WO2017011931A1 - 利用光刻胶沉积金属构形的方法 - Google Patents

利用光刻胶沉积金属构形的方法 Download PDF

Info

Publication number
WO2017011931A1
WO2017011931A1 PCT/CN2015/000569 CN2015000569W WO2017011931A1 WO 2017011931 A1 WO2017011931 A1 WO 2017011931A1 CN 2015000569 W CN2015000569 W CN 2015000569W WO 2017011931 A1 WO2017011931 A1 WO 2017011931A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
metal
depositing
substrate
baking
Prior art date
Application number
PCT/CN2015/000569
Other languages
English (en)
French (fr)
Inventor
孙逊运
张盼
庄兆森
周元基
于凯
Original Assignee
潍坊星泰克微电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊星泰克微电子材料有限公司 filed Critical 潍坊星泰克微电子材料有限公司
Publication of WO2017011931A1 publication Critical patent/WO2017011931A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to the field of semiconductors, and in particular to a method of depositing a metal configuration using a photoresist.
  • metal configurations are very important in microelectronic, microphotonic or micromechanical devices, such as metal electrodes or wires.
  • metal electrodes or wires There are many processes for fabricating metal configurations. One of them is the stripping process using inverted trapezoidal negative photoresist, which is called Lift Off in English.
  • the metal configuration process is: (1) coating a negative photoresist on the surface of the substrate, and then making a trench requiring wiring by baking, exposing, baking, and developing. A pattern of grooves or other shapes. In this step, the photoresist in the photoresist pattern is required to be in an inverted ladder shape. As shown in FIG. 1, the chamfer ⁇ is generally between 70° and 80°.
  • the metal is deposited on the surface of the photoresist pattern by evaporation, sputtering, chemical vapor deposition or other methods, and the metal falls on the surface of the substrate where the photoresist is opened. (3) Immersion with a suitable reagent, the photoresist is peeled off from the surface of the substrate, the metal on the surface of the photoresist is peeled off together, and the metal falling on the surface of the substrate forms a metal configuration.
  • step (1) of the existing stripping process it is sometimes necessary to remove a thin film from the opening of the photoresist with an etching solution, for example, a thin layer of silicon dioxide (SiO2) is etched away by BOE (Buffered Oxide Etch). .
  • etching solution for example, a thin layer of silicon dioxide (SiO2) is etched away by BOE (Buffered Oxide Etch).
  • BOE Silicon Oxide Etch
  • step (3) of the existing stripping process it is sometimes necessary to tape or otherwise remove the precious metal on the surface of the photoresist, while exposing the photoresist to facilitate the stripping process in step (3).
  • the pattern of the photoresist must be inverted (see Figure 1).
  • the first purpose of the inverted ladder shape is to allow the reagent to contact the side of the photoresist pattern, particularly the portion of the photoresist that is in contact with the surface of the substrate, so that the photoresist is detached from the surface of the substrate. In this stripping process, the photoresist does not have to be dissolved in the stripping agent and can be stripped.
  • the second purpose of the inverted ladder pattern is to break the metal falling onto the surface of the substrate from the metal on the surface of the photoresist pattern. It must be noted that the inverted ladder pattern not only increases the difficulty of photoresist formulation modulation, but also reduces other aspects of photoresist performance, such as cross-linking and resolution, as compared to vertical patterned photoresist.
  • the inverted ladder pattern is a feature of the negative photoresist, so the positive photoresist is not suitable for the stripping process of the inverted ladder photoresist.
  • the inverted shape of the photoresist is sometimes achieved by two layers of glue.
  • a non-photosensitive film is applied to the surface of the substrate, that is, it is isotropic when dissolved in a developer, and is generally called LOR (Lift Off Resist).
  • LOR Lift Off Resist
  • a general photoresist is applied, and after exposure and development, a pattern as shown in FIG. 2 appears.
  • Other steps of depositing metal and stripping are the same as those described above.
  • the thickness of the photoresist In the existing stripping process, the thickness of the photoresist must be greater than the thickness of the metal configuration. In general, the thickness of the photoresist is 2 to 3 times the thickness of the metal electrode or wiring. For example, if the thickness of the vapor deposition, sputtering or chemical vapor deposition metal is 1.2 micrometers, the thickness of the photoresist pattern is between 2.4 micrometers and 3.6 micrometers. Otherwise, the metal falling on the surface of the substrate will stick to the metal on the surface of the photoresist pattern. After sticking, it will cause metal residue and increase the difficulty of peeling.
  • the metal is easily attached to the sidewall of the photoresist pattern, and metal residue is generated after the glue is removed.
  • Fig. 3 it is a gold electrode fabricated by a conventional stripping process, and the gold residue on the edge is very conspicuous.
  • a method of depositing a metal configuration using photoresist comprising:
  • the step of baking, exposing, baking and developing the substrate coated with the photoresist is sequentially performed, and the angle between the sidewall of the photoresist pattern obtained after development and the surface of the substrate is 80° and 100°. between;
  • the step of removing the photoresist is the step of removing the photoresist.
  • the step of etching the thin layer of the surface of the substrate at the opening of the photoresist after the development process is further included .
  • the angle between the sidewall of the photoresist pattern obtained after the development and the surface of the substrate is between 85° and 95°.
  • the angle between the sidewall of the photoresist pattern obtained after the development and the surface of the substrate is 90°.
  • the thickness of the photoresist is within 40% of the thickness of the deposited metal.
  • the thickness of the photoresist is equal to or less than the thickness of the deposited metal.
  • the exposure light source is visible light, 436 nm wavelength light, 360 nm wavelength light, 248 nm wavelength light or One or more kinds of 193 nm wavelength light are mixed, and the exposure mode is a projection type, a contact type or a proximity type, and the developing solution is an alkaline solution or an organic solvent.
  • the method of metal deposition includes, but is not limited to, evaporation, sputtering, and chemical vapor deposition.
  • the photoresist is removed by removing the photoresist by specifically immersing the photoresist;
  • the metal on the surface of the photoresist is removed by a method of tape detachment before the reagent is immersed;
  • the angle between the sidewall of the photoresist pattern and the surface of the substrate is limited to between 80° and 100°, so that the sidewall of the photoresist pattern is almost perpendicular to the surface of the substrate, thereby making the metal structure
  • the bottom width of the shaped metal or metal wire is about the same as the width of the top, as shown in FIG.
  • the angle between the side wall facing the photoresist pattern and the surface of the substrate is further defined between 85 and 95, and 90, resulting in a better metal electrode or metal wire.
  • the angle between the sidewall of the photoresist pattern and the surface of the substrate is limited to between 80° and 100°.
  • the side etching phenomenon is avoided. Limiting the thickness of the photoresist to 40% of the thickness of the deposited metal, the gold residue on the edge of the metal electrode or the metal wire can be avoided, especially when the thickness of the photoresist is equal to or less than the thickness of the deposited metal.
