WO2017010852A1 - 염료 화합물 - Google Patents

염료 화합물 Download PDF

Info

Publication number
WO2017010852A1
WO2017010852A1 PCT/KR2016/007801 KR2016007801W WO2017010852A1 WO 2017010852 A1 WO2017010852 A1 WO 2017010852A1 KR 2016007801 W KR2016007801 W KR 2016007801W WO 2017010852 A1 WO2017010852 A1 WO 2017010852A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
substituted
scheme
compound represented
unsubstituted
Prior art date
Application number
PCT/KR2016/007801
Other languages
English (en)
French (fr)
Inventor
송주만
민선기
이승수
이도민
박경화
황문찬
신봉기
제종태
Original Assignee
에스에프씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스에프씨 주식회사 filed Critical 에스에프씨 주식회사
Priority to US15/743,769 priority Critical patent/US10473666B2/en
Priority to JP2018501233A priority patent/JP6815038B2/ja
Priority to CN201680041283.1A priority patent/CN107850601B/zh
Priority to EP16824767.4A priority patent/EP3309552B1/en
Publication of WO2017010852A1 publication Critical patent/WO2017010852A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0075Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/02Coumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B68/00Organic pigments surface-modified by grafting, e.g. by establishing covalent or complex bonds, in order to improve the pigment properties, e.g. dispersibility or rheology

Definitions

  • the present invention relates to a dye compound, and more particularly, a novel dye having excellent optical properties such as quantum efficiency, fluorescence intensity and light stability, high water solubility and binding to biomolecules or excellent optical properties in biomolecules. It relates to a compound.
  • Fluorescence is the most commonly used technique in the life sciences to track or analyze biological molecules nondestructively.
  • Equipment for analyzing these phenomena include fluorescence microscopy for cell observation, confocal microscopy, flow cytometer, microarray, polymerase chain reaction device, electrophoresis device for the separation of nucleic acid or protein, real-time in vivo imaging equipment, immunoassay Equipment for diagnosis and treatment, including techniques, DNA sequencing, PCR analysis, nucleic acid and protein diagnostic kits and diagnostic equipment, and endoscopy equipment for medical imaging surgery, and new applications and a variety of instruments that are more accurate and easier to analyze. Is being developed.
  • fluorescent dye suitable for analytical technology a medium in which biomolecules exist, that is, a high luminance characteristic in an aqueous medium, stability at various pH conditions, light safety, excitation and emission wavelength characteristics for fluorescence equipment is required.
  • fluorescent dyes meeting these requirements xanthane-based florcene and rhodamine, and polymethine-based cyanine derivative dye compounds are well known.
  • fluorescent dyes with cyanine chromophores are widely used as belonging to the category of representative dyes.
  • carbocyanine having indocarbocyanine, indodicarbocyanine, and indotricarbocyanine skeletons has a high molar extinction coefficient, but is known to have a low fluorescence quantum efficiency. It is reported to exhibit low brightness after coupling to the molecule.
  • polymethine cyanine dyes occupy a unique position in the various fields where the dye is applied, and many applications are reported on this subject every year in various areas.
  • cyanine dyes consist of two nitrogen centers, one of which is positively charged and connected to another nitrogen atom by a junction chain of odd carbon atoms. This feature has been studied with "push-pull" alkenes, which also form the basis of polymethine dyes, which comprise streptopolymethine units as chromophores. Depending on the charge of the streptopolymethine units, these dyes are classified as follows.
  • Cationic streptopolymethinecyanine and hemicyanine dyes (1), anionic streptopolymethine oxonol dyes (2), neutral streptopolymethinemerocyanine dyes (3), amphoteric squaraine-based cyanine dyes (4 ).
  • the dyes have an all-trans geometry in a stable form. Sometimes these dyes undergo a photoisomerization process. The generation of these species can be studied using various techniques such as flash photolysis, transient absorption, and picoseconds time-resolved spectroscopy.
  • the dyes may also be used as spectral sensitizers in silver halide photography and band-gap semiconductor materials, recording media on optical disks, industrial paints to capture solar energy, laser materials, photosynthetic light capture systems, photorefractive materials, anticancer agents And probes for biological systems.
  • the dyes are dark because they have a high molar extinction coefficient.
  • the quantum yield is low.
  • cyanine dyes have rotational, translational, and vibrational modes that cause the energy of the excited state to be lost in a non-radiative process rather than in fluorescence (DF O'Brien, TMKelly, and LF Costa (1974).
  • the inventors of the present invention modified the polymethine chain of cyanine dye to reduce this fluorescence loss. Rigid design is to increase the fluorescence quantum efficiency significantly.
  • mitotracker dyes are positively charged, they have a characteristic of selectively binding to intracellular mitochondria, and the bright fluorescence and excellent light stability are suitable for use as mitotrackers, and a simple incubation process for labeling mitochondria is required. It is dyed enough.
  • the inventors of the present invention intend to develop a dye that maintains a stable fluorescence even after the fixation process, and also to develop a dye capable of selecting a Mitotracker having a desired wavelength by designing a fluorescence of various wavelengths.
  • PH detecting probes are used to measure intracellular pH, and the inventors of the present invention have developed a dye having a characteristic of changing the fluorescence intensity according to a change in pH, and using this property to determine the pH of living cells. It is intended to be used as a probe.
  • the inventors of the present invention in order to solve the above problems, to provide a new dye that can obtain a stronger optical fluorescence effectively.
  • the fluorescence intensity is changed according to the pH change to provide a dye that can be used as a pH probe to check the pH of living cells.
  • the present invention provides one of the dye compounds selected from the following [Formula I] and [Formula II] to solve the above problems.
  • the present invention also provides a compound labeling method comprising the step of combining the dye compound and the target material.
  • Dye compound according to the present invention has an effect that the quantum efficiency is significantly improved compared to the conventional cyanine dye, and can be effectively used in a wide range of fields, such as a probe for a variety of biological systems that require stronger fluorescence to require optical imaging.
  • mitotracker that can be tracked by tracking the mitochondria can quantitatively image the mitochondria in living or tissue tissue, and can also be applied as a pH probe (probe) to check the pH of living cells.
  • 1A is an absorption spectrum after labeling [Formula 1] according to the present invention on Goat Anti-Mouse IgG.
  • 1B is an absorption spectrum after labeling Alexa Fluor® 568 on Goat Anti-Mouse IgG.
  • 1C is a fluorescence emission spectrum after labeling [Formula 1] according to the present invention on Goat Anti-Mouse IgG.
  • 1D is the Fluorescence Emission Spectrum after labeling Alexa Fluor® 568 on Goat Anti-Mouse IgG.
  • Figure 1E is a result of confirming the brightness (brightness) after labeling the compound [Formula 1] and Alexa Fluor® 568 in Goat Anti-Mouse IgG according to the present invention.
  • 1F is a graph comparing the bioactivity of [Formula 1] and Alexa Fluor® 568 according to the present invention.
  • FIG. 2A is an absorption spectrum after labeling Goat Anti-Mouse IgG according to the present invention.
  • 2B is an absorption spectrum after labeling Alexa Fluor® 594 on Goat Anti-Mouse IgG.
  • 2C is a fluorescence emission spectrum after labeling [Formula 3] in Goat Anti-Mouse IgG according to the present invention.
  • 2D is the Fluorescence Emission Spectrum after labeling Alexa Fluor® 594 on Goat Anti-Mouse IgG.
  • Figure 2E is a result of confirming the brightness (brightness) after labeling the Goat Anti-Mouse IgG [Formula 3] compound and Alexa Fluor® 594 according to the present invention.
  • 2F is a graph comparing the bioactivity of [Formula 3] and Alexa Fluor® 594 according to the present invention.
  • 3A is an absorption spectrum after labeling [Formula 50] according to the present invention on Goat Anti-Mouse IgG.
  • Figure 3B is a result of confirming the brightness (brightness) after labeling Goat Anti-Mouse IgG of the compound [Formula 50] and Alexa Fluor 546 according to the present invention.
  • Figure 3C is a graph comparing the bioactivity of [Formula 44] and Alexa Fluor® 546.
  • FIG. 4A is an image image of Raw 264.7 cells labeled with [Formula 110] according to the present invention.
  • the excitation wavelength was 552 nm and was obtained at a emission wavelength of 560-600 nm.
  • 4B is an image image of Raw 264.7 cells labeled with MTG (Mitotracker Green FM), with an excitation wavelength of 488 nm and obtained at emission wavelength of 470-520 nm.
  • FIG. 5 is a graph showing results of measuring fluorescence intensity of three regions A, B, and C at 3500 seconds for 2 seconds after staining 1.0 uM of HeLa A431 cells according to the present invention.
  • FIG. 6A is an image of HeLa A431 cells labeled with [Formula 97] according to the present invention.
  • the excitation wavelength was 552 nm and was obtained at a emission wavelength of 571-650 nm.
  • FIG. 6B is an image of HeLa A431 cells labeled with MTG (Mitotracker Green FM), with an excitation wavelength of 488 nm and obtained at 498-540 nm emission wavelength.
  • MTG Mitsubishi Green FM
  • FIG. 6C is a combination of FIGS. 6A and 6B.
  • FIG. 8 is a graph showing the results of comparative experiments, in which Cy3B 1.0 uM was stained on HeLa A431 cells, and the fluorescence intensities of two parts A and B were measured for 2000 seconds at 2 second intervals.
  • FIG. 11 is a two-photon activity spectrum of [Formula 97], [Formula 100] to [Formula 102] according to the present invention in PBS buffer and ethanol.
  • the present invention relates to a dye compound having a novel structure that is significantly improved fluorescence quantum efficiency, and is designed to exhibit a strong fluorescence to effectively obtain an optical image, and can be utilized as a probe for various biological systems.
