WO2020121010A1 - 他車動作予測方法及び他車動作予測装置 - Google Patents

他車動作予測方法及び他車動作予測装置 Download PDF

Info

Publication number
WO2020121010A1
WO2020121010A1 PCT/IB2018/001545 IB2018001545W WO2020121010A1 WO 2020121010 A1 WO2020121010 A1 WO 2020121010A1 IB 2018001545 W IB2018001545 W IB 2018001545W WO 2020121010 A1 WO2020121010 A1 WO 2020121010A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
traveling state
possibility
change
Prior art date
Application number
PCT/IB2018/001545
Other languages
English (en)
French (fr)
Inventor
武井翔一
田中慎也
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to CN201880100153.XA priority Critical patent/CN113243029B/zh
Priority to RU2021120176A priority patent/RU2760050C1/ru
Priority to US17/311,172 priority patent/US11390288B2/en
Priority to PCT/IB2018/001545 priority patent/WO2020121010A1/ja
Priority to JP2020559041A priority patent/JP7156394B2/ja
Priority to EP18942660.4A priority patent/EP3896672A4/en
Publication of WO2020121010A1 publication Critical patent/WO2020121010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • B60W60/00274Planning or execution of driving tasks using trajectory prediction for other traffic participants considering possible movement changes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4044Direction of movement, e.g. backwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4045Intention, e.g. lane change or imminent movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4049Relationship among other objects, e.g. converging dynamic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance

