定する。例えば、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3の速度と同じ速度を有する仮想割込み車両vm3#を設定する。
 このような場合、他車位置変化推定部113は、車線変更ターゲット位置候補前走車両m2が認識されていないことを受けて仮想車両設定部112が設定した仮想車両vm2と、車線変更ターゲット位置候補後走車両vm3が車線変更動作中であることを受けて仮想車両設定部112が設定した仮想割込み車両vm3#と、外界認識部104によって認識された車線変更中の車線変更ターゲット位置候補後走車両m3について、将来の位置変化を推定する。
 図15は、車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想割込み車両vm3#が設定されない場面の一例を示す図である。図15の例は、検出領域DR内に、前走車両m1、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3が存在し、車線変更ターゲット位置候補後走車両m3が隣接車線L2から走行車線L1に車線変更しようとしている状況を表している。このような場合、仮想車両設定部112は、上述したステップS210の処理を行って、前走車両m1、車線変更ターゲット位置候補後走車両m3、および車両Mの位置の比較を行って、車線変更ターゲット位置候補後走車両m3が前走車両m1と車両Mとの間に位置しているか否かを判定する。図15の例では、車線変更ターゲット位置候補後走車両m3が車両Mよりも後方に位置するため、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想割込み車両vm3#を、検出領域DR内に設定しない。
 このような場合、他車位置変化推定部113は、外界認識部104によって認識された前走車両m1、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3について、将来の位置変化を推定する。
 次に、仮想車両設定部112は、外界認識部104によって車線変更ターゲット位置候補前走車両m2が認識されたか否かを判定する(ステップS218)。外界認識部104によって車線変更ターゲット位置候補前走車両m2が認識されない場合、仮想車両設定部112は、車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想車両vm2を、検出領域の外縁付近に静止体として設定する(ステップS220)。
 図16は、検出領域DR内において車線変更ターゲット位置候補前走車両m2が認識されていない場面の一例を示す図である。図16の例では、図10および図13と同様に、走行車線をL1、走行車線L1の右側の隣接車線をL2、走行車線L1の左側の隣接車線をL3、車線変更ターゲット位置候補をTとして表している。図16の例の場合、車両m1は、走行車線L1において車両Mの前方に位置しているため、前走車両であると認識される。
 また、車両m3は、隣接車線L2において車線変更ターゲット位置候補Tの後方に位置しているため、車線変更ターゲット位置候補後走車両であると認識される。また、隣接車線L2において車線変更ターゲット位置候補Tの前方に位置する車両が検出されていないため車線変更ターゲット位置候補前走車両m2は認識されていない。従って、仮想車両設定部112は、隣接車線L2の前方における検出領域DRの外縁付近に、静止体の仮想車両vm2を設定する。
 仮想車両vm2の配置位置は、上述した仮想車両vm1や仮想車両vm3の配置位置と同様である。例えば、仮想車両設定部112は、検出領域DRの外側に車体の後端部が位置するように仮想車両vm2を設定してもよいし、検出領域DRの内側に車体の後端部が位置するように仮想車両vm2を設定してもよい。
 一方、外界認識部104によって車線変更ターゲット位置候補前走車両m2が認識された場合、仮想車両設定部112は、外界認識部104によって認識されている車線変更ターゲット位置候補前走車両m2が、走行車線に車線変更する(或いは車線変更しようとする)と推定されたか否かを判定する(ステップS222)。
 外界認識部104によって認識されている車線変更ターゲット位置候補前走車両m2が走行車線に車線変更する(或いは車線変更しようとする)と推定されていない場合、車線変更制御部110は、本フローチャートの処理を終了する。
 一方、外界認識部104によって認識されている車線変更ターゲット位置候補前走車両m2が走行車線に車線変更する(或いは車線変更しようとする)と推定された場合、仮想車両設定部112は、仮想割込み車両vm3#を既に設定したか否かを判定する(ステップS224)。
 仮想割込み車両vm3#を既に設定した場合、車線変更制御部110は、本フローチャートの処理を終了する。一方、仮想割込み車両vm3#を設定していない場合、仮想車両設定部112は、車線変更動作中の車線変更ターゲット位置候補前走車両m2が、前走車両m1或いは仮想車両vm1よりも後方であり、且つ車両Mよりも前方であるか否か、すなわち、前走車両m1或いは仮想車両vm1と車両Mとの間に位置しているか否かを判定する(ステップS226)。仮想車両設定部112は、車線変更ターゲット位置候補前走車両m2の位置関係を、上述した車線変更ターゲット位置候補後走車両m3の位置関係を判定する場合と同様に、車両の前端部や後端部、重心等の基準点を比較することで判定する。
 車線変更動作中の車線変更ターゲット位置候補前走車両m2が、前走車両m1或いは仮想車両vm1と車両Mとの間に位置していない場合、車線変更制御部110は、本フローチャートの処理を終了する。一方、車線変更動作中の車線変更ターゲット位置候補前走車両m2が、前走車両m1或いは仮想車両vm1と車両Mとの間に位置している場合、仮想車両設定部112は、仮想車両vm1を既に設定したか否かを判定する(ステップS228)。
 仮想車両設定部112は、仮想車両vm1を既に設定していた場合、設定した仮想車両vm1を消去して(ステップS230)、車線変更動作中の車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想割込み車両vm2#を、検出領域DR内に移動体として設定する(ステップS232)。
 一方、仮想車両設定部112は、仮想車両vm1を設定していない場合、ステップS230の処理をスキップして、上述したステップS232の処理を実施する。
 図17は、車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想割込み車両vm2#が設定される場面の一例を示す図である。図17の例は、検出領域DR内に、前走車両m1が存在せず、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3が存在し、車線変更ターゲット位置候補前走車両m2が車両Mの前方に位置し、車線変更ターゲット位置候補前走車両m2が隣接車線L2から走行車線L1に車線変更しようとしている状況を表している。このような場合、仮想車両設定部112は、上述したステップS232の処理を行って、車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想割込み車両vm2#を、検出領域DR内に移動体として設定する。この際、図17中に示す仮想車両vm1は、仮想割込み車両vm2#の設定時に消去される。
 例えば、仮想車両設定部112は、仮想割込み車両vm2#を設定するときと同様に、車線変更ターゲット位置候補前走車両m2の車線変更先である走行車線L1上において、現在の車線変更ターゲット位置候補前走車両m2の隣に位置するように仮想割込み車両vm2#を設定する。
 この際、仮想車両設定部112は、仮想割込み車両vm2#の速度あるいは加速度等を、車線変更ターゲット位置候補前走車両m2の状態に基づいて設定する。例えば、仮想車両設定部112は、車線変更ターゲット位置候補前走車両m2の速度と同じ速度を有する仮想割込み車両vm2#を設定する。
 このような場合、他車位置変化推定部113は、車線変更ターゲット位置候補前走車両m2が車線変更動作中であることを受けて仮想車両設定部112が設定した仮想割込み車両vm2#と、外界認識部104によって認識された、車線変更ターゲット位置候補後走車両m3および車線変更中の車線変更ターゲット位置候補前走車両m2とについて、将来の位置変化を推定する。