  • One aspect of the present invention relates to a novel dye compound represented by the following [Formula I] to [Formula II].
  • Ar 1 is substituted or unsubstituted aryl having 6 to 20 carbon atoms or substituted or unsubstituted heteroaryl having 2 to 20 carbon atoms.
  • Ar 1 may each be substituted with one or more substituents, and the one or more substituents may be hydrogen, deuterium, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or Unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted aryloxy, substituted or unsubstituted aryloxyalkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted Alkoxyalkyl, halogen, cyano, nitro, halogen, amine, hydroxy, aldehyde, amino, amide, hydrazine, thiol, acetal, ketal, phosphoryl, phosphate, phosphonate, sulfohydroxy, sulfonyl,
  • substituents are any one selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, alkoxy and alkoxyalkyl, they may be further substituted with one or more substituents.
  • the one or more substituents are halogen, cyano, nitro, halogen, amine, hydroxy, aldehyde, amino, amide, hydrazine, thiol, acetal, ketal, phosphoryl, phosphate, phosphonate, sulfohydroxy, Sulfonyl, sulfonate, sulfate, carboxylate, amide, azido, guanidium, carbonyl, thiocarbonyl, aminothiocarbonyl, carboxyl, carboxylic acid, ketone, sulfhydryl, acylchloride, sulf Selected from phonic acid, ester, polyalkylene oxide, polyethylene glycol and quaternary ammonium.
  • E is CR 1 or N
  • Z 1 is NR 2 R 3
  • OR 4 , SR 5
  • Z 2 is NR 6 , O, S, O + R 7 .
  • X is O, S, NR 8 R 9 , SiR 10 R 11 , CR 12 R 13 or Se.
  • Y is CR 14 R 15 , NR 16 , O, S, Se, SiR 17 R 18 or CR 19
  • R 20 CR 21 R 22 .
  • R 23 to R 34 may be the same as or different from each other, and each independently hydrogen, deuterium, alkyl, or acyloxy, and two adjacent groups may be connected to each other to form an alicyclic hydrocarbon.
  • the two selected from R 1 to R 3 and adjacent substituents may be connected to each other to form an alicyclic hydrocarbon ring, a monocyclic or polycyclic aromatic hydrocarbon ring, and the carbon atoms of the formed alicyclic and aromatic hydrocarbon rings are N , S, O, Se, Te, Po, NR 35 , SiR 36 R 37 , GeR 38 R 39 , PR 40 , and BR 41 can be substituted with any one.
  • R 1 to R 22 and R 35 to R 41 are the same as or different from each other, and each independently hydrogen, deuterium, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted Or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted aryloxy, substituted or unsubstituted aryloxyalkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted Alkoxyalkyl, halogen, cyano, nitro, halogen, amine, hydroxy, aldehyde, amino, amide, hydrazine, thiol, acetal, ketal, phosphoryl, phosphate, phosphonate, sulfohydroxy, sulfonyl,
  • R 1 to R 22 and R 35 to R 41 are any one selected from alkyl, alkenyl, alkynyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, alkoxy and alkoxyalkyl And one or more substituents, halogen, cyano, nitro, halogen, amine, hydroxy, aldehyde, amino, amide, hydrazine, thiol, acetal, ketal, phosphoryl, phosphate, phosphonate , Sulfohydroxy, sulfonyl, sulfonate, sulfate, carboxylate, amide, azido, guanidium, carbonyl, thiocarbonyl, aminothiocarbonyl, carboxyl, carboxylic acid, ketone, sulfhydryl , Acyl chloride, sulfonic acid, ester, polyalkylene oxide, polyethylene glycol
  • a ⁇ is an organic or inorganic ion, and is not particularly limited, and may be appropriately selected from the viewpoint of solubility and stability of the dye according to the present invention in an organic solvent depending on the use, and may be anion or, if necessary, cation A. May be +
  • inorganic acid anions such as phosphoric acid hexafluoride ions, halogen ions, phosphoric acid ions, perchlorate ions, periodate ions, antimony hexafluoride ions, tartaric acid hexafluoride ions, fluoroboric acid ions, and tetrafluoride ions
  • Organic acid ions such as ions, alkylsulphonic acid ions, trihaloalkylsulphonic acid ions, nicotinic acid ions, and the like, and metal compound ions such as bisphenyld
  • a halogen ion -SO 4 2-, -S 2 O 3 2 -, -SO 3-, -ClO 4 -, -BF 4-, -PF 6-, -SbF 6 - , -BiCl 5 -, -AsF 6 - , -SbCl 6 -, -SnCl 6 -, -COO -, -HSO 4 -, -SO 3 CH 3 -, Na +, K +, 4 quaternary ammonium ion, an acetate, It may be at least one selected from propionate and cyanate, and A ⁇ may be present or absent depending on the number of cations and substituted anions.
  • the dye compounds of [Formula I] to [Formula II] according to the present invention may include a reactive substituent to be combined with the target material as described above, solubility in water and interaction between fluorescent dyes And a substituent having polarity and charge to prevent unwanted labeling between the dye and the various labeling factors.
  • At least one of the substituents may be conjugated with a labeling substance having a substituent such as amine, thiol, alcohol, aldehyde, ketone, and the like.
  • the labeling target material is a biomolecule, a nanoparticle, an organic compound, or the like, and is not particularly limited, but may include an antibody; Antigen; Lipids; Protein; Peptides; Carbohydrates; Dextran; Fatty acid; Phospholipids; Lipopolysaccharides; Nucleotides or oligonucleotides derived from or containing at least one of amino, sulfhydryl, carbonyl, hydroxyl, carboxyl, thiol, phosphoric and thiophosphate groups; Oxypolynuceotide or deoxypolynuceotide derived from or containing at least one of amino, sulfhydryl, carbonyl, hydroxyl, carboxyl, thiol, phosphate and thiophosphate groups ; microbe; drug; hormone; cell; Cell membranes; And toxins (toxins); may be any one or more selected from the group consisting of.
  • the reactive substituents according to the present invention are activated esters, carboxyl, amides, acrylamides, azides, acyl azides, acyl halides.
  • acyl halides, alkyne, amines, aldehydes, ketones, alkyl halides, alkyl sulfonates, aryl halides, aziridine (aziridines), boronates, diazoalkanes, epoxides, haloplatinates (haloplatinate), halotriazines, imido esters, isocyanates ( isocyanates, silyl halides, sulfonate esters, sulfonyl halides, succinimidyl esters, sulfo-succinimidyl esters, anhydrides anhydrides), Halides (acid halides), isothiocyanate, vinylsulphone, dichlorotriazines, haloacetamides,
  • the active ester is a structural formula -COR 'having R as an excellent leaving group in the substitution reaction in the technical field of the present invention, wherein R' is, for example, succinimidyloxy, -OC 4 H 4 O 2 ), Sulfosuccinimidyloxy (-OC 4 H 3 O 2 -SO 3 H), or -1-oxybenzotriazolyl, -OC 6 H 4 N 8 ); Aryloxy or aryloxy containing one or more of nitro, halogen, cyano, halogenalkyl and the like belonging to an electron withdrawing group; Carboxylic acid activated by carbodiimide constituting anhydrides (-OCOR a or -OCNR a NHR b ), wherein R a or R b is 1 to 6 carbon atoms Alkyl, alkoxy having 1 to 6 carbon atoms, cyclohexyl, 3-dimethylaminopropyl, N-morpholinoethyl and the like.
  • the reactive substituent (R X ) according to the present invention may be covalently linked to various linkers (L), it may be of the R X -L- structure.
  • Such a linker may be a single bond or may be a straight or branched chain of 1 to 20 atoms, preferably selected from the group consisting of carbon (C), nitrogen (N), oxygen (O) and sulfur (S) atoms, , An aliphatic hydrocarbon ring, an aromatic hydrocarbon ring, an aliphatic hetero ring, or an aromatic hetero ring.
  • linkers may have a positive or negative charge.
  • the dye compounds represented by the [Formula I] to [Formula II] may be any one or more selected from the following [Formula 1] to [Formula 113], according to the [Formula I] to The range of [Formula II] is not limited.
  • the dye compound according to the present invention can be applied to mitochondrial labeling and tracking probe (Mitotracker) because it can be imaged by selectively staining the mitochondria in the cell.
  • Mitotracker since it can be designed with fluorescence of various wavelengths, users can select the desired wavelength and use it as a Mitotracker.
  • the reason why Mitotracker with various wavelengths is needed is that it cannot be analyzed when the wavelength of fluorescence overlaps with other probes that users use, so it is commercially important to be able to selectively design with various fluorescence wavelengths with narrow bandwidth. Element.
  • the dye compound according to the present invention is characterized in that the intensity of the fluorescence changes according to the change in the pH of the cell, according to the pH probe which can confirm the pH of the living cell, and further utilized in intracellular pH measurement sensor including the same Can be.
  • the dye compound according to the present invention is a type that emits a strong fluorescence under acidic conditions between pH 2 ⁇ 6 depending on the purpose of use, or can be selected to use a strong fluorescence under basic conditions between pH 8 ⁇ 12 as a pH probe More useful.
  • the dye compound according to the present invention can be applied to this to measure the pH It can be used for various applications.
  • reaction solution was distilled under reduced pressure and purified at 20 mL / min for 10 minutes to 10-100% with a developing solution of HPLC Rainin Dynamax C18, 8 ⁇ m column, water / acetonitrile (0.1% trifluoroacetic acid) (1.2 g, 30%).