Definitions

  • the present invention relates to another vehicle operation prediction method and another vehicle operation prediction device.
  • Patent Document 1 Conventionally, a technique for estimating the traveling locus of another vehicle is known (see Patent Document 1).
  • the device disclosed in Patent Document 1 obtains the traveling loci of other vehicles under conditions that comply with traffic rules and conditions that do not, respectively, and shifts between the direction of the lane in which the other vehicle travels and the direction of the axle of the other vehicle. To get the axis deviation. Then, when the axis deviation is small, the travel path under the conditions that comply with the traffic rules is maintained, and when the axis deviation is large, the travel path of other vehicles is estimated by switching to the travel path under the conditions that do not comply with the traffic rules. To do.
  • Patent Document 1 when the axis deviation is larger than the threshold value, the traveling locus under the condition that the traffic rules are not observed is estimated. Therefore, the traveling locus under the condition that the traffic rules are not observed cannot be predicted until after detecting a large movement of the other vehicle in the axle direction. Therefore, the prediction of the traveling locus of another vehicle may be delayed. On the other hand, when the threshold value of the axis deviation is reduced, the traveling locus of another vehicle may be erroneously predicted. As described above, there is a problem that the traveling locus of another vehicle cannot be promptly and correctly predicted only by the axis deviation.
  • the present invention has been made in view of the above problems, and an object thereof is an other vehicle operation prediction method and an other vehicle operation prediction device that suppress erroneous prediction of the operation of another vehicle and delay of prediction. Is to provide.
  • One aspect of the present invention is based on the behavior of another vehicle traveling in an adjacent lane, and another vehicle operation predicting that the other vehicle will change lane in front of the own vehicle from the adjacent lane to the own lane in which the own vehicle is traveling. It is a prediction method.
  • the actual traveling state of another vehicle is acquired, the traffic regulation information indicating the traffic regulation relating to the adjacent lane is acquired, and the traveling state of the other vehicle when traveling according to the traffic regulation is predicted.
  • Predict the driving state calculate the cognizability that another vehicle has recognized the traffic rules, and predict that another vehicle will change lanes based on the cognizability, the predicted driving state, and the actual driving state .
  • FIG. 1 is a block diagram showing the configuration of the other vehicle motion prediction device according to the embodiment.
  • FIG. 2 is a flowchart showing an operation example of the other vehicle operation prediction device in FIG. 1 as the other vehicle operation prediction method according to the embodiment.
  • FIG. 3A is a zenith view showing an example of a driving scene in which the driving support device according to the embodiment effectively functions.
  • FIG. 3B is a zenith view showing a state after a certain time has elapsed from the state shown in FIG. 3A.
  • FIG. 4 is a table showing an example of data referred to when the other vehicle 12 determines whether or not to change lanes based on the deviation amount and the recognizability.
  • FIG. 1 is a block diagram showing the configuration of the other vehicle motion prediction device according to the embodiment.
  • FIG. 2 is a flowchart showing an operation example of the other vehicle operation prediction device in FIG. 1 as the other vehicle operation prediction method according to the embodiment.
  • FIG. 3A is a zenith
  • FIG. 5 is a table showing an example of data referred to when the other vehicle 12 determines whether to change lanes based on the difference and the recognizability.
  • FIG. 6 is a table showing an example of data referred to when calculating the lane change possibility P based on the lane change possibility P d and the recognition possibility R.
  • FIGS. 3A and 3B show that in a one-way road consisting of two lanes (G1, G2), the own vehicle 11 travels in the left lane G1 (own lane) and the lane adjacent to the own lane is the right lane G2 (adjacent lane). ) Indicates a traveling scene in which the other vehicle 12 is running side by side.
  • the left lane G1 is a straight lane in front of the host vehicle 11.
  • the right lane G2 is a curved lane that curves to the right in front of the other vehicle 12, that is, a “lane for turning right”. That is, the left lane G1 and the right lane G2 branch in front of the own vehicle 11 and the other vehicle 12, and form roads having different destinations.
  • both the own vehicle 11 and the other vehicle 12 are intended to go straight on the road. Therefore, the host vehicle 11 is traveling in the correct lane G1 according to the intention of going straight.
  • the other vehicle 12 is traveling in the lane (lane G2) in which the front is the lane dedicated to the right turn, contrary to the intention of going straight. Therefore, the other vehicle 12 needs to change lanes from the currently traveling right lane G2 to the left lane G1 in order to go straight.
  • the other vehicle 12 may be traveling by either automatic driving or manual driving.
  • “Automatic driving” is a driving mode in which a predetermined vehicle traveling control device mainly performs part or all of the recognition, judgment, and operation related to vehicle driving.
  • the “manual driving” is a driving mode in which a driver who is an occupant (human) of the other vehicle 12 drives the vehicle.
  • the preceding vehicle 13 is driving in the right lane G2.
  • a "right turn arrow 14" which is a road marking
  • the "right turn arrow 14" is a road marking indicating a traffic rule that "the direction in which the vehicle can travel is the right turn in the lane to which it is attached”.
  • the "road marking” is a marking that displays regulations or instructions regarding road traffic, and is a line, symbol, or character formed by road tacks, paint, stones, or the like drawn on the road surface.
  • the preceding vehicle 13 is traveling on the right turn arrow 14 or is stopped on the right turn arrow 14, so that the other vehicle 12 turns the right turn arrow 14 ahead. It may not be visible or detectable. In this case, the other vehicle 12 may not be able to recognize the traffic rule that "when the vehicle is currently traveling in the right lane G2, the direction in which it can proceed is turning right".
  • the possibility that the right turn arrow 14 cannot be visually recognized or detected is further increased.
  • the preceding vehicle 13 passes the right turn arrow 14, so that the other vehicle 12 can visually recognize or detect the right turn arrow 14 for the first time.
  • the other vehicle 12 can recognize for the first time the traffic rule that "when the vehicle continues to run in the right lane G2, the direction in which it can proceed is a right turn".
  • the traveling state of the other vehicle 12 may change according to the change from non-recognition to recognition of the traffic rule. For example, there is a case where the vehicle is moved to the right lane G2 side, that is, the position in the lane width direction in the right lane G2 is changed, or sudden deceleration, that is, deceleration is increased.
  • the traveling state of the other vehicle 12 it is detected that the traveling state of the other vehicle 12 has changed, and in consideration of the possibility of the other vehicle 12 recognizing the traffic rules, the other vehicle 12 moves from the right lane G2 to the left lane G1.
  • An apparatus and method for predicting to make a lane change will be described. According to the device and the method, it is possible to prevent the lane change from being erroneously predicted and the prediction being delayed by considering not only the change of the traveling state but also the recognizability.
  • the other vehicle motion prediction method and the other vehicle motion prediction device according to the embodiment will be described in detail. The traveling scenes shown in FIGS.
  • 3A and 3B are examples of traveling scenes in which the other vehicle operation prediction method and the other vehicle operation prediction device according to the embodiment effectively function, and the other vehicle operation according to the embodiment is performed. It does not limit the range to which the prediction method and the other vehicle motion prediction device are applied.
  • the other vehicle operation prediction device includes a control unit.
  • the control unit predicts that the other vehicle 12 will change lanes from the adjacent lane G2 to the own lane G1 in front of the own vehicle 11 based on the behavior of the other vehicle 12 traveling in the adjacent lane G2.
  • the control unit includes an object detection unit 102, a vehicle position estimation unit 101, a traffic regulation information acquisition unit 104, and a microcomputer.
  • the object detection unit 102 detects a plurality of different types of objects such as a laser radar, a millimeter-wave radar, a camera, and a lidar (LiDAR: Light Detection and Ranging) mounted on the vehicle 11 for detecting objects around the vehicle 11.
  • An object detection sensor is provided.
  • the object detection unit 102 detects an object around the host vehicle 11 using a plurality of object detection sensors.
  • the object detection unit 102 detects another vehicle 12 including a two-wheeled vehicle, a light vehicle including a bicycle, a moving object such as a pedestrian, and a stationary object such as a parked vehicle.
  • the position, orientation, size, speed, acceleration, deceleration, and yaw rate of the moving object and the stationary object with respect to the host vehicle 11 are detected.
  • the position, posture (yaw angle), size, speed, acceleration, deceleration, and yaw rate of the object are collectively referred to as the “behavior” of the object.
  • the object detection unit 102 detects the actual traveling state of the other vehicle 12 (hereinafter, may be abbreviated as “actual traveling state”) as the behavior of the object.
  • the object detection unit 102 integrates a plurality of detection results obtained from each of the plurality of object detection sensors and outputs one detection result for each object. Specifically, from the behavior of the object obtained from each of the object detection sensors, the most reasonable behavior of the object with the smallest error is calculated in consideration of the error characteristics of each object detection sensor. Specifically, a known sensor fusion technique is used to comprehensively evaluate the detection results obtained by a plurality of types of sensors and obtain a more accurate detection result.
  • the object detection unit 102 tracks the detected object. Specifically, from the integrated detection result, the behavior of the object output at different times is verified (association) of the identities of the objects between different times, and based on the association, Predict behavior. The behavior of the object output at different times is stored in the memory of the microcomputer and used for the motion prediction of the other vehicle 12 described later.
  • the object detection unit 102 outputs, as a detection result, the behavior of a two-dimensional object in a zenith view viewed from the air above the vehicle 11.
  • the actual traveling state of the other vehicle 12 is a numerical value indicating any one of a position including an absolute position and a relative position of the other vehicle 12, a posture (yaw angle), a speed, an acceleration, and a traveling locus, or any one of them. It is expressed by a combination of numerical values indicating two or more.
  • the traveling locus of the other vehicle 12 indicates a time series of the position of the other vehicle 12. For example, when represented by a combination of the traveling locus and the speed, the actual traveling state has a profile of the position of the other vehicle 12 at different times and a profile of the speed of the other vehicle 12 at each position.
  • the actual traveling state of the other vehicle 12 is the orientation of the other vehicle 12 with respect to the adjacent lane (the right lane G2) or the own lane (the left lane G1), the position of the other vehicle 12 in the vehicle width direction in the adjacent lane, In the state of the other vehicle 12 related to any one of the speed of the other vehicle 12, the acceleration of the other vehicle 12, and the deceleration of the other vehicle 12, or a combination of the states of the other vehicle 12 related to two or more. It can also be expressed.
  • the traveling direction is along the right lane G2
  • the traveling direction is on the left lane G1 side
  • the position in the lane width direction is close to the left lane G1 side
  • the actual traveling state can be represented by the state of the other vehicle 12, such as "present”, “decelerating”, “constant speed”.
  • the own vehicle position estimation unit 101 is a position (absolute position) and an attitude (absolute attitude) in the earth coordinates of the own vehicle 11, such as a receiver mounted on the own vehicle 11 for receiving a GPS (Global Positioning System) signal.
  • a position detection sensor for measuring the vehicle position estimation unit 101 includes an arithmetic processing circuit that performs odometry and dead reckoning.
  • the host vehicle position estimation unit 101 uses a wheel speed sensor that detects the wheel speed of each wheel of the host vehicle 11, a steering angle sensor that detects the turning angle of the steered wheels, and an arithmetic processing circuit. It is possible to measure the relative position, relative attitude, and speed of the host vehicle 11 with respect to a predetermined reference point.
  • the information indicating the absolute position, the absolute attitude, the relative position, and the relative attitude of the host vehicle 11 is called “information indicating the position and attitude of the host vehicle 11.”
  • the host vehicle position estimation unit 101 can detect the position and orientation of the host vehicle 11 on the map from the information indicating the position and orientation of the host vehicle 11.
  • the map is shown by the map data stored in the map database 111 in advance.
  • the traffic rule information acquisition unit 104 acquires information (traffic rule information) indicating traffic rules related to roads around the vehicle 11. For example, the traffic regulation information in front of the own vehicle 11 in the lane adjacent to the left or right side of the own lane G1 is acquired. Further, it is possible to acquire traffic regulation information in front of the other vehicle 12 regarding the adjacent lane (the right lane G2) in which the other vehicle 12 that is the target of the lane change determination is traveling, among the roads around the own vehicle 11. .. Of course, when the target of the lane change determination is not specified, the traffic regulation information regarding the lanes adjacent to both sides of the own lane G1 may be acquired without specifying the lane.
  • the map data stored in the map database 111 includes data indicating the structure of the road including the own lane G1 and the adjacent lane G2 and the structure of each lane forming the road, and further linked to the structure of the road. Traffic regulation information regarding the lane G1 and the adjacent lane G2 is also stored in the map database 111.
  • the map database 111 may or may not be installed in the own vehicle 11. If not installed, the traffic regulation information acquisition unit 104 uses, for example, inter-vehicle/inter-vehicle communication in an intelligent transportation system (ITS) or new traffic management system (UTMS), or mobile communication such as 3G or LTE. , Map data and traffic regulation information can be obtained from outside the vehicle.
  • ITS intelligent transportation system
  • UTMS new traffic management system
  • Map data and traffic regulation information can be obtained from outside the vehicle.
  • the traffic regulation information acquisition unit 104 recognizes a road marking attached to the road surface, which indicates a regulation or instruction regarding road traffic, from an image of the surroundings of the own vehicle 11 acquired by using a camera included in the object detection unit 102. You may.
  • the traffic regulation information acquisition unit 104 may recognize the road signs installed around the road from the image around the vehicle 11.
  • the traffic regulation information acquisition unit 104 may acquire the lane structure by recognizing the lane boundary line attached to the road surface from the image around the vehicle 11.
  • the microcomputer predicts that the other vehicle 12 will change lanes based on the detection result by the object detection unit 102, the estimation result by the own vehicle position estimation unit 101, and the information acquired by the traffic regulation information acquisition unit 104.
  • a microcomputer is a general-purpose microcomputer including a CPU (Central Processing Unit), memories such as RAM and ROM, and an input/output unit.
  • a computer program (another vehicle motion prediction program) for causing the microcomputer to function as a part of the other vehicle motion prediction device is installed.
  • the microcomputer functions as a plurality of information processing circuits (103, 105, 106, 107, 108) included in the other vehicle operation prediction device.
  • a plurality of information processing circuits (103, 105 to 108) included in the other vehicle operation prediction device are realized by software.
  • the plurality of information processing circuits (103, 105 to 108) may be configured by individual hardware. Further, the information processing circuits (103, 105 to 108) may also serve as an electronic control unit (ECU) used for other control related to the vehicle 11. In the present embodiment, as an example, the microcomputer also realizes an information processing circuit (109, 110) that executes automatic driving of the own vehicle 11 based on the prediction result of the operation of another vehicle.
  • ECU electronice control unit
  • the microcomputer as a plurality of information processing circuits (103, 105 to 110), a motion candidate generation unit 103, a rule derivation unit 105, a cognizability calculation unit 106, a running state change detection unit 107, and a predicted motion determination.
  • a unit 108, a vehicle path generation unit 109, and a vehicle control unit 110 are provided.
  • the motion candidate generation unit 103 predicts motion candidates that the other vehicle 12 can act in the near future based on the road structure and the lane structure.
  • the movement candidates predicted by the movement candidate generation unit 103 include lane changes.
  • the motion candidate generation unit 103 predicts the motion intention of how the other vehicle 12 will travel next from the road structure and the structure of the lane to which the other vehicle belongs, and the basic trajectory of the other vehicle based on the motion intention. Is calculated.
  • the “motion candidate” is a superordinate concept including a motion intention and a basic trajectory.
  • the “basic trajectory” indicates not only the profile of the position of the other vehicle at different times but also the profile of the speed of the other vehicle 12 at each position.
  • the motion candidate generation unit 103 predicts the motion intention of the other vehicle 12 to continue traveling in the adjacent lane (right lane G2), and determines the basic trajectory that follows the shape of the right lane G2. Calculate Further, the motion candidate generation unit 103 predicts the motion intention of the other vehicle 12 in front of the own vehicle 11 to change the lane from the adjacent lane (right lane G2) to the own lane (left lane G1). Then, the motion candidate generation unit 103 calculates a basic trajectory for changing the lane in front of the host vehicle 11 from the right lane G2 to the left lane G1.
  • the "lane change” is, as shown in FIG. 3A, a lane change in a driving scene in which no lane is formed on the own lane G1 in front of the own vehicle 11, so-called "normal lane change”. Is included.
  • the “lane change” further includes a so-called “interruption” that interrupts into the lane in a traveling scene in which a lane is formed on the lane G1 in front of the vehicle 11. Note that “interrupt” has the same meaning as “cut in”.
  • the rule derivation unit 105 determines that the other vehicle 12 is The "prediction driving state", which is the traveling state when traveling according to the traffic rules ahead, is predicted as a rule.
  • the “predicted traveling state” of the other vehicle 12 refers to a traveling state in which the other vehicle 12 is predicted to take when the other vehicle 12 travels in accordance with the traffic regulation in front of the adjacent lane.
  • "traffic rules” means the traffic rules in front of the other vehicle 12.
  • the predicted traveling state of the other vehicle 12 can be expressed by a numerical value or a combination of numerical values, like the actual traveling state. That is, the predicted traveling state is a numerical value indicating any one of the position including the absolute position and the relative position of the other vehicle 12, the posture (yaw angle), the speed, the acceleration, and the traveling locus, or any two or more. It is expressed by a combination of the numerical values shown. For example, when represented by a combination of the traveling locus and the speed, the predicted traveling state has a profile of the position of the other vehicle 12 at different times and a profile of the speed of the other vehicle 12 at each position.
  • the predicted traveling state is the direction of the other vehicle 12 with respect to the adjacent lane (the right lane G2) or the own lane (the left lane G1), the position of the other vehicle 12 in the vehicle width direction in the adjacent lane, and the speed of the other vehicle 12.
  • the rule derivation unit 105 may predict the predicted traveling state based on the traffic rule information, the road structure related to the adjacent lane (G2), and the speed limit of the road related to the adjacent lane (G2). Specifically, from the shape of an adjacent lane (G2) that is a right turn in front of another vehicle 12 (an example of a road structure) to the right lane G2, the shape is a right lane G2. The predicted traveling state of the other vehicle 12 turning rightward about 90 degrees is calculated.
  • the rule deriving unit 105 may select the predicted traveling state from the plurality of motion candidates generated by the motion candidate generating unit 103. Furthermore, the speed profile of the other vehicle 12 can be predicted by considering the speed limit of the road related to the adjacent lane (G2).
  • the cognizability calculating unit 106 calculates “cognizability” indicating the possibility that the other vehicle 12 has recognized the traffic rules.
  • the "traffic rules” here include at least the traffic rules relating to the adjacent lane (right lane G2).
  • the cognitive possibility calculation unit 106 calculates the possibility that the other vehicle 12 has recognized the traffic rules relating to the lane (G2) in which the vehicle is running as “cognitive possibility”.
  • the recognition possibility indicates the possibility of being related to the recognition of the other vehicle 12. Therefore, whether the own vehicle 11, that is, the traffic regulation information acquisition unit 104 has acquired the traffic regulation related to the adjacent lane (right lane G2), It does not have to be directly related.
  • the possibility of being involved in the recognition of the own vehicle 11 may be associated with the “recognition possibility” of the other vehicle 12.
  • the cognitive possibility calculation unit 106 can calculate the cognitive possibility using the maximum cognitive range and the partial cognitive range, which are examples of the plurality of cognizable ranges.