  • the metal electrode or metal wire edge is smoother and increases the process latitude of each step.
  • FIG. 1 is a schematic cross-sectional view showing the shape of a photoresist inverted ladder in a conventional stripping process
  • FIG. 2 is a schematic cross-sectional view of a pattern formed by LOR in a prior art stripping process
  • FIG. 3 is a schematic view of a gold electrode fabricated by a prior art stripping process under an electron microscope
  • FIG. 4 is a schematic view of a gold wire produced by a prior art stripping process under an electron microscope
  • 5a is a schematic cross-sectional view of a photoresist pattern in a stripping process of the present invention
  • Figure 5b is a schematic cross-sectional view of the metal in the stripping process of the present invention.
  • Figure 5c is a schematic cross-sectional view showing the surface metal being detached in the stripping process of the present invention.
  • 5d is a schematic cross-sectional view of a gold wire after stripping of a photoresist in a stripping process of the present invention
  • 6a is a schematic view showing the thickness of the photoresist of the present invention being greater than the thickness of the metal configuration
  • 6b is a schematic view showing the thickness of the photoresist of the present invention being equal to the thickness of the metal configuration
  • 6c is a schematic view showing the thickness of the photoresist of the present invention being less than the thickness of the metal configuration
  • Figure 7 is a schematic view of a gold wire produced by the stripping process of the present invention under an electron microscope
  • FIG. 8a is a schematic view of a negative photoresist pattern under an electron microscope in Embodiment 2 of the present invention.
  • 8b is a schematic view of an electron microscope after vapor deposition of gold in the second embodiment of the present invention.
  • 8c is a schematic view of the surface gold film in the second embodiment of the present invention after being detached by an electron microscope;
  • 8d is a schematic view of the photoresist under the electron microscope after being stripped in the second embodiment of the present invention.
  • 9a is a schematic view of a negative photoresist pattern under an electron microscope according to Embodiment 3 of the present invention.
  • Figure 9b is a schematic view of the third embodiment of the present invention after evaporation of gold under an electron microscope
  • 9c is an electron micrograph of the surface gold film after being detached in the third embodiment of the present invention.
  • 9d is a schematic view of the photoresist under the electron microscope after being stripped in the third embodiment of the present invention.
  • 10a is a schematic view of a negative photoresist pattern under an electron microscope in Embodiment 4 of the present invention.
  • FIG. 10b is a schematic view of the fourth embodiment of the present invention after evaporation of gold under an electron microscope
  • 10c is a schematic view of the surface gold film after being detached in an electron microscope according to Embodiment 4 of the present invention.
  • 10d is a schematic view showing the photoresist under the electron microscope after being stripped in the fourth embodiment of the present invention.
  • Figure 11a is a schematic view of a positive photoresist pattern in an embodiment of the present invention under an electron microscope
  • 11b is a schematic view of an electron microscope after vapor deposition of gold in Embodiment 5 of the present invention.
  • 11c is a schematic view of the surface gold film in the fifth embodiment of the present invention after being detached by an electron microscope;
  • Figure 11d is a schematic view of the photoresist in the fifth embodiment of the present invention after being peeled off under an electron microscope.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a method of depositing a metal configuration using photoresist comprising:
  • the step of baking, exposing, baking and developing the substrate coated with the photoresist is sequentially performed, and the angle between the sidewall of the photoresist pattern obtained after development and the surface of the substrate is 80° and 100°. between;
  • the step of removing the photoresist is the step of removing the photoresist.
  • the step of etching the thin layer of the surface of the substrate at the opening of the photoresist after the development process is further included .
  • the angle between the sidewall of the photoresist pattern obtained after development and the surface of the substrate is between 85° and 95°. A better angle is 90°.
  • the angle between the sidewall of the photoresist pattern obtained after development and the surface of the substrate may be 80°, 81°, 82°, 83°, 84°, 85°, 86°, 87°, 88°, 89°, 90°, 91°, 92°, 93°, 84°, 95°, 96°, 97°, 98°, 99° or 100°.
  • the thickness of the photoresist is within 40% of the thickness of the deposited metal.
  • the thickness of the photoresist is equal to or less than the thickness of the deposited metal.
  • the exposure light source is visible light, 436 nm wavelength light, 360 nm wavelength light, 248 nm wavelength light or One or more kinds of 193 nm wavelength light are mixed, and the exposure mode is a projection type, a contact type or a proximity type, and the developing solution is an alkaline solution or an organic solvent.
  • Methods of metal deposition including, but not limited to, evaporation, sputtering, and chemical vapor deposition.
  • the photoresist is removed by specifically soaking the reagent to dissolve the photoresist.
  • an auxiliary method such as heating or ultrasonic vibration may be employed.
  • the metal on the surface of the photoresist is removed by a tape before the reagent is soaked. It can be repeated by sticking to the reagent soaking to the viscous.
  • the step of dissolving the metal on the surface of the photoresist with a tape and the step of dissolving and removing the photoresist with the reagent may be alternately performed a plurality of times.
  • a specific process flow of the present invention is: (1) applying a soluble photoresist on the surface of the substrate, and then performing the necessary patterns by baking, exposing, baking and developing, the corresponding electrodes or The shape of the wire.
  • FIG. 5a this is a schematic cross-sectional view of a photoresist pattern corresponding to the shape of the wire.
  • the angle ⁇ between the side of the pattern and the surface of the substrate is between 80° and 100°, and between 85° and 95°. Ok, 90° is the best.
  • the metal is deposited on the surface of the photoresist pattern by evaporation, sputtering, chemical vapor deposition or other methods, and the metal falls on the surface of the substrate where the photoresist is opened, as shown in Fig.
  • the thickness of the photoresist is within 40% of the thickness of the metal profile, preferably the same as or less than the thickness of the metal configuration.
  • the thickness of the photoresist should be between 0.9 microns and 2.1 microns, preferably between 0.9 microns and 1.5 microns.
  • the thickness of the photoresist is larger than the thickness of the metal configuration, metal residue is likely to occur.
  • the case where the thickness of the photoresist is greater than, equal to, and less than the thickness of the metal configuration, respectively, is as shown in Figures 6a, 6b and 6c, respectively.
  • the photoresist pattern in the technical solution of the present invention does not need to be inverted ladder shape, and even a certain degree of forward ladder pattern can be used. Therefore, a positive photoresist is fully applicable to the present invention, that is, both a negative photoresist and a positive photoresist are applicable.