  • the organic layer was concentrated under reduced pressure, and then purified using a developer of HPLC Rainin Dynamax C18, 8 ⁇ m column, water / acetonitrile (0.1% trifluoroacetic acid) at 10 mL to 100 mL for 20 min (0.4 g, 51%)
  • Phenylhydrazinehydrochloride (5.0 g, 34.6 mmol) and the compound represented by [Formula 2-a] in [Scheme 2-1] (32.2 g, 173 mmol) were added to 30 mL / ethanol 60 mL of 6N aqueous hydrochloric acid solution. It was stirred at reflux for 12 hours. After cooling to room temperature, ethyl acetate was added dropwise to the reaction solution. After the solid precipitated, the filtrate was filtered and distilled under reduced pressure, and then purified by silica gel column to obtain a liquid compound. (3.2 g, 61%)
  • reaction solution was distilled under reduced pressure and purified by 20 mL / min to 10-100% for 60 minutes with a developing solution of HPLC Rainin Dynamax C18, 8 ⁇ m column, water / acetonitrile (0.1% trifluoroacetic acid) (1.2 g, 30%)
  • reaction solution was distilled under reduced pressure and purified at 20 mL / min for 10 minutes to 10-100% with a developing solution of HPLC Rainin Dynamax C18, 8 ⁇ m column, water / acetonitrile (0.1% trifluoroacetic acid) (1.2 g, 30%).
  • the organic layer was concentrated under reduced pressure, and then purified using a developer of HPLC Rainin Dynamax C18, 8 ⁇ m column, water / acetonitrile (0.1% trifluoroacetic acid) at 10 mL to 100% for 20 minutes (0.4 g, 51%)
  • Phenylhydrazine hydrochloride (8.6 g, 75 mmol) and the compound represented by [Formula 8-a] (42 g, 225 mmol) were added to 86 ml of ethanol, and 21.5 ml of hydrochloric acid was added thereto, followed by stirring under reflux for 12 hours. . After cooling to room temperature, 50 ml of ethyl acetate was added and the resulting solid was filtered, washed with ethyl acetate and dried under reduced pressure. Extract with dichloromethane and 2N aqueous sodium hydroxide solution. The organic layer was dried under reduced pressure and purified by silica column (8.5 g, 40%).
  • reaction solution was distilled under reduced pressure and purified by 20 ml / min for 10 minutes to 10-100% with a developing solution of HPLC Rainin Dynamax C18, 8 ⁇ m column, water / acetonitrile (0.1% trifluoroacetic acid).
  • Alexa Fluor® 568 manufactured by ThermoFisher
  • Goat Anti-Mouse IgG Goat Anti-Mouse IgG
  • FIG. 1A is an absorption spectrum after labeling [Formula 1] on Goat Anti-Mouse IgG
  • FIG. 1B is an absorption spectrum after labeling Alexa Fluor® 568 on Goat Anti-Mouse IgG
  • FIG. 1C Is Fluorescence Emission spectrum after labeling [Formula 1] on Goat Anti-Mouse IgG
  • FIG. 1D is Fluorescence Emission spectrum after labeling Alexa Fluor® 568 on Goat Anti-Mouse IgG.
  • [Formula 1] according to the present invention is similar to the absorption wavelength of Alexa Fluor® 568, it can be seen that less aggregation occurs than Alexa Fluor® 568, it can be seen that the intensity of the fluorescence emission is greater than Alexa Fluor® 568.
  • Goat Anti-Mouse IgG was diluted with 0.1M sodium bicarbonate buffer to make 1mg / ml protein solution.
  • the reaction solution was placed in an Amicon centrifuge filter.
  • the ratio of the dye to the protein to the sample was measured for the value of the absorbance of Dye and the value of the protein at 280 nm after labeling, and was determined using the following equation.
  • the factor X of the denominator accounts for the absorption of the pigment at 280 nm, which is a% of the absorption of Dye with maximum absorption (Adye).
  • 1E is a result of checking the brightness after labeling the compound of Formula 1 and Alexa Fluor® 568 in Goat Anti-Mouse IgG according to the present invention, the compound of Formula 1 according to the present invention is Alexa Fluor® You can see that the brightness is brighter than 568.
  • Dye-conjugated secondary antibody (10ug / ml) was added 100 ⁇ l each and top sealed and incubated in the dark for 1 hour at room temperature.
  • Table 2 shows fluorescence measured values according to D / P ratio for [Formula 1] and Alexa Fluor® 568 according to the present invention
  • FIG. 1F shows the bioactivity of [Formula 1] and Alexa Fluor® 568 This is a graph comparing (bioactivity).
  • the compound of [Formula 1] according to the present invention when the D / P ratio is 4.8, confirm that the efficiency of the conjugate Dye-secondary antibody to the primary antibody is the largest It can be seen that the brightness is much brighter than Alexa Fluor® 568, and the activity in vivo is better.
  • Alexa Fluor® 568 manufactured by ThermoFisher
  • the compound according to the present invention were labeled with Goat Anti-Mouse IgG, respectively, and the absorption spectrum and the fluorescence emission spectrum were confirmed.
  • FIG. 2A is an absorption spectrum after labeling [Formula 3] on Goat Anti-Mouse IgG
  • FIG. 2B is an absorption spectrum after labeling Alexa Fluor® 594 on Goat Anti-Mouse IgG
  • FIG. 2C Is Fluorescence Emission spectrum after labeling [Formula 3] on Goat Anti-Mouse IgG
  • FIG. 2D is Fluorescence Emission spectrum after labeling Alexa Fluor® 594 on Goat Anti-Mouse IgG.
  • [Formula 3] according to the present invention is similar to the absorption wavelength of Alexa Fluor® 594, it can be seen that the intensity of fluorescence emission is greater than Alexa Fluor® 594.
  • 2E is a result of checking the brightness after labeling the compound of Formula 3 and Alexa Fluor® 594 in Goat Anti-Mouse IgG according to the present invention
  • the compound of Formula 3 according to the present invention is Alexa Fluor® Brightness is higher than 568, and the larger the D / P ratio, the compound of [Formula 3] is brighter than Alexa Fluor® 594.
  • Table 3 shows fluorescence measurements according to D / P ratio for [Formula 3] and Alexa Fluor® 594 according to the present invention
  • FIG. 2F shows the bioactivity of [Formula 3] and Alexa Fluor® 594 This is a graph comparing (bioactivity).
  • the compound of [Formula 3] according to the present invention when the D / P ratio is 3.4, it is confirmed that the efficiency of conjugate to the Dye-secondary antibody is the largest antibody When the D / P ratio is 5 or more, the brightness is much brighter than Alexa Fluor® 594, and the activity in vivo is also excellent.
  • 3A is an absorption spectrum after labeling [Formula 50] according to the present invention on Goat Anti-Mouse IgG.
  • 3B is a result of checking the brightness after labeling the compound [Formula 50] and Alexa Fluor® 546 according to the present invention on Goat Anti-Mouse IgG, the compound of Formula 7 according to the present invention is Alexa Fluor® You can see that the brightness is brighter than 546.
  • Table 5 shows fluorescence measurements according to D / P ratio for [Formula 50] and Alexa Fluor® 546 according to the present invention
  • FIG. 3C shows the bioactivity of [Formula 50] and Alexa Fluor® 546 This is a graph comparing (bioactivity).
  • the compound of [Formula 50] according to the present invention when the D / P ratio is 2.5, confirm that the efficiency of the conjugate Dye-secondary antibody to the primary antibody is the largest You can see that the brightness is much brighter than Alexa Fluor® 568.
  • the dye compound according to the present invention shows a very high fluorescence quantum efficiency compared to the conventional cyanine dye compound, the molar absorption coefficient is lower than the comparative compound, but the fluorescence quantum efficiency is very high (molar absorption coefficient X fluorescence quantum efficiency) comparative compound It can be seen that the contrast is high.
  • FIG. 4C below is a combined image of FIGS. 4A and 4B, and the coefficient A representing Pearson's co-localization efficiency was calculated using LAS AF software.
  • the dye according to the present invention is selectively stained mitochondria among various organelles in the cell to accurately image the mitochondria.
  • HeLa A431 cells were co-localized using a mitochondrial marker (MTG, 0.2 ⁇ M MitoTracker Green FM for Mitochondria) compatible with [Formula 97]. Co-localization experiment was conducted.
  • MMG mitochondrial marker
  • Figure 6C below is a combination of Figures 6A and 6B, the coefficient (A) representing Pearson's co-localization efficiency was calculated using LAS AF software.
  • the dye according to the present invention is selectively stained mitochondria among various organelles in the cell to accurately image the mitochondria.
  • the compound of [Formula 111] according to the present invention increases the fluorescence intensity under Acidic condition (pH 1-6) and decreases the fluorescence intensity under Basic condition (pH 9-12).
  • Acidic condition pH 1-6
  • Basic condition pH 9-12
  • the fluorescence intensity decreases under Acidic condition (pH 1-6) and the fluorescence intensity increases under Basic condition (pH 9-12).
  • the laser line (488 nm, 532 nm, 550 nm) is commercially available.
  • the pH probe type of [Formula 111] emits strong fluorescence between pH 2-6 and the pH probe type of [Formula 97] emits strong fluorescence between pH 8-12.
  • these two types of dyes they can be selected according to the purpose of use.
  • the dye compound according to the present invention has a characteristic that the fluorescence intensity changes according to the pH change, and thus can be used as a pH probe that can check the pH of living cells using this property.
  • the method of measuring the pH through live cell staining the method of measuring the pH of the cell through a plate reader has recently been used, and using the dye compound according to the present invention, it can also be used in this method, to measure the pH It can be used for various applications.
  • FIG. 11 is a two-photon activity spectrum of [Formula 97], [Formula 100] to [Formula 102] according to the present invention in PBS buffer and ethanol.