  • the “maximum recognition range” is, for example, the maximum range in which the traffic rules can be recognized, which is calculated from human visual characteristics (for example, general driver's visual acuity) when the other vehicle 12 is traveling by manual driving. Is.
  • human visual characteristics for example, general driver's visual acuity
  • the other vehicle 12 is traveling by automatic driving, it is the maximum range in which the traffic rules can be recognized, which is calculated from the sensing range of the object detection sensor mounted on the other vehicle 12.
  • the maximum recognition range is a range determined by the distance from the other vehicle 12, and for example, the range of a circle centered on the other vehicle 12 and having a radius corresponding to a human visual characteristic (La in FIG. 3A) is a maximum. It can be a cognitive range.
  • the “partial recognition range” is a range in which the traffic rules can be recognized, which is calculated based on the vehicle height of the other vehicle 12 and the traveling environment of the other vehicle 12. For example, when the vehicle height of the other vehicle 12 is low and an object (an example of a traveling environment) around the other vehicle 12 shields a target object indicating a traffic rule such as a road structure or a traffic sign that can recognize the traffic rule. There is. In this case, the other vehicle 12 cannot visually recognize or detect the road structure or the target, and cannot recognize the traffic rules. Therefore, the cognizability calculating unit 106 considers the vehicle height of the other vehicle 12 and the traveling environment of the other vehicle 12 so that the target indicating the blocked traffic rule (existing in the blind spot) is not included.
  • a partial cognitive range can be calculated. For example, as shown in the area Lb of FIG. 3A, the traffic rule can be recognized in the sensing range of a predetermined angle of view. However, since the area hidden by the preceding vehicle 13 is a blind spot of the other vehicle 12, the traffic rules cannot be recognized or detected. Of course, when the vehicle height of the other vehicle 12 is sufficiently higher than the vehicle height of the preceding vehicle 13, the area ahead of the preceding vehicle 13 in the traveling direction does not become a blind spot of the other vehicle 12. Therefore, in this case, the partial recognition range is wider than the region Lb in FIG. 3A. In this way, the partial recognition range Lb can be calculated based on the vehicle height of the other vehicle 12 and the traveling environment of the other vehicle 12 (presence of the preceding vehicle 13).
  • the "partial recognition range” may be narrowed around the object (shield) that narrows the recognition range.
  • the recognition possibility is calculated by the shielding rate of the sensing range by the shield (the ratio of the sensing range by the object detection sensor when the shield is present to the sensing range by the object detection sensor when there is no shield) Good.
  • the recognition possibility R 1 may be calculated as 0.8.
  • the cognitive possibility calculation unit 106 can calculate the cognitive possibility by various methods using the maximum cognitive range (circle with radius La) and the partial cognitive range Lb.
  • the first calculation criterion and the second calculation criterion are shown below.
  • both the maximum recognition range and the partial recognition range include a target indicating a road structure or a traffic rule capable of recognizing the traffic rules
  • the cognizability calculating unit 106 determines whether the maximum recognition range and the partial recognition range are satisfied. Higher recognizability can be calculated as compared with the case where neither road structure or target is included. "When the road structure or the target is not included in both the maximum recognition range and the partial recognition range", the road structure or the target is included in only one of the maximum recognition range and the partial recognition range. And the case where the road structure or the target is not included in both the maximum recognition range and the partial recognition range.
  • the “lane structure that can recognize traffic rules” includes lane boundaries.
  • the recognizability calculation unit 106 determines the traffic rules based on the shape of a lane boundary line such as a straight line, a right curve, a left curve, or the type of a lane boundary line such as a white broken line, a white solid line, or a yellow solid line.
  • the "target indicating the traffic rules" includes a traffic sign such as road surface paint in front of the other vehicle 12, a road sign (including a traffic sign), and guidance, warning, and guidance according to the road and traffic conditions. Includes signs.
  • the road signs include restriction signs for prohibiting and restricting traffic, and auxiliary signs for assisting display of reasons (vehicle type, time, section, etc.) for the installed signs.
  • the cognitive possibility calculation unit 106 may include one part of the above-mentioned one. It is possible to calculate a higher cognitive possibility as compared with the case where only is included. For example, as shown in FIG. 3A, when part of the right turn arrow 14 is hidden by the preceding vehicle 13, only part of the right turn arrow 14 is included in the partial recognition range. On the other hand, as shown in FIG. 3B, when the right turn arrow 14 is not hidden by the preceding vehicle 13, the entire right turn arrow 14 is included in the partial recognition range Lb. Therefore, the recognition possibility in the traveling scene of FIG. 3B is higher than the recognition possibility in the traveling scene of FIG. 3A.
  • the recognition possibility calculation unit 106 calculates higher recognition possibility as the distance from the other vehicle 12 to the road structure that can recognize the traffic rules or the target object indicating the traffic rules is shorter. If there is a vehicle that can recognize the traffic rules in the vicinity, the possibility of recognizing the other vehicle 12 is higher than that in the case of being far away. For example, if the distance is 5 m, the recognition possibility R 2 may be calculated as 0.9, and if the distance is 8 m, the recognition possibility R 2 may be calculated as 0.8.
  • the perceptibility calculation unit 106 integrates the perceptibility R 1 based on the shielding rate of the sensing range and the perceptibility R 2 based on the distance using the formula (1) to determine the perceptibility R. It may be calculated.
  • Each of ⁇ 1 and ⁇ 1 is a weighting coefficient, and K+1 is a correction term. K is zero or a positive number.
  • the perceptibility R may be obtained from a distribution designed in advance such as a probability density function having a normal distribution.
  • the recognition possibility calculation unit 106 can calculate the recognition possibility using the own vehicle recognition range in which the own vehicle 11 can recognize the traffic rules as the maximum recognition range or the partial recognition range. That is, the recognition possibility may be calculated by replacing the range that can be recognized from the own vehicle 11 with the maximum recognition range or the partial recognition range of the other vehicle 12.
  • the fourth calculation criterion can be implemented in combination with the first to third calculating means.
  • the recognizability calculation unit 106 can calculate the recognizability based on the road structure that can recognize the traffic rules or the target that indicates the traffic rules that the vehicle 11 actually detected. That is, the recognition possibility can be calculated based on the assumption that the road structure or the target actually detected by the own vehicle 11 could also be detected by the other vehicle 12.
  • the fifth calculation criterion can be implemented in combination with the first to fourth calculating means.
  • the running state change detection unit 107 detects that the actual running state detected by the object detection unit 102 has changed. Specifically, the traveling state change detection unit 107 may detect that the actual traveling state has changed when there is a difference equal to or greater than the first reference value between the actual traveling states at two different times. it can. The traveling state change detection unit 107 may not determine that the actual traveling state has changed when there is no difference equal to or more than the first reference value between the actual traveling states at two different times.
  • the running state change detecting unit 107 determines that the actual running state has changed. Can be detected. When there is no difference equal to or more than the second reference value between the amounts of change in the actual traveling state per unit time at two different times, it is not necessary to determine that the actual traveling state has changed. In this way, the traveling state change detection unit 107 compares the actual traveling states at two different times, or compares the actual traveling state changes per unit time at two different times. It is possible to determine whether the running state has changed.
  • the predictive motion determining unit 108 determines that the other vehicle 12 is in the lane based on the change in the cognizability calculated by the cognizability calculating unit 106, the predicted traveling state predicted by the rule deriving unit 105, and the actual traveling state. Anticipate making changes. It should be noted that the “actual traveling state has changed” is detected by the traveling state change detection unit 107. Specifically, first, when the traveling state change detection unit 107 detects that the actual traveling state has changed, the object detection unit 102 acquires the actual traveling state. As the “actual traveling state” acquired by the object detection unit 102, there are the following two examples (first example and second example).
  • the object detection unit 102 acquires the actual traveling state after the change as the actual traveling state.
  • the actual traveling state after the change is a numerical value indicating any one of the position, posture, speed, acceleration, and traveling locus of the other vehicle 12, or a numerical value indicating any two or more. Expressed as a combination.
  • the actual traveling state after the change may be expressed not as a numerical value but as a state related to the numerical value.
  • the object detection unit 102 acquires, as the actual traveling state, change information that is information indicating a change in the traveling state.
  • the change information can be represented by a numerical value indicating any one of the position, posture, speed, acceleration, and traveling locus of the other vehicle 12, or a combination of numerical values indicating any two or more.
  • the change information includes the direction of the other vehicle 12 with respect to the adjacent lane G2 or the own lane G1, the position of the other vehicle 12 in the vehicle width direction within the adjacent lane G2, the speed of the other vehicle 12, the acceleration of the other vehicle 12, and the like. It may be expressed by a state of the other vehicle 12 related to any one of the decelerations of the other vehicle 12 or a combination of states of the other vehicle 12 related to two or more thereof.
  • the predictive operation determination unit 108 compares and compares the predicted traveling state, which is the traveling state when the other vehicle complies with the traffic rules (that is, the traveling state when the lane change is not performed), with the actual traveling state. It is predicted that the other vehicle 12 will change lanes based on the result and the recognizability.
  • the “comparison result” there are the following three examples (third example to fifth example).
  • the prediction operation determination unit 108 compares the predicted traveling state with the actual traveling state, and calculates the deviation amount of the actual traveling state in the direction that does not follow the predicted traveling state. For example, when the other vehicle 12 is traveling in the right lane G2 as shown in FIG. 3A, the rule deriving unit 105 indicates that “the amount of deviation of the actual traveling state in a direction that does not follow the predicted traveling state” is As a predicted traveling state, a predicted traveling locus traveling in the center of the right lane G2 in the vehicle width direction is predicted.
  • the actual traveling state detected by the object detection unit 102 (an example of the actual traveling state) is deviated to the right of the predicted traveling locus, the actual traveling state is in the direction along the predicted traveling locus turning to the right. It can be said that they are out of alignment.
  • the actual traveling locus detected by the object detection unit 102 is shifted to the left of the predicted traveling locus, the actual traveling state is deviated in the direction that does not follow the predicted traveling state that is curved to the right. I can say. Therefore, in the traveling scene shown in FIG. 3A, the predictive motion determination unit 108 determines the amount of deviation of the actual traveling locus to the left of the predicted traveling locus as “the actual traveling state in a direction that does not follow the predicted traveling state.
  • Deviation amount In the traveling scene shown in FIG. 3A, when the actual traveling locus deviates to the right of the predicted traveling locus, the “amount of deviation of the actual traveling state in a direction that does not follow the predicted traveling state” is zero. .. That is, in the right-turn-only lane, the shift amount is zero even if it is closer to the right in the vehicle width direction than the center of the lane.
  • the predictive motion determination unit 108 determines whether or not the other vehicle 12 will change lanes, for example, with reference to the table shown in FIG. 4, based on the deviation amount and the recognizability. Specifically, a threshold value (Th a1 , Th a2 , Th b1 , Th b2 ) is set in advance for each of the deviation amount and the cognizability, and the figure is obtained by comparing the deviation amount and the cognizability with the threshold value. Referring to the table shown in FIG. 4, it is determined whether or not the other vehicle 12 changes lanes. In FIG. 4, “1” indicates that the lane is changed, and “0” indicates that the lane is not changed.
  • the threshold Th b1 of perceptibility is larger than the threshold Th b2 . If the threshold Th b1 and the threshold Th b2 are higher than the threshold Th b1 , respectively, it is determined that “the recognition possibility is high (the recognition possibility is high)”. If the possibility is higher than the threshold value Th b2, it is judged as “possible to recognize (possible to recognize)”, and if the possibility is less than or equal to Th b2 , “Low possibility to recognize (recognition) There is a high possibility that it has not been done)” is a predetermined threshold value.
  • the threshold value Th a1 of the deviation amount is a value larger than the threshold value Th a2 .
  • the shift amount thresholds Th a1 and Th a2 are determined to be “large shift amounts” when the shift amount is larger than Th a1 , respectively, and “There is a shift amount (shift occurs when the shift amount is larger than Th a2. to have) “and is determined, if the shift amount is Th a2 hereinafter" deviation amount is not (no shift occurs) "for determining that a predetermined threshold.
  • the predictive action determination unit 108 determines that the recognizability is higher than the threshold Th b1 (first threshold) and the shift amount is larger than the threshold Th a2 (second threshold), It is predicted that the other vehicle 12 will change lanes. In addition, the predictive motion determining unit 108 determines that the shift amount is smaller than the threshold Th a1 (third threshold) even if the recognizability is the threshold Th b1 (first threshold) or less. If it is larger, it is predicted that the other vehicle 12 will change lanes. On the other hand, the predictive action determination unit 108 has a perceptibility that is equal to or lower than the threshold Th b1 (first threshold) and an amount of deviation equal to or lower than the threshold Th a1 (third threshold). In this case, it is predicted that the other vehicle 12 will not change lanes.
  • the recognizability is not high (when the recognizability is less than or equal to the threshold Th b1 )
  • the deviation amount is larger than the threshold Th a2 unless the deviation amount is large.
  • the lane change of the other vehicle is not predicted (when the threshold Th a1 or less). That is, when the deviation amount is large (when the deviation amount is larger than the threshold Th a1 ), the lane change of another vehicle is predicted regardless of the recognizability, but when the recognizable possibility is high (the recognizability is high). Even if the deviation amount is small only when the deviation amount is higher than the threshold value Th b1 ), another vehicle changes lanes if the deviation amount is detected (if the deviation amount is larger than the threshold value Th a2 ). Predict what to do.
  • the predictive operation determination unit 108 compares the predicted traveling state, which is the traveling state when the other vehicle complies with the traffic rules (that is, the traveling state when the lane is not changed), with the actual traveling state of the other vehicle. , The difference in the actual traveling state in the direction that does not follow the predicted traveling state is calculated.
  • the predictive action determination unit 108 can calculate the dissimilarity d using the equation (2).
  • v represents an actual traveling state
  • r represents an estimated traveling state
  • ⁇ and ⁇ represent preset constants.
  • ⁇ and ⁇ are average values or standard deviations of the difference between the predicted traveling state and the actual traveling state.
  • the prediction operation determination unit 108 calculates a value standardized by the equation (2) as the difference d.
  • the predicted traveling state and the actual traveling state are the orientation of the other vehicle 12 with respect to the adjacent lane G2 or the own lane G1, the position of the other vehicle 12 in the vehicle width direction within the adjacent lane G2, the speed of the other vehicle 12, and the other vehicle 12. , And the state of the other vehicle 12 related to any one of the deceleration of the other vehicle 12 or a combination of the states of the other vehicle 12 related to two or more of them.
  • the predictive operation determination unit 108 may calculate whether or not the predicted traveling state and the actual traveling state match as the difference. In other words, the predictive motion determination unit 108 determines whether or not the predicted traveling state and the state expressing the actual traveling state are the same or different as the difference.
  • the difference may have a plurality of stages. For example, when the predicted traveling state (acceleration) is “deceleration”, the difference when the actual traveling state (acceleration) is acceleration is “1”, and the difference when the actual traveling state (acceleration) is low is “0.5”. The difference in deceleration may be set to "0".
  • the prediction motion determination unit 108 refers to the table shown in FIG. 5, for example, and determines whether or not the other vehicle 12 changes lanes based on the difference and the recognizability. Specifically, the predictive action determination unit 108 sets thresholds (Th d1 , Th d2 , Th b1 , Th b2 ) for each of the dissimilarity and the perceptibility in advance. Then, the predictive motion determination unit 108 determines whether or not the other vehicle 12 changes lanes by referring to the table shown in FIG. 5 based on the comparison between the difference and the cognizability and the threshold value. In FIG. 5, “1” indicates that the lane is changed, and “0” indicates that the lane is not changed.
  • the thresholds Th b1 and Th b2 of the recognizability are predetermined thresholds for determining “high recognizability” or “low recognizability” as described above. Further, the difference thresholds Th d1 and Th d2 are determined to be “high difference (large difference)” when the difference is larger than Th d1 , and “difference” when the difference is larger than Th d2. It is a predetermined threshold value for determining that there is a property (a difference occurs).
  • the predictive action determination unit 108 determines that the recognizability is higher than the threshold Th b1 (fourth threshold) and the dissimilarity is greater than the threshold Th d2 (fifth threshold), It is predicted that the other vehicle 12 will change lanes. If the recognizability is less than or equal to the threshold Th b1 (fourth threshold), the predictive action determination unit 108 determines that the dissimilarity is greater than the threshold Th d1 (sixth threshold). , Predict that the other vehicle 12 will change lanes. On the other hand, the predictive motion determination unit 108 predicts that the other vehicle 12 does not change lanes when the recognizability is the threshold Th b1 or less and the dissimilarity is the threshold Th d1 or less.
  • the dissimilarity when the dissimilarity is high (when the dissimilarity is higher than the threshold Th d1 ), it is predicted that another vehicle will change lanes regardless of the recognizability, and if the recognizability is high, Even if the difference is small, it is predicted that another vehicle will change lanes if the difference is detected (if the difference is higher than the threshold Th d2 ).
  • the lane change of another vehicle when there is no difference (when the difference is less than or equal to the threshold Th d2 ), the lane change of another vehicle is not predicted regardless of the recognizability.
  • the recognizability when the recognizability is not high (the recognizability is less than or equal to the threshold Th b1 ), the difference is larger than the threshold Th d2 unless the difference is large.
  • the lane change of another vehicle is not predicted (when the threshold Th d1 or less).
  • the lane change of another vehicle is predicted regardless of the recognizability, but when the recognizability is high (the recognizability is high).
  • the other vehicle changes lanes if the difference is present (if the difference is larger than the threshold Th a2 ). Predict.
  • the determination results for each of the states may be integrated to determine whether or not to change lanes.
  • the predictive operation determination unit 108 compares the predicted traveling state, which is the traveling state when the other vehicle complies with the traffic rules (that is, the traveling state when the lane is not changed), with the actual traveling state of the other vehicle. , "Lane change possibility” indicating the possibility that the other vehicle 12 changes lanes is calculated. Specifically, the predictive motion determination unit 108 calculates the lane change possibility from the above-mentioned “deviation amount” or “difference”.
  • the predicted motion determination unit 108 calculates a vector (state variable vector) including at least the position and orientation of the other vehicle 12 as each of the predicted traveling state and the actual traveling state. The speed or acceleration/deceleration of the other vehicle 12 may be further added to the state variable vector.
  • the prediction operation determination unit 108 calculates the amount of deviation between the predicted traveling state (state variable vector) and the actual traveling state (state variable vector) as the distance e.
  • the predictive motion determination unit 108 can calculate the lane change possibility from the probability distribution f(e) having the distance e as an input.
  • the prediction motion determination unit 108 calculates a higher lane change possibility as the deviation amount (distance e) is larger.
  • the predictive motion determination unit 108 may calculate the lane change possibility P d by substituting the difference d calculated from the expression (2) into the expression (3).
  • N represents the number of states combined to represent each of the predicted traveling state and the actual traveling state.
  • the lane change possibility P d can be calculated from the average value of the N dissimilarities d n calculated for each state.