 図18は、車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想割込み車両vm2#が設定されない場面の一例を示す図である。図18の例は、検出領域DR内に、前走車両m1、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3が存在し、車線変更ターゲット位置候補前走車両m2が隣接車線L2から走行車線L1に車線変更しようとしている状況を表している。このような場合、仮想車両設定部112は、上述したステップS226の処理を行って、前走車両m1、車線変更ターゲット位置候補前走車両m2、および車両Mの位置の比較を行って、車線変更ターゲット位置候補前走車両m2が前走車両m1と車両Mとの間に位置しているか否かを判定する。図18の例では、車線変更ターゲット位置候補前走車両m2が前走車両m1よりも前方に位置するため、仮想車両設定部112は、車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想割込み車両vm2#を、検出領域DR内に設定しない。
 このような場合、他車位置変化推定部113は、外界認識部104によって認識された前走車両m1、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3について、将来の位置変化を推定する。
 図19は、車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想割込み車両vm3#が設定される場面の他の例を示す図である。図19の例は、検出領域DR内に、前走車両m1が存在せず、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3が存在し、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3の両方の車両が車両Mの前方に位置し、これら両方の車両が共に隣接車線L2から走行車線L1に車線変更しようとしている状況を表している。このような場合、仮想車両設定部112は、上述したステップS216の処理を行って、先に車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想割込み車両vm3#を、検出領域DR内に移動体として設定する。このため、仮想車両設定部112は、ステップS224による仮想割込み車両vm3#を既に設定したか否かを判定する処理において“YES”の判定結果となり、車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想割込み車両vm2#の設定処理を実施せずに、フローチャートの処理を終了する。すなわち、仮想車両設定部112は、車線変更ターゲット位置候補Tの前後の車両が共に車線変更しようとしている場合、車両Mにより近い位置を走行している車両(車線変更ターゲット位置候補後走車両m3)を仮想的に擬した仮想車両を、優先的に車両Mの前方に設定する。
 なお上述した例では、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3が車線変更しようとしている場合に、仮想割込み車両を設定するものとして説明したがこれに限られない。例えば、車線変更ターゲット位置候補Tが設定された隣接車線と異なる隣接車線上を走行する車両が、走行車線上に車線変更しようとしている場合、仮想車両設定部112は、この車両を仮想的に擬した仮想割込み車両を設定してもよい。以下、車線変更ターゲット位置候補Tが設定された隣接車線と異なる隣接車線上を走行する車両を、第2隣接車線走行車両m4と称して説明する。
 図20は、第2隣接車線走行車両m4を仮想的に擬した仮想割込み車両vm4#が設定される場面の一例を示す図である。図20の例は、検出領域DR内に、車線変更ターゲット位置候補前走車両m2が存在せず、前走車両m1、車線変更ターゲット位置候補後走車両m3、第2隣接車線走行車両m4が存在し、第2隣接車線走行車両m4が前走車両m1と車両Mとの間を位置し、第2隣接車線走行車両m4が隣接車線L3から走行車線L1に車線変更しようとしている状況を表している。このような場合、仮想車両設定部112は、第2隣接車線走行車両m4を仮想的に擬した仮想割込み車両vm4#を、検出領域DR内に移動体として設定する。
 この際、仮想車両設定部112は、仮想割込み車両vm4#の速度あるいは加速度等を、第2隣接車線走行車両m4の状態に基づいて設定する。例えば、仮想車両設定部112は、第2隣接車線走行車両m4の速度と同じ速度を有する仮想割込み車両vm4#を設定する。
 このような場合、他車位置変化推定部113は、第2隣接車線走行車両m4が車線変更動作中であることを受けて仮想車両設定部112が設定した仮想割込み車両vm4#と、車線変更ターゲット位置候補前走車両m2が認識されないことを受けて仮想車両設定部112が設定した仮想車両vm2と、外界認識部104によって認識された車線変更ターゲット位置候補後走車両m3とについて、将来の位置変化を推定する。
 図20に表す場面において、さらに車線変更ターゲット位置候補後走車両m3が隣接車線L2から走行車線L1上に車線変更しようとしている場合、仮想車両設定部112は、第2隣接車線走行車両m4および車線変更ターゲット位置候補後走車両m3の位置を比較して、より車両Mに近い車両を仮想的に擬した仮想割込み車両を設定する。
 図21は、第2隣接車線走行車両m4を仮想的に擬した仮想割込み車両vm4#が設定される場面の他の例を示す図である。図21の例は、図20と同様に、検出領域DR内に、車線変更ターゲット位置候補前走車両m2が存在せず、前走車両m1、車線変更ターゲット位置候補後走車両m3、第2隣接車線走行車両m4が存在し、第2隣接車線走行車両m4および車線変更ターゲット位置候補後走車両m3が前走車両m1と車両Mとの間を位置し、第2隣接車線走行車両m4が隣接車線L3から走行車線L1に車線変更しようとしている状況を表している。また、図21の例では、さらに車線変更ターゲット位置候補後走車両m3が隣接車線L2から走行車線L1上に車線変更しようとしている状況を表している。このような場合、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3に比して第2隣接車線走行車両m4が、より車両Mに近い位置に存在しているため、第2隣接車線走行車両m4を仮想的に擬した仮想割込み車両vm4#を、優先的に検出領域DR内に移動体として設定する。
 以上、説明したフローチャートの処理によって、車線変更制御部110は、周辺車両の車線変更動作に応じて種々の仮想車両を設定することができる。
 ここで図7のフローチャートの説明に戻る。上述したステップS102の処理において仮想車両が設定されない場合、すなわち、前走車両、車線変更ターゲット位置候補前走車両、および車線変更ターゲット位置候補後走車両が外界認識部104によって認識された場合、他車位置変化推定部113は、これら3台の監視車両について、将来の位置変化を推定する(ステップS104)。
 将来の位置変化は、例えば、現在の速度を保ったまま走行すると仮定した定速度モデル、現在の加速度を保ったまま走行すると仮定した定加速度モデル、その他、種々のモデルに基づいて推定することができる。また、他車位置変化推定部113は、車両Mが車線変更時に干渉する可能性の高い監視車両(仮想車両も含む)の操舵角について考慮してもよいし、操舵角を考慮せず、現在の走行車線を維持したまま走行すると仮定して位置変化を推定してもよい。以下の説明では、上記監視車両は、現在の速度を保ったまま、走行車線を維持して走行すると仮定して位置変化を推定するものとする。
 図22は、判定の対象となる監視車両が認識されている場合における車両Mと周辺車両との位置関係の一例を示す図である。図中において、Mは車両、m1は前走車両、m2は車線変更ターゲット位置候補前走車両、m3は車線変更ターゲット位置候補後走車両、Tは車線変更ターゲット位置候補を表している。例えば、パターン(a)は、車両の進行方向側から順に、m1-m2-M-m3の位置関係であり、車両Mが監視車両との相対位置を変えずに車線変更する場合の例を示している。また、パターン(b)は、車両の進行方向側から順に、m2-m1-m3-Mの位置関係であり、監視車両との相対位置を上げて(相対的に加速して)車線変更する場合の例を示している。
 例えば、他車位置変化推定部113は、車両の位置関係を類型化したパターンごとに、監視車両m1、m2、およびm3の速度モデルに基づいて、将来の位置変化の類型化を行う。図23は、車両位置関係のパターン(a)について周辺車両の位置変化を類型化した各パターンを示す図である。また、図24は、車両位置関係のパターン(b)について周辺車両の位置変化を類型化した各パターンを示す図である。図23および図24における縦軸は、車両Mを基準とした進行方向に関する変位を、横軸は経過時間を表している。