  • Dye compound according to the present invention has an effect that the quantum efficiency is significantly improved compared to the conventional cyanine dye, and can be effectively used in a wide range of fields, such as a probe for a variety of biological systems that require stronger fluorescence to require optical imaging.
  • mitotracker that can be tracked by tracking the mitochondria can quantitatively image the mitochondria in living or tissue tissue, and can also be applied as a pH probe (probe) to check the pH of living cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 하기 [화학식 Ⅰ] 또는 [화학식 Ⅱ]로 표시되는 염료 화합물에 관한 것으로서, 본 발명에 따른 염료 화합물은 종래 시아닌 염료에 비하여 양자효율이 현저히 개선된 효과를 가지고, 강한 형광을 나타내어 광학 영상이 필요한 다양한 생물학적 시스템에 대한 프로브 등으로 광범위한 분야에서 유효하게 활용할 수 있다. 특히, 미토콘드리아의 표지하여 추적할 수 있는 Mitotracker로 활용할 수 있어 생체 또는 세포조직에서 미토콘드리아를 정량적으로 영상화할 수 있으며, 또한 살아있는 세포의 pH를 확인할 수 있는 pH probe로도 적용할 수 있다.

Description

염료 화합물
본 발명은 염료 화합물에 관한 것으로, 더욱 상세하게는 양자효율, 형광 세기 및 광 안정성 등의 광 특성이 우수하고, 고 수용성 및 생체 분자와의 결합 또는 생체분자 내에서 우수한 광 특성을 갖는 신규한 염료 화합물에 관한 것이다.
형광은 생명 과학 분야에서 비파괴적으로 생물학적 분자를 추적 또는 분석하는데 가장 일반적으로 사용되는 기법이다. 자체 발광하는 프로테인이나 자체 발광하는 분자들도 있지만, 일반적으로 단백질(proteins), 핵산(nucleic acids), 지질(lipids), 작은 분자에 발광특성을 가지는 염료를 표지(labeling)하면, 광학적 추적 및 분석이 가능하다. 단순한 발광특성이나, 발광 특성 변화를 이용한 영상화, 에너지 트렌스퍼, 주변 환경 변화에 따른 발광 특성 변화, 화학 반응에 따른 구조 변화에 의한 발광 특성 변화 등 다양한 화학적 광학적 특성들의 변화를 분석함으로써, 생명 과학 분야에 유용한 정보를 얻을 수 있다.
이러한 현상 분석을 위한 장비로는 세포 관찰을 위한 형광현미경, 공초점현미경, 유세포분석기, 마이크로어레이, 중합효소 연쇄반응장치, 핵산이나 단백질의 분리를 위한 전기영동장치, 실시간 생체내 영상 장비, 면역 분석 기법, DNA 서열 분석, PCR 분석, 핵산 및 단백질 진단 키트 및 진단 장비, 의료 영상 수술을 위한 내시경 장비 등의 진단 및 치료를 위한 장비, 최근에는 새로운 응용 분야 및 보다 정확하고 쉽게 분석 가능한 다양한 장비가 계속해서 개발되고 있다.
분석 기술에 적합한 형광 염료로 사용되기 위해서는 생체 분자들이 존재하는 매질, 즉, 수용성 매질에서 고 휘도 특성, 다양한 pH 조건에서 안정성, 광 안전성, 형광 장비에 맞는 여기 및 발광 파장 특성 등이 요구된다. 이러한 요구 조건에 부합하는 형광 염료로, 잔텐(xanthane) 계열의 플로세인 및 로다민과, 폴리메틴(polymethine) 계열의 시아닌 유도체 염료 화합물들이 많이 알려져 있다. 특히, 시아닌 발색단을 갖는 형광 염료는 대표적인 염료의 카테고리에 속하는 것으로 널리 활용되고 있다.
다만, 현재 알려져 있는 인도카르보시아닌, 인도디카르보시아닌 및 인도트리카르보시아닌 골격을 가진 카르보시아닌은 높은 몰 흡광 계수를 가지나, 낮은 형광 양자 효율을 갖는 것으로 알려져 있으며, 이러한 단점으로 인하여 생체분자에 커플링 된 후 낮은 밝기(brightness)를 나타내는 것으로 보고되고 있다.
따라서, 상기와 같은 문제점이 개선되어 보다 강한 형광을 나타내어 유효하게 광학 영상을 얻을 수 있는 새로운 염료에 대한 개발이 필요한 실정이다.
또한, 폴리메틴 시아닌 염료는 1856년 이래로, 염료가 적용되는 다양한 분야들에서 독보적인 위치를 차지 하고 있으며, 이러한 주제에 대해서는 다양한 영역들에서 매년 수 많은 적용예들이 보고되고 있다.
일반적으로, 시아닌 염료들은 두 개의 질소 중심으로 구성되는 바, 그 중 하나는 양으로 대전되어 홀수 개의 탄소 원자들로 이루어진 접합 사슬에 의해서 다른 질소 원자에 연결된다. 이러한 특징은 "푸쉬-풀" 알켄으로 연구된 바 있으며, 폴리메틴 염료의 기초를 형성하기도 하는 바, 폴리메틴 염료는 발색단으로서 스트렙토폴리메틴 단위를 포함한다. 스트렙토폴리메틴 단위의 전하에 따라서, 이러한 염료 들은 하기와 같이 분류된다.
양이온성 스트렙토폴리메틴시아닌 및 헤미시아닌 염료 (1), 음이온성 스트렙토폴리메틴 옥소놀 염료 (2), 중성 스트렙토폴리메틴메로시아닌 염료 (3), 양쪽대전성 스쿠아레인계 시아닌 염료 (4).
Figure PCTKR2016007801-appb-I000001
일반적으로 상기 염료들은 안정한 형태에서 올-트랜스 기하학을 갖는다. 때때로, 이러한 염료들은 광이성질체화 (photoisomerization) 과정을 거친다. 이러한 종들의 생성은 섬광 광분해 (flash photolysis), 일시적 흡수 (transient absorption), 및 피코초 시간-분해 스펙트로스코피 (picoseconds time-resolved spectroscopy)와 같은 다양한 기술들을 사용하여 연구할 수 있다. 또한, 상기 염료 들은 할로겐화 은 포토그래피 및 밴드-갭 반도체 물질에서의 스펙트럼 증감제, 광 디스크에서 기록 매체, 태양에너지를 포획하기 위한 산업용 페인트, 레이저 물질, 광합성의 광포획 시스템, 광굴절 물질, 항암제 및 생물학적 시스템에 대한 프로브 등으로 광범위한 분야에서 활용되고 있다.
일반적으로 상기 염료들은 높은 몰흡광계수를 가지기 때문에 진한 색을 보인다. 하지만 양자효율(Quantum yield)이 떨어진다는 치명적인 단점이 있다. 그 이유는 시아닌 염료는 rotational, translational, vibrational mode 들이 있어서 들뜬 상태의 에너지를 형광이 아닌 non-radiative process로 손실 되기 때문에다.(D. F. O'Brien, T. M.Kelly, and L. F. Costa (1974). Excited state Properties of some Carbocyanine dyes and the energy transfer mechanism of spectral sensitisation. Photogr. Sci. Eng. 18(1), 76-84.)따라서, 본 발명의 발명자들은 이런 형광 손실을 줄이기 위해 시아닌 염료의 폴리 메틴 체인을 Rigid하게 디자인 함으로써 형광양자효율을 현저하게 증가시키고자 한다.
또한, 상용화된 mitotracker 염료들은 양전하로 하전되어 있기 때문에 세포 내 미토콘드리아에 선택적으로 결합하는 특성을 가지고 있고, 밝은 형광과 뛰어난 광 안정성은 Mitotracker로 사용하기에 적합하며, 미토콘드리아를 labeling 하기 위해 간단한 Incubation 과정만으로도 충분히 염색이 된다.
그러나, 이후 특정 실험에서는 세포를 formaldehyde 와 같은 시약으로 fixation시키는 작업이 필요한데 이 과정에서 상용화되어 있는 몇몇 Mitotracker는 형광이 유지되지 못하는 단점을 갖고 있다.
<Thermo Fisher Scientific사에서 판매하는 MitoTracker 제품>
Figure PCTKR2016007801-appb-I000002
따라서, 본 발명의 발명자들은 Fixation 과정 후에도 형광이 안정하게 유지되는 염료를 개발하고자 하고, 또한 다양한 파장의 형광으로 디자인하여 원하는 파장의 Mitotracker를 선택할 수 있는 염료를 개발하고자 한다.
사용자가 사용하는 다른 Probe들과 형광의 파장이 겹치면 분석이 안되기 때문에 좁은 Bandwith를 가진 다양한 형광파장의 재료가 중요한 요소로 작용하므로, 다양한 파장을 가진 Mitotracker를 개발하고자 한다.
또한, Intracellular pH 나 Cytosolic pH를 측정하면 세포의 기능을 확인하는데 매우 용이하며(Methods Mol Biol 637, 311 (2010); Nanotechnology 24, 365 (2013)), 세포 내 pH 변화를 통해서 ionic homeostasis, reactive oxygen species balance, apoptosis, cell cycle, cellular mobility 등의 세포 활동을 측정할 수 있다.(Circulation 124, 1806 (2011); Yonsei Med J 6, 473 (1995); J Bacteriol 185, 1190 (2003)).
세포 내 pH 측정을 하기 위해 pH detecting probe들을 사용하는데, 본 발명의 발명자들은 pH 변화에 따라 형광 세기가 변하는 특징도 갖고 있는 염료를 개발하고, 이 특성을 이용하여 살아있는 세포의 pH를 확인할 수 있는 pH probe로 사용할 수 있도록 제공하고자 한다.