  • the greater the dissimilarity d n can be calculated with high lane changeability P d.
  • the predictive motion determination unit 108 may calculate the lane change possibility P based on the result of comparison between the predicted traveling state and the actual traveling state and the recognition possibility R.
  • the lane change possibility P d calculated from the equation (3) can be used as the “result of comparing the predicted traveling state and the actual traveling state”. Therefore, the predictive motion determination unit 108 may calculate the lane change possibility P based on the lane change possibility P d and the recognition possibility R.
  • the "result of comparing the predicted traveling state and the actual traveling state” "the deviation amount of the actual traveling state in the direction not following the predicted traveling state” and the difference d calculated from the equation (3) May be used.
  • the predictive motion determination unit 108 can calculate the lane change possibility P by substituting the lane change possibility P d and the recognition possibility R into the equation (4). Thereby, the lane change possibility P can be calculated in consideration of the recognition possibility R.
  • ⁇ 2 and ⁇ 2 are weighting factors of the lane change possibility P d and the recognition possibility R.
  • the predictive motion determination unit 108 calculates the lane change possibility P based on the lane change possibility P d and the recognition possibility R by referring to the table shown in FIG. 6 instead of the expression (4). can do.
  • Each numerical value in the table of FIG. 6 indicates the lane change possibility P.
  • the predictive motion determination unit 108 previously sets two threshold values (for example, 0.8 and 0.4) for each of the lane change possibility P d and the recognition possibility.
  • the lane changeability P d and the cognizability are compared with a threshold value, and each of the lane changeability P d and the cognizability R is classified into three stages (high, medium, and low).
  • the lane change possibility P d is determined by applying the lane change possibility P d and the classification of the recognition possibility to the table shown in FIG. 6. Even if the lane change possibility P d is low because the “deviation amount” or the “difference” is small (for example, “medium” or “low” in FIG. 6), if the recognizability R is high (for example, , “High” in FIG. 6) and a high lane change possibility P (“0.8”, “0.6” in FIG. 6) are determined.
  • the predictive operation determination unit 108 calculates the lane change possibility to be high in the order of a road structure including a signboard as a target indicating a traffic rule, an arrow signal, a road sign, and a lane marking.
  • the weighting coefficient ⁇ related to the type of the target may be added to the equation (4).
  • ⁇ in the equations (5) to (7) is, for example, 1.0 for a signboard, 1.1 for an arrow signal, 1.2 for a road marking, and 1.3 for a road structure.
  • the predictive operation determination unit 108 uses the actual traveling state of the third vehicle traveling in the adjacent lane G2 other than the other vehicle 12 as an alternative to the predicted traveling state, and uses the actual traveling state.
  • the changeability may be calculated. That is, based on the third vehicle traveling in the same lane as the other vehicle 12 (adjacent lane G2), the “deviation amount” or “difference” or the lane change possibility with the other vehicle 12 is calculated. You may. Specifically, first, the object detection unit 102 acquires the actual traveling state of the third vehicle traveling in the adjacent lane G2 excluding the other vehicle 12. For example, the actual traveling state of the preceding vehicle 13 traveling in front of the other vehicle 12 shown in FIG. 3A is acquired. Then, the predictive operation determination unit 108 compares the actual traveling state of the third vehicle with the actual traveling state of the other vehicle 12, and determines the “deviation amount”, the “difference”, or the “lane change possibility”. To calculate.
  • the predictive motion determination unit 108 can calculate the lane change possibility P using the equation (8).
  • the expression (8) is an expression in which the term of the lane change possibility P v calculated using the actual traveling state of the third vehicle is added to the right side of the expression (4).
  • the method of calculating the “lane change possibility P v ” the method of calculating the lane change possibility from the “deviation amount” or the “difference” described in the fifth example may be used.
  • the predictive motion determination unit 108 can calculate the lane change possibility P by substituting the lane change possibility P d , the recognition possibility R, and the lane change possibility P d into the equation (8). Accordingly, the lane change possibility P can be calculated in consideration of not only the recognition possibility R but also the lane change possibility P v calculated using the actual traveling state of the third vehicle.
  • the prediction operation determination unit 108 compares the calculated lane change possibility P with a predetermined threshold value (the ninth threshold value) to determine whether or not the other vehicle 12 changes the lane. .. When the lane change possibility is higher than the predetermined threshold value (the ninth threshold value), the prediction operation determination unit 108 predicts that the other vehicle 12 will change the lane. On the other hand, when the lane change possibility is less than or equal to the predetermined threshold value (the ninth threshold value), the prediction operation determination unit 108 may determine that the other vehicle 12 does not change the lane.
  • a predetermined threshold value the ninth threshold value
  • the predictive operation determination unit 108 determines the lane change possibility using a plurality of mutually different reference values. Good. Specifically, a plurality of predetermined threshold values (seventh threshold value) are prepared in advance in multiple stages. Then, by comparing a plurality of predetermined threshold values (seventh threshold value) with the lane change possibility, whether or not the other vehicle 12 changes the lane is determined in multiple stages. It is possible to perform multistage vehicle control of the own vehicle 11 in order to ensure the safety of the lane change of the other vehicle 12.
  • the own vehicle route generation unit 109 generates the route of the own vehicle 11 based on the motion of the other vehicle 12 predicted by the predicted motion determination unit 108.
  • the "route of the own vehicle 11” indicates not only the profile of the position of the own vehicle 11 at different times but also the profile of the speed of the own vehicle 11 at each position.
  • the own vehicle route generation unit 109 generates a route for the own vehicle 11 according to the lane change. Furthermore, the route of the host vehicle 11 may be generated so that the relative distance of the other vehicle 12 to the host vehicle 11 becomes large. When a vehicle row is formed in front of the vehicle 11, the vehicle path generation unit 109 decelerates the vehicle 11 to form an inter-vehicle space for the other vehicle 12 to cut in between the vehicle rows. The route of the host vehicle 11 may be calculated. The own vehicle 11 can be controlled more safely.
  • the vehicle control unit 110 based on the own position calculated by the own vehicle position estimation unit 101, causes the own vehicle 11 to travel according to the route generated by the own vehicle route generation unit 109, a steering actuator, an accelerator pedal actuator, And driving at least one of the brake pedal actuators.
  • the case of controlling according to the route of the own vehicle 11 is shown, but the own vehicle 11 may be controlled without generating the route of the own vehicle 11. In this case, the control can be performed based on the relative distance between the other vehicle 12 or the difference in the attitude angle between the other vehicle 12 and the host vehicle 11.
  • the vehicle control unit 110 can perform multi-step vehicle control of the own vehicle 11 to ensure safety of the other vehicle 12 against the lane change.
  • the lane change possibility value itself may be used to control the inter-vehicle distance between the own vehicle 11 and the other vehicle 12 and the vehicle speed of the own vehicle 11.
  • the ignition switch of the host vehicle 11 is repeatedly executed at a predetermined cycle from when the ignition switch is turned on (in the case of an electric vehicle, the power is turned on) until it is turned off. Further, the control flow of FIG. 2 is based on the assumption that the host vehicle 11 is traveling by automatic driving.
  • step S201 the own vehicle position estimation unit 101 measures the own position (absolute position and relative position) of the own vehicle 11. Then, the position and orientation of the vehicle 11 on the map are detected.
  • step S202 the object detection unit 102 acquires the actual traveling state of the other vehicle 12. Specifically, the object detection unit 102 detects the other vehicle 12 by using the object detection sensor and tracks the other vehicle 12. As the detection result, for example, the actual traveling state of the other vehicle 12 in the zenith view viewed from the air above the vehicle 11 is output.
  • the motion candidate generation unit 103 predicts motion candidates that the other vehicle 12 can act in the near future based on the road structure and the lane structure.
  • the operation candidates also include lane changes.
  • the traffic regulation information acquisition unit 104 acquires information (traffic regulation information) indicating the traffic regulation related to the road around the vehicle 11.
  • the traffic regulation information acquisition unit 104 may acquire the traffic regulation information related to the adjacent lane (the right lane G2) in which the other vehicle 12, which is the target of the lane change determination, travels among the roads around the own vehicle 11. .
  • the traffic regulation information can be acquired from the map data or the analysis of the image around the vehicle 11.
  • the process proceeds to step S208.
  • the process proceeds to step S206, and the rule deriving unit 105 determines the “prediction running state”, which is the running state of the other vehicle 12 when running according to the traffic rules. Predict as a rule.
  • the process proceeds to step S207, and the recognition possibility calculation unit 106 calculates “recognition possibility” indicating the possibility that the other vehicle 12 has recognized the traffic rules.
  • the “traffic rules” here include at least the traffic rules relating to the adjacent lane (the right lane G2) in which the other vehicle 12 travels.
  • the traveling state change detection unit 107 detects that the actual traveling state of the other vehicle 12 detected by the object detection unit 102 has changed. Specifically, the traveling state change detection unit 107 compares the actual traveling states at two different times, or compares the actual traveling state change amount per unit time at two different times. It is determined whether the running state has changed.
  • the predictive motion determination unit 108 determines that the cognizability calculated by the cognizability calculation unit 106, the predicted traveling state predicted by the rule deriving unit 105, and the actual traveling state have changed. It is predicted that the other vehicle 12 will change lanes.
  • the own vehicle route generation unit 109 generates the route of the own vehicle 11 based on the operation of the other vehicle 12 predicted in step S209.
  • the route is generated after predicting the lane change of the other vehicle 12.
  • the host vehicle route generation unit 109 determines the relative distance of the other vehicle 12 to the host vehicle 11, and determines the trajectory and the vehicle speed of the host vehicle 11 required to maintain the relative distance.
  • step S211 the vehicle control unit 110 drives various actuators based on the own position calculated by the own vehicle position estimation unit 101 so that the own vehicle 11 travels along the route generated in step S210.
  • the vehicle control unit 110 may control the own vehicle 11 without generating the route of the own vehicle 11.
  • the predictive operation determination unit 108 determines that the other vehicle 12 is based on the change in the recognizability of the other vehicle 12, the predicted traveling state derived from the traffic rules in front of the other vehicle 12, and the actual traveling state of the other vehicle 12. Predict to change lanes.
  • the change in the traveling state of the other vehicle 12 is small, but the possibility of recognition is high, the change in the traveling state may be a preliminary movement of the movement (lane change) that the other vehicle 12 wants to act due to the recognition of the traffic rules. It is highly likely. That is, there is a high possibility that the traveling state of the other vehicle 12 (including the behavior of the vehicle) has changed in response to the change from non-recognition to recognition of the traffic rule.
  • the predictive operation determination unit 108 predicts a lane change, and thus early prediction is possible. Therefore, it is possible to prevent the prediction of the lane change from being delayed. Further, since the lane change is determined based on the actual traveling state and the predicted traveling state, the lane change of the other vehicle 12 can be correctly predicted. Furthermore, it is possible to suppress deceleration of the host vehicle 11 due to incorrect prediction and rapid deceleration of the host vehicle 11 due to delay of the prediction.
  • the predicted traveling state is a numerical value indicating any one of a position including an absolute position and a relative position of the other vehicle 12, a posture (yaw angle, axle direction), a speed, an acceleration, and a traveling locus, or any two or more. Can be expressed by a combination of numerical values. As a result, it is possible to prevent erroneous prediction of the operation of the other vehicle 12 and delay of the prediction.
  • the predicted traveling state is the direction of the other vehicle 12 with respect to the adjacent lane (right lane G2) or the own lane (left lane G1), the position of the other vehicle 12 in the vehicle width direction in the adjacent lane, the speed of the other vehicle 12, etc.
  • the state of the other vehicle 12 related to any one of the acceleration of the vehicle 12 and the deceleration of the other vehicle 12 or a combination of the states of the other vehicle 12 related to two or more of them can be used. As a result, it is possible to prevent erroneous prediction of the operation of the other vehicle 12 and delay of the prediction.
  • the rule deriving unit 105 predicts the predicted traveling state based on the traffic regulation information, the road structure related to the adjacent lane (G2), and the speed limit of the road related to the adjacent lane (G2). As a result, it is possible to prevent erroneous prediction of the operation of the other vehicle 12 and delay of the prediction.
  • the cognitive possibility calculation unit 106 calculates the cognitive possibility using the maximum cognitive range and the partial cognitive range. As a result, the accuracy of calculating the cognizability is improved. Cognizability can be judged based on a general driver. In addition, it is possible to judge whether or not there is shielding due to the surrounding environment such as surrounding vehicles and construction.
  • both the maximum recognition range and the partial recognition range include a target indicating a road structure or a traffic rule capable of recognizing the traffic rules
  • the cognizability calculating unit 106 determines whether the maximum recognition range and the partial recognition range are satisfied. Higher recognizability is calculated compared to the case where neither road structure or target is included. As a result, the accuracy of calculating the cognizability is improved.
  • the cognitive possibility calculation unit 106 may include one part of the above-mentioned one. Calculates a higher cognizability than if only included. As a result, the accuracy of calculating the cognizability is improved.
  • the recognizability calculation unit 106 calculates higher recognizability as the distance from the other vehicle 12 to the road structure that can recognize the traffic rules or the target indicating the traffic rules is shorter. For example, as shown in FIG. 3B, the shorter the distance H1 from the other vehicle 12 to the right turn arrow 14, the higher the possibility of recognition is calculated. As a result, the accuracy of calculating the cognizability is improved.
  • the recognition possibility calculation unit 106 calculates the recognition possibility by using the own vehicle recognition range in which the own vehicle 11 can recognize the traffic rules as the maximum recognition range or the partial recognition range. As a result, the accuracy of calculating the cognizability is improved.
  • the recognizability calculation unit 106 calculates the recognizability based on the road structure that can recognize the traffic rules or the target object that indicates the traffic rules, which is actually detected by the own vehicle 11. As a result, the accuracy of calculating the cognizability is improved.
  • the object detection unit 102 acquires the actual traveling state in step S209 in FIG. As a result, the “actual traveling state” can be acquired correctly, and the operation of the other vehicle 12 can be predicted with high accuracy.
  • the traveling state change detection unit 107 changes the actual traveling state based on the comparison of the actual traveling states at two different times or the comparison of the change amount of the actual traveling state per unit time at two different times. Judge whether or not. As a result, it is possible to accurately detect that the actual traveling state has changed.
  • the object detection unit 102 acquires the actual traveling state after the change as the actual traveling state.
  • the actual traveling state after the change is represented by a numerical value indicating any one of the position, posture, speed, acceleration, and traveling locus of the other vehicle 12, or a combination of numerical values indicating any two or more. .. As a result, it is possible to prevent erroneous prediction of the operation of the other vehicle 12 and delay of the prediction.
  • the object detection unit 102 acquires change information, which is information indicating a change in the running state, as the actual running state.
  • the change information can be represented by a numerical value indicating any one of the position, posture, speed, acceleration, and traveling locus of the other vehicle 12, or a combination of numerical values indicating any two or more.
  • the change information includes the direction of the other vehicle 12 with respect to the adjacent lane G2 or the own lane G1, the position of the other vehicle 12 in the vehicle width direction within the adjacent lane G2, the speed of the other vehicle 12, the acceleration of the other vehicle 12, and the like. It can be expressed by the state of the other vehicle 12 related to any one of the decelerations of the other vehicle 12 or a combination of the states of the other vehicle 12 related to two or more thereof. As a result, the actual traveling state can be accurately detected.
  • the predictive operation determination unit 108 compares the predicted traveling state with the actual traveling state, and predicts that the other vehicle 12 will change lanes based on the comparison result and the recognizability. As a result, it is possible to prevent erroneous prediction of the operation of the other vehicle 12 and delay of the prediction.
  • the predictive action determination unit 108 determines that the recognizability is higher than the threshold Th b1 (first threshold) and the shift amount is larger than the threshold Th a2 (second threshold), It is predicted that the other vehicle 12 will change lanes. Even if the recognizability is equal to or lower than the threshold value Th b1 (first threshold value), the predictive motion determination unit 108 determines that the deviation amount is larger than the threshold value Th a1 (third threshold value). , Predict that the other vehicle 12 will change lanes. As a result, it is possible to prevent erroneous prediction of the operation of the other vehicle 12 and delay of the prediction.
  • the predictive action determination unit 108 determines that the recognizability is higher than the threshold Th b1 (fourth threshold) and the dissimilarity is greater than the threshold Th d2 (fifth threshold), It is predicted that the other vehicle 12 will change lanes. If the recognizability is less than or equal to the threshold Th b1 (fourth threshold), the predictive action determination unit 108 determines that the dissimilarity is greater than the threshold Th d1 (sixth threshold). , Predict that the other vehicle 12 will change lanes. As a result, it is possible to prevent erroneous prediction of the operation of the other vehicle 12 and delay of the prediction.
  • the predictive operation determination unit 108 compares the predicted traveling state with the actual traveling state, and calculates the “lane change possibility” indicating the possibility that the other vehicle 12 changes the lane. Then, the predictive operation determination unit 108 compares the calculated lane change possibility with a predetermined threshold value (seventh threshold value) to determine whether or not the other vehicle 12 changes the lane. As a result, it is possible to prevent erroneous prediction of the operation of the other vehicle 12 and delay of the prediction.
  • Prediction operation determination unit 108 calculates a higher lane change possibility as the deviation amount (distance e) is larger. Thereby, the lane change possibility can be calculated with high accuracy.
  • Prediction operation determiner 108 using equation (3), the larger the dissimilarity d n, calculates a high lane changeability P d. Thereby, the lane change possibility can be calculated with high accuracy.
  • the predictive motion determination unit 108 uses the formula (4) or the table shown in FIG. 6 to determine the lane change possibility P based on the result of comparison between the predicted traveling state and the actual traveling state and the recognition possibility R. calculate. Thereby, the lane change possibility can be calculated with high accuracy.
  • the predictive operation determining unit 108 calculates a high lane change possibility in the order of a road structure including a signboard as a target indicating a traffic rule, an arrow signal, a road sign, and a lane marking. Thereby, the lane change possibility can be calculated with high accuracy. In particular, a sudden interruption of the other vehicle 12 can be predicted accurately and quickly.
  • the predicted motion determination unit 108 calculates the lane change possibility by using the actual driving state of the third vehicle that runs in the adjacent lane G2 excluding the other vehicle 12. This makes it possible to determine the “deviation amount” or the “difference” based on the actual operation of the third vehicle, not the formal traffic rules. Therefore, it is possible to accurately and flexibly determine the possibility of changing lanes without being bound by formal traffic rules.
  • the predictive operation determination unit 108 determines the lane change possibility using a plurality of mutually different reference values in order to control the inter-vehicle distance between the own vehicle 11 and the other vehicle 12 or the speed of the own vehicle 11 in multiple stages. It is possible to perform multistage vehicle control of the own vehicle 11 in order to ensure the safety of the lane change of the other vehicle 12.
  • the processing circuit includes a programmed processing device such as a processing device including an electrical circuit.
  • Processing devices also include devices such as application specific integrated circuits (ASICs) and conventional circuit components arranged to perform the functions described in the embodiments.
  • ASICs application specific integrated circuits