 また、図23および図24における車線変更後存在可能領域とは、車線変更を行った後、監視車両(m1、m2、m3)が同じ傾向で走行を続けた場合に、車両Mが存在できる変位の領域を示している。例えば、図23における「速度:m2>m1>m3」の図において、車線変更可能領域が前走車両m1の変位よりも下側にある、すなわち車線変更を行う前には車両Mが前走車両m1よりも前に出ないように制約されるが、車線変更を行った後は、前走車両m1よりも前に出ても問題無いことを示している。この車線変更後存在可能領域は、制御計画生成部114の処理に用いられる。なお、車両の位置関係を類型化したパターンは、上述したパターン(a)、(b)の他に、例えば、m2-m1-M-m3の順序や、m1-M-m2-m3の順序等の位置関係を表すパターンであってもよく、これらパターンは車両の数に応じて分類化されてもよい。上述した例の場合、車両の位置関係を表すパターンは、6通りに類型化される。
 また、上述したステップS102の処理において仮想車両が設定された場合、他車位置変化推定部113は、外界認識部104によって認識された監視車両と、監視車両が認識されないことを受けて仮想車両設定部112が設定した仮想車両とについて、将来の位置変化を推定する(ステップS104)。
 例えば、車線変更ターゲット位置候補前走車両および車線変更ターゲット位置候補後走車両が認識され、前走車両が認識されていない場合、他車位置変化推定部113は、認識されている車線変更ターゲット位置候補前走車両および車線変更ターゲット位置候補後走車両と、認識されていない前走車両を仮想的に擬した仮想車両とについて、将来の位置変化を推定する。
 図25は、監視車両の一部が認識されていない場合における車両Mと監視車両との位置関係の一例を示す図である。図25の例では、前走車両m1が認識されておらず、前走車両m1を仮想的に擬した仮想車両vm1が設定されている。以下、仮想車両vm1が設定された場合の車両の位置関係を、パターン(c)として説明する。例えば、パターン(c)は、車両の進行方向側から順に、vm1-m2-M-m3の位置関係であり、車両Mが周辺車両(監視車両)との相対位置を変えずに車線変更する場合の例を示している。
 パターン(c)の位置関係の場合、他車位置変化推定部113は、仮想車両vm1と、車線変更ターゲット位置候補前走車両m2と、車線変更ターゲット位置候補後走車両m3との速度モデルに基づいて、将来の位置変化の類型化を行う。図26は、車両位置関係のパターン(c)について周辺車両の位置変化を類型化した各パターンを示す図である。図24における縦軸は、図23および図24と同様に、車両Mを基準とした進行方向に関する変位を、横軸は経過時間を表している。図26の例では、仮想車両vm1を速度ゼロの静止体として仮定したモデルによって将来の位置変化を推定している。
 また、前走車両、車線変更ターゲット位置候補前走車両、および車線変更ターゲット位置候補後走車両の全部が外界認識部104によって認識されない場合、他車位置変化推定部113は、これら全ての周辺車両に対応した仮想車両について、将来の位置変化を推定する。このような場合、他車位置変化推定部113は、仮想車両設定部112によって設定された各仮想車両の速度に従った速度モデルに基づいて、将来の位置変化を推定する。
 なお、他車位置変化推定部113は、上述した前走車両、車線変更ターゲット位置候補前走車両、および車線変更ターゲット位置候補後走車両に限らず、例えば、走行車線を走行する上記前走車両とは異なる車両や、隣接車線を走行する上記車線変更ターゲット位置候補前走車両および車線変更ターゲット位置候補後走車両とは異なる車両を考慮して、将来の位置変化を推定してもよい。また、他車位置変化推定部113は、隣接車線のさらに隣の車線上を走行する車両(例えば、第2隣接車線車両m4等)を考慮して、将来の位置変化を推定してもよい。
 次に、制御計画生成部114は、ターゲット位置候補設定部111により設定された車線変更ターゲット位置候補Tごとに、他車位置変化推定部113により推定された周辺車両の位置変化に基づいて、車線変更のための制御計画を生成する(ステップS106)。
 以下、ステップS106の処理について説明する。以下の説明では、上述した車両位置関係のパターン(b)におけるm1>m3>m2の速度関係を例にとって説明する。例えば、制御計画生成部114は、他車位置変化推定部113により推定された周辺車両(監視車両)の位置変化に基づいて、車線変更の開始時点と終了時点とを決定し、この開始時点から終了時点までの期間(車線変更可能期間P)において、車線変更するように車両Mの速度を決定する。ここで、車線変更の開始時点を決定するためには、「車両Mが車線変更ターゲット位置候補後走車両m3を追い抜く時点」といった要素が存在し、これを解くためには車両Mの加速又は減速に関する仮定が必要となる。この点、制御計画生成部114は、例えば、加速するのであれば、現在の車両Mの速度から急加速とならない範囲内で、法定速度を上限として速度変化曲線を導出し、車線変更ターゲット位置候補後走車両m3の位置変化と合わせて「車両Mが車線変更ターゲット位置候補後走車両m3を追い抜く時点」を決定する。これによって、制御計画生成部114は、車線変更の開始時点を決定する。
 また、車線変更の終了時点を決定するためには、「車線変更ターゲット位置候補後走車両m3が前走車両m1に追いつく時点」、「車線変更ターゲット位置候補後走車両m3が車線変更ターゲット位置候補前走車両m2に追いつく時点」といった要素を考慮して、車両Mの加速又は減速に関する仮定を行ってこの問題を解く。制御計画生成部114は、例えば、車線変更ターゲット位置候補後走車両m3が車線変更ターゲット位置候補前走車両m2に追いつき、車線変更ターゲット位置候補後走車両m3と車線変更ターゲット位置候補前走車両m2との間の距離が所定距離となったときを終了時点と決定する。このように、制御計画生成部114は、車線変更の開始時点と終了時点とを決定することによって、車線変更可能期間Pを導出する。
 制御計画生成部114は、導出した車線変更可能期間P内において、車線変更可能領域に進入可能な車両Mの速度の制約を求め、この速度の制約に従って車線変更のための制御計画を生成する。図27は、制御計画生成部114により生成される車線変更のための制御計画の一例を示す図である。図27における縦軸は、車両Mを基準とした進行方向に関する変位を、横軸は経過時間を表している。また、前走車両はm1、車線変更ターゲット位置候補前走車両はm2、車線変更ターゲット位置候補後走車両はm3として表している。図27の例において、車線変更可能領域とは、前走車両m1の変位よりも小さく、車線変更ターゲット位置候補前走車両m2の変位よりも小さく、且つ車線変更ターゲット位置候補後走車両m3の変位よりも大きい領域である。すなわち、車両Mの速度の制約は、車線変更ターゲット位置候補後走車両m3が車線変更ターゲット位置候補前走車両m2に追いつくまでの期間(車線変更可能期間P)において、車両Mが前走車両m1に追いつかず、且つ車両Mが車線変更ターゲット位置候補後走車両m3を追い抜くような速度範囲で設定される。
 また、車両Mの速度の制約は、車線変更後(車線変更ターゲット位置候補前走車両m2と車線変更ターゲット位置候補後走車両m3との間に位置する状態)において、前走車両となる車線変更ターゲット位置候補前走車両m2に追従走行することを含んでもよい。
 この場合、追従走行を開始した時点では、車両Mが車線変更可能領域から逸脱し、車線変更後存在可能領域に進入してもよい。車線変更後存在可能領域とは、図27に示すように、前走車両m1の変位が車線変更ターゲット位置候補前走車両m2の変位よりも小さい領域である。すなわち、車線変更可能領域から車線変更後存在可能領域に進入することは、車線変更を行う前において、上記速度の制約により車両Mが前走車両m1よりも前に出ない状態を維持しているときから、車線変更を行った後において、車両Mが前走車両m1よりも前に出る状態に遷移することを示している。
 更に、制御計画生成部114は、車両Mが車線変更ターゲット位置候補後走車両m3を追い抜いてから車線変更する必要がある場合には、車両Mの変位が車線変更ターゲット位置候補後走車両m3の変位よりも十分に大きくなったポイント(例えば図27中CP)で車線変更を開始するように、車両Mの速度の制約を設定する。このようにして設定した速度の制約を満たすように、制御計画生成部114は、図27中に示す車両Mの変位の変化を表す軌道(軌跡)を描き、この軌道(軌跡)を制御計画として導出する。なお、制御計画生成部114は、例えば、車両Mと前走車両との相対位置が一定になるような速度で、車両Mがこの前走車両を追従するような制御計画を生成してもよい。