  • the existing stripping process requires that the photoresist pattern be inverted as shown in FIG. 1, or the shape of the photoresist stacked LOR is as shown in FIG.
  • the baking, exposure and development steps in the step (1) need to be carried out under the conditions required for the photoresist.
  • the tape used in the step (3) refers to a film having a side which is sticky.
  • Step (3) may be repeated or performed by "sticking->reagent soaking->sticking" until the metal on the surface of the photoresist pattern is completely removed.
  • the stripping agent gradually dissolves and removes the photoresist from the exposed surface.
  • the method of raising the temperature or using ultrasonic vibration can be used to promote the peeling speed and the peeling completeness.
  • the variation of the bottom width and the top width of the metal electrode or the metal wire can be clearly seen in Figs. 4 and 7. That is, after the technical solution of the present invention, the bottom width of the metal electrode or the metal wire is the same as the width of the top.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a 2-inch sapphire wafer that has been patterned and epitaxially nitrided is manually placed in a rotary homogenizer, and approximately 2 ml of soluble negative photoresist is added dropwise to start the homogenizer at 3000 rpm for 60 seconds.
  • Rear. Bake at 110 ° C for 60 seconds using a hot plate and then cool to room temperature.
  • the thickness of the photoresist film was measured to be 2.35 ⁇ m using a Dektak XT step meter.
  • Exposure was carried out with a proximity (US SUSS Exposure Machine MA-100E) exposure machine at a gap of 10 microns, and the exposure source was a high-pressure mercury lamp mixed wavelength source.
  • the reticle is a LED electrode pattern with a finger.
  • Fig. 8a it is a cross-sectional electron micrograph of the obtained photoresist pattern, the groove width is 5.0 ⁇ m, and the sidewall of the photoresist pattern is perpendicular to the surface of the substrate. It was etched with BOE (Buffer Oxide Etcher) for 40 seconds at room temperature. Metal gold was vapor-deposited for 5 hours in an ei-5z high vacuum evaporation coating apparatus (ULVAC, Japan).
  • BOE Buffer Oxide Etcher
  • Figure 8b shows a cross-sectional electron micrograph of the metal gold after evaporation. Subsequently, gold plating on the surface of the photoresist pattern was adhered with a blue tape (Japan Nitto Blue Film).
  • Figure 8c is a cross-sectional electron micrograph of gold plating on the surface of the photoresist after it has been viscous. Finally, it is immersed in an NMP solution at 85 ° C for 10-30 minutes, and the photoresist is dissolved and removed.
  • Figure 8d is a cross-sectional electron micrograph of the photoresist after it has been removed. In this embodiment, the thickness of the negative photoresist is greater than the thickness of the metal configuration.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a 2-inch sapphire wafer that has been patterned and epitaxially nitrided is manually placed in a rotary homogenizer, and about 2 ml of soluble negative photoresist is added to start the homogenizer at 4000 rpm for 60 seconds.
  • the hot plate was baked at 110 ° C for 60 seconds and then lowered to room temperature.
  • the thickness of the photoresist film was measured to be 1.50 ⁇ m using a Dektak XT step meter.
  • the exposure, baking and development treatments were carried out by the procedure of Example 2.
  • Figure 9a is a cross-sectional electron micrograph of the resulting photoresist pattern with a groove width of 5.0 microns and the sidewalls of the photoresist pattern being perpendicular to the substrate surface.
  • Figure 9b is a cross-sectional electron micrograph of the metal gold after evaporation. Subsequently, gold plating on the surface of the photoresist pattern was adhered with a blue tape (Japan Nitto Blue Film).
  • Figure 9c is a cross-sectional electron micrograph of gold plating on the surface of the photoresist after it has been viscous. Finally, it is immersed in an NMP solution at 85 ° C for 10-30 minutes, and the photoresist is dissolved and removed.
  • Figure 9d is a cross-sectional electron micrograph of the photoresist after it has been removed. In this embodiment, the thickness of the negative photoresist is equal to the thickness of the metal configuration.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a 2-inch sapphire wafer that has been patterned and epitaxially nitrided is manually placed in a rotary homogenizer, and approximately 2 ml of soluble negative photoresist is added dropwise to start the homogenizer at 4500 rpm for 60 seconds. .
  • Bake at 110 ° C for 60 seconds using a hot plate and then cool to room temperature.
  • the thickness of the photoresist film was measured to be 1.20 ⁇ m using a Dektak XT step meter.
  • the exposure, baking and development treatments were carried out by the procedure of Example 2.
  • Figure 10a is a cross-sectional electron micrograph of the resulting photoresist pattern with a groove width of 5.0 microns and the sidewalls of the photoresist pattern being perpendicular to the substrate surface.
  • BOE room temperature (Buffer Oxide Etcher) etched for 40 seconds.
  • Metal gold was vapor-deposited for 5 hours in an ei-5z high vacuum evaporation coating apparatus (ULVAC, Japan).
  • Figure 10b is a cross-sectional electron micrograph of the metal gold after evaporation. Subsequently, gold plating on the surface of the photoresist pattern was adhered with a blue tape (Japan Nitto Blue Film).
  • Figure 10c is a cross-sectional electron micrograph of the gold plating on the surface of the photoresist after being detached. Finally, it is immersed in an NMP solution at 85 ° C for 10-30 minutes, and the photoresist is dissolved and removed.
  • Figure 10d is a cross-sectional electron micrograph of the photoresist after it has been removed. In this embodiment, the thickness of the negative photoresist is less than the thickness of the metal configuration.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a 2-inch sapphire wafer that has been patterned and epitaxially nitrided is manually placed in a rotary homogenizer, and about 2 ml of soluble positive photoresist is added to start the homogenizer at 4000 rpm for 60 seconds. Bake at 110 ° C for 60 seconds using a hot plate and then cool to room temperature. The thickness of the photoresist film was measured to be 1.23 ⁇ m using a Dektak XT step meter. The exposure, baking and development treatments were carried out by the procedure of Example 2, and the only difference in the present embodiment was the use of a positive reticle.
  • Figure 11a is a cross-sectional electron micrograph of the resulting photoresist pattern with a groove width of 5.0 microns and the sidewalls of the photoresist pattern being perpendicular to the surface of the substrate. It was etched with BOE (Buffer Oxidc Etcher) for 40 seconds at room temperature. Metal gold was vapor-deposited for 5 hours in an ei-5z high vacuum evaporation coating apparatus (ULVAC, Japan).
  • Figure 11b is a cross-sectional electron micrograph of the metal gold after evaporation. Subsequently, gold plating on the surface of the photoresist pattern was adhered with a blue tape (Japan Nitto Blue Film).
  • Figure 11c is a cross-sectional electron micrograph of gold plating on the surface of the photoresist after it has been viscous. Finally, it is immersed in an NMP solution at 85 ° C for 10-30 minutes, and the photoresist is dissolved and removed.
  • Figure 11d is a cross-sectional electron micrograph of the photoresist after it has been removed.
  • the photoresist used in this embodiment is positive lithography, and the thickness of the photoresist is less than the thickness of the metal configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种利用光刻胶(1)沉积金属构形的方法,包括:在基材(2)的表面涂布光刻胶(1)的步骤;将涂布完光刻胶(1)的基材(2)依次经烘烤、曝光、烘烤和显影处理的步骤,显影后得到的光刻胶(1)图形的侧壁与基材(2)表面的夹角在80°和100°之间;将金属(7)沉积到经显影处理后的光刻胶(1)图形表面,在光刻胶(1)开口的地方金属(7)则落到基材(2)表面的步骤;将光刻胶(1)表面上的金属(7)去除的步骤;以及把光刻胶(1)去除的步骤。