Abstract

他車動作予測方法は、隣接車線G2を走行する他車両12の挙動に基づいて、他車 両12が自車両11の前方において隣接車線G2から自車両11が走行する自車線G 1へ車線変更を行うことを予測する。他車動作予測方法では、隣接車線G2に係わる 交通規則を示す交通規則情報を取得し、交通規則に沿って走行した場合の他車両12 の予測走行状態を予測し、他車両12が交通規則を認知した認知可能性を算出し、認 知可能性、予測走行状態、及び、現実の走行状態に基づいて、他車両12が車線変更 を行うことを予測する。

Description

他車動作予測方法及び他車動作予測装置
 本発明は、他車動作予測方法及び他車動作予測装置に関するものである。
 従来から、他車両の走行軌跡を推定する技術が知られている(特許文献1参照)。特許文献1に開示された装置は、交通ルールを遵守する条件及び遵守しない条件の下で他車両の走行軌跡をそれぞれ求め、他車両が走行する車線の方向と他車両の車軸の方向とのずれである軸線ずれを取得する。そして、軸線ずれが小さい場合、交通ルールを遵守する条件での走行軌跡を維持し、軸線ずれが大きい場合、交通ルールを遵守しない条件での走行軌跡へ切り替えることにより、他車両の走行軌跡を推定する。
特開2009−3650号公報
 特許文献1によれば、軸線ずれがしきい値よりも大きい場合に、交通ルールを遵守しない条件での走行軌跡を推定する。このため、他車両の車軸方向への大きな動きを検知した後でなければ、交通ルールを遵守しない条件での走行軌跡を予測することができない。よって、他車両の走行軌跡の予測が遅れてしまう場合がある。一方、軸線ずれのしきい値を小さくした場合、他車両の走行軌跡を誤って予測してしまう場合がある。このように、軸線ずれのみでは、他車両の走行軌跡を迅速且つ正しく予測できないという問題がある。
 本発明は、上記課題に鑑みて成されたものであり、その目的は、他車両の動作を誤って予測すること及び予測が遅延することを抑制する他車動作予測方法及び他車動作予測装置を、提供することである。
 本発明の一態様は、隣接車線を走行する他車両の挙動に基づいて、他車両が自車両の前方において隣接車線から自車両が走行する自車線へ車線変更を行うことを予測する他車動作予測方法である。他車動作予測方法では、他車両の現実の走行状態を取得し、隣接車線に係わる交通規則を示す交通規則情報を取得し、交通規則に沿って走行した場合の他車両の走行状態である予測走行状態を予測し、他車両が交通規則を認知した認知可能性を算出し、認知可能性、予測走行状態、及び、現実の走行状態に基づいて、他車両が車線変更を行うことを予測する。
 本発明の一態様によれば、他車両の動作を誤って予測すること及び予測が遅延することを抑制することができる。
図1は、実施形態に係わる他車動作予測装置の構成を示すブロック図である。 図2は、実施形態に係わる他車動作予測方法として、図1の他車動作予測装置の動作例を示すフローチャートである。 図3Aは、実施形態に係わる運転支援装置が有効に機能する走行シーンの一例を示す天頂図である。 図3Bは、図3Aに示す状態から一定時間が経過した後の状態を示す天頂図である。 図4は、ズレ量と認知可能性とに基づいて他車両12が車線変更を行うか否かを判断する際に参照されるデータの一例を示す表である。 図5は、相違性と認知可能性とに基づいて、他車両12が車線変更を行うか否かを判断する際に参照されるデータの一例を示す表である。 図6は、車線変更可能性Pと認知可能性Rとに基づいて、車線変更可能性Pを算出する際に参照されるデータの一例を示す表である。
 次に、図面を参照して、実施形態を詳細に説明する。
 実施形態に係わる運転支援装置は、例えば、図3A及び図3Bに示すような走行シーンにおいて有効に機能する。図3A及び図3Bは、2車線(G1、G2)からなる一方通行路において、左側車線G1(自車線)を自車両11が走行し、自車線に隣接する車線である右側車線G2(隣接車線)を他車両12が並走している走行シーンを示す。左側車線G1は、自車両11の前方において直線状の車線である。一方、右側車線G2は、他車両12の前方において右へ曲がるカーブした車線、即ち、「右折専用レーン」である。つまり、左側車線G1及び右側車線G2は、自車両11及び他車両12の前方において分岐し、互いに行き先が異なる道路を成している。
 この走行シーンにおいて、自車両11及び他車両12の双方が、当該道路を直進することを意図している。よって、自車両11は直進する意図に沿った正しい車線G1を走行している。一方、他車両12は、直進する意図に反して、前方が右折専用レーンとなる車線(車線G2)を走行している。このため、他車両12は、直進するために、現在走行している右側車線G2から左側車線G1へ車線変更を行う必要がある。
 なお、図3A及び図3Bの走行シーンにおいて、他車両12は、自動運転及び手動運転のいずれにより走行していても構わない。「自動運転」とは、所定の車両走行制御装置が車両運転に係わる認知・判断・操作の一部又は全体を主体的に行う運転モードである。また、「手動運転」とは、他車両12の乗員(人間)である運転者が車両運転を行う運転モードである。
 他車両12の前方において、先行車両13が右側車線G2を走行している。右側車線G2の路面には、道路標示である「右折矢印14」が付されている。ここで、「右折矢印14」は、“それが付された車線において、車両が進行することができる方向が右折である”という交通規則を示す道路標示である。ここで、「道路標示」とは、道路の交通に関して、規制又は指示を表示する標示で、路面に描かれた道路鋲・ペイント・石等による線・記号又は文字である。
 しかし、例えば、図3Aに示すように、先行車両13が右折矢印14の上を走行している、或いは右折矢印14の上で停止しているために、他車両12は前方の右折矢印14を視認又は検知できない場合がある。この場合、他車両12は、「現在走行している右側車線G2での走行を継続した場合、進行することができる方向が右折である」という交通規則を認知できていない可能性がある。複数の先行車両13が車列を成している場合、右折矢印14を視認又は検知できない可能性は更に高まる。
 その後、図3Bに示すように、先行車両13が右折矢印14を通過したことにより、他車両12は、初めて右折矢印14を視認又は検知できる。換言すれば、他車両12は、「右側車線G2での走行を継続した場合、進行することができる方向が右折である」という交通規則を初めて認知できる。交通規則の不認知から認知への変化に応じて、他車両12の走行状態(車両の挙動を含む)が変化する場合がある。例えば、右側車線G2側への幅寄せ、つまり右側車線G2内での車線幅方向の位置の変化、或いは、急な減速つまり減速度の増加などが発生する場合がある。
 実施形態では、他車両12の走行状態が変化したことを検出し、他車両12が交通規則を認知した可能性である認知可能性を考慮して、他車両12が右側車線G2から左側車線G1へ車線変更を行うことを予測する装置及び方法について説明する。この装置及び方法によれば、走行状態の変化だけではなく、認知可能性をも考慮することにより、車線変更を誤って予測すること及び予測が遅れることを抑制することができる。以下に、実施形態に係わる他車動作予測方法及び他車動作予測装置について、詳細に説明する。なお、図3A及び図3Bに示すような走行シーンは、実施形態に係わる他車動作予測方法及び他車動作予測装置が有効に機能する走行シーンの一例であって、実施形態に係わる他車動作予測方法及び他車動作予測装置が適用される範囲を限定するものではない。
 図1を参照して、実施形態に係わる他車動作予測装置の構成を説明する。他車動作予測装置は、制御部を備える。制御部は、隣接車線G2を走行する他車両12の挙動に基づいて、他車両12が自車両11の前方において隣接車線G2から自車線G1へ車線変更を行うことを予測する。制御部は、物体検出部102と、自車位置推定部101と、交通規則情報取得部104と、マイクロコンピュータとを備える。
 物体検出部102は、自車両11に搭載された、レーザレーダやミリ波レーダ、カメラ、ライダー(LiDAR:Light Detection and Ranging)など、自車両11の周囲の物体を検出する、複数の異なる種類の物体検出センサを備える。物体検出部102は、複数の物体検出センサを用いて、自車両11の周囲における物体を検出する。物体検出部102は、二輪車を含む他車両12、自転車を含む軽車両、歩行者などの移動物体、及び駐車車両などの静止物体を検出する。例えば、移動物体及び静止物体の自車両11に対する位置、姿勢、大きさ、速度、加速度、減速度、ヨーレートを検出する。なお、物体の位置、姿勢(ヨー角)、大きさ、速度、加速度、減速度、ヨーレートを纏めて、物体の「挙動」と呼ぶ。物体が他車両12である場合、物体検出部102は、物体の挙動として、他車両12の現実の走行状態(以後、「現実の走行状態」と略する場合がある。)を検出する。
 物体検出部102は、複数の物体検出センサの各々から得られた複数の検出結果を統合して、各物体に対して一つの検出結果を出力する。具体的には、物体検出センサの各々から得られた物体の挙動から、各物体検出センサの誤差特性などを考慮した上で最も誤差が少なくなる最も合理的な物体の挙動を算出する。具体的には、既知のセンサ・フュージョン技術を用いることにより、複数種類のセンサで取得した検出結果を総合的に評価して、より正確な検出結果を得る。
 物体検出部102は、検出された物体を追跡する。具体的に、統合された検出結果から、異なる時刻に出力された物体の挙動から、異なる時刻間における物体の同一性の検証(対応付け)を行い、かつ、その対応付けを基に、物体の挙動を予測する。なお、異なる時刻に出力された物体の挙動は、マイクロコンピュータ内のメモリに記憶され、後述する他車両12の動作予測に用いられる。
 物体検出部102は、検出結果として、例えば、自車両11の上方の空中から眺める天頂図における、2次元の物体の挙動を出力する。
 他車両12の現実の走行状態は、他車両12の絶対位置及び相対位置を含む位置、姿勢(ヨー角)、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せで表現される。なお、他車両12の走行軌跡とは、他車両12の位置の時系列を示す。例えば、走行軌跡と速度の組合せで表現した場合、現実の走行状態は、異なる時刻における他車両12の位置のプロファイルと、各位置における他車両12の速度のプロファイルとを備えることになる。
 或いは、他車両12の現実の走行状態は、隣接車線(右側車線G2)又は自車線(左側車線G1)に対する他車両12の向き、隣接車線の中での車幅方向の他車両12の位置、他車両12の速度、他車両12の加速度、及び他車両12の減速度の内のいずれか1つに関連する他車両12の状態、又は2つ以上に関連する他車両12の状態の組合せで表現することもできる。例えば、「進行方向が右側車線G2に沿っている」、「進行方向が左側車線G1側に曲がっている」、「車線幅方向の位置が左側車線G1側に寄っている」、「加速している」、「減速している」、「速度は一定である」等の他車両12の状態で現実の走行状態を表現することができる。
 自車位置推定部101は、自車両11に搭載された、GPS(グローバル・ポジショニング・システム)信号を受信する受信装置など、自車両11の地球座標における位置(絶対位置)及び姿勢(絶対姿勢)を計測する位置検出センサを備える。更に、自車位置推定部101は、オドメトリやデッドレコニングを行う演算処理回路を備える。具体的には、自車位置推定部101は、自車両11の各車輪の車輪速を検出する車輪速センサ、操舵輪の転舵角を検出する舵角センサ、及び演算処理回路を用いて、所定の基準点に対する自車両11の相対位置、相対姿勢及び速度を計測することができる。自車両11の絶対位置、絶対姿勢、相対位置、相対姿勢を示す情報を、「自車両11の位置及び姿勢を示す情報」と呼ぶ。自車位置推定部101は、自車両11の位置及び姿勢を示す情報から、地図上における自車両11の位置及び姿勢を検出することができる。地図は、予め地図データベース111に格納された地図データによって示される。
 交通規則情報取得部104は、自車両11の周囲の道路に係わる交通規則を示す情報(交通規則情報)を取得する。例えば、自車線G1に対して左側又は右側に隣接する車線の自車両11の前方における交通規則情報を取得する。また、自車両11の周囲の道路のうち、車線変更の判断の対象である他車両12が走行する隣接車線(右側車線G2)に係わる、他車両12前方の交通規則情報を取得することができる。勿論、車線変更の判断の対象が特定されていない場合、車線と特定せずに、自車線G1の両側に隣接する車線に係わる交通規則情報を取得してもよい。地図データベース111に格納された地図データには、自車線G1及び隣接車線G2を含む道路の構造及び道路を構成する各車線の構造を示すデータが含まれ、更に、道路の構造にリンクして自車線G1及び隣接車線G2に係わる交通規則情報も地図データベース111に格納されている。
 なお、地図データベース111は、自車両11に搭載されてもよいし、搭載されていなくてもよい。搭載されていない場合、交通規則情報取得部104は、例えば、高度道路交通システム(ITS)又は新交通管理システム(UTMS)における車車間・車路間通信、或いは3GやLTEなどの移動体通信により、地図データ及び交通規則情報を車外から取得することができる。
 また、交通規則情報取得部104は、物体検出部102が備えるカメラを用いて取得した自車両11の周囲の画像から、路面に付された、道路の交通に関する規制又は指示を示す道路標示を認識してもよい。交通規則情報取得部104は、自車両11の周囲の画像から、道路の周囲に設置された道路標識を認識してもよい。交通規則情報取得部104は、自車両11の周囲の画像から、路面に付された車線境界線を認識して、車線構造を取得してもよい。
 マイクロコンピュータは、物体検出部102による検出結果、自車位置推定部101による推定結果、及び交通規則情報取得部104による取得情報に基づいて、他車両12が車線変更を行うことを予測する。
 マイクロコンピュータは、CPU(中央処理装置)、RAM及びROMなどのメモリ、及び入出力部を備える汎用のマイクロコンピュータである。マイクロコンピュータには、他車動作予測装置の一部分として機能させるためのコンピュータプログラム(他車動作予測プログラム)がインストールされている。コンピュータプログラムを実行することにより、マイクロコンピュータは、他車動作予測装置が備える複数の情報処理回路(103、105、106、107、108)として機能する。なお、ここでは、ソフトウェアによって他車動作予測装置が備える複数の情報処理回路(103、105~108)を実現する例を示す。もちろん、以下に示す各情報処理を実行するための専用のハードウェアを用意して、情報処理回路(103、105~108)を構成することも可能である。また、複数の情報処理回路(103、105~108)を個別のハードウェアにより構成してもよい。更に、情報処理回路(103、105~108)は、自車両11にかかわる他の制御に用いる電子制御ユニット(ECU)と兼用してもよい。本実施形態では、一例として、マイクロコンピュータが、他車動作の予測結果に基づいて自車両11の自動運転を実行する情報処理回路(109、110)をも実現している。
 マイクロコンピュータは、複数の情報処理回路(103、105~110)として、動作候補生成部103と、ルール導出部105と、認知可能性算出部106と、走行状態変化検出部107と、予測動作決定部108と、自車経路生成部109と、車両制御部110とを備える。
 動作候補生成部103は、道路構造及び車線構造に基づいて、他車両12が近い将来に行動しうる動作候補を予測する。動作候補生成部103が予測する動作候補には、車線変更も含まれる。動作候補生成部103は、道路構造及び他車両が属している車線の構造から、他車両12が次にどのように走行するのかという動作意図を予測し、当該動作意図に基づく他車両の基本軌道を演算する。「動作候補」とは、動作意図及び基本軌道を含む上位概念である。「基本軌道」は、異なる時刻における他車両の位置のプロファイルのみならず、各位置における他車両12の速度のプロファイルをも示す。
 例えば、動作候補生成部103は、図3Aに示すように、他車両12が隣接車線(右側車線G2)を走行し続ける動作意図を予測し、右側車線G2の形状に沿って走行する基本軌道を演算する。更に、動作候補生成部103は、自車両11の前方において他車両12が隣接車線(右側車線G2)から自車線(左側車線G1)へ車線変更する動作意図を予測する。そして、動作候補生成部103は、自車両11の前方において右側車線G2から左側車線G1へ車線変更する基本軌道を演算する。
 本実施形態において、「車線変更」には、図3Aに示すように、自車両11の前方の自車線G1上に車列が形成されていない走行シーンにおける車線変更、所謂「通常の車線変更」が含まれる。「車線変更」には、更に、自車両11の前方の自車線G1上に車列が形成されている走行シーンにおいて、この車列の中へ割り込む、所謂「割り込み」も含まれる。なお、「割り込み」は、「カット・イン(cut in)」と同じ意味である。
 ルール導出部105は、交通規則情報取得部104が隣接車線(右側車線G2)に係わる、他車両12前方の(他車両が今後到達する地点における)交通規則を取得した場合に、他車両12が前方の交通規則に沿って走行した場合の走行状態である「予測走行状態」をルールとして予測する。他車両12の「予測走行状態」とは、他車両12が隣接車線に係わる前方の交通規則に従って走行した場合に、他車両12が取ることが予測される走行状態を示す。なお、以下の記載において「交通規則」は、他車両12前方の交通規則を意味する。
 他車両12の予測走行状態は、現実の走行状態と同様に、数値又は数値の組合せにより、表現することができる。すなわち、予測走行状態は、他車両12の絶対位置及び相対位置を含む位置、姿勢(ヨー角)、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せで表現される。例えば、走行軌跡と速度の組合せで表現した場合、予測走行状態は、異なる時刻における他車両12の位置のプロファイルと、各位置における他車両12の速度のプロファイルとを備えることになる。
 或いは、予測走行状態は、隣接車線(右側車線G2)又は自車線(左側車線G1)に対する他車両12の向き、隣接車線の中での車幅方向の他車両12の位置、他車両12の速度、他車両12の加速度、及び他車両12の減速度の内のいずれか1つに関連する他車両12の状態、又は2つ以上に関連する他車両12の状態の組合せで表現することもできる。
 ルール導出部105は、交通規則情報、隣接車線(G2)に係わる道路構造、及び隣接車線(G2)に係わる道路の制限速度に基づいて、予測走行状態を予測してもよい。具体的には、右折専用レーンという規制(交通規則の一例)、他車両12の前方において右方向へ曲がっているという隣接車線(G2)の形状(道路構造の一例)から、右側車線G2の形状に沿って右方向へ約90度旋回する他車両12の予測走行状態を演算する。
 或いは、ルール導出部105は、動作候補生成部103により生成された複数の動作候補の中から、予測走行状態を選択してもよい。更に、隣接車線(G2)に係わる道路の制限速度を考慮することにより、他車両12の速度のプロファイルを予測することができる。
 認知可能性算出部106は、他車両12が交通規則を認知した可能性を示す「認知可能性」を算出する。ここでの「交通規則」には、少なくとも隣接車線(右側車線G2)に係わる交通規則が含まれる。つまり、認知可能性算出部106は、他車両12が、走行中の車線(G2)に係わる交通規則を認知した可能性を「認知可能性」として算出する。なお、認知可能性は、他車両12の認知に係わる可能性を示すため、自車両11すなわち交通規則情報取得部104が隣接車線(右側車線G2)に係わる交通規則を取得したか否かに、直接関連していなくてもよい。勿論、後述するように、自車両11の認知に係わる可能性を、他車両12の「認知可能性」に関連付けてもかまわない。
 例えば、認知可能性算出部106は、複数の認知可能範囲の一例である、最大認知範囲と部分的認知範囲とを用いて、認知可能性を算出することができる。「最大認知範囲」とは、例えば、他車両12が手動運転により走行している場合、人間の視覚特性(例えば、一般的な運転者の視力)から算出した、交通規則を認知可能な最大範囲である。一方、他車両12が自動運転により走行している場合、他車両12に搭載された物体検知センサのセンシング範囲から算出した、交通規則を認知可能な最大範囲である。最大認知範囲は、他車両12からの距離によって定まる範囲であり、例えば、他車両12を中心とする、人間の視覚特性に応じた距離(図3AにおけるLa)を半径とした円の範囲を最大認知範囲とすることができる。