따라서, 본 발명의 발명자들은 상기와 문제를 해결하기 위하여, 보다 강한 형광을 나타내어 유효하게 광학 영상을 얻을 수 있는 새로운 염료를 제공하고자 한다.
또한, 종래 Mitotracker가 갖고 있는 문제점인 Fixation 과정 후에도 형광이 안정하게 유지되는 염료와 다양한 파장의 형광으로 디자인하여 원하는 파장의 Mitotracker를 선택 활용할 수 있는 염료를 제공하자고 한다.
또한, pH 변화에 따라 형광 세기가 변하여 살아있는 세포의 pH를 확인할 수 있는 pH probe로 활용할 수 있는 염료를 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 Ⅰ] 및 [화학식 Ⅱ] 중에서 선택되는 어느 하나의 염료 화합물을 제공한다.
[화학식 Ⅰ]
Figure PCTKR2016007801-appb-I000003
[화학식 Ⅱ]
Figure PCTKR2016007801-appb-I000004
상기 [화학식 Ⅰ] 및 [화학식 Ⅱ]의 치환기에 대한 구체적인 설명은 후술한다.
또한, 본 발명은 상기 염료 화합물과 표지 대상 물질을 결합시키는 단계를 포함하는 화합물 표지방법을 제공한다.
본 발명에 따른 염료 화합물은 종래 시아닌 염료에 비하여 양자효율이 현저히 개선된 효과를 가지고, 보다 강한 형광을 나타내어 광학 영상이 필요한 다양한 생물학적 시스템에 대한 프로브 등으로 광범위한 분야에서 유효하게 활용할 수 있다.
특히, 미토콘드리아의 표지하여 추적할 수 있는 Mitotracker로 활용할 수 있어 생체 또는 세포조직에서 미토콘드리아를 정량적으로 영상화할 수 있으며, 또한 살아있는 세포의 pH를 확인할 수 있는 pH 프로브(probe)로도 적용할 수 있다.
도 1A은 본 발명에 따른 [화학식 1]을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수 (Absorption) 스펙트럼이다.
도 1B는 Alexa Fluor® 568을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수(Absorption) 스펙트럼이다.
도 1C는 본 발명에 따른 [화학식 1]을 Goat Anti-Mouse IgG에 라벨링한 후의 Fluorescence Emission 스펙트럼이다.
도 1D는 Alexa Fluor® 568을 Goat Anti-Mouse IgG에 라벨링한 후의 Fluorescence Emission 스펙트럼이다.
도 1E는 본 발명에 따른 [화학식 1] 화합물과 Alexa Fluor® 568을 Goat Anti-Mouse IgG에 라벨링한 후의 밝기(brightness)를 확인한 결과이다.
도 1F는 본 발명에 따른 [화학식 1]과 Alexa Fluor® 568의 생체활성 (bioactivity)을 비교 확인한 그래프이다.
도 2A은 본 발명에 따른 [화학식 3]을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수 (Absorption) 스펙트럼이다.
도 2B는 Alexa Fluor® 594을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수(Absorption) 스펙트럼이다.
도 2C는 본 발명에 따른 [화학식 3]을 Goat Anti-Mouse IgG에 라벨링한 후의 Fluorescence Emission 스펙트럼이다.
도 2D는 Alexa Fluor® 594을 Goat Anti-Mouse IgG에 라벨링한 후의 Fluorescence Emission 스펙트럼이다.
도 2E는 본 발명에 따른 [화학식 3] 화합물과 Alexa Fluor® 594을 Goat Anti-Mouse IgG에 라벨링한 후의 밝기(brightness)를 확인한 결과이다.
도 2F는 본 발명에 따른 [화학식 3]과 Alexa Fluor® 594의 생체활성 (bioactivity)을 비교 확인한 그래프이다.
도 3A는 본 발명에 따른 [화학식 50]을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수 (Absorption) 스펙트럼이다.
도 3B는 본 발명에 따른 [화학식 50] 화합물과 Alexa Fluor® 546을 Goat Anti-Mouse IgG에 라벨링한 후의 밝기(brightness)를 확인한 결과이다.
도 3C는 [화학식 44]과 Alexa Fluor® 546의 생체활성 (bioactivity)을 비교 확인한 그래프이다.
도 4A는 본 발명에 따른 [화학식 110]으로 표지된 Raw 264.7 세포의 영상 이미지로서, 여기 파장은 552 nm이고, 560 - 600 nm 방출파장에서 획득하였다.
도 4B는 MTG(Mitotracker Green FM)으로 표지된 Raw 264.7 세포의 영상 이미지로서, 여기 파장은 488 nm이고, 470 - 520 nm 방출파장에서 획득하였다.
도 4C는 도 4A 및 도 4B를 합친 영상이고, 피어슨의 동시국소화(co-localization) 효율을 나타내는 계수 (A=0.73)는 LAS AF 소프트웨어를 사용하여 계산된 값이다.
도 5는 본 발명에 따른 [화학식 110] 1.0 uM을 HeLa A431 세포에 염색한 후에 세 부분의 영역(A, B, C)의 형광 세기를 2초 간격으로 3500초 동안 측정한 결과 그래프이다.
도 6A는 본 발명에 따른 [화학식 97]로 표지된 헬라 A431 세포의 영상 이미지로서, 여기 파장은 552 nm이고, 571 - 650 nm 방출파장에서 획득하였다.
도 6B는 MTG(Mitotracker Green FM)으로 표지된 헬라 A431세포의 영상 이미지로서, 여기 파장은 488 nm이고, 498 - 540 nm 방출파장에서 획득하였다.
도 6C는 도 6A 및 도 6B를 합친 영상이다.
도 7은 본 발명에 따른 [화학식 Ⅲ-화학식 2] 1.0 uM을 HeLa A431 세포에 염색한 후에 네 부분의 영역(A, B, C, D)의 형광 세기를 2초 간격으로 3500초 동안 측정한 결과 그래프이다.
도 8은 비교 실험 결과로서, Cy3B 1.0 uM을 HeLa A431 세포에 염색한 후에 A, B 두가지 부분의 형광 세기를 2초 간격으로 2000초 동안 측정한 결과 그래프이다.
도 9 및 도 10은 각각 본 발명에 따른 [화학식 111]과 [화학식 97]의 pH probe로서의 특성을 확인한 결과 도면이다.
도 11은 PBS 완충용액 및 에탄올에서 본 발명에 따른 [화학식 97], [화학식 100] 내지 [화학식 102]의 이광자 활성 스펙트럼이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명은 형광양자효율이 현저히 개선되고, 강한 형광을 나타내어 광학 영상을 효과적으로 얻을 있도록 설계되어 다양한 생물학적 시스템에 대한 프로브 등으로 활용할 수 있는 신규한 구조의 염료 화합물에 관한 것이다.
본 발명의 일 측면은 하기 [화학식 Ⅰ] 내지 [화학식 Ⅱ]로 표시되는 신규한 염료 화합물에 관한 것이다.
[화학식 Ⅰ]
Figure PCTKR2016007801-appb-I000005
[화학식 Ⅱ]
Figure PCTKR2016007801-appb-I000006
상기 [화학식 Ⅰ] 및 [화학식 Ⅱ]에서,
Ar1은 치환 또는 비치환된 탄소수 6 내지 20의 아릴이거나 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴이다.
상기 Ar1은 각각 1종 이상의 치환기로 치환될 수 있으며, 상기 1종 이상의 치환기는 수소, 중수소, 치환 또는 비치환된 알킬, 치환 또는 비치환된 알케닐, 치환 또는 비치환된 알키닐, 치환 또는 비치환된 아릴, 치환 또는 비치환된 헤테로아릴, 치환 또는 비치환된 아릴알킬, 치환 또는 비치환된 아릴옥시, 치환 또는 비치환된 아릴옥시알킬, 치환 또는 비치환된 알콕시, 치환 또는 비치환된 알콕시알킬, 할로겐, 시아노, 니트로, 할로겐, 아민, 하이드록시, 알데하이드, 아미노, 아마이드, 히드라진, 티올, 아세탈, 케탈, 포스포릴, 포스페이트, 포스포네이트, 술포히드록시, 술포닐, 술포네이트, 설페이트, 카르복실레이트, 아미드, 아지도, 구아니디움, 카르보닐, 티오카르보닐, 아미노티오카르보닐, 카르복실, 카르복실산, 케톤, 설프하이드릴, 아실클로라이드, 설폰산, 에스터, 폴리알킬렌옥사이드, 폴리에틸렌글리콜 및 4차 암모늄 중에서 선택되는 어느 하나이다.
또한, 상기 1종 이상의 치환기가 알킬, 알케닐, 알키닐, 아릴, 헤테로아릴, 아릴알킬, 아릴옥시, 아릴옥시알킬, 알콕시 및 알콕시알킬 중에서 선택되는 어느 하나인 경우 1종 이상의 치환기로 더 치환될 수 있으며, 상기 1종 이상의 치환기는 할로겐, 시아노, 니트로, 할로겐, 아민, 하이드록시, 알데하이드, 아미노, 아마이드, 히드라진, 티올, 아세탈, 케탈, 포스포릴, 포스페이트, 포스포네이트, 술포히드록시, 술포닐, 술포네이트, 설페이트, 카르복실레이트, 아미드, 아지도, 구아니디움, 카르보닐, 티오카르보닐, 아미노티오카르보닐, 카르복실, 카르복실산, 케톤, 설프하이드릴, 아실클로라이드, 설폰산, 에스터, 폴리알킬렌옥사이드, 폴리에틸렌글리콜 및 4차 암모늄 중에서 선택된다.