 車線変更制御部110は、全ての車線変更ターゲット位置候補TについてステップS100からS106の処理を行ったか否かを判定する(ステップS108)。全ての車線変更ターゲット位置候補TについてステップS100からS106の処理を行っていない場合、ステップS100に戻り、次の車線変更ターゲット位置候補Tを選択して以降の処理を行う。
 全ての車線変更ターゲット位置候補TについてステップS100からS106の処理を行った場合、ターゲット位置決定部116が、対応する制御計画を評価することにより、車線変更ターゲット位置T#を決定する(ステップS110)。
 ターゲット位置決定部116は、例えば、安全性や効率性の観点から車線変更ターゲット位置T#を決定する。ターゲット位置決定部116は、車線変更ターゲット位置候補Tのそれぞれに対応する制御計画を参照し、車線変更の際の前後車両との間隔が広いもの、速度が法定速度に近いもの、或いは車線変更の際に必要な加速又は減速が小さいもの等を、優先的に車線変更ターゲット位置T#として選択する。こうして1つの車線変更ターゲット位置T#、および制御計画が決定される。
 以上、説明した処理手順によって、本フローチャートの処理は終了する。
 [走行制御]
 走行制御部120は、制御切替部122による制御によって、制御モードを自動運転モードあるいは手動運転モードに設定し、設定した制御モードに従って、走行駆動力出力装置72、ステアリング装置74、およびブレーキ装置76の一部または全部を含む制御対象を制御する。走行制御部120は、自動運転モード時において、行動計画生成部106によって生成された行動計画情報136を読み込み、読み込んだ行動計画情報136に含まれるイベントに基づいて制御対象を制御する。このイベントが車線変更イベントである場合、走行制御部120は、制御計画生成部114により生成された制御計画に従い、ステアリング装置92における電動モータの制御量(例えば回転数)と、走行駆動力出力装置90におけるECUの制御量(例えばエンジンのスロットル開度やシフト段等)と、を決定する。走行制御部120は、イベントごとに決定した制御量を示す情報を、対応する制御対象に出力する。これによって、制御対象の各装置(72、74、76)は、走行制御部120から入力された制御量を示す情報に従って、その制御対象の装置を制御することができる。
 また、走行制御部120は、車両センサ60の検出結果に基づいて、決定した制御量を適宜調整する。
 また、走行制御部120は、手動運転モード時において、操作検出センサ80により出力される操作検出信号に基づいて制御対象を制御する。例えば、走行制御部120は、操作検出センサ80により出力された操作検出信号を、制御対象の各装置にそのまま出力する。
 制御切替部122は、行動計画生成部106によって生成され、記憶部130に格納された行動計画情報136に基づいて、走行制御部120による車両Mの制御モードを自動運転モードから手動運転モードに、または手動運転モードから自動運転モードに切り換える。また、制御切替部122は、切替スイッチ82から入力される制御モード指定信号に基づいて、走行制御部120による車両Mの制御モードを自動運転モードから手動運転モードに、または手動運転モードから自動運転モードに切り換える。すなわち、走行制御部120の制御モードは、運転者等の操作によって走行中や停車中に任意に変更することができる。
 また、制御切替部122は、操作検出センサ80から入力される操作検出信号に基づいて、走行制御部120による車両Mの制御モードを自動運転モードから手動運転モードに切り換える。例えば、制御切替部122は、操作検出信号に含まれる操作量が閾値を超える場合、すなわち、操作デバイス70が閾値を超えた操作量で操作を受けた場合、走行制御部120の制御モードを自動運転モードから手動運転モードに切り換える。例えば、自動運転モードに設定された走行制御部120によって車両Mが自動走行している場合において、運転者によってステアリングホイール、アクセルペダル、またはブレーキペダルが閾値を超える操作量で操作された場合、制御切替部122は、走行制御部120の制御モードを自動運転モードから手動運転モードに切り換える。これによって、車両制御装置100は、人間等の物体が車道に飛び出して来たり、前走車両が急停止したりした際に運転者により咄嗟になされた操作によって、切替スイッチ82の操作を介さずに直ぐさま手動運転モードに切り替えることができる。この結果、車両制御装置100は、運転者による緊急時の操作に対応することができ、走行時の安全性を高めることができる。
 以上説明した第1の実施形態における車両制御装置100、車両制御方法、および車両制御プログラムによれば、車両Mの周辺を走行する周辺車両による車線変更を推定する外界認識部104と、外界認識部によって周辺車両による車線変更が推定された場合に、周辺車両の車線変更先の車線上に、認識対象である周辺車両を仮想的に擬した仮想車両を設定する仮想車両設定部112と、仮想車両設定部112によって設定された仮想車両に基づいて、車両Mの制御計画を生成する制御計画生成部114と、制御計画生成部114によって生成された制御計画に基づいて、車両Mの加速、減速または操舵を制御する走行制御部120と、を備えることにより、周辺車両の動きに応じて柔軟な自動運転を行うことができる。
 また、第1の実施形態における車両制御装置100、車両制御方法、および車両制御プログラムによれば、車線変更中の周辺車両が、前走車両に比して車両Mに近い場合に、仮想割込み車両を車両Mの前方に設定し、前走車両の代わりに設定した仮想割込み車両を参照して車両Mの制御計画を生成するため、周辺車両の動きに応じて、より柔軟な自動運転を行うことができる。
 <第2の実施形態>
 以下、第2の実施形態について説明する。第2の実施形態における車両制御装置100は、監視車両の速度と車両Mの速度との相対速度Vrに基づいて仮想車両を設定する点で、第1および第2の実施形態と相違する。以下、係る相違点を中心に説明する。
 第2の実施形態における仮想車両設定部112は、監視車両の車線変更先が走行車線であるか否かを判定し、監視車両の車線変更先が走行車線である場合に、監視車両の速度と車両Mの速度との相対速度Vrに基づいて、仮想車両を設定しない領域(以下、「非設定領域NSR」と称する)を、車両Mの前方に設定する。
 以下、フローチャートに即して第2の実施形態における車線変更制御部110の具体的な処理について説明する。図28および図29は、第2の実施形態における車線変更制御部110の処理の流れの一例を示すフローチャートである。本フローチャートの処理は、上述した第1の実施形態において説明した図7のフローチャートのステップS102の処理に相当する。
 まず、仮想車両設定部112は、外界認識部104によって前走車両m1が認識されたか否かを判定し(ステップS300)、外界認識部104によって前走車両m1が認識されていない場合、前走車両m1を仮想的に擬した仮想車両vm1を、検出領域の外縁付近に静止体として設定する(ステップS302)。
 一方、外界認識部104によって前走車両m1が認識された場合、或いは仮想車両vm1を設定した場合、仮想車両設定部112は、外界認識部104によって車線変更ターゲット位置候補後走車両m3が認識されたか否かを判定する(ステップS304)。外界認識部104によって車線変更ターゲット位置候補後走車両m3が認識されていない場合、仮想車両設定部112は、車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想車両vm3を、検出領域の外縁付近に移動体として設定する(ステップS306)。
 一方、外界認識部104によって車線変更ターゲット位置候補後走車両m3が認識された場合、仮想車両設定部112は、外界認識部104によって認識されている車線変更ターゲット位置候補後走車両m3が走行車線に車線変更する(或いは車線変更しようとする)と推定されたか否かを判定する(ステップS308)。
 外界認識部104によって認識されている車線変更ターゲット位置候補後走車両m3が走行車線に車線変更する(或いは車線変更しようとする)と推定されていない場合、仮想車両設定部112は、後述するステップS322の処理を実施する。
 一方、外界認識部104によって認識されている車線変更ターゲット位置候補後走車両m3が走行車線に車線変更する(或いは車線変更しようとする)と推定された場合、仮想車両設定部112は、車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1或いは仮想車両vm1よりも後方であり、且つ車両Mよりも前方であるか否か、すなわち、前走車両m1或いは仮想車両vm1と車両Mとの間に位置しているか否かを判定する(ステップS310)。