Description

利用光刻胶沉积金属构形的方法 技术领域
本发明涉及半导体领域,具体地,涉及一种利用光刻胶沉积金属构形的方法。
背景技术
目前,金属构形在微电子、微光子或微机械装置中非常重要,比如金属电极或导线。制造金属构形的工艺有多种,利用倒梯形负性光刻胶的剥离工艺就是其中的一种,英文叫做Lift Off。
在现有剥离工艺中,金属构形的制作流程是:(1)在基材表面上涂布负性光刻胶,然后通过烘烤、曝光、烘烤和显影等步骤做出需要布线的沟槽或其他形状的图形。在该步骤中要求光刻胶图形中的光刻胶一定呈倒梯状,如图1所示,倒角α一般在70°和80°之间。(2)采取蒸镀、溅射、化学气相沉积或其他方法把金属沉积到光刻胶图形表面,在光刻胶开口的地方金属则落到基材表面。(3)用合适的试剂浸泡,把光刻胶从基材表面剥离,光刻胶表面上的金属一起被剥离,落在基材表面上的金属便形成金属构形。
在现有剥离工艺的第(1)步之后,有时需要用腐蚀液在光刻胶开口的区域把一层薄膜去掉,例如用BOE(Buffered Oxide Etch)把二氧化硅(SiO2)薄层腐蚀掉。在这一步腐蚀过程中,很容易发生侧腐,即腐蚀液从光刻胶和基材表面的粘结处渗入到光刻胶图形之下。这一侧腐现象跟光刻胶图形的倒梯状有关联,因为光刻胶在跟基材表面接触的部分没有充分固化。
在现有剥离工艺的第(3)步之前,有时需要用胶带或其他方法把光刻胶表面上的贵重金属粘离回收,同时使光刻胶暴露而有利于第(3)步的剥离过程。
现有剥离工艺的核心就是,光刻胶的图形必须呈倒梯状(见图1)。倒梯形状的第一个目的,是为了在剥离的时候试剂可以接触到光刻胶图形的侧面,特别是光刻胶跟基材表面接触的部位,从而使光刻胶脱离基材表面。在这个剥离过程中,光刻胶不一定要能溶解于剥离试剂,被剥离即可。倒梯图形的第二个目的,是使落到基材表面上的金属跟光刻胶图形表面上的金属断开。必须指出,跟垂直图形的光刻胶相比,倒梯图形不仅增加光刻胶配方调制的难度,而且会降低光刻胶其他方面的性能,例如交联度和解析度。
倒梯状图形是负性光刻胶的特征,所以,正性光刻胶不适合采用倒梯形光刻胶的剥离工艺。
光刻胶的倒梯形状有时是通过两层胶实现的。例如,在基材表面先涂一层不具光敏性的薄膜,即溶解于显影液的时候表现出各向同性,通常称作LOR(Lift Off Resist)。 然后涂一层一般的光刻胶,曝光显影后便出现如图2所示意的图形。其他沉积金属和剥离等步骤跟上述工艺相同。
在现有剥离工艺中,光刻胶的厚度必须大于金属构形的厚度,一般情况下,光刻胶的厚度是金属电极或布线厚度的2至3倍。举例说明,如果蒸镀、溅射或化学气相沉积金属厚度要达到1.2微米,光刻胶图形的厚度是在2.4微米到3.6微米之间。否则,落到基材表面上的金属跟光刻胶图形表面上的金属就会发生粘连。粘连后会造成金属残留并增加剥离难度。
在现有剥离工艺中,由于光刻胶的厚度远大于金属构形的厚度,金属很容易附着在光刻胶图形的侧壁上,去胶后产生金属残留。如图3所示,是按传统剥离工艺制作的金电极,边缘上的金残留非常明显。
在现有剥离工艺中,经常会遇到三个问题。第一,因为倒梯形的缘故,在蒸镀、溅射或化学气相沉积金属前的腐蚀过程中容易出现侧腐蚀现象。第二,光刻胶的倒梯形状会导致金属电极或金属导线的底部宽度远远大于顶部宽度,如图4所示,按现有剥离工艺制作的金线底部明显比顶部宽。第三,容易产生金属残留(见图3)。
发明内容
本发明的目的在于,针对上述问题,提出一种利用光刻胶沉积金属构形的方法,以克服金属电极或金属导线的底部宽度远远大于顶部宽度的问题。
为实现上述目的,本发明采用的技术方案是:
一种利用光刻胶沉积金属构形的方法,包括:
在基材的表面涂布光刻胶的步骤;
将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤,显影后得到的光刻胶图形的侧壁与基材表面的夹角在80°和100°之间;
将金属沉积到经显影处理后的光刻胶图形表面,在光刻胶开口的地方金属则落到基材表面的步骤;
将上述光刻胶表面上的金属去除的步骤;
以及
把光刻胶去除的步骤。
优选的,将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤后,还包括,腐蚀经显影处理后光刻胶开口处基材表面薄层的步骤。
优选的,所述显影后得到的光刻胶图形的侧壁与基材表面的夹角在85°和95°之间。
优选的,所述显影后得到的光刻胶图形的侧壁与基材表面的夹角为90°。
优选的,经显影处理后的光刻胶图形,光刻胶的厚度在沉积的金属厚度上下浮动40%范围内。
优选的,所述光刻胶的厚度等于或小于沉积的金属厚度。
优选的,将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤中,曝光光源为可见光、436纳米波长光、360纳米波长光、248纳米波长光或193纳米波长光的一种或多种混合,曝光方式采用投影式、接触式或接近式,显影液采用碱性溶液或者有机溶剂。
优选的,金属沉积的方法,包括但不限于蒸镀、溅射和化学气相沉积。
优选的,把光刻胶去除具体为试剂浸泡把光刻胶溶解去除;
或/和
用试剂浸泡把光刻胶溶解去除时,采取加热或超声震荡的辅助方法。
优选的,在试剂浸泡前将光刻胶表面上的金属去除采用胶带粘离的方法;
或/和
按照粘离到试剂浸泡到粘离的步骤重复进行。
本发明的技术方案具有以下有益效果:
本发明的技术方案,将光刻胶图形的侧壁与基材表面的夹角限定在80°和100°之间,使得光刻胶图形的侧壁与基材表面几乎垂直,从而使得金属构形的金属电极或金属导线的底部宽度与顶部宽度大约相同,如图7所示。面对光刻胶图形的侧壁与基材表面的夹角进一步限定为85°和95°之间,以及90°,使得得到更优的金属电极或金属导线。同时光刻胶图形的侧壁与基材表面的夹角限定在80°和100°之间,当需要腐蚀经显影处理后光刻胶开口处基材表面薄层时,避免了侧腐蚀现象。将光刻胶的厚度限定在沉积的金属厚度上下浮动40%范围内,可以避免金属电极或金属导线边缘上的金残留现象,尤其是光刻胶的厚度等于或小于沉积的金属厚度时,得到的金属电极或金属导线边缘更光滑,并且增加各个步骤的工艺宽容度。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为现有剥离工艺中光刻胶倒梯形状的截面示意图;
图2为现有剥离工艺中由LOR形成的图形截面示意图;
图3为现有剥离工艺制作的金电极在电子显微镜下的示意图;
图4为现有剥离工艺制作的金线在电子显微镜下的示意图;
图5a为本发明剥离工艺中光刻胶图形的截面示意图;
图5b为本发明剥离工艺中沉积金属后的截面示意图;
图5c为本发明剥离工艺中表面金属被粘离后的截面示意图;