E는 CR1 또는 N이고, Z1은 NR2R3, OR4, SR5이며, Z2는 NR6, O, S, O+R7이다.
X는 O, S, NR8R9, SiR10R11, CR12R13 또는 Se이다.
Y 는 CR14R15, NR16, O, S, Se, SiR17R18 또는 CR19R20=CR21R22이다.
W는 CR23R24, CR25R26=CR527R28, O, -[CR29R30-CR31R32]- 또는 -[CR33R34-O]-이다.
상기 R23 내지 R34은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 알킬 또는 아실옥시이고, 인접한 두 개는 서로 연결되어 지환족 탄화 수소를 형성할 수 있다.
상기 R1 내지 R3 및 이와 인접한 치환기 중에서 선택되는 두 개는 서로 연결되어 지환족 탄화수소 고리, 단일환 또는 다환의 방향족 탄화수소 고리를 형성할 수 있으며, 상기 형성된 지환족, 방향족 탄화수소 고리의 탄소원자는 N, S, O, Se, Te, Po, NR35, SiR36R37, GeR38R39, PR40, 및 BR41 중에서 선택되는 어느 하나로 치환될 수 있다.
상기 R1 내지 R22 및 R35 내지 R41은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 알킬, 치환 또는 비치환된 알케닐, 치환 또는 비치환된 알키닐, 치환 또는 비치환된 아릴, 치환 또는 비치환된 헤테로아릴, 치환 또는 비치환된 아릴알킬, 치환 또는 비치환된 아릴옥시, 치환 또는 비치환된 아릴옥시알킬, 치환 또는 비치환된 알콕시, 치환 또는 비치환된 알콕시알킬, 할로겐, 시아노, 니트로, 할로겐, 아민, 하이드록시, 알데하이드, 아미노, 아마이드, 히드라진, 티올, 아세탈, 케탈, 포스포릴, 포스페이트, 포스포네이트, 술포히드록시, 술포닐, 술포네이트, 설페이트, 카르복실레이트, 아미드, 아지도, 구아니디움, 카르보닐, 티오카르보닐, 아미노티오카르보닐,카르복실, 카르복실산, 케톤, 설프하이드릴, 아실클로라이드, 설폰산, 에스터, 폴리알킬렌옥사이드, 폴리에틸렌글리콜 및 4차 암모늄 중에서 선택되는 어느 하나이다.
상기 R1 내지 R22 및 R35 내지 R41이 알킬, 알케닐, 알키닐, 아릴, 헤테로아릴, 아릴알킬, 아릴옥시, 아릴옥시알킬, 알콕시 및 알콕시알킬 중에서 선택되는 어느 하나인 경우 1종 이상의 치환기로 더 치환될 수 있으며, 상기 1종 이상의 치환기는 할로겐, 시아노, 니트로, 할로겐, 아민, 하이드록시, 알데하이드, 아미노, 아마이드, 히드라진, 티올, 아세탈, 케탈, 포스포릴, 포스페이트, 포스포네이트, 술포히드록시, 술포닐, 술포네이트, 설페이트, 카르복실레이트, 아미드, 아지도, 구아니디움, 카르보닐, 티오카르보닐, 아미노티오카르보닐, 카르복실, 카르복실산, 케톤, 설프하이드릴, 아실클로라이드, 설폰산, 에스터, 폴리알킬렌옥사이드, 폴리에틸렌글리콜 및 4차 암모늄 중에서 선택된다.
A-는 유기 또는 무기 이온으로서, 특별히 제한되지 않으며, 용도에 따라 유기용제 내에서 본 발명에 따른 염료의 용해성이나, 안정성의 관점에서 적절하게 선택하면 되고, 또한, 음이온 이나 필요에 따라서는 양이온 A+일 수도 있다.
일반적으로 포스포릭산 육플루오라이드 이온, 할로겐 이온, 포스포릭산 이온, 과염소산 이온, 과요오드산 이온, 안티몬 육플루오라이드 이온, 주석산 육플루오라이드 이온, 플루오로보릭산 이온, 사플루오르 이온 등과 같은 무기산 음이온이 될 수도 있고, 티오시안산 이온, 벤젠술포닉산 이온, 나프탈렌술포닉산 이온, p-톨루엔술포닉산 이온, 알킬술포닉산 이온, 벤젠카르복실릭산 이온, 알킬카르복실릭산 이온, 삼할로알킬카르복실릭산 이온, 알킬술포닉산 이온, 삼할로알킬술포닉산 이온, 니코틴산 이온 등과 같은 유기산 이온이 될 수도 있으며, 비스페닐디톨, 티오비스페놀 킬레이트, 비스디올-α-디켄톤 등과 같은 금속 화합물 이온일 수도 있다. 또한, 소듐 및 포타슘 등과 같은 금속 이온과 4차 암모늄 이온일 수도 있다.
본 발명의 일 실시예에 의하면, 할로겐 이온, -SO4 2-, -S2O3 2 -, -SO3-, -ClO4 -, -BF4-, -PF6-, -SbF6 -, -BiCl5 -, -AsF6 -, -SbCl6 -, -SnCl6 -, -COO-, -HSO4 -, -SO3CH3 -, Na+, K+, 4차 암모늄 이온, 아세테이트, 프로피오네이트 및 사이아네이트 중에서 선택되는 1종 이상일 수 있으며, 양이온과 치환된 음이온의 수에 따라서 A-는 존재 또는 비존재할 수 있다.
한편, 본 발명에 따른 [화학식 Ⅰ] 내지 [화학식 Ⅱ]의 염료 화합물은 상술한 바와 같이 표지 대상 물질과 결합할 수 있도록 반응성 치환기를 포함 할 수 있으며, 물에 대한 용해도 증가 및 형광 염료간의 상호작용과 염료와 다양한 표지인자 간의 원하지 않는 표지발생을 방지하기 위해서 극성과 전하를 가지는 치환기를 포함할 수 있다.
본 발명의 바람직한 일 실시예에 의하면, 치환기 중에서 적어도 하나는 아민, 티올, 알코올, 알데하이드, 케톤 등의 치환기를 갖는 표지 대상 물질과 컨쥬게이션(conjugation)할 수 있다.
상기 표지 대상 물질은 생체분자, 나노입자 또는 유기화합물 등으로서, 특별히 제한되지 않지만, 항체(antibody); 항원(antigen); 지질(lipid); 단백질(protein); 펩타이드(peptide); 탄수화물(carbohydrate); 덱스트란(dextran); 지방산(fatty acid); 인지질(phospholipid); 리포다당류(lipopoly saccharide); 아미노기, 설프하이드릴기, 카르보닐기, 하이드록실기, 카르복실기, 티올기, 인산기 및 티오인산기 중에서 하나 이상을 포함하거나, 또는 포함하도록 유도화된 뉴클레오타이드(nucleotides) 또는 올리고뉴클레오타이드(oligonucleotide); 아미노기, 설프하이드릴기, 카르보닐기, 하이드록실기, 카르복실기, 티올기, 포스페이트기 및 티오포스페이트기 중에서 하나 이상을 포함하거나, 또는 포함하도록 유도화된 옥시폴리핵산(oxypolynuceotide) 또는 데옥시폴리핵산(deoxypolynuceotide); 미생물; 약물; 호르몬; 세포; 세포막; 및 독소(toxins);로 이루어진 군 중에서 선택되는 어느 하나 이상일 수 있다.
구체적으로, 본 발명에 따른 반응성 치환기는 활성에스테르(activated esters), 카르복실(carboxyl), 아마이드(amide), 아크릴아마이드(acrylamides), 아자이드(azide), 아실아자이드(acyl azides), 아실할라이드(acyl halides), 알카인(alkyne), 아민(amine), 알데하이드(aldehydes), 케톤(ketones), 알킬할라이드(alkyl halides), 알킬설포네이트(alkyl sulfonates), 아릴할라이드(aryl halides), 아지리딘(aziridines), 보로네이트(boronates), 다이아조알칸(diazoalkanes), 에폭사이드(epoxides), 할로플래티네이트(할로백금산염, haloplatinate), 할로트리아진(halotriazines), 이미도에스테르(imido esters), 이소시아네이트(isocyanates), 실릴할라이드(silyl halides), 설포네이트에스테르(sulfonate esters), 설포닐할라이드(sulfonyl halides), 숙신이미딜에스테르(succinimidyl ester), 설포-숙신이미딜에스테르(sulpho-succinimidyl ester), 무수물(anhydrides), 산할로겐화물(산 할라이드, acid halides), 이소티오시아네이트(isothiocyanate), 비닐설폰(vinylsulphone), 디클로로트리아진(dichlorotriazines), 할로아세트아미드(haloacetamides), 말레이미드(maleimides), 카르보다이이미드(carbodiimide), 포스포라미다이트(phosphoramidites), 하이드라진(hydrazines), 하이드라자이드(hydrazide) 등일 수 있고, 바람직하게는 카르복실산의 숙신이미딜에스테르, 이소티오시아네이트, 말레이미드, 할로아세트아미드 등일 수 있다.
상기 활성에스테르는 본 발명이 속하는 기술분야에서, 치환반응에서 우수한 이탈 그룹기인 R을 갖는 구조식 -COR'로서, 상기 R'은 예를 들면, 숙신이미딜옥시(succinimidyloxy, -OC4H4O2), 술포숙신이미딜옥시(sulfosuccinimidyloxy, -OC4H3O2-SO3H), 또는 -1-옥시벤조벤조트리아졸일(-1-oxybenzotriazolyl, -OC6H4N8)이거나; 아릴옥시 또는 전자끌기 그룹에 속하는 니트로, 할로겐, 시아노, 할로겐알킬 등을 1종 이상 포함하는 아릴옥시이거나; 무수물(anhydrides, -OCORa 또는 -OCNRaNHRb)을 구성하는 카르보디이미드(carbodiimide)에 의해서 활성화된 카르복실산(carboxylic acid)일 수 있고, 상기 Ra 또는 Rb는 탄소수 1 내지 6의 알킬, 탄소수 1 내지 6의 알콕시, 시클로헥실, 3-디메틸아미노프로필, N-모폴리노에틸 등이다.