 車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1或いは仮想車両vm1と車両Mとの間に位置していない場合、仮想車両設定部112は、後述するステップS322の処理を実施する。
 一方、車線変更動作中の車線変更ターゲット位置候補後走車両m3が、前走車両m1或いは仮想車両vm1と車両Mとの間に位置している場合、車線変更ターゲット位置候補後走車両m3の速度と車両Mの速度との相対速度Vrがゼロ以上であるか否かを判定する(ステップS312)。ここで、相対速度Vrとは、車線変更ターゲット位置候補後走車両m3の速度値から車両Mの速度値を減算した値である。
 仮想車両設定部112は、相対速度Vrがゼロ以上である場合、非設定領域NSRを車両Mの前方に設定する(ステップS314)。
 図30は、非設定領域NSRを設定するか否かを模式的に表した図である。図30において、縦軸は、進行方向側の距離(位置)を表し、横軸は、相対速度Vrを表している。
 図30に示す点Oは、原点座標であり、ゼロの相対速度Vrと、車両Mの位置とを基準座標としている。従って、監視車両が車両Mより前方に位置する場合、縦軸において正の値をとる。また、監視車両の速度が車両Mの速度よりも大きい場合、相対速度Vrはゼロ以上となり、横軸において正の値をとる。
 図30に示すように、仮想車両設定部112は、縦軸および横軸の両軸において正の値をとる場合に、非設定領域NSRを設定する。すなわち、仮想車両設定部112は、監視車両が車両Mより前方に位置し、且つ監視車両の速度が車両Mの速度よりも大きい場合に、非設定領域NSRを設定する。
 また、仮想車両設定部112は、相対速度Vrに基づいて、非設定領域NSRの領域面積を決定する。例えば、非設定領域NSRの車線幅方向の距離成分NSRyと車線長さ方向の距離成分NSRxとをそれぞれ決定し、非設定領域NSRの領域面積を決定する。
 図31は、非設定領域NSRにおける車線長さ方向の距離成分NSRxと、相対速度Vrとの関係の一例を示した図である。図中の点Oは、原点座標であり、相対速度Vrがゼロであるときと、距離成分NSRxがゼロであるときとを基準座標としている。図31の例では、距離成分NSRxは、原点Oから、ある変曲点IPまでの範囲において、相対速度Vrの増大に伴って指数関数的に増大し、ある変曲点IP以降の範囲において、相対速度Vrの増大に伴って対数的(あるいは正の平方根函数的)に増大して漸近線に沿って飽和するような関数Fによって表される。このような関数Fは、例えば、図31に示すようなグラフ状のマップによって表されてもよいし、いくつかのサンプル点ごとに距離成分NSRxと相対速度Vrとが対応付けられたテーブルデータとして表されていてもよい。このような関数F(或いはマップやテーブルデータ)は、記憶部130に非設定領域導出情報138として格納させておくものとする。従って、仮想車両設定部112は、非設定領域導出情報138を参照して、例えば、上記関数Fに相対速度Vrを代入して、非設定領域NSRにおける車線長さ方向の距離成分NSRxを決定する。なお、上述した関数は、あくまでも一例であり、他の関数によって表されてもよい。
 また、仮想車両設定部112は、非設定領域NSRにおける車線幅方向の距離成分NSRyを、例えば、走行車線L1の幅と同じ値に決定する。
 一方、仮想車両設定部112は、相対速度Vrがゼロ以上でない場合、或いは非設定領域NSRを設定した場合に、仮想車両vm1を既に設定したか否かを判定する(ステップS316)。仮想車両設定部112は、仮想車両vm1を既に設定していた場合、設定した仮想車両vm1を消去して(ステップS318)、車線変更動作中の車線変更ターゲット位置候補後走車両m3を仮想的に擬した仮想割込み車両vm3#を、非設定領域NSRを除く検出領域DR内に移動体として設定する(ステップS320)。
 一方、仮想車両設定部112は、仮想車両vm1を設定していない場合、ステップS318の処理をスキップして、上述したステップS320の処理を実施する。
 次に、仮想車両設定部112は、外界認識部104によって車線変更ターゲット位置候補前走車両m2が認識されたか否かを判定する(ステップS322)。外界認識部104によって車線変更ターゲット位置候補前走車両m2が認識されない場合、仮想車両設定部112は、車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想車両vm2を、検出領域の外縁付近に静止体として設定する(ステップS324)。
 一方、外界認識部104によって車線変更ターゲット位置候補前走車両m2が認識された場合、仮想車両設定部112は、外界認識部104によって認識されている車線変更ターゲット位置候補前走車両m2が、走行車線に車線変更する(或いは車線変更しようとする)動作をしているか否かを判定する(ステップS326)。
 外界認識部104によって認識されている車線変更ターゲット位置候補前走車両m2が走行車線に車線変更する(或いは車線変更しようとする)動作をしていない場合、車線変更制御部110は、本フローチャートの処理を終了する。
 一方、外界認識部104によって認識されている車線変更ターゲット位置候補前走車両m2が走行車線に車線変更する(或いは車線変更しようとする)動作をしている場合、仮想車両設定部112は、仮想割込み車両vm3#を既に設定したか否かを判定する(ステップS328)。
 仮想割込み車両vm3#を既に設定した場合、車線変更制御部110は、本フローチャートの処理を終了する。一方、仮想割込み車両vm3#を設定していない場合、仮想車両設定部112は、車線変更動作中の車線変更ターゲット位置候補前走車両m2が、前走車両m1或いは仮想車両vm1よりも後方であり、且つ車両Mよりも前方であるか否か、すなわち、前走車両m1或いは仮想車両vm1と車両Mとの間に位置しているか否かを判定する(ステップS330)。
 車線変更動作中の車線変更ターゲット位置候補前走車両m2が、前走車両m1或いは仮想車両vm1と車両Mとの間に位置していない場合、車線変更制御部110は、本フローチャートの処理を終了する。
 一方、車線変更動作中の車線変更ターゲット位置候補前走車両m2が、前走車両m1或いは仮想車両vm1と車両Mとの間に位置している場合、車線変更ターゲット位置候補前走車両m2の速度と車両Mの速度との相対速度Vrがゼロ以上であるか否かを判定する(ステップS332)。
 仮想車両設定部112は、相対速度Vrがゼロ以上である場合、非設定領域NSRを車両Mの前方に設定する(ステップS334)。
 一方、仮想車両設定部112は、相対速度Vrがゼロ以上でない場合、或いは非設定領域NSRを設定した場合に、仮想車両vm1を既に設定したか否かを判定する(ステップS336)。仮想車両設定部112は、仮想車両vm1を既に設定していた場合、設定した仮想車両vm1を消去して(ステップS338)、車線変更動作中の車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想割込み車両vm2#を、非設定領域NSRを除く検出領域DR内に移動体として設定する(ステップS340)。
 一方、仮想車両設定部112は、仮想車両vm1を設定していない場合、ステップS338の処理をスキップして、上述したステップS340の処理を実施する。これによって、本フローチャートの処理が終了する。
 図32は、非設定領域NSRの前方の検出領域DR内に、車線変更ターゲット位置候補前走車両m2を仮想的に擬した仮想割込み車両vm2#を設定する場面を模式的に示した図である。図32の例は、検出領域DR内に、前走車両m1が存在せず、車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3が存在し、車線変更ターゲット位置候補前走車両m2が隣接車線L2から走行車線L1に車線変更しようとしている状況を表している。図32の例では、車線変更ターゲット位置候補前走車両m2が仮想車両vm1と車両Mとの間に位置するため、仮想車両設定部112は、仮想割込み車両vm2#を設定する。この際、仮想車両設定部112は、上述した図31に示すような関数Fを用いて、車両Mの前端部を基準に非設定領域NSRを設定する。仮想車両設定部112は、この非設定領域NSRを除く領域に、仮想割込み車両vm2#を設定する。
 このような場合、他車位置変化推定部113は、仮想車両設定部112によって設定された仮想割込み車両vm2#と、外界認識部104によって認識された車線変更ターゲット位置候補前走車両m2および車線変更ターゲット位置候補後走車両m3とについて、将来の位置変化を推定する。