 一方、「部分的認知範囲」とは、他車両12の車高及び他車両12の走行環境に基づいて算出される、交通規則を認知可能な範囲である。例えば、他車両12の車高が低い為に、他車両12の周囲の物体(走行環境の一例)が、交通規則を認知できる道路構造又は交通標識などの交通規則を示す物標を遮蔽する場合がある。この場合、他車両12は道路構造又は物標を視認又は検知できず、交通規則を認知できない。そこで、認知可能性算出部106は、他車両12の車高及び他車両12の走行環境を考慮することにより、遮蔽された(死角に存在する)交通規則を示す物標が含まれないように部分的認知範囲を算出することができる。例えば、図3Aの領域Lbに示すように、所定の画角のセンシング範囲において交通規則を認知可能である。しかし、先行車両13により隠蔽される領域は他車両12の死角となるため、交通規則を認知又は検知できない。勿論、他車両12の車高が、先行車両13の車高よりも十分に高い場合、先行車両13の進行方向前方の領域は他車両12の死角とならない。よって、この場合、部分的認知範囲は図3Aの領域Lbよりも広くなる。このように、部分的認知範囲Lbは、他車両12の車高及び他車両12の走行環境(先行車両13の存在)に基づいて算出することができる。なお、物体検出に誤差が生じるため、認知範囲を狭める物体(遮蔽物)の周辺は、「部分的認知範囲」を狭めてもよい。また、遮蔽物によるセンシング範囲の遮蔽率(遮蔽物が無い場合の物体検知センサによるセンシング範囲に対する、遮蔽物が存在する場合の物体検知センサによるセンシング範囲の割合)により認知可能性を算出してもよい。例えば、図3Aの先行車両13(遮蔽物の一例)によるセンシング範囲の遮蔽率が20%であれば、認知可能性Rを0.8と算出してもよい。
 認知可能性算出部106は、最大認知範囲(半径Laの円)と部分的認知範囲Lbとを用いた様々な方法により、認知可能性を算出することができる。具体的な算出例として、第1の算出基準~第2の算出基準を以下に示す。
 (第1の算出基準)
 認知可能性算出部106は、最大認知範囲と部分的認知範囲の両方に、交通規則を認知できる道路構造又は交通規則を示す物標が含まれている場合、最大認知範囲と部分的認知範囲の両方に、道路構造又は物標が含まれていない場合に比べて、高い認知可能性を算出することができる。「最大認知範囲と部分的認知範囲の両方に、道路構造又は前記物標が含まれていない場合」には、最大認知範囲又は部分的認知範囲の一方のみに道路構造又は物標が含まれている場合と、最大認知範囲及び部分的認知範囲のいずれにも、道路構造又は物標が含まれていない場合とが含まれる。「交通規則を認知できる道路構造」には、車線境界線が含まれる。例えば、認知可能性算出部106は、直線、右カーブ、左カーブなどの車線境界線の形状、又は、例えば、白い破線、白い実線、黄色の実線などの車線境界線の種類から、交通規則を認知できる。「交通規則を示す物標」には、他車両12前方の路面ペイント等の交通標示、道路標識(交通標識を含む)、及び、道路や交通の状況に応じた案内、注意喚起、指導用の看板が含まれる。道路標識には、通行の禁止、制限等の規制を行う規制標識、設置した標識に対しての理由(車両種類・時間・区間など)の表示を補助的に行う補助標識が含まれる。
 (第2の算出基準)
 認知可能性算出部106は、最大認知範囲又は部分的認知範囲に、交通規則を認知できる道路構造及び交通規則を示す物標の内のいずれか1つの全体が含まれる場合、前記した1つの一部分だけが含まれる場合に比べて、高い認知可能性を算出することができる。例えば、図3Aに示すように、右折矢印14の一部が先行車両13により隠蔽されている場合、部分的認知範囲には、右折矢印14の一部だけが含まれることになる。一方、図3Bに示すように、右折矢印14が先行車両13により隠蔽されていない場合、部分的認知範囲Lbには、右折矢印14の全体が含まれることになる。よって、図3Bの走行シーンにおける認知可能性は、図3Aの走行シーンにおける認知可能性よりも高くなる。
 (第3の算出基準)
 認知可能性算出部106は、他車両12から、交通規則を認知できる道路構造又は交通規則を示す物標までの距離が短いほど、高い認知可能性を算出する。交通規則を認知できるものが近くにあれば、遠くにある場合に比べて、他車両12の認知可能性は高くなる。例えば、距離が5mであれば認知可能性Rを0.9、距離が8mであれば認知可能性Rを0.8と算出してもよい。
 上記した第1~第3の算出基準は、各々単独で使用してしてもよいし、任意に組み合わせて実施してもよい。例えば、認知可能性算出部106は、(1)式を用いて、センシング範囲の遮蔽率に基づく認知可能性Rと、距離に基づく認知可能性Rとを統合して認知可能性Rを算出してもよい。α及びβの各々は重み係数であり、K+1は、補正項である。Kはゼロ又は正の数である。α、β、Kの各々が1である場合、認知可能性Rと認知可能性Rとの間に等しい重みを付すことができる。また、認知可能性Rは、正規分布からなる確率密度関数などの予め設計した分布から求めても構わない。
Figure JPOXMLDOC01-appb-M000001
 (第4の算出基準)
 認知可能性算出部106は、最大認知範囲又は部分的認知範囲として、自車両11が交通規則を認知できる自車認知範囲を用いて、認知可能性を算出することができる。即ち、自車両11から認知することが出来る範囲を、他車両12の最大認知範囲又は部分的認知範囲に置き換えて、認知可能性を算出してもよい。第4の算出基準は、第1~第3の算出手段に組み合わせて実施することができる。
 (第5の算出基準)
 認知可能性算出部106は、自車両11が実際に検知した、交通規則を認知できる道路構造又は交通規則を示す物標に基づいて、認知可能性を算出することができる。即ち、自車両11が実際に検知した道路構造又は物標は、他車両12も検知できたであろう、という推測の下で、認知可能性を算出することができる。第5の算出基準は、第1~第4の算出手段に組み合わせて実施することができる。
 走行状態変化検出部107は、物体検出部102によって検出される現実の走行状態が変化したことを検出する。具体的に、走行状態変化検出部107は、異なる2つの時刻における現実の走行状態の間に第1の基準値以上の差が有る場合に、現実の走行状態が変化したことを検出することができる。走行状態変化検出部107は、異なる2つの時刻における現実の走行状態の間に第1の基準値以上の差が無い場合、現実の走行状態が変化したと判断しなくてもよい。
 或いは、走行状態変化検出部107は、異なる2つの時刻における単位時間あたりの現実の走行状態の変化量の間に第2の基準値以上の差が有る場合、現実の走行状態が変化したことを検出することができる。異なる2つの時刻における単位時間あたりの現実の走行状態の変化量の間に第2の基準値以上の差が無い場合、現実の走行状態が変化したと判断しなくてもよい。このように、走行状態変化検出部107は、異なる2つの時刻における現実の走行状態の比較、又は、異なる2つの時刻における単位時間あたりの現実の走行状態の変化量の比較に基づいて、現実の走行状態が変化したか否かを判断することができる。
 予測動作決定部108は、認知可能性算出部106が算出した認知可能性、ルール導出部105が予測した予測走行状態、及び、現実の走行状態が変化したことに基づいて、他車両12が車線変更を行うことを予測する。なお、「現実の走行状態が変化したこと」は、走行状態変化検出部107により検出される。具体的には、先ず、現実の走行状態が変化したことを走行状態変化検出部107が検出した場合に、物体検出部102は、現実の走行状態を取得する。物体検出部102が取得する「現実の走行状態」として、以下の2つの例(第1の例及び第2の例)がある。
 (第1の例)
 物体検出部102は、現実の走行状態として、変化した後の現実の走行状態を取得する。前述したように、変化した後の現実の走行状態は、他車両12の位置、姿勢、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せで表現される。変化した後の現実の走行状態は、数値ではなく、数値に関連した状態で表現してもよい。
 (第2の例)
 物体検出部102は、現実の走行状態として、走行状態の変化を示す情報である変化情報を取得する。変化情報は、他車両12の位置、姿勢、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せ、で表現することができる。或いは、変化情報は、隣接車線G2又は自車線G1に対する他車両12の向き、隣接車線G2の中での車幅方向の他車両12の位置、他車両12の速度、他車両12の加速度、及び他車両12の減速度の内のいずれか1つに関連する他車両12の状態、又は2つ以上に関連する他車両12の状態の組合せ、で表現してもよい。
 そして、予測動作決定部108は、他車両が交通規則に従った場合の走行状態(すなわち車線変更を行わない場合の走行状態)である予測走行状態と現実の走行状態とを比較し、比較した結果と認知可能性とに基づいて、他車両12が車線変更を行うことを予測する。「比較した結果」として、以下の3つの例(第3の例~第5の例)がある。
 (第3の例)
 予測動作決定部108は、予測走行状態と現実の走行状態とを比較して、予測走行状態に沿わない方向への現実の走行状態のズレ量を算出する。「予測走行状態に沿わない方向への現実の走行状態のズレ量」とは、例えば、図3Aに示すように、他車両12が右側車線G2を走行している場合、ルール導出部105は、予測走行状態として、右側車線G2の車幅方向の中央を走行する予測走行軌跡を予測する。物体検出部102が検出した現実の走行軌跡(現実の走行状態の一例)が、予測走行軌跡よりも右側にずれている場合、右側に曲がっている予測走行軌跡に沿う方向へ、現実の走行状態がずれていると言える。逆に、物体検出部102が検出した現実の走行軌跡が、予測走行軌跡よりも左側にずれている場合、右側に曲がっている予測走行状態に沿わない方向へ現実の走行状態がずれていると言える。よって、図3Aに示す走行シーンにおいて、予測動作決定部108は、現実の走行軌跡が予測走行軌跡よりも左側にずれているズレ量を、「予測走行状態に沿わない方向への現実の走行状態のズレ量」として、算出する。なお、図3Aに示す走行シーンで、現実の走行軌跡が予測走行軌跡よりも右側にずれている場合、「予測走行状態に沿わない方向への現実の走行状態のズレ量」は、ゼロである。つまり、右折専用レーンにおいて、車線中央よりも車幅方向右側に寄っていても、ズレ量はゼロである。
 そして、予測動作決定部108は、例えば、図4に示す表に参照して、ズレ量と認知可能性とに基づいて、他車両12が車線変更を行うか否かを判断する。具体的には、予め、ズレ量及び認知可能性の各々にしきい値(Tha1、Tha2、Thb1、Thb2)を設定し、ズレ量及び認知可能性としきい値との比較から、図4に示す表に参照して、他車両12が車線変更を行うか否かを判断する。図4において、「1」は、車線変更を行うことを示し、「0」は、車線変更を行わないことを示す。
 なお、認知可能性のしきい値Thb1はしきい値Thb2よりも大きい値である。また、しきい値Thb1としきい値Thb2はそれぞれ、認知可能性がしきい値Thb1よりも高ければ「認知可能性が高い(認知している可能性が高い)」と判断し、認知可能性がしきい値Thb2より高ければ「認知可能性が有る(認知している可能性が有る)」と判断し、認知可能性がThb2以下であれば「認知可能性が低い(認知していない可能性が高い)」と判断するための、予め定められたしきい値である。
 また、ズレ量のしきい値Tha1はしきい値Tha2よりも大きい値である。ズレ量のしきい値Tha1及びTha2はそれぞれ、ズレ量がTha1よりも大きければ「ズレ量が大きい」と判断し、ズレ量がTha2より大きければ「ズレ量が有る(ズレが発生している)」と判断し、ズレ量がTha2以下であれば「ズレ量が無い(ズレが発生していない)」と判断するための、予め定められたしきい値である。
 予測動作決定部108は、認知可能性がしきい値Thb1(第1のしきい値)よりも高く、且つズレ量がしきい値Tha2(第2のしきい値)よりも大きい場合、他車両12が車線変更を行うことを予測する。また、予測動作決定部108は、認知可能性がしきい値Thb1(第1のしきい値)以下であっても、ズレ量がしきい値Tha1(第3のしきい値)よりも大きい場合、他車両12が車線変更を行うことを予測する。一方、予測動作決定部108は、認知可能性がしきい値Thb1(第1のしきい値)以下であり、且つズレ量がしきい値Tha1(第3のしきい値)以下である場合、他車両12が車線変更を行わないことを予測する。
 すなわち、ズレ量が大きい場合(ズレ量がしきい値Tha1よりも大きい場合)には認知可能性に関わらず他車両が車線変更を行うことを予測すると共に、認知可能性が高い場合(認知可能性がしきい値Thb1より高い場合)にはズレ量が小さい場合であってもズレ量が検出されていれば(ズレ量がしきい値Tha2より大きければ)他車両が車線変更を行うことを予測する。これに対し、ズレ量が無い場合(ズレ量がしきい値Tha2以下の場合)には認知可能性に関わらず他車両の車線変更を予測しない。また、認知可能性が高くない場合(認知可能性がしきい値Thb1以下の場合)には、ズレ量が有っても大きくない限りは(ズレ量がしきい値Tha2よりも大きくても、しきい値Tha1以下の場合は)他車両の車線変更を予測しない。つまり、ズレ量が大きい場合(ズレ量がしきい値Tha1よりも大きい場合)には認知可能性に関わらず他車両の車線変更を予測するが、認知可能性が高い場合(認知可能性がしきい値Thb1より高い場合)に限ってはズレ量が小さい場合であっても、ズレ量が検出されていれば(ズレ量がしきい値Tha2より大きければ)他車両が車線変更を行うことを予測する。
 なお、現実の走行状態又は予測走行状態として、2以上を示す数値を組合せた場合、数値の各々について、図4に基づいて、しきい値と比較することが望ましい。そして、数値の各々についての判断結果を統合して、車線変更を行うか否かを判断すればよい。
 (第4の例)
 予測動作決定部108は、他車両が交通規則に従った場合の走行状態(すなわち車線変更を行わない場合の走行状態)である予測走行状態と、他車両の現実の走行状態とを比較して、予測走行状態に沿わない方向への現実の走行状態の相違性を算出する。例えば、予測動作決定部108は、(2)式を用いて、相違性dを算出することができる。(2)式において、vは現実の走行状態を示し、rは予測走行状態を示し、μ及びσは予め設定された定数を示す。例えば、μ及びσは、予測走行状態と現実の走行状態の差の平均値又は標準偏差である。予測動作決定部108は、(2)式によって標準化した値を、相違性dとして算出する。
Figure JPOXMLDOC01-appb-M000002
 予測走行状態及び現実の走行状態が、隣接車線G2又は自車線G1に対する他車両12の向き、隣接車線G2の中での車幅方向の他車両12の位置、他車両12の速度、他車両12の加速度、及び他車両12の減速度の内のいずれか1つに関連する他車両12の状態、又は2つ以上に関連する他車両12の状態の組合せ、で表現される場合を考える。この場合、予測動作決定部108は、予測走行状態及び現実の走行状態が一致したか否かを、相違性として算出すればよい。換言すれば、予測動作決定部108は、予測走行状態及び現実の走行状態を表現する状態が一致しているか相違しているか否かを、相違性として判断する。更に、予測走行状態及び現実の走行状態が、2以上を示す状態を組合せて表現された場合、状態の各々について相違性を判断し、各状態についての相違性の判断結果を統合して、1つの相違性を求めればよい。更に、相違性に複数の段階を設けても良い。例えば、予測走行状態(加速度)が、「減速」である場合、現実の走行状態(加速度)が加速の場合の相違性を「1」とし、低速の場合の相違性を「0.5」とし、減速の場合の相違性を「0」とすればよい。
 そして、予測動作決定部108は、例えば、図5に示す表に参照して、相違性と認知可能性とに基づいて、他車両12が車線変更を行うか否かを判断する。具体的には、予測動作決定部108は、予め、相違性及び認知可能性の各々にしきい値(Thd1、Thd2、Thb1、Thb2)を設定する。そして、予測動作決定部108は、相違性及び認知可能性としきい値との比較から、図5に示す表に参照して、他車両12が車線変更を行うか否かを判断する。図5において、「1」は、車線変更を行うことを示し、「0」は、車線変更を行わないことを示す。なお、認知可能性のしきい値Thb1及びThb2は、上述の通り「認知可能性が高い」もしくは「認知可能性が低い」と判断するための、予め定められたしきい値である。また、相違性のしきい値Thd1及びThd2は、それぞれ相違性がThd1よりも大きければ「相違性が高い(相違が大きい)」と判断し、相違性がThd2より大きければ「相違性が有る(相違が発生している)」と判断するための、予め定められたしきい値である。
 予測動作決定部108は、認知可能性がしきい値Thb1(第4のしきい値)よりも高く、且つ相違性がしきい値Thd2(第5のしきい値)よりも大きい場合、他車両12が車線変更を行うことを予測する。予測動作決定部108は、認知可能性がしきい値Thb1(第4のしきい値)以下であっても、相違性がしきい値Thd1(第6のしきい値)よりも大きい場合、他車両12が車線変更を行うことを予測する。一方、予測動作決定部108は、認知可能性がしきい値Thb1以下であり、且つ相違性がしきい値Thd1以下である場合、他車両12が車線変更を行わないことを予測する。
 すなわち、相違性が高い場合(相違性がしきい値Thd1よりも高い場合)には認知可能性に関わらず他車両が車線変更を行うことを予測すると共に、認知可能性が高い場合には相違性が小さい場合であっても相違が発生していることが検出されていれば(相違性がしきい値Thd2より高ければ)他車両が車線変更を行うことを予測する。これに対し、相違性が無い場合(相違性がしきい値Thd2以下の場合)には認知可能性に関わらず他車両の車線変更を予測しない。また、認知可能性が高くない場合(認知可能性がしきい値Thb1以下の場合)には、相違性が有っても大きくない限りは(相違性がしきい値Thd2よりも大きくても、しきい値Thd1以下の場合は)他車両の車線変更を予測しない。つまり、相違性が大きい場合(相違性がしきい値Thd1よりも大きい場合)には認知可能性に関わらず他車両の車線変更を予測するが、認知可能性が高い場合(認知可能性がしきい値Thb1より高い場合)に限っては相違性が小さい場合であっても、相違性が有れば(相違性がしきい値Tha2より大きければ)他車両が車線変更を行うことを予測する。
 なお、現実の走行状態又は予測走行状態として、2以上を示す状態を組合せた場合、状態の各々について、図5に基づいて、しきい値と比較することが望ましい。そして、状態の各々についての判断結果を統合して、車線変更を行うか否かを判断すればよい。
 (第5の例)
 予測動作決定部108は、他車両が交通規則に従った場合の走行状態(すなわち車線変更を行わない場合の走行状態)である予測走行状態と、他車両の現実の走行状態とを比較して、他車両12が車線変更を行う可能性を示す「車線変更可能性」を算出する。具体的に、予測動作決定部108は、前記した「ズレ量」又は「相違性」から、車線変更可能性を算出する。
 例えば、予測動作決定部108は、予測走行状態及び現実の走行状態の各々として、少なくとも他車両12の位置、姿勢で構成されるベクトル(状態変数ベクトル)を算出する。なお、状態変数ベクトルに、他車両12の速度又は加減速度を更に加えてもよい。予測動作決定部108は、予測走行状態(状態変数ベクトル)と現実の走行状態(状態変数ベクトル)とのズレ量を、距離eとして算出する。予測動作決定部108は、距離eを入力とする確率分布f(e)から、車線変更可能性を算出することができる。予測動作決定部108は、ズレ量(距離e)が大きいほど、高い車線変更可能性を算出する。
 或いは、予測動作決定部108は、(2)式から算出した相違性dを(3)式に代入することにより、車線変更可能性Pを算出してもよい。(3)式において、Nは、予測走行状態及び現実の走行状態の各々を表現する為に組み合わされた状態の数を示す。各状態について算出されるN個の相違性dの平均値を、車線変更可能性Pを算出することができる。(3)式によれば、相違性dが大きいほど、高い車線変更可能性Pを算出することができる。
Figure JPOXMLDOC01-appb-M000003