또한, 본 발명에 따른 반응성 치환기(RX)는 다양한 링커(L)에 공유결합으로 연결되어, RX-L- 구조일 수 있다.
이러한 링커는 단일결합이거나, 또는 바람직하게 탄소(C), 질소(N), 산소(O) 및 황(S) 원자로 구성되는 군에서 선택된 원자가 1 내지 20개 연결된 직쇄 또는 분지쇄의 사슬일 수 있고, 지방족 탄화수소 고리, 방향족 탄화수소 고리, 지방족 헤테로 고리 또는 방향족 헤테로 고리일 수도 있다. 또한, 이러한 링커는 + 또는 - 전하를 가질 수 있다.
본 발명에 따르면, 상기 [화학식 Ⅰ] 내지 [화학식 Ⅱ]로 표시되는 염료 화합물은 하기 [화학식 1] 내지 [화학식 113] 중에서 선택되는 어느 하나 이상일 수 있으며, 이에 따라 본 발명의 [화학식 Ⅰ] 내지 [화학식 Ⅱ]의 범위가 한정되는 것은 아니다.
Figure PCTKR2016007801-appb-I000007
Figure PCTKR2016007801-appb-I000008
Figure PCTKR2016007801-appb-I000009
Figure PCTKR2016007801-appb-I000010
Figure PCTKR2016007801-appb-I000011
Figure PCTKR2016007801-appb-I000012
Figure PCTKR2016007801-appb-I000013
Figure PCTKR2016007801-appb-I000014
Figure PCTKR2016007801-appb-I000015
Figure PCTKR2016007801-appb-I000016
또한, 본 발명에 따른 염료 화합물은 세포 내 미토콘드리아를 선택적으로 염색하여 영상화할 수 있으므로 미토콘드리아 표지 및 추적 프로브(Mitotracker)로 적용할 수 있다.
특히, 다양한 파장의 형광으로 설계할 수 있기 때문에 사용자가 원하는 파장을 선택하여 Mitotracker로 활용할 수 있을 수 있다. 이와 같은 다양한 파장을 가진 Mitotracker가 필요한 이유는 사용자가 사용하는 다른 프로브(Probe)들과 형광의 파장이 겹치면 분석이 안되므로, 좁은 밴드폭를 가진 다양한 형광 파장으로 선택적으로 설계할 수 있는 것은 상업적으로 매우 중요한 요소이다.
또한, 본 발명에 따른 염료 화합물은 세포 내 pH의 변화에 따라 형광의 세기가 변하는 것을 특징으로 하고, 이에 따라 살아있는 세포의 pH를 확인할 수 있는 pH 프로브, 나아가서 이를 포함하는 세포 내 pH 측정 센서 등에 활용될 수 있다.
본 발명에 따른 염료 화합물을 이용하여 Intracellular pH 나 Cytosolic pH를 측정하면 ionic homeostasis, reactive oxygen species balance, apoptosis, cell cycle, cellular mobility 등의 세포 활동을 직간접적으로 측정할 수 있다.
특히, 본 발명에 따른 염료 화합물은 사용 목적에 따라 pH2~6사이의 산성 조건에서 강한 형광을 내는 타입으로, 또는 pH 8~12사이에 염기성 조건에서 강한 형광을 내도록 선택하여 사용할 수 있어 pH 프로브로 더욱 유용하게 활용할 수 있다.
나아가서, 살아 있는 세포의 염색을 통해 pH 측정하는 방법 외에, 최근에는 plate reader를 통해 세포의 pH를 측정하는 방법이 활용되고 있는데, 본 발명에 따른 염료 화합물은 이에도 적용이 가능하여 pH를 측정하고자 하는 여러 적용분야에 다양하게 이용할 수 있다.
이하에서는 본 발명에 따른 구체적인 염료 화합물의 합성방법과, 실시예 및 비교 실험을 통하여 본 발명을 더욱 상세히 설명한다. 그러나, 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것이 아니다.
합성예 1 [화학식 1]로 표시되는 화합물의 합성
(1) [화학식 1-a]로 표시되는 화합물의 합성
하기 [반응식 1-1]에 의하여 [화학식 1-a]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000017
에틸 2-메틸아세테토아세테이트 (Ethyl 2-methylacetoactate) (23.5 g, 163 mmol) 와 에틸 6-브로모헥사노네이트 (Ethyl 6-bromohexanoate) (40.0 g, 179 mmol)를 에탄올 200 mL에 넣고, 교반하였다. 액체 소디움에톡사이드를 적가하였다. 80 ℃에서 10 시간 교반하였다. 반응 종료 후 고체는 여과하고 여과된 용액을 감압증류하였다. 다이클로로메탄과 2 N 염산 수용액으로 추출하였다. 유기층을 건조 된 소디움술페이트 처리 후 필터하여 감압증류하였다 (47.7 g). 용매가 제거되면 수용액 300 mL를 첨가하여 10시간 환류교반하였다. 반응 종료 후 다이클로로메탄으로 추출 후 소디움술페이트 처리하여 여과하고 감압증류하였다 (25 g, 71%).
LC-MS : m/z= 185.84[M+]
(2) [화학식 1-b]로 표시되는 화합물의 합성
하기 [반응식 1-2]에 의하여 [화학식 1-b]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000018
p-히드라지노벤젠술폰산 (p-Hydrazinobenzenesulfonic acid) (20 g, 106 mmol)과 [반응식 1-1]에서 [화학식 1-a]로 표시되는 화합물 (59.4 g, 319 mmol)을 6 N 염산 수용액 30 mL/에탄올 60 mL에 가한 후, 12 시간 동안 환류 교반하였다. 상온으로 냉각시키고, 생성된 고체를 여과하였다. 에틸아세테이트로 세정 후 감압 건조하였다. 수산화칼륨 (1.4 g, 25.4 mmol)을 프로판올 35 mL에 용해시키고, 여과된 고체 (5.1 g, 21.2 mmol) 를 메탄올 35 mL에 용해시키고 적가 후, 상온에서 12시간 교반하였다. 고체를 여과 후 건조하였다. C18 역상 크로마토그래피를 이용하여 물/메탄올로 정제하였다(11.1 g, 30%).
LC-MS : m/z= 404.86[M+]
(3) [화학식 1-c]로 표시되는 화합물의 합성
상기 [반응식 1-3]에 의하여 [화학식 1-c]로 표시되는 화합물을 합성하였다.
상기 [반응식 1-2]로부터 얻은 [화학식 1-b]로 표시되는 화합물 (3.0 g, 7.4 mmol) 을 상온, 질소 기류하에서 에탄올과 함께 교반하고, 48% 염산 수용액 (10.0 mL)을 적가하였다. 1 시간 후 반응액을 감압증류하였다. 감압증류된 반응기에 아세토니트릴 (120.0 mL), 아세틱에시드 (3.0 mL)와 아크롤레닌 다이에틸 아세탈 (17.3 g, 133.0 mmol)을 첨가하였다. 70 ℃에서 2 시간 반응하였다. 반응액을 감압증류하고 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60 분 동안 10~100%까지 20 mL/min으로 정제하였다 (1.2 g, 30%).
LC-MS : m/z= 496.96[M+]
(4) [화학식 1-d]로 표시되는 화합물의 합성
하기 [반응식 1-4]에 의하여 [화학식 1-d]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000019
3-아미노페놀 (3-Aminophenol) (5.0 g, 4.5 mmol)과 1,3-프로판설톤 (1,3-propanesultone) (0.56 g, 4.6 mmol)을 n-부탄올에 넣고 30 분간 환류교반하였다. 반응액을 상온으로 냉각 후 일야교반하였다. 반응액을 여과하여 회색 고체를 분리한 후 메탄올로 세척하였다. (0.8 g, 80%)
LC-MS : m/z= 231.30[M+]
(5) [화학식 1-e]로 표시되는 화합물의 합성
상기 [반응식 1-5]에 의하여 [화학식 1-e]로 표시되는 화합물을 합성하였다.
상기 [반응식 1-4]로부터 얻는 [화학식 1-d]로 표시되는 화합물 (1 g, 4.3 mmol)과 1,3-propane sultone (0.54 g, 4.4 mmol)을 N,N-다이메틸포름아미드 5 mL에 넣은 후 130 ℃에서 2 시간 교반하였다. 상온으로 냉각한 후 반응액을 감압증류하고, 역상 크로마토그래피로 정제하였다. (1.48 g, 95%)
LC-MS : m/z= 353.19[M+]
(5) [화학식 1-f]로 표시되는 화합물의 합성
상기 [반응식 1-6]에 의하여 [화학식 1-f]로 표시되는 화합물을 합성하였다.