 以上説明した第2の実施形態における車両制御装置100、車両制御方法、および車両制御プログラムによれば、隣接車線を走行する監視車両が走行車線上に車線変更する場合、走行車線上に非設定領域NSRを設定するため、車両Mの近い位置に仮想車両を設定しなくなる。これにより、第2の実施形態における車両制御装置100は、監視車両が走行車線に割り込んで車線変更するような場合であっても、緩やかな制御状態の遷移を実現することができる。この結果、第2の実施形態における車両制御装置100は、車両Mの走行をスムーズに制御することができる。
 また、第2の実施形態における車両制御装置100、車両制御方法、および車両制御プログラムによれば、上記非設定領域NSRを、車両Mの速度と監視車両の速度との相対速度Vrに基づいて設定するため、車両Mおよび監視車両の走行状態に合わせて仮想車両の設定位置を変更することができる。この結果、第2の実施形態における車両制御装置100は、車両Mの走行を、よりスムーズに制御することができる。
 <第3の実施形態>
 以下、第3の実施形態について説明する。図33は、第3の実施形態に係る車両制御装置100Aを中心とした車両Mの機能構成図である。ここでは、第1の実施形態と共通する機能部については共通の符号を付し、再度の説明を省略する。車両制御装置100Aの外界認識部104は、第1の実施形態と同様、周辺車両の位置の履歴や方向指示器の作動状態等に基づいて、周辺車両が車線変更をしているか否か(あるいはしようとしているか否か)を推定する。また、外界認識部104は、ナビゲーション装置50から取得される車両Mの位置および地図情報132、あるいはファインダ20、レーダ30、カメラ40等から入力される情報に基づいて車両Mの前方における車線減少を検知した場合に、その車線減少地点までの距離または到達時間に基づいて、周辺車両の車線変更を推定する。
 外界認識部104は、「推定部」の他の一例である。
 仮想車両設定部112は、外界認識部104により車両Mの走行する車線に車線変更すると推定された周辺車両が存在する場合に、その周辺車両を仮想的に擬した仮想車両を所定の状態で設定する。所定の状態とは、例えば、現時点の周辺車両の速度を維持した状態である。
 そして、第3の実施形態に係る走行制御部120Aは、自動運転モードに設定されている場合に、車両Mの前方を走行する周辺車両、または車両Mの前方に設定された仮想車両のうち車両Mに近い方の周辺車両に対し、車間距離を一定に維持する制御を行う。
 これによって、車両制御装置100Aは、車両Mの前方を実際に走行する車両に対してのみ車間距離制御を行うものに比して、より安全な制御を行うことができる。
 なお、上述した実施形態では、車線変更イベントの場合の自動運転の制御方法について説明したが、他のイベントである場合も同様に、仮想車両を設定して車両Mの走行を制御してもよい。
 以上、本発明の実施形態について図面を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
20…ファインダ、30…レーダ、40…カメラ、50…ナビゲーション装置、60…車両センサ、72…走行駆動力出力装置、74…ステアリング装置、76…ブレーキ装置、78…操作デバイス、80…操作検出センサ、82…切替スイッチ、100…車両制御装置、102…自車位置認識部、104…外界認識部、106…行動計画生成部、110…車線変更制御部、111…ターゲット位置候補設定部、112…仮想車両設定部、113…他車位置変化推定部、114…制御計画生成部、115…ターゲット位置決定部、120…走行制御部、122…制御切替部、130…記憶部、M…車両。

Claims (11)

  1.  車両に設けられた車両制御装置であって、
     前記車両の周辺を走行する周辺車両による車線変更を推定する推定部と、
     前記推定部によって前記周辺車両による車線変更が推定された場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定する仮想車両設定部と、
     前記仮想車両設定部によって設定された仮想車両に基づいて、前記車両の制御計画を生成する制御計画生成部と、
     前記制御計画生成部によって生成された制御計画に基づいて、前記車両の加速、減速または操舵を制御する走行制御部と、
     を備える車両制御装置。
  2.  前記仮想車両設定部は、前記推定部によって前記周辺車両による車線変更が推定された際の前記推定の対象である周辺車両の速度に関する情報に基づいて、前記仮想車両の状態を設定する、
     請求項1に記載の車両制御装置。
  3.  前記仮想車両設定部は、前記推定部によって前記周辺車両による車線変更が推定された際の前記周辺車両の車線変更先の車線が、前記車両が走行する車線である場合に、前記車両の位置から前方に、前記仮想車両を設定しない非設定領域を設ける、
     請求項1または2に記載の車両制御装置。
  4.  前記非設定領域は、前記車両の速度と、前記車線変更の推定の対象である周辺車両の速度との相対速度に基づいて設けられる、
     請求項3に記載の車両制御装置。
  5.  前記仮想車両設定部は、前記推定部により、前記車両と前記車両の前方を走行する前走車両との間に対する前記周辺車両による車線変更が推定された場合に、前記車両が走行する車線上において前記仮想車両を設定し、
     前記制御計画生成部は、前記前走車両の代わりに前記仮想車両設定部によって設定された仮想車両に基づいて、前記車両の制御計画を生成する、
     請求項1から4のうちいずれか1項に記載の車両制御装置。
  6.  前記推定部は、前記車両の前方における車線の減少を検知した場合に、前記車両の周辺を走行する周辺車両が車線変更をすると推定する、
     請求項1から5のうちいずれか1項に記載の車両制御装置。
  7.  前記推定部は、前記車両の位置を用いて地図情報を参照することにより、前記車両の前方における車線の減少を検知する、
     請求項6に記載の車両制御装置。
  8.  前記推定部は、前記車両の前方における車線の減少を検知した場合に、前記車両または前記周辺車両から前記車線の減少する地点までの距離または到達時間に基づいて、前記車両の周辺を走行する周辺車両が車線変更をするタイミングを推定する、
     請求項6または7に記載の車両制御装置。
  9.  車両に設けられた車両制御装置であって、
     前記車両の前方における車線の減少を検知した場合に、前記車両の周辺を走行する周辺車両による車線変更を推定する推定部と、
     前記推定部によって前記周辺車両による車線変更が推定された場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定する仮想車両設定部と、
     前記仮想車両設定部によって設定された仮想車両に基づいて、前記車両の加速、減速または操舵を制御する走行制御部と、
     を備える車両制御装置。
  10.  車両に設けられたコンピュータが、
     前記車両の周辺を走行する周辺車両による車線変更を推定し、
     前記周辺車両による車線変更を推定した場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定し、
     前記設定した仮想車両に基づいて、前記車両の制御計画を生成し、
     前記生成した制御計画に基づいて、前記車両の加速、減速または操舵を制御する、
     車両制御方法。
  11.  車両に設けられたコンピュータに、
     前記車両の周辺を走行する周辺車両による車線変更を推定させ、
     前記周辺車両による車線変更を推定させた場合に、前記周辺車両の車線変更先の車線上に、前記推定の対象である周辺車両を仮想的に擬した仮想車両を設定させ、
     前記設定させた仮想車両に基づいて、前記車両の制御計画を生成させ、
     前記生成させた制御計画に基づいて、前記車両の加速、減速または操舵を制御させる、
     車両制御プログラム。
PCT/JP2016/070857 2015-08-06 2016-07-14 車両制御装置、車両制御方法、および車両制御プログラム WO2017022447A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017532460A JP6600892B2 (ja) 2015-08-06 2016-07-14 車両制御装置、車両制御方法、および車両制御プログラム