图5d为本发明剥离工艺中光刻胶剥离后金线的截面示意图;
图6a为本发明光刻胶厚度大于金属构形厚度的示意图;
图6b为本发明光刻胶厚度等于金属构形厚度的示意图;
图6c为本发明光刻胶厚度小于金属构形厚度的示意图;
图7为本发明剥离工艺制作的金线在电子显微镜下的示意图;
图8a为本发明实施例二中负性光刻胶图形在电子显微镜下的示意图;
图8b为本发明实施例二中蒸镀金之后在电子显微镜下的示意图;
图8c为本发明实施例二中表面金膜被粘离之后在电子显微镜下的示意图;
图8d为本发明实施例二中光刻胶被剥离后在电子显微镜下的示意图;
图9a为本发明实施例三中负性光刻胶图形在电子显微镜下的示意图;
图9b本发明实施例三中蒸镀金之后在电子显微镜下的示意图;
图9c为本发明实施例三中表面金膜被粘离之后的电子显微镜图片;
图9d为本发明实施例三中光刻胶被剥离后在电子显微镜下的示意图;
图10a为本发明实施例四中负性光刻胶图形在电子显微镜下的示意图;
图10b为本发明实施例四中蒸镀金之后在电子显微镜下的示意图;
图10c为本发明实施例四中表面金膜被粘离之后在电子显微镜下的示意图;
图10d为本发明实施例四中光刻胶被剥离后在电子显微镜下的示意图;
图11a本发明实施例五中正性光刻胶图形在电子显微镜下的示意图;
图11b为本发明实施例五中蒸镀金之后在电子显微镜下的示意图;
图11c为本发明实施例五中表面金膜被粘离之后在电子显微镜下的示意图;
图11d为本发明实施例五中光刻胶被剥离后在电子显微镜下的示意图。
结合附图,本发明实施例中附图标记如下:
1-光刻胶;2-基材;3-LOR;4-金电极;5-金残留;6-金线;7-金属。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例一:
一种利用光刻胶沉积金属构形的方法,包括:
在基材的表面涂布光刻胶的步骤;
将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤,显影后得到的光刻胶图形的侧壁与基材表面的夹角在80°和100°之间;
将金属沉积到经显影处理后的光刻胶图形表面,在光刻胶开口的地方金属则落到基材表面的步骤;
将上述光刻胶表面上的金属去除的步骤;
把光刻胶去除的步骤。
优选的,将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤后,还包括,腐蚀经显影处理后光刻胶开口处基材表面薄层的步骤。
优选的,显影后得到的光刻胶图形的侧壁与基材表面的夹角在85°和95°之间。更优的夹角为90°。显影后得到的光刻胶图形的侧壁与基材表面的夹角可为80°、81°、82°、83°、84°、85°、86°、87°、88°、89°、90°、91°、92°、93°、84°、95°、96°、97°、98°、99°或100°。
优选的,经显影处理后的光刻胶图形,光刻胶的厚度在沉积的金属厚度上下浮动40%范围内。最好光刻胶的厚度等于或小于沉积的金属厚度。
优选的,将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤中,曝光光源为可见光、436纳米波长光、360纳米波长光、248纳米波长光或193纳米波长光的一种或多种混合,曝光方式采用投影式、接触式或接近式,显影液采用碱性溶液或者有机溶剂。
金属沉积的方法,包括但不限于蒸镀、溅射和化学气相沉积。把光刻胶去除具体为试剂浸泡把光刻胶溶解去除。在用试剂浸泡把光刻胶溶解去除时,可采取加热或超声震荡等辅助方法。
在试剂浸泡前将光刻胶表面上的金属去除采用胶带粘离的方法。并可按照粘离到试剂浸泡到粘离重复进行。即用胶带粘离的光刻胶表面上的金属的步骤和用试剂浸泡把光刻胶溶解去除的步骤可交替多次进行。
本发明的一种具体工艺流程为:(1)在基材表面上通过涂布可溶性光刻胶,然后通过烘烤、曝光、烘烤和显影等步骤做出需要的图形,这些图形对应电极或导线的形状。如图5a所示,这是对应于导线形状的光刻胶图形的截面示意图,图形侧面与基材表面的夹角β在80°和100°之间即可,85°和95°之间更好,90°最好。(2)采取蒸镀、溅射、化学气相沉积或其他方法把金属沉积到光刻胶图形表面,在光刻胶开口的地方金属则落到基材表面,如图5b所示。(3)用胶带把覆盖在光刻胶图形表面上的金属粘离,或用任何其他方法把覆盖在光刻胶图形表面上的金属去除,如图5c所示。(4)用合适的试剂浸泡,把光刻胶从基材表面溶解去除,落在基材表面上的金属形成金属构形,如图5d所示。
上述第(1)步中,光刻胶的厚度在金属构形厚度上下浮动40%的范围内,最好是跟金属构形的厚度相同或小于金属构形的厚度。举例说明,如果要制作金属电极或导线的厚度是1.5微米,光刻胶的厚度应该在0.9微米和2.1微米之间,最好是在0.9微米和1.5微米之间。光刻胶厚度大于金属构形厚度的时候容易造成金属残留。光刻胶厚度分别大于、等于和小于金属构形厚度的情形分别如图6a、6b和6c所示。
本发明技术方案中的光刻胶图形无需倒梯形状,甚至可以采用一定程度的正梯图形。因此,正性光刻胶完全适用本发明,即负性光刻胶和正性光刻胶均适用。而现有剥离工艺要求光刻胶图形必须呈倒梯状如图1,或光刻胶叠加LOR的形状如图2。
第(1)步中的烘烤、曝光和显影步骤需要按光刻胶要求的条件进行。
第(3)步中使用的胶带,是指一面具有粘性的薄膜。第(3)步可以重复进行,或以“粘离->试剂浸泡->粘离”的方式进行,直至光刻胶图形表面上的金属完全去除。
第(4)步中,由于光刻胶是可溶性的,剥离试剂从裸露的表面开始逐步把光刻胶溶解去除。在这一步操作过程中,可以采取升高温度或使用超声震荡等方法促进剥离速度和剥离完全度。有图4和图7可以明显看出金属电极或金属导线的底部宽度与顶部宽度的变化。即采用本发明技术方案后金属电极或金属导线的底部宽度与顶部宽度相同。
下文给出几个具体的实施例对本发明的技术方案进行说明:
实施例二:
将已经图形化并外延氮化镓的2英寸蓝宝石圆片,手工置于旋转匀胶机内,滴加大约2毫升可溶性负性光刻胶,启动匀胶机,每分钟3000转,持续60秒后。使用热板在110摄氏度条件下烘烤60秒,然后降到室温。光刻胶膜厚度用Dektak XT台阶仪测量为2.35微米。用接近式(美国SUSS曝光机MA-100E)曝光机在10微米间隙下曝光,曝光光源采用高压汞灯混合波长光源。掩模板为带finger的LED电极图形。然后使用热板在110摄氏度下烘烤60秒,然后降到室温。浸泡在2.38%四甲级氢氧化铵显影液中显影60秒,去离子水冲洗。如图8a所示,是所得到光刻胶图形的截面电子显微镜图片,槽沟宽5.0微米,光刻胶图形的侧壁垂直于基材表面。室温下用BOE(Buffer Oxide Etcher)腐蚀40秒。在ei-5z高真空蒸发镀膜设备(日本ULVAC)中蒸镀金属金5小时。图8b所示是蒸镀金属金之后的截面电子显微镜图片。随后用蓝色胶带(日本日东蓝膜)粘离光刻胶图形表面上的镀金。图8c是光刻胶表面上的镀金被粘离后的截面电子显微镜图片。最后在85摄氏度的NMP溶液浸泡10-30分钟,光刻胶被溶解去除。图8d是光刻胶被去除后的截面电子显微镜图片。本实施例中负性光刻胶厚度大于金属构形厚度。