 或いは、予測動作決定部108は、予測走行状態と現実の走行状態とを比較した結果と認知可能性Rとに基づいて、車線変更可能性Pを算出してもよい。具体的には、「予測走行状態と現実の走行状態とを比較した結果」として、(3)式から算出された車線変更可能性Pを用いることができる。よって、予測動作決定部108は、車線変更可能性Pと認知可能性Rとに基づいて、車線変更可能性Pを算出してもよい。勿論、「予測走行状態と現実の走行状態とを比較した結果」として、「予測走行状態に沿わない方向への現実の走行状態のズレ量」、及び(3)式から算出された相違性dを用いてもよい。
 例えば、予測動作決定部108は、(4)式に、車線変更可能性P及び認知可能性Rを代入することにより、車線変更可能性Pを算出することができる。これにより、認知可能性Rを考慮して車線変更可能性Pを算出することができる。(4)式において、α及びβは、車線変更可能性P及び認知可能性Rの重み係数である。
Figure JPOXMLDOC01-appb-M000004
 或いは、予測動作決定部108は、(4)式の代わりに、図6に示す表を参照して、車線変更可能性Pと認知可能性Rとに基づいて、車線変更可能性Pを算出することができる。図6の表内の各数値は、車線変更可能性Pを示す。具体的に、予測動作決定部108は、予め、車線変更可能性P及び認知可能性の各々に2つのしきい値(例えば、0.8、0.4)を設定する。車線変更可能性P及び認知可能性としきい値とを比較して、車線変更可能性P及び認知可能性Rの各々を、3つの段階(高・中・低)に分類する。そして、図6に示す表に、車線変更可能性P及び認知可能性の分類を当て嵌めることにより、車線変更可能性Pを決定する。「ズレ量」又は「相違性」が小さい為に車線変更可能性Pが低い場合(例えば、図6の「中」又は「低」)であっても、認知可能性Rが高ければ(例えば、図6の「高」)、高い車線変更可能性P(図6で、「0.8」、「0.6」)を決定する。
 なお、第5の例において、予測動作決定部108は、交通規則を示す物標としての看板、矢印信号、路面標識、区分線を含む道路構造の順番で、車線変更可能性を高く算出することができる。例えば、(4)式に対して、(5)~(7)式に示すように、物標の種類に係わる重み係数γを追加すればよい。(5)~(7)式におけるγは、例えば、看板が1.0、矢印信号が1.1、路面標識1.2、道路構造1.3である。
Figure JPOXMLDOC01-appb-M000005
 第3の例~第5の例において、予測動作決定部108は、予測走行状態の代替として、他車両12を除く隣接車線G2を走行する第3の車両の現実の走行状態を用いて、車線変更可能性を算出してもよい。つまり、他車両12と同じ車線(隣接車線G2)を走行している第3の車両を基準として、他車両12との「ズレ量」又は「相違性」、又は「車線変更可能性」を算出してもよい。具体的に、先ず、物体検出部102が、他車両12を除く隣接車線G2を走行する第3の車両の現実の走行状態を取得する。例えば、図3Aに示す、他車両12の前方を走行する先行車両13の現実の走行状態を取得する。そして、予測動作決定部108は、第3の車両の現実の走行状態と他車両12の現実の走行状態とを比較して、「ズレ量」、「相違性」、又は「車線変更可能性」を算出する。
 例えば、「車線変更可能性P」を算出する第5の例において、予測動作決定部108は、(8)式を用いて、車線変更可能性Pを算出することができる。(8)式は、(4)式の右辺に、第3の車両の現実の走行状態を用いて算出した車線変更可能性Pの項を追加した式である。「車線変更可能性P」の算出方法は、第5の例で説明した、「ズレ量」又は「相違性」から、車線変更可能性を算出する方法を援用すればよい。
 予測動作決定部108は、(8)式に、車線変更可能性P、認知可能性R、及び車線変更可能性Pを代入することにより、車線変更可能性Pを算出することができる。これにより、認知可能性Rのみならず、第3の車両の現実の走行状態を用いて算出した車線変更可能性Pをも考慮して車線変更可能性Pを算出することができる。(8)式において、α、β、εは、車線変更可能性P、認知可能性R、及び車線変更可能性Pの重み係数である。例えば、α=0.25、β=0.5、ε=0.25である。
Figure JPOXMLDOC01-appb-M000006
 そして、予測動作決定部108は、算出した車線変更可能性Pと所定のしきい値(第9のしきい値)とを比較して、他車両12が車線変更を行うか否かを判断する。車線変更可能性が所定のしきい値(第9のしきい値)よりも高い場合に、予測動作決定部108は、他車両12が車線変更を行うことを予測する。一方、車線変更可能性が所定のしきい値(第9のしきい値)以下である場合、予測動作決定部108は、他車両12は車線変更を行わないと判断してもよい。
 予測動作決定部108は、自車両11と他車両12との車間距離又は自車両11の速度を多段的に制御するために、互いに異なる複数の基準値を用いて車線変更可能性を判断してもよい。具体的に、複数個の所定のしきい値(第7のしきい値)を、多段的に予め準備する。そして、複数個の所定のしきい値(第7のしきい値)と車線変更可能性とを比較することにより、他車両12が車線変更を行うか否かを多段的に判断する。他車両12の車線変更に対する安全性を確保するための多段的な自車両11の車両制御が可能となる。
 自車経路生成部109は、予測動作決定部108により予測された他車両12の動作に基づいて、自車両11の経路を生成する。他車両12の自車線G1への車線変更が予測された場合、他車両12の車線変更を予測した上での経路を生成できる。よって、他車両12と十分な車間距離を保ち、かつ、他車両12の動作により自車両11が急減速又は急ハンドルとならない滑らかな自車両11の経路を生成することができる。「自車両11の経路」は、異なる時刻における自車両11の位置のプロファイルのみならず、各位置における自車両11の速度のプロファイルをも示す。自車経路生成部109は、車線変更に合わせた自車両11の経路を生成する。更に、自車両11に対する他車両12の相対距離が大きくなるように自車両11の経路を生成してもよい。また、自車両11の前方に車列が形成されている場合、自車経路生成部109は、車列の間に他車両12が割り込むための車間空間を形成するために自車両11が減速する自車両11の経路を算出してもよい。自車両11をより安全に制御可能となる。
 車両制御部110は、自車経路生成部109により生成された経路に従って自車両11が走行するように、自車位置推定部101により演算された自己位置に基づいて、ステアリングアクチュエータ、アクセルペダルアクチュエータ、及びブレーキペダルアクチュエータの少なくとも1つを駆動する。なお、実施形態では、自車両11の経路に従って制御する場合を示すが、自車両11の経路を生成せずに、自車両11を制御してもよい。この場合、他車両12との相対距離、或いは、他車両12と自車両11との姿勢角の差に基づいて制御を行うことも可能である。他車両12が車線変更を行うか否かを多段的に判断した場合、車両制御部110は、他車両12の車線変更に対する安全性を確保するための多段的な自車両11の車両制御が可能となる。或いは、車線変更可能性の値そのものを使用して、自車両11と他車両12との車間距離及び自車両11の車速を制御してもよい。
 図2を参照して、実施形態に係わる他車動作予測方法として、図1の他車動作予測装置の動作例を説明する。図2は、自車両11のイグニッションスイッチがオン(電気自動車の場合は電源がオン)されてから、オフされるまで、所定の周期で繰り返し実施される。また、図2の制御フローは、自車両11が自動運転により走行していることを前提としている。
 先ず、ステップS201において、自車位置推定部101は、自車両11の自己位置(絶対位置及び相対位置)を計測する。そして、地図上における自車両11の位置及び姿勢を検出する。ステップS202に進み、物体検出部102は、他車両12の現実の走行状態を取得する。具体的に、物体検出部102は、物体検出センサを用いて他車両12を検出し、他車両12を追跡する。検出結果として、例えば、自車両11の上方の空中から眺める天頂図における、他車両12の現実の走行状態を出力する。
 ステップS203に進み、動作候補生成部103は、道路構造及び車線構造に基づいて、他車両12が近い将来に行動しうる動作候補を予測する。動作候補には、車線変更も含まれる。ステップS204に進み、交通規則情報取得部104は、自車両11の周囲の道路に係わる交通規則を示す情報(交通規則情報)を取得する。交通規則情報取得部104は、自車両11の周囲の道路のうち、車線変更の判断の対象である他車両12が走行する隣接車線(右側車線G2)に係わる交通規則情報を取得してもよい。地図データ又は自車両11の周囲の画像の解析から、交通規則情報を取得することができる。
 交通規則情報を取得できない場合(S205でNO)、ステップS208へ進む。一方、交通規則情報を取得できた場合(S205でYES)、ステップS206へ進み、ルール導出部105は、交通規則に沿って走行した場合の他車両12の走行状態である「予測走行状態」をルールとして予測する。その後、ステップS207に進み、認知可能性算出部106は、他車両12が交通規則を認知した可能性を示す「認知可能性」を算出する。ここでの「交通規則」には、他車両12が走行する隣接車線(右側車線G2)に係わる交通規則が少なくとも含まれる。
 ステップS208に進み、走行状態変化検出部107は、物体検出部102によって検出された他車両12の現実の走行状態が変化したことを検出する。具体的に、走行状態変化検出部107は、異なる2つの時刻における現実の走行状態の比較、又は、異なる2つの時刻における単位時間あたりの現実の走行状態の変化量の比較に基づいて、現実の走行状態が変化したか否かを判断する。
 ステップS209に進み、予測動作決定部108は、認知可能性算出部106が算出した認知可能性、ルール導出部105が予測した予測走行状態、及び、現実の走行状態が変化したことに基づいて、他車両12が車線変更を行うことを予測する。
 ステップS210に進み、自車経路生成部109は、ステップS209で予測された他車両12の動作に基づいて、自車両11の経路を生成する。他車両12の自車線G1への車線変更が予測された場合、他車両12の車線変更を予測した上での経路を生成する。自車両11の経路として、自車経路生成部109は、自車両11に対する他車両12の相対距離を決定し、相対距離を維持する為に必要な自車両11の軌跡及び車速を決定する。
 ステップS211に進み、車両制御部110は、ステップS210において生成された経路に従って自車両11が走行するように、自車位置推定部101により演算された自己位置に基づいて、各種アクチュエータを駆動する。車両制御部110は、自車両11の経路を生成せずに、自車両11を制御してもよい。
 以上説明したように、実施形態によれば、以下の作用効果を得ることができる。
 予測動作決定部108は、他車両12の認知可能性、他車両12前方の交通規則から導出した予測走行状態、及び他車両12の現実の走行状態が変化したことに基づいて、他車両12が車線変更を行うことを予測する。他車両12の走行状態の変化は小さいが、認知可能性が高い場合、走行状態の変化は、交通規則を認知したことによる、他車両12が行動したい動作(車線変更)の予備動作である可能性が高い。つまり、交通規則の不認知から認知への変化に応じて、他車両12の走行状態(車両の挙動を含む)が変化した可能性が高い。よって、この場合、予測動作決定部108は車線変更を予測するので、早期の予測が可能である。したがって、車線変更の予測が遅れることを抑制できる。また、現実の走行状態及び予測走行状態に基づいて車線変更を判断しているため、他車両12の車線変更を正しく予測することができる。更に、誤った予測による自車両11の減速、及び予測が遅れたことによる自車両11の急減速を抑制することができる。
 予測走行状態は、他車両12の絶対位置及び相対位置を含む位置、姿勢(ヨー角、車軸方向)、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せで表現することができる。これにより、他車両12の動作を誤って予測すること及び予測が遅延することを抑制することができる。
 予測走行状態は、隣接車線(右側車線G2)又は自車線(左側車線G1)に対する他車両12の向き、隣接車線の中での車幅方向の他車両12の位置、他車両12の速度、他車両12の加速度、及び他車両12の減速度の内のいずれか1つに関連する他車両12の状態、又は2つ以上に関連する他車両12の状態の組合せで表現することもできる。これにより、他車両12の動作を誤って予測すること及び予測が遅延することを抑制することができる。
 ルール導出部105は、交通規則情報、隣接車線(G2)に係わる道路構造、及び隣接車線(G2)に係わる道路の制限速度に基づいて、予測走行状態を予測する。これにより、他車両12の動作を誤って予測すること及び予測が遅延することを抑制することができる。
 認知可能性算出部106は、最大認知範囲と部分的認知範囲とを用いて、認知可能性を算出する。これにより、認知可能性の算出精度が向上する。一般的な運転者を基準として認知可能性を判断できる。また、周囲車両や工事などの周囲環境による遮蔽の有無を判断できる。
 認知可能性算出部106は、最大認知範囲と部分的認知範囲の両方に、交通規則を認知できる道路構造又は交通規則を示す物標が含まれている場合、最大認知範囲と部分的認知範囲の両方に、道路構造又は物標が含まれていない場合に比べて、高い認知可能性を算出する。これにより、認知可能性の算出精度が向上する。
 認知可能性算出部106は、最大認知範囲又は部分的認知範囲に、交通規則を認知できる道路構造及び交通規則を示す物標の内のいずれか1つの全体が含まれる場合、前記した1つの一部分だけが含まれる場合に比べて、高い認知可能性を算出する。これにより、認知可能性の算出精度が向上する。
 認知可能性算出部106は、他車両12から、交通規則を認知できる道路構造又は交通規則を示す物標までの距離が短いほど、高い認知可能性を算出する。例えば、図3Bに示すように、他車両12から右折矢印14までの距離H1が短いほど、高い認知可能性を算出する。これにより、認知可能性の算出精度が向上する。
 認知可能性算出部106は、最大認知範囲又は部分的認知範囲として、自車両11が交通規則を認知できる自車認知範囲を用いて、認知可能性を算出する。これにより、認知可能性の算出精度が向上する。
 認知可能性算出部106は、自車両11が実際に検知した、交通規則を認知できる道路構造又は交通規則を示す物標に基づいて、認知可能性を算出する。これにより、認知可能性の算出精度が向上する。
 現実の走行状態が変化したことを検出した場合(図2のS208)に、図2のステップS209において、物体検出部102は、現実の走行状態を取得する。これにより、「現実の走行状態」を正しく取得することができるので、他車両12の動作を精度良く予測することができる。
 走行状態変化検出部107は、異なる2つの時刻における現実の走行状態の比較、又は、異なる2つの時刻における単位時間あたりの現実の走行状態の変化量の比較に基づいて、現実の走行状態が変化したか否かを判断する。これにより、現実の走行状態が変化したことを精度良く検出できる。
 物体検出部102は、現実の走行状態として、変化した後の現実の走行状態を取得する。変化した後の現実の走行状態は、他車両12の位置、姿勢、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せで表現される。これにより、他車両12の動作を誤って予測すること及び予測が遅延することを抑制することができる。
 物体検出部102は、現実の走行状態として、走行状態の変化を示す情報である変化情報を取得する。変化情報は、他車両12の位置、姿勢、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せ、で表現することができる。或いは、変化情報は、隣接車線G2又は自車線G1に対する他車両12の向き、隣接車線G2の中での車幅方向の他車両12の位置、他車両12の速度、他車両12の加速度、及び他車両12の減速度の内のいずれか1つに関連する他車両12の状態、又は2つ以上に関連する他車両12の状態の組合せ、で表現できる。これにより、現実の走行状態を精度良く検出できる。
 予測動作決定部108は、予測走行状態と現実の走行状態とを比較し、比較した結果と認知可能性とに基づいて、他車両12が車線変更を行うことを予測する。これにより、他車両12の動作を誤って予測すること及び予測が遅延することを抑制することができる。
 予測動作決定部108は、認知可能性がしきい値Thb1(第1のしきい値)よりも高く、且つズレ量がしきい値Tha2(第2のしきい値)よりも大きい場合、他車両12が車線変更を行うことを予測する。予測動作決定部108は、認知可能性がしきい値Thb1(第1のしきい値)以下であっても、ズレ量がしきい値Tha1(第3のしきい値)よりも大きい場合、他車両12が車線変更を行うことを予測する。これにより、他車両12の動作を誤って予測すること及び予測が遅延することを抑制することができる。
 予測動作決定部108は、認知可能性がしきい値Thb1(第4のしきい値)よりも高く、且つ相違性がしきい値Thd2(第5のしきい値)よりも大きい場合、他車両12が車線変更を行うことを予測する。予測動作決定部108は、認知可能性がしきい値Thb1(第4のしきい値)以下であっても、相違性がしきい値Thd1(第6のしきい値)よりも大きい場合、他車両12が車線変更を行うことを予測する。これにより、他車両12の動作を誤って予測すること及び予測が遅延することを抑制することができる。
 予測動作決定部108は、予測走行状態と現実の走行状態とを比較して、他車両12が車線変更を行う可能性を示す「車線変更可能性」を算出する。そして、予測動作決定部108は、算出した車線変更可能性と所定のしきい値(第7のしきい値)とを比較して、他車両12が車線変更を行うか否かを判断する。これにより、他車両12の動作を誤って予測すること及び予測が遅延することを抑制することができる。
 予測動作決定部108は、ズレ量(距離e)が大きいほど、高い車線変更可能性を算出する。これにより、車線変更可能性を精度良く算出することができる。
 予測動作決定部108は、(3)式を用いて、相違性dが大きいほど、高い車線変更可能性Pを算出する。これにより、車線変更可能性を精度良く算出することができる。
 予測動作決定部108は、(4)式又は図6に示す表を用いて、予測走行状態と現実の走行状態とを比較した結果と認知可能性Rとに基づいて、車線変更可能性Pを算出する。これにより、車線変更可能性を精度良く算出することができる。
 予測動作決定部108は、交通規則を示す物標としての看板、矢印信号、路面標識、区分線を含む道路構造の順番で、車線変更可能性を高く算出する。これにより、車線変更可能性を精度良く算出することができる。特に、他車両12の急な割り込みを精度良く且つ迅速に予測することができる。
 予測動作決定部108は、予測走行状態の代替として、他車両12を除く隣接車線G2を走行する第3の車両の現実の走行状態を用いて、車線変更可能性を算出する。これにより、形式的な交通規則ではなく、第3の車両の実際の動作を基準として、「ズレ量」又は「相違性」を判断できる。よって、形式的な交通規則とらわれず、車線変更可能性を精度良く且つ柔軟に判断することができる。
 予測動作決定部108は、自車両11と他車両12との車間距離又は自車両11の速度を多段的に制御するために、互いに異なる複数の基準値を用いて車線変更可能性を判断する。他車両12の車線変更に対する安全性を確保するための多段的な自車両11の車両制御が可能となる。
 上述の各実施形態で示した各機能は、1又は複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理装置は、また、実施形態に記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や従来型の回路部品のような装置を含む。
 なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは言うまでもない。例えば図3A及び図3Bにおいては自車両が直進、他車両が右折レーンを走行する場合を例示したがこれに限らず、例えば自車両が直進、他車両が左折レーンを走行する場合であっても適用可能である。
 11 自車両
 12 他車両
 14 右折矢印(交通規則を示す物標)
 G1 自車線
 G2 隣接車線
 H1 距離
 La 最大認知範囲
 Lb 部分的認知範囲