DE112016003585.3T DE112016003585B4 (de) 2015-08-06 2016-07-14 Fahrzeugsteuervorrichtung, Fahrzeugsteuerverfahren und Fahrzeugsteuerprogramm
US15/748,770 US20190009784A1 (en) 2015-08-06 2016-07-14 Vehicle control apparatus, vehicle control method, and vehicle control program
CN201680042365.8A CN107848534B (zh) 2015-08-06 2016-07-14 车辆控制装置、车辆控制方法及存储车辆控制程序的介质

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015156207 2015-08-06
JP2015-156207 2015-08-06
JP2015-179974 2015-09-11
JP2015179974 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017022447A1 true WO2017022447A1 (ja) 2017-02-09

Family

ID=57942880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070857 WO2017022447A1 (ja) 2015-08-06 2016-07-14 車両制御装置、車両制御方法、および車両制御プログラム

Country Status (5)

Country Link
US (1) US20190009784A1 (ja)
JP (1) JP6600892B2 (ja)
CN (1) CN107848534B (ja)
DE (1) DE112016003585B4 (ja)
WO (1) WO2017022447A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427417A (zh) * 2018-03-30 2018-08-21 北京图森未来科技有限公司 自动驾驶控制系统及方法、计算机服务器和自动驾驶车辆
CN110271548A (zh) * 2018-03-14 2019-09-24 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
JP2019209701A (ja) * 2018-05-31 2019-12-12 マツダ株式会社 車両制御装置および車両制御方法
JP2019217827A (ja) * 2018-06-15 2019-12-26 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP2020006762A (ja) * 2018-07-04 2020-01-16 株式会社デンソー 走行支援装置
JPWO2020121010A1 (ja) * 2018-12-11 2020-06-18
JP2023016669A (ja) * 2021-07-23 2023-02-02 クックミン ユニヴァーシティ インダストリー アカデミー コオペレーション ファウンデーション 自律走行車両の制御装置及び方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212277B3 (de) * 2017-07-18 2018-09-06 Robert Bosch Gmbh Gefahrerkennung bei beabsichtigtem Spurwechsel
JP6984547B2 (ja) * 2018-06-08 2021-12-22 トヨタ自動車株式会社 車線変更支援システム、車線変更支援装置及び車線変更支援方法
JP6710722B2 (ja) * 2018-06-15 2020-06-17 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN111204333B (zh) * 2018-11-22 2023-06-27 沃尔沃汽车公司 车辆前方盲点检测和警告系统
CN110884490B (zh) * 2019-10-28 2021-12-07 广州小鹏汽车科技有限公司 一种车辆侵入判断及辅助行驶的方法、系统、车辆及存储介质
DE102019129879A1 (de) * 2019-11-06 2021-05-06 Zf Friedrichshafen Ag Verfahren sowie Steuergerät zum Steuern eines Kraftfahrzeugs
CN113156911A (zh) * 2020-01-22 2021-07-23 重庆金康新能源汽车有限公司 用于自动驾驶汽车规划和控制测试的组合的虚拟和现实环境
JP7449751B2 (ja) * 2020-03-30 2024-03-14 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11807240B2 (en) * 2020-06-26 2023-11-07 Toyota Research Institute, Inc. Methods and systems for evaluating vehicle behavior
US20230083645A1 (en) * 2021-09-14 2023-03-16 Toyota Motor Engineering & Manufacturing North America, Inc. Determining a lane change decision based on a downstream traffic state
CN113815619B (zh) * 2021-10-26 2023-02-10 驭势(上海)汽车科技有限公司 一种变道控制方法、装置、车辆及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052808A (ja) * 1998-08-12 2000-02-22 Mitsubishi Electric Corp 車両交通管理装置
JP2012187965A (ja) * 2011-03-09 2012-10-04 Mitsubishi Motors Corp 運転支援装置
JP2015069216A (ja) * 2013-09-26 2015-04-13 日産自動車株式会社 運転支援装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2391556T3 (es) * 2002-05-03 2012-11-27 Donnelly Corporation Sistema de detección de objetos para vehículo
DE102005046841A1 (de) 2005-09-29 2007-04-05 Daimlerchrysler Ag Verfahren und Vorrichtung zur Komposition eines Zustandsvektors mit Objektattributswerten eines Zielobjekts für die Eingabe in ein Fahrzeugkontrollsystem
JP2009053735A (ja) 2007-08-23 2009-03-12 Konica Minolta Business Technologies Inc 画像送信装置、画像送信システム及び画像送信方法
JP5125745B2 (ja) * 2008-05-12 2013-01-23 トヨタ自動車株式会社 運転支援装置、運転支援方法
TW201118343A (en) * 2009-11-24 2011-06-01 Tele Atlas Bv Navigation system with live speed warning for merging traffic flow
JP4992959B2 (ja) * 2009-11-30 2012-08-08 株式会社デンソー 衝突回避支援装置、および衝突回避支援プログラム
US9771070B2 (en) * 2011-12-09 2017-09-26 GM Global Technology Operations LLC Method and system for controlling a host vehicle
KR101398223B1 (ko) * 2012-11-06 2014-05-23 현대모비스 주식회사 차량의 차선 변경 제어 장치 및 그 제어 방법