实施例三:
将已经图形化并外延氮化镓的2英寸蓝宝石圆片,手工置于旋转匀胶机内,滴加大约2毫升可溶性负性光刻胶启动匀胶机,每分钟4000转,持续60秒使用热板在110摄氏度条件下烘烤60秒,然后降到室温。光刻胶膜厚度用Dektak XT台阶仪测量为1.50微米。采用实施例二的工艺进行曝光、烘烤和显影处理。图9a是所得到光刻胶图形的截面电子显微镜图片,槽沟宽5.0微米,光刻胶图形的侧壁垂直于基材表面。室温下用BOE(Buffer Oxide Etcher)腐蚀40秒。在ei-5z高真空蒸发镀膜设备(日本ULVAC)中蒸镀金属金5小时。图9b是蒸镀金属金之后的截面电子显微镜图片。随后用蓝色胶带(日本日东蓝膜)粘离光刻胶图形表面上的镀金。图9c是光刻胶表面上的镀金被粘离后的截面电子显微镜图片。最后在85摄氏度的NMP溶液浸泡10-30分钟,光刻胶被溶解去除。图9d是光刻胶被去除后的截面电子显微镜图片。本实施例中负性光刻胶厚度等于金属构形厚度。
实施例四:
将已经图形化并外延氮化镓的2英寸蓝宝石圆片,手工置于旋转匀胶机内,滴加大约2毫升可溶性负性光刻胶,启动匀胶机,每分钟4500转,持续60秒。使用热板在110摄氏度下烘烤60秒,然后降到室温。光刻胶膜厚度用Dektak XT台阶仪测量为1.20微米。采用实施例二的工艺进行曝光、烘烤和显影处理。图10a是所得到光刻胶图形的截面电子显微镜图片,槽沟宽5.0微米,光刻胶图形的侧壁垂直于基材表面。室温下用BOE (Buffer Oxide Etcher)腐蚀40秒。在ei-5z高真空蒸发镀膜设备(日本ULVAC)中蒸镀金属金5小时。图10b是蒸镀金属金之后的截面电子显微镜图片。随后用蓝色胶带(日本日东蓝膜)粘离光刻胶图形表面上的镀金。图10c是光刻胶表面上的镀金被粘离后的截面电子显微镜图片。最后在85摄氏度的NMP溶液浸泡10-30分钟,光刻胶被溶解去除。图10d是光刻胶被去除后的截面电子显微镜图片。本实施例中负性光刻胶厚度小于金属构形厚度。
实施例五:
将已经图形化并外延氮化镓的2英寸蓝宝石圆片,手工置于旋转匀胶机内,滴加大约2毫升可溶性正性光刻胶启动匀胶机,每分钟4000转,持续60秒。使用热板在110摄氏度条件下烘烤60秒,然后降到室温。光刻胶膜厚度用Dektak XT台阶仪测量为1.23微米。采用实施例二的工艺进行曝光、烘烤和显影处理,唯一不同的本实施例曝光中采用正性掩模版。图11a是所得到光刻胶图形的截面电子显微镜图片,槽沟宽5.0微米,光刻胶图形的侧壁垂直于基材表面。室温下用BOE(Buffer Oxidc Etcher)腐蚀40秒。在ei-5z高真空蒸发镀膜设备(日本ULVAC)中蒸镀金属金5小时。图11b是蒸镀金属金之后的截面电子显微镜图片。随后用蓝色胶带(日本日东蓝膜)粘离光刻胶图形表面上的镀金。图11c是光刻胶表面上的镀金被粘离后的截面电子显微镜图片。最后在85摄氏度的NMP溶液浸泡10-30分钟,光刻胶被溶解去除。图11d是光刻胶被去除后的截面电子显微镜图片。本实施例中使用的光刻胶是正性光刻,并且光刻胶胶厚度小于金属构形厚度。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种利用光刻胶沉积金属构形的方法,其特征在于,包括:
    在基材的表面涂布光刻胶的步骤;
    将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤,显影后得到的光刻胶图形的侧壁与基材表面的夹角在80°和100°之间;
    将金属沉积到经显影处理后的光刻胶图形表面,在光刻胶开口的地方金属则落到基材表面的步骤;
    将上述光刻胶表面上的金属去除的步骤;
    以及
    把光刻胶去除的步骤。
  2. 根据权利要求1所述的利用光刻胶沉积金属构形的方法,其特征在于,将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤后,还包括,腐蚀经显影处理后光刻胶开口处基材表面薄层的步骤。
  3. 根据权利要求1或2所述的利用光刻胶沉积金属构形的方法,其特征在于,所述显影后得到的光刻胶图形的侧壁与基材表面的夹角在85°和95°之间。
  4. 根据权利要求3所述的利用光刻胶沉积金属构形的方法,其特征在于,所述显影后得到的光刻胶图形的侧壁与基材表面的夹角为90°。
  5. 根据权利要求1或2所述的利用光刻胶沉积金属构形的方法,其特征在于,经显影处理后的光刻胶图形,光刻胶的厚度在沉积的金属厚度上下浮动40%范围内。
  6. 根据权利要求5所述的利用光刻胶沉积金属构形的方法,其特征在于,所述光刻胶的厚度等于或小于沉积的金属厚度。
  7. 根据权利要求1或2所述的利用光刻胶沉积金属构形的方法,其特征在于,将上述涂布完光刻胶的基材依次经烘烤、曝光、烘烤和显影处理的步骤中,曝光光源为可见光、436纳米波长光、360纳米波长光、248纳米波长光或193纳米波长光的一种或多种混合,曝光方式采用投影式、接触式或接近式,显影液采用碱性溶液或者有机溶剂。
  8. 根据权利要求1或2所述的利用光刻胶沉积金属构形的方法,其特征在于,金属沉积的方法,包括但不限于蒸镀、溅射和化学气相沉积。
  9. 根据权利要求1或2所述的利用光刻胶沉积金属构形的方法,其特征在于,把光刻胶去除具体为试剂浸泡把光刻胶溶解去除;
    或/和
    用试剂浸泡把光刻胶溶解去除时,采取加热或超声震荡的辅助方法。
  10. 根据权利要求9所述的利用光刻胶沉积金属构形的方法,其特征在于,在试剂浸泡前将光刻胶表面上的金属去除采用胶带粘离的方法;
    或/和
    按照粘离到试剂浸泡到粘离的步骤重复进行。
PCT/CN2015/000569 2015-07-20 2015-08-07 利用光刻胶沉积金属构形的方法 WO2017011931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510425972.XA CN106711017B (zh) 2015-07-20 2015-07-20 利用光刻胶沉积金属构形的方法
CN201510425972.X 2015-07-20