Claims (25)

  1.  自車両が走行する自車線に隣接する車線である隣接車線を走行する他車両の挙動に基づいて、前記他車両が前記自車両の前方において前記隣接車線から前記自車線へ車線変更を行うことを予測する他車動作予測装置の他車動作予測方法であって、
     前記他車両の現実の走行状態を取得し、
     前記隣接車線に係わる前記他車両前方の交通規則を示す情報である交通規則情報を取得し、
     前記他車両が前記交通規則に沿って走行した場合の前記他車両の走行状態である予測走行状態を予測し、
     前記他車両が前記交通規則を認知した可能性を示す認知可能性を算出し、
     前記認知可能性、前記予測走行状態、及び、前記現実の走行状態に基づいて、前記他車両が前記車線変更を行うことを予測することを特徴とする他車動作予測方法。
  2.  前記予測走行状態は、前記他車両の位置、姿勢、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せで表現されることを特徴とする請求項1に記載の他車動作予測方法。
  3.  前記予測走行状態は、前記隣接車線又は前記自車線に対する前記他車両の向き、前記隣接車線の中での車幅方向の前記他車両の位置、前記他車両の速度、前記他車両の加速度、及び前記他車両の減速度の内のいずれか1つに関連する他車両の状態、又は2つ以上に関連する他車両の状態の組合せで表現されることを特徴とする請求項1に記載の他車動作予測方法。
  4.  前記交通規則情報、前記隣接車線に係わる道路構造、及び前記隣接車線に係わる道路の制限速度に基づいて、前記予測走行状態を予測することを特徴とする請求項1~3のいずれか一項に記載の他車動作予測方法。
  5.  前記他車両の前記交通規則を認知可能な最大範囲である最大認知範囲と、前記他車両の車高及び前記他車両の走行環境に応じた前記交通規則を認知可能な範囲である部分的認知範囲とを用いて、前記認知可能性を算出することを特徴とする請求項1~4のいずれか一項に記載の他車動作予測方法。
  6.  前記最大認知範囲と前記部分的認知範囲の両方に、前記交通規則を認知できる道路構造又は前記交通規則を示す物標が含まれている場合、前記最大認知範囲と前記部分的認知範囲の両方に、前記道路構造又は前記物標が含まれていない場合に比べて、高い前記認知可能性を算出することを特徴とする請求項5に記載の他車動作予測方法。
  7.  前記最大認知範囲又は前記部分的認知範囲に、前記交通規則を認知できる道路構造及び前記交通規則を示す物標の内のいずれか1つの全体が含まれる場合、前記1つの一部分だけが含まれる場合に比べて、高い前記認知可能性を算出することを特徴とする請求項5又は6に記載の他車動作予測方法。
  8.  前記他車両から、前記交通規則を認知できる道路構造又は前記交通規則を示す物標までの距離が短いほど、高い前記認知可能性を算出することを特徴とする請求項5~7のいずれか一項に記載の他車動作予測方法。
  9.  前記最大認知範囲又は前記部分的認知範囲として、前記自車両が前記交通規則を認知できる自車認知範囲を用いて、前記認知可能性を算出することを特徴とする請求項5~8のいずれか一項に記載の他車動作予測方法。
  10.  前記自車両が実際に検知した、前記交通規則を認知できる道路構造又は前記交通規則を示す物標に基づいて、前記認知可能性を算出することを特徴とする請求項5~8のいずれか一項に記載の他車動作予測方法。
  11.  前記現実の走行状態が変化したことを検出した場合に、前記現実の走行状態を取得することを特徴とする請求項1~10のいずれか一項に記載の他車動作予測方法。
  12.  異なる2つの時刻における前記現実の走行状態の間に第1の基準値以上の差が有る場合、又は、異なる2つの時刻における単位時間あたりの前記現実の走行状態の変化量の間に第2の基準値以上の差が有る場合、前記現実の走行状態が変化したことを検出することを特徴とする請求項11に記載の他車動作予測方法。
  13.  変化した後の前記現実の走行状態を取得し、
     前記変化した後の前記現実の走行状態は、前記他車両の位置、姿勢、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せで表現されることを特徴とする請求項11に記載の他車動作予測方法。
  14.  前記現実の走行状態として、前記走行状態の変化を示す情報である変化情報を取得し、
     前記変化情報は、
     前記他車両の位置、姿勢、速度、加速度、及び走行軌跡の内のいずれか1つを示す数値、又はいずれか2以上を示す数値の組合せ、或いは、
     前記隣接車線又は前記自車線に対する前記他車両の向き、前記隣接車線の中での車幅方向の前記他車両の位置、前記他車両の速度、前記他車両の加速度、及び前記他車両の減速度の内のいずれか1つに関連する他車両の状態、又は2つ以上に関連する他車両の状態の組合せ、で表現できる情報であることを特徴とする請求項11に記載の他車動作予測方法。
  15.  前記予測走行状態と前記現実の走行状態とを比較し、
     前記比較した結果と前記認知可能性とに基づいて、前記他車両が前記車線変更を行うことを予測することを特徴とする請求項1~14のいずれか一項に記載の他車動作予測方法。
  16.  前記予測走行状態と前記現実の走行状態とを比較して、前記予測走行状態に対する前記現実の走行状態のズレ量を算出し、
     前記認知可能性が予め定められた第1のしきい値よりも高く、且つ前記ズレ量が予め定められた第2のしきい値よりも大きい場合、前記他車両が前記車線変更を行うことを予測し、
     前記ズレ量が前記第2のしきい値よりも大きい、予め定められた第3のしきい値よりも大きい場合、前記他車両が前記車線変更を行うことを予測する
    ことを特徴とする請求項15に記載の他車動作予測方法。
  17.  前記予測走行状態と前記現実の走行状態とを比較して、前記予測走行状態に対する前記現実の走行状態の相違性を算出し、
     前記認知可能性が予め定められた第4のしきい値よりも高く、且つ前記相違性が予め定められた第5のしきい値よりも大きい場合、前記他車両が前記車線変更を行うことを予測し、
     前記相違性が前記第5のしきい値よりも大きい、予め定められた第6のしきい値よりも大きい場合、前記他車両が前記車線変更を行うことを予測する
    ことを特徴とする請求項15に記載の他車動作予測方法。
  18.  前記予測走行状態と前記現実の走行状態とを比較して、前記他車両が前記車線変更を行う可能性を示す車線変更可能性を算出し、
     前記車線変更可能性が第7のしきい値よりも高い場合に、前記他車両が前記車線変更を行うことを予測する
    ことを特徴とする請求項15に記載の他車動作予測方法。
  19.  前記予測走行状態と前記現実の走行状態とを比較して、前記他車両が前記車線変更を行う可能性を示す車線変更可能性を算出し、
     前記ズレ量が大きいほど、高い前記車線変更可能性を算出する
    ことを特徴とする請求項16に記載の他車動作予測方法。
  20.  前記予測走行状態と前記現実の走行状態とを比較して、前記他車両が前記車線変更を行う可能性を示す車線変更可能性を算出し、
     前記相違性が大きいほど、高い前記車線変更可能性を算出する
    ことを特徴とする請求項17に記載の他車動作予測方法。
  21.  前記予測走行状態と前記現実の走行状態とを比較し、
     比較した結果及び前記認知可能性に基づいて、前記車線変更可能性を算出する
    ことを特徴とする請求項18~20のいずれか一項に記載の他車動作予測方法。
  22.  前記交通規則を示す物標としての看板、矢印信号、路面標識、及び道路構造の順番で、前記車線変更可能性を高く算出することを特徴とする請求項18に記載の他車動作予測方法。
  23.  前記他車両を除く前記隣椄車線を走行する第3の車両の現実の走行状態を取得し、
     前記第3の車両の現実の走行状態と前記他車両の現実の走行状態とを比較して、前記車線変更可能性を算出する
    ことを特徴とする請求項18に記載の他車動作予測方法。
  24.  前記自車両と前記他車両との車間距離又は前記自車両の速度を多段的に制御するために、互いに異なる複数の基準値を用いて前記車線変更可能性を判断することを特徴とする請求項18に記載の他車動作予測方法。
  25.  自車両が走行する自車線に隣接する車線である隣接車線を走行する他車両の挙動に基づいて、前記他車両が前記自車両の前方において前記隣接車線から前記自車線へ車線変更を行うことを予測する制御部を備える他車動作予測装置であって、前記制御部は、
     前記他車両の現実の走行状態を取得し、
     前記隣接車線に係わる前記他車両前方の交通規則を示す情報である交通規則情報を取得し、
     前記他車両が前記交通規則に沿って走行した場合の前記他車両の走行状態である予測走行状態を予測し、
     前記他車両が前記交通規則を認知した可能性を示す認知可能性を算出し、
     前記認知可能性、前記予測走行状態、及び、前記現実の走行状態に基づいて、前記他車両が前記車線変更を行うことを予測することを特徴とする他車動作予測装置。
PCT/IB2018/001545 2018-12-11 2018-12-11 他車動作予測方法及び他車動作予測装置 WO2020121010A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880100153.XA CN113243029B (zh) 2018-12-11 2018-12-11 其他车辆动作预测方法及其他车辆动作预测装置
RU2021120176A RU2760050C1 (ru) 2018-12-11 2018-12-11 Способ предсказания действий другого транспортного средства и устройство предсказания действий другого транспортного средства
US17/311,172 US11390288B2 (en) 2018-12-11 2018-12-11 Other-vehicle action prediction method and other-vehicle action prediction device
PCT/IB2018/001545 WO2020121010A1 (ja) 2018-12-11 2018-12-11 他車動作予測方法及び他車動作予測装置
JP2020559041A JP7156394B2 (ja) 2018-12-11 2018-12-11 他車動作予測方法及び他車動作予測装置
EP18942660.4A EP3896672A4 (en) 2018-12-11 2018-12-11 Other vehicle motion prediction method and other vehicle motion prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/001545 WO2020121010A1 (ja) 2018-12-11 2018-12-11 他車動作予測方法及び他車動作予測装置

Publications (1)

Publication Number Publication Date
WO2020121010A1 true WO2020121010A1 (ja) 2020-06-18

Family

ID=71075731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/001545 WO2020121010A1 (ja) 2018-12-11 2018-12-11 他車動作予測方法及び他車動作予測装置

Country Status (6)

Country Link
US (1) US11390288B2 (ja)
EP (1) EP3896672A4 (ja)
JP (1) JP7156394B2 (ja)
CN (1) CN113243029B (ja)
RU (1) RU2760050C1 (ja)
WO (1) WO2020121010A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114056347A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 车辆运动状态识别方法及装置
CN114291116A (zh) * 2022-01-24 2022-04-08 广州小鹏自动驾驶科技有限公司 周围车辆轨迹预测方法、装置、车辆及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4134288B1 (en) * 2020-04-06 2024-02-28 Nissan Motor Co., Ltd. Vehicle behavior estimation method, vehicle control method, and vehicle behavior estimation device
US11679782B2 (en) * 2021-01-26 2023-06-20 Honda Research Institute Europe Gmbh Method, system and vehicle for assisting an operator of the vehicle in assessing a traffic situation with shared traffic space
US11654913B2 (en) * 2021-03-04 2023-05-23 Southwest Research Institute Vehicle control based on infrastructure and other vehicles
US11912311B2 (en) * 2021-08-10 2024-02-27 GM Global Technology Operations LLC System and method of detecting and mitigating erratic on-road vehicles
CN114506344B (zh) * 2022-03-10 2024-03-08 福瑞泰克智能系统有限公司 一种车辆轨迹的确定方法及装置
CN115447599B (zh) * 2022-09-22 2023-06-27 上海保隆汽车科技股份有限公司 车辆转向自动预警方法、装置、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1139597A (ja) * 1997-07-17 1999-02-12 Fuji Heavy Ind Ltd 車両の衝突防止装置
JP2008037218A (ja) * 2006-08-03 2008-02-21 Aisin Aw Co Ltd 車両制御装置
JP2009003650A (ja) 2007-06-20 2009-01-08 Toyota Motor Corp 車両走行推定装置
WO2017022447A1 (ja) * 2015-08-06 2017-02-09 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052808A (ja) * 1998-08-12 2000-02-22 Mitsubishi Electric Corp 車両交通管理装置
JP4379199B2 (ja) * 2004-05-17 2009-12-09 日産自動車株式会社 車線変更支援装置および方法
JP5182045B2 (ja) 2008-12-01 2013-04-10 トヨタ自動車株式会社 進路予測装置
US9771070B2 (en) * 2011-12-09 2017-09-26 GM Global Technology Operations LLC Method and system for controlling a host vehicle
US9187117B2 (en) * 2012-01-17 2015-11-17 Ford Global Technologies, Llc Autonomous lane control system
DE102012214979A1 (de) * 2012-08-23 2014-02-27 Robert Bosch Gmbh Spurwahlassistent zur Optimierung des Verkehrsflusses (Verkehrsflussassistent)
US9117098B2 (en) * 2013-06-03 2015-08-25 Ford Global Technologies, Llc On-board traffic density estimator
EP2942765B1 (en) * 2014-05-07 2018-12-26 Honda Research Institute Europe GmbH Method and system for predictive lane change assistance, program software product and vehicle
US9975539B2 (en) * 2014-08-11 2018-05-22 Nissan Motor Co., Ltd. Travel control device and travel control method
US9721471B2 (en) * 2014-12-16 2017-08-01 Here Global B.V. Learning lanes from radar data
US10262213B2 (en) * 2014-12-16 2019-04-16 Here Global B.V. Learning lanes from vehicle probes
DE102015201878A1 (de) * 2015-02-04 2016-08-04 Continental Teves Ag & Co. Ohg Halbautomatisierter Spurwechsel
WO2017165627A1 (en) * 2016-03-23 2017-09-28 Netradyne Inc. Advanced path prediction
US9799218B1 (en) * 2016-05-09 2017-10-24 Robert Gordon Prediction for lane guidance assist
US10249194B2 (en) * 2016-08-30 2019-04-02 International Business Machines Corporation Modifying behavior of autonomous vehicle based on advanced predicted behavior analysis of nearby drivers
WO2018081807A2 (en) * 2016-10-31 2018-05-03 Mobileye Vision Technologies Ltd. Systems and methods for navigating lane merges and lane splits
JP2018094960A (ja) * 2016-12-08 2018-06-21 本田技研工業株式会社 車両制御装置
US11004000B1 (en) * 2017-01-30 2021-05-11 Waymo Llc Predicting trajectory intersection by another road user
JP6494121B2 (ja) * 2017-03-01 2019-04-03 本田技研工業株式会社 車線変更推定装置、車線変更推定方法、およびプログラム
WO2018158873A1 (ja) * 2017-03-01 2018-09-07 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
BR112019024097A2 (pt) * 2017-05-16 2020-06-02 Nissan Motor Co., Ltd. Método de predição de ação e dispositivo de predição de ação de dispositivo de ajuda para deslocamento
US10611371B2 (en) * 2017-09-14 2020-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for vehicle lane change prediction using structural recurrent neural networks
KR20190035159A (ko) * 2017-09-26 2019-04-03 삼성전자주식회사 차량 움직임 예측 방법 및 장치
US10618519B2 (en) * 2017-11-06 2020-04-14 Uatc Llc Systems and methods for autonomous vehicle lane change control
US11027736B2 (en) * 2018-04-27 2021-06-08 Honda Motor Co., Ltd. Systems and methods for anticipatory lane change
JPWO2020161512A1 (ja) * 2019-02-07 2020-08-13

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1139597A (ja) * 1997-07-17 1999-02-12 Fuji Heavy Ind Ltd 車両の衝突防止装置
JP2008037218A (ja) * 2006-08-03 2008-02-21 Aisin Aw Co Ltd 車両制御装置
JP2009003650A (ja) 2007-06-20 2009-01-08 Toyota Motor Corp 車両走行推定装置
WO2017022447A1 (ja) * 2015-08-06 2017-02-09 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896672A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114056347A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 车辆运动状态识别方法及装置
CN114291116A (zh) * 2022-01-24 2022-04-08 广州小鹏自动驾驶科技有限公司 周围车辆轨迹预测方法、装置、车辆及存储介质
CN114291116B (zh) * 2022-01-24 2023-05-16 广州小鹏自动驾驶科技有限公司 周围车辆轨迹预测方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
JPWO2020121010A1 (ja) 2020-06-18
JP7156394B2 (ja) 2022-10-19
CN113243029B (zh) 2022-07-05
CN113243029A (zh) 2021-08-10
RU2760050C1 (ru) 2021-11-22
US20220024461A1 (en) 2022-01-27
EP3896672A1 (en) 2021-10-20
US11390288B2 (en) 2022-07-19
EP3896672A4 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2020121010A1 (ja) 他車動作予測方法及び他車動作予測装置
JP6798611B2 (ja) 走行支援方法及び走行支援装置
EP3319065B1 (en) Route prediction device
EP3591638B1 (en) Drive assistance method and drive assistance device
CN107953884B (zh) 用于自主车辆的行驶控制设备和方法
US9708004B2 (en) Method for assisting a driver in driving an ego vehicle and corresponding driver assistance system
US8949018B2 (en) Driving assistance device and driving assistance method
US8903588B2 (en) Method and system for predicting movement behavior of a target traffic object
JP6468261B2 (ja) 自動運転システム
US11069242B2 (en) Traveling assistance method of traveling assistance device and traveling assistance device
JP6654923B2 (ja) 地図情報出力装置
WO2020161512A1 (ja) 他車動作予測方法及び他車動作予測装置
US20220314968A1 (en) Electronic control device
US20190308618A1 (en) Driving support apparatus
JP2022523769A (ja) 割り込んでくる又は抜け出て行く車両を認識する制御ユニット及び方法
CN111731294A (zh) 行驶控制装置、行驶控制方法以及存储程序的存储介质
JP4252951B2 (ja) 車両用制御対象判定装置
JP6943005B2 (ja) 車線変更判定方法及び車線変更判定装置
JP7356892B2 (ja) 車両の走行環境推定方法、及び、走行環境推定システム
KR20200133122A (ko) 차량 충돌 방지 장치 및 방법
US20220144261A1 (en) Behavior Prediction Method, Behavior Prediction Apparatus and Vehicle Control Apparatus
JP6330868B2 (ja) 車両制御装置
US10854082B2 (en) Determination device and determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018942660

Country of ref document: EP

Effective date: 20210712