JP2015156207A (ja) 2014-01-14 2015-08-27 株式会社リコー 情報処理システム、情報処理装置、情報処理方法およびプログラム
JP5977270B2 (ja) 2014-01-14 2016-08-24 株式会社デンソー 車両制御装置、及びプログラム
JP6223884B2 (ja) 2014-03-19 2017-11-01 株式会社東芝 通信装置、通信方法およびプログラム
US10697790B2 (en) * 2014-06-10 2020-06-30 Clarion Co., Ltd. Lane selecting device, vehicle control system and lane selecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052808A (ja) * 1998-08-12 2000-02-22 Mitsubishi Electric Corp 車両交通管理装置
JP2012187965A (ja) * 2011-03-09 2012-10-04 Mitsubishi Motors Corp 運転支援装置
JP2015069216A (ja) * 2013-09-26 2015-04-13 日産自動車株式会社 運転支援装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110271548A (zh) * 2018-03-14 2019-09-24 本田技研工业株式会社 车辆控制装置、车辆控制方法及存储介质
CN108427417B (zh) * 2018-03-30 2020-11-24 北京图森智途科技有限公司 自动驾驶控制系统及方法、计算机服务器和自动驾驶车辆
CN108427417A (zh) * 2018-03-30 2018-08-21 北京图森未来科技有限公司 自动驾驶控制系统及方法、计算机服务器和自动驾驶车辆
JP2019209701A (ja) * 2018-05-31 2019-12-12 マツダ株式会社 車両制御装置および車両制御方法
JP2019217827A (ja) * 2018-06-15 2019-12-26 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7035862B2 (ja) 2018-07-04 2022-03-15 株式会社デンソー 走行支援装置
JP2020006762A (ja) * 2018-07-04 2020-01-16 株式会社デンソー 走行支援装置
WO2020121010A1 (ja) * 2018-12-11 2020-06-18 日産自動車株式会社 他車動作予測方法及び他車動作予測装置
JPWO2020121010A1 (ja) * 2018-12-11 2020-06-18
RU2760050C1 (ru) * 2018-12-11 2021-11-22 Ниссан Мотор Ко., Лтд. Способ предсказания действий другого транспортного средства и устройство предсказания действий другого транспортного средства
US11390288B2 (en) 2018-12-11 2022-07-19 Nissan Motor Co., Ltd. Other-vehicle action prediction method and other-vehicle action prediction device
JP7156394B2 (ja) 2018-12-11 2022-10-19 日産自動車株式会社 他車動作予測方法及び他車動作予測装置
JP2023016669A (ja) * 2021-07-23 2023-02-02 クックミン ユニヴァーシティ インダストリー アカデミー コオペレーション ファウンデーション 自律走行車両の制御装置及び方法
JP7287701B2 (ja) 2021-07-23 2023-06-06 クックミン ユニヴァーシティ インダストリー アカデミー コオペレーション ファウンデーション 自律走行車両の制御装置及び方法

Also Published As

Publication number Publication date
DE112016003585B4 (de) 2022-03-10
CN107848534A (zh) 2018-03-27
DE112016003585T5 (de) 2018-05-30
JP6600892B2 (ja) 2019-11-06
US20190009784A1 (en) 2019-01-10
JPWO2017022447A1 (ja) 2018-03-01
CN107848534B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
JP6600892B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6446732B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6446731B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6494121B2 (ja) 車線変更推定装置、車線変更推定方法、およびプログラム
JP6569186B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6344695B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6421391B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6303217B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6380766B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6288590B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6288859B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6270227B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2018158873A1 (ja) 車両制御装置、車両制御方法、およびプログラム
WO2017159487A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JPWO2017138513A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JPWO2017158731A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6485915B2 (ja) 道路区画線認識装置、車両制御装置、道路区画線認識方法、および道路区画線認識プログラム
JP6692930B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017165156A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6442771B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP2017081421A (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP2017084115A (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP2017081432A (ja) 車両制御装置、車両制御方法、および車両制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532460

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003585

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832726

Country of ref document: EP

Kind code of ref document: A1