Publications (1)

Publication Number Publication Date
WO2017011931A1 true WO2017011931A1 (zh) 2017-01-26

Family

ID=57833530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000569 WO2017011931A1 (zh) 2015-07-20 2015-08-07 利用光刻胶沉积金属构形的方法

Country Status (3)

Country Link
CN (1) CN106711017B (zh)
TW (1) TW201704505A (zh)
WO (1) WO2017011931A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123591A (zh) * 2017-05-09 2017-09-01 潍坊星泰克微电子材料有限公司 一种gpp芯片制造的光刻工艺
CN111399338A (zh) * 2020-04-30 2020-07-10 合肥本源量子计算科技有限责任公司 一种光刻方法
CN111465277A (zh) * 2020-04-24 2020-07-28 东莞赛诺高德蚀刻科技有限公司 一种蚀刻不同厚度制备散热片的方法
CN111487845A (zh) * 2019-01-29 2020-08-04 山东浪潮华光光电子股份有限公司 一种可以直接剥离的led管芯电极掩模图形的制作方法
CN112099313A (zh) * 2020-09-22 2020-12-18 苏州微赛智能科技有限公司 光刻胶涂覆系统及光刻胶涂覆方法
CN112271133A (zh) * 2020-09-25 2021-01-26 华东光电集成器件研究所 一种基于三层胶的金属剥离方法
CN112864798A (zh) * 2021-01-26 2021-05-28 威科赛乐微电子股份有限公司 一种vcsel芯片金属薄膜电极的制备方法
CN113237932A (zh) * 2021-05-07 2021-08-10 中国工程物理研究院电子工程研究所 一种对电极型纳米电学传感器的制备方法
CN113726302A (zh) * 2021-07-28 2021-11-30 厦门市三安集成电路有限公司 一种声表面波滤波器的叉指换能器的制作方法
CN113867104A (zh) * 2021-09-01 2021-12-31 安徽光智科技有限公司 Lift-off用光刻胶结构的制备方法
CN115327855A (zh) * 2022-08-31 2022-11-11 福建兆元光电有限公司 一种led芯片的反射层制作方法
CN116449655A (zh) * 2023-04-19 2023-07-18 深圳品微光学科技有限公司 一种纳米级硬质掩模的制备方法
CN117031889A (zh) * 2023-08-29 2023-11-10 无锡市华辰芯光半导体科技有限公司 一种单层正性光刻胶光刻方法
CN116449655B (zh) * 2023-04-19 2024-05-31 深圳品微光学科技有限公司 一种纳米级硬质掩模的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248367B (zh) * 2017-06-16 2021-02-19 湖南大学 一种防伪结构及其制作和使用方法
CN112650026B (zh) * 2020-03-06 2022-09-30 腾讯科技(深圳)有限公司 基于单种光刻胶的多层胶膜、其图形化方法及其剥离方法
CN113774441A (zh) * 2021-08-23 2021-12-10 左利芸 一种铝合金镀层复合材料
CN113774366B (zh) * 2021-08-23 2023-12-22 创隆实业(深圳)有限公司 一种铝合金表面镀敷工艺
CN113816335A (zh) * 2021-09-23 2021-12-21 华东光电集成器件研究所 一种硅基晶圆双层光刻胶的金属剥离制备方法
CN114496739A (zh) * 2021-12-06 2022-05-13 上海稷以科技有限公司 一种提高氮化镓表面抗等离子体侵蚀的方法
CN116403889B (zh) * 2023-06-08 2023-10-31 润芯感知科技(南昌)有限公司 图案化方法和半导体结构的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397986A (zh) * 2001-07-23 2003-02-19 北京大学 金属剥离方法
KR20040065442A (ko) * 2003-01-14 2004-07-22 삼성전자주식회사 반도체 소자의 제조 방법
CN101894756A (zh) * 2009-05-22 2010-11-24 中芯国际集成电路制造(北京)有限公司 形成沟槽的方法、形成金属连线的方法、光刻方法及设备
CN102043323A (zh) * 2009-10-23 2011-05-04 中芯国际集成电路制造(上海)有限公司 制造掩膜版的方法
CN102130259A (zh) * 2011-01-14 2011-07-20 大连美明外延片科技有限公司 一种发光二极管芯片的复合电极及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100565337C (zh) * 2005-08-22 2009-12-02 昆明物理研究所 一种铂钛金属薄膜图形化方法
KR20080057325A (ko) * 2005-09-30 2008-06-24 제온 코포레이션 금속 배선 부착 기판의 제조 방법
CN102054667B (zh) * 2009-10-29 2012-11-07 北大方正集团有限公司 应用光刻胶剥离工艺保护光刻对准标记的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397986A (zh) * 2001-07-23 2003-02-19 北京大学 金属剥离方法
KR20040065442A (ko) * 2003-01-14 2004-07-22 삼성전자주식회사 반도체 소자의 제조 방법
CN101894756A (zh) * 2009-05-22 2010-11-24 中芯国际集成电路制造(北京)有限公司 形成沟槽的方法、形成金属连线的方法、光刻方法及设备
CN102043323A (zh) * 2009-10-23 2011-05-04 中芯国际集成电路制造(上海)有限公司 制造掩膜版的方法
CN102130259A (zh) * 2011-01-14 2011-07-20 大连美明外延片科技有限公司 一种发光二极管芯片的复合电极及其制作方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123591B (zh) * 2017-05-09 2021-08-03 潍坊星泰克微电子材料有限公司 一种gpp芯片制造的光刻工艺
CN107123591A (zh) * 2017-05-09 2017-09-01 潍坊星泰克微电子材料有限公司 一种gpp芯片制造的光刻工艺
CN111487845A (zh) * 2019-01-29 2020-08-04 山东浪潮华光光电子股份有限公司 一种可以直接剥离的led管芯电极掩模图形的制作方法
CN111465277B (zh) * 2020-04-24 2022-06-14 东莞赛诺高德蚀刻科技有限公司 一种蚀刻不同厚度制备散热片的方法
CN111465277A (zh) * 2020-04-24 2020-07-28 东莞赛诺高德蚀刻科技有限公司 一种蚀刻不同厚度制备散热片的方法
CN111399338A (zh) * 2020-04-30 2020-07-10 合肥本源量子计算科技有限责任公司 一种光刻方法
CN111399338B (zh) * 2020-04-30 2023-03-28 合肥本源量子计算科技有限责任公司 一种光刻方法
CN112099313A (zh) * 2020-09-22 2020-12-18 苏州微赛智能科技有限公司 光刻胶涂覆系统及光刻胶涂覆方法
CN112271133A (zh) * 2020-09-25 2021-01-26 华东光电集成器件研究所 一种基于三层胶的金属剥离方法
CN112864798A (zh) * 2021-01-26 2021-05-28 威科赛乐微电子股份有限公司 一种vcsel芯片金属薄膜电极的制备方法
CN113237932A (zh) * 2021-05-07 2021-08-10 中国工程物理研究院电子工程研究所 一种对电极型纳米电学传感器的制备方法
CN113237932B (zh) * 2021-05-07 2023-09-19 中国工程物理研究院电子工程研究所 一种对电极型纳米电学传感器的制备方法
CN113726302A (zh) * 2021-07-28 2021-11-30 厦门市三安集成电路有限公司 一种声表面波滤波器的叉指换能器的制作方法
CN113867104A (zh) * 2021-09-01 2021-12-31 安徽光智科技有限公司 Lift-off用光刻胶结构的制备方法
CN115327855A (zh) * 2022-08-31 2022-11-11 福建兆元光电有限公司 一种led芯片的反射层制作方法
CN116449655A (zh) * 2023-04-19 2023-07-18 深圳品微光学科技有限公司 一种纳米级硬质掩模的制备方法
CN116449655B (zh) * 2023-04-19 2024-05-31 深圳品微光学科技有限公司 一种纳米级硬质掩模的制备方法
CN117031889A (zh) * 2023-08-29 2023-11-10 无锡市华辰芯光半导体科技有限公司 一种单层正性光刻胶光刻方法
CN117031889B (zh) * 2023-08-29 2024-04-02 无锡市华辰芯光半导体科技有限公司 一种单层正性光刻胶光刻方法

Also Published As

Publication number Publication date
TW201704505A (zh) 2017-02-01
CN106711017A (zh) 2017-05-24
CN106711017B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2017011931A1 (zh) 利用光刻胶沉积金属构形的方法
WO2018176766A1 (zh) 显示基板的制备方法、阵列基板及显示装置
JP2004513515A (ja) ホトレジストの改良形接着用アモルファス炭素層
TWI445080B (zh) Manufacturing method of semiconductor device
JP2007311507A (ja) 半導体装置の製造方法
JP2017092238A (ja) 半導体基板の製造方法
CN112147848A (zh) 一种小尺寸沟槽的制备方法
JPH0458167B2 (zh)
CN110137074A (zh) 一种半导体元件的制造方法
KR100668729B1 (ko) 반도체 소자의 제조방법
CN103871869A (zh) 非感光性聚酰亚胺钝化层的制作方法
JP3234594U (ja) 金属リフトオフプロセスを用いた半導体素子
KR100698098B1 (ko) 반도체 소자의 제조방법
JP2006019316A (ja) パターン形成方法及び薄膜の作製方法
JP3840925B2 (ja) 薄膜パターニング方法、薄膜デバイスの製造方法及び薄膜磁気ヘッドの製造方法
KR100640974B1 (ko) 반도체 소자의 제조방법
JP2010165821A (ja) 半導体装置の製造方法
KR100729117B1 (ko) 디엘피 소자의 금속 배선 형성 방법
JP4534763B2 (ja) 半導体素子の製造方法
JPH09320981A (ja) 深溝底部における電極パターン形成方法
JPS63265447A (ja) 半導体装置の多層配線の製造方法
JP2022161792A (ja) 金属リフトオフプロセスを用いた半導体素子の製造方法及びこの方法により製造する半導体素子
JP2003282414A (ja) 転写マスクの製造方法及び転写マスク並びに露光方法
JP2001222117A (ja) マスク形成方法及びマイクロ構造体の製造方法
CN113044803A (zh) 一种t型结构的微制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898487

Country of ref document: EP

Kind code of ref document: A1