상기 [반응식 1-5]로부터 얻은 [화학식 1-e]로 표시되는 화합물 (3.0 g, 8.0 mmol)을 N,N-다이메틸포름아미드 (1.3 g, 8.0 mmol)이 담긴 반응기에 투입하였다. 50 ℃에서 12 시간 반응하였다. 반응 종료 후 물로 희석 후 중화하였다. 용매제거 후 역상 크로마토그래피로 정제하였다. (0.8 g, 25%)
LC-MS : m/z= 380.84[M+]
(5) [화학식 1]로 표시되는 화합물의 합성
상기 [반응식 1-7]에 의하여 [화학식 1]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000020
상기 [반응식 1-3]로부터 합성한 [화학식 1-c] 로 표시되는 화합물 (1.0 g, 1.9 mmol)과 [반응식 6]로부터 합성한 [화학식 1-f]로 표시되는 화합물 (0.8 g, 1.9 mmol) 을 에탄올 20 mL에 녹인 후 80 ℃에서 8 시간 교반하였다. 반응 종료 후 감압농축으로 용매를 제거하였다. 농축된 반응물을 클로로포름 50 mL에 녹인 후 50% 술퍼릭 에시드 1 mL을 적가하였다. 다이클로로메탄으로 희석하여 물로 추출하였다. 유기층 감압농축 후 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/아세토니트릴 (0.1% 트리플루오로아세틱 에시드)의 전개액으로 60 분 동안 10~100%까지 20 mL/min으로 정제하였다 (0.4 g, 51%)
LC-MS : m/z= 739.79[M+]
합성예 2 [화학식 2]로 표시되는 화합물의 합성
(1) [화학식 2-a]로 표시되는 화합물의 합성
하기 [반응식 2-1]에 의하여 [화학식 2-a]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000021
에틸 2-메틸아세테토아세테이트 (Ethyl 2-methylacetoactate) (23.5 g, 163 mmol) 와 에틸 6-브로모헥사노네이트 (Ethyl 6-bromohexanoate) (40.0 g, 179 mmol)를 에탄올 200 mL에 넣고, 교반하였다. 액체 소디움에옥사이드를 적가하였다. 80 ℃에서 10 시간 교반하였다. 반응 종료 후 고체는 여과하고 여과된 용액을 감압증류하였다. 다이클로로메탄과 2 N 염산 수용액으로 추출하였다. 유기층 건조 된 소디움술페이트 처리 후 여과하여 감압증류하였다 (47.7 g). 용매가 제거되면 수용액 300 mL를 첨가하여 10 시간 환류교반하였다. 반응 종료 후 다이클로로메탄으로 추출 후 소디움술페이트 처리하여 필터하고 감압증류하였다 (25 g, 71%)
LC-MS : m/z= 185.84[M+]
(2) [화학식 2-b]로 표시되는 화합물의 합성
하기 [반응식 2-2]에 의하여 [화학식 2-b]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000022
페닐히드라진하이드로클로라이드 (5.0 g, 34.6 mmol)과 [반응식 2-1]에서 [화학식 2-a]로 표시되는 화합물 (32.2 g, 173 mmol)을 6 N 염산 수용액 30 mL/에탄올 60 mL에 가한 후, 12 시간 동안 환류 교반하였다. 상온으로 냉각 후 반응액에 에틸아세테이트를 적가하였다. 고체가 석출되면 여과한 후 여과액을 감압 증류한 후 실키카겔 컬럼 정제하여 액상 화합물을 얻었다. (3.2 g, 61%)
LC-MS : m/z= 296.89[M+]
(3) [화학식 2-c]로 표시되는 화합물의 합성
상기 [반응식 2-3]에 의하여 [화학식 2-c]로 표시되는 화합물을 합성하였다.
상기 [반응식 2-2]로부터 얻은 [화학식 2-b]로 표시되는 화합물 (3.0 g, 7.4 mmol) 을 상온, 질소 기류 하에서 에탄올과 함께 교반하고, 48% 염산 수용액 (10.0 mL)을 적가하였다. 1 시간 후 반응액을 감압증류하였다. 감압증류된 반응기에 아세토니트릴 (120.0 mL), 아세틱에시드 (3.0 mL)와 아크롤레닌 다이에틸 아세탈 (17.3 g, 133.0 mmol)을 첨가하였다. 70 ℃에서 2 시간 반응하였다. 반응액을 감압증류하고 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60 분 동안 10~100%까지 20 mL/min으로 정제하였다(1.2 g, 30%)
LC-MS : m/z= 418.01[M+]
(4) [화학식 2]로 표시되는 화합물의 합성
하기 [반응식 2-4]에 의하여 [화학식 2]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000023
상기 [반응식 2-3]로부터 합성한 [화학식 2-c] 로 표시되는 화합물 (1.0 g, 1.9 mmol)과 9-포밀-8-히드록시주올리딘 (0.8 g, 1.9 mmol)을 에탄올 20 mL에 녹인 후 80 ℃에서 8 시간 교반하였다. 반응 종료 후 감압농축으로 용매를 제거하였다. 농축된 반응물을 클로로포름 50 mL에 녹인 후 50% 술퍼릭 에시드 1 mL을 적가하였다. 다이클로로메탄으로 희석하여 물로 추출하였다. 감압 증류한 후 반응액을 실리카겔 컬럼 정제하였다. (0.3 g, 40%)
LC-MS : m/z= 496.91[M+]
합성예 3 : [화학식 3]으로 표시되는 화합물의 합성
(1) [화학식 3-a]로 표시되는 화합물의 합성
하기 [반응식 3-1]에 의하여 [화학식 3-a]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000024
에틸 2-메틸아세테토아세테이트 (Ethyl 2-methylacetoactate) (23.5 g, 163 mmol) 와 에틸 6-브로모헥사노네이트 (Ethyl 6-bromohexanoate) (40.0 g, 179 mmol)를 에탄올 200 mL에 넣고, 교반하였다. 액체 소디움에옥사이드를 적가하였다. 80 ℃에서 10 시간 교반하였다. 반응 종료 후 고체는 여과하고 여과된 용액을 감압증류하였다. 다이클로로메탄과 2 N 염산 수용액으로 추출하였다. 유기층 건조 된 소디움술페이트 처리 후 필터하여 감압증류하였다 (47.7 g). 용매가 제거되면 수용액 300 mL를 첨가하여 10시간 환류교반하였다. 반응 종료 후 다이클로로메탄으로 추출 후소디움술페이트 처리하여 필터하고 감압증류하였다 (25 g, 71%)
LC-MS : m/z= 185.84[M+]
(2) [화학식 3-b]로 표시되는 화합물의 합성
하기 [반응식 3-2]에 의하여 [화학식 3-b]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000025
p-히드라지노벤젠술폰산 (p-Hydrazinobenzenesulfonic acid) (20 g, 106 mmol)과 [반응식 3-1]에서 [화학식 3-a]로 표시되는 화합물 (59.4 g, 319 mmol)을 6 N 염산 수용액 30 mL/에탄올 60 mL에 가한 후, 12 시간 동안 환류 교반하였다. 상온으로 냉각시키고, 생성된 고체를 여과하였다, 에틸아세테이트로 세정 후 감압 건조하였다. 수산화칼륨 (1.4 g, 25.4 mmol)을 프로판올 35ml에 용해시키고, 여과된 고체 (5.1 g, 21.2 mmol)를 메탄올 35 mL에 용해시키고 적가 후, 상온에서 12시간 교반하였다. 고체를 필터 후 건조하였다. C18 역상 크로마토그래피를 이용하여 물/메탄올로 정제하였다 (11.1 g, 30%)
LC-MS : m/z= 404.86[M+]
(3) [화학식 3-c]로 표시되는 화합물의 합성
상기 [반응식 3-3]에 의하여 [화학식 3-c]로 표시되는 화합물을 합성하였다.
상기 [반응식 3-2]로부터 얻은 [화학식 3-b]로 표시되는 화합물 (3.0 g, 7.4 mmol) 을 상온, 질소 기류 하에서 에탄올과 함께 교반하고, 48% 염산 수용액 (10.0 mL)을 적가하였다. 1 시간 후 반응액을 감압증류하였다. 감압증류된 반응기에 아세토니트릴 (120.0 mL), 아세틱에시드 (3.0 mL)와 아크롤레닌 다이에틸 아세탈 (17.3 g, 133.0 mmol) 을 첨가하였다. 70 ℃에서 2 시간 반응하였다. 반응액을 감압증류하고 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60 분 동안 10~100%까지 20 mL/min으로 정제하였다 (1.2 g, 30%).
LC-MS : m/z= 496.96[M+]
(4) [화학식 3-d]로 표시되는 화합물의 합성
하기 [반응식 3-4]에 의하여 [화학식 3-d]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000026
7-메톡시-2,2,4-트리메틸-1,2-하이드로퀴놀린 (10.0 g, 49 mmol)과 1,3-프로판 설폰 (6.6 g, 54 mmol) 을 145 ℃에서 3시간 교반하였다. 반응 종료 후 컬럼 정제하였다. 디클로로메탄과 메탄올을 사용하였다 (10.0 g, 63%)
LC-MS : m/z= 325.01[M+]
(5) [화학식 3-e]로 표시되는 화합물의 합성
상기 [반응식 3-5]에 의하여 [화학식 3-e]로 표시되는 화합물을 합성하였다.
상기 [반응식 3-4]로부터 얻은 [화학식 3-d]로 표기되는 화합물 (10.0 g, 31 mmol) 이 담긴 반응기에 설포닉에시드 (9.8 mL)를 적가하였다. 30 분 교반 후 0 ℃에서 20.0% 올레움을 (3.9 mL)를 적가한다. 48 시간 반응시켰다. 반응 종료 후 저온상태의 물에 투입하였다. 소디움 하이드록사이드로 중화하였다. 에탄올을 이용하여 재결정하였다 (11.0 g, 88%)
LC-MS : m/z= 404.88[M+]
(6) [화학식 3-f]로 표시되는 화합물의 합성
상기 [반응식 3-6]에 의하여 [화학식 3-f]로 표시되는 화합물을 합성하였다.
상기 [반응식 3-5]로부터 얻은 [화학식 3-e]로 표시되는 화합물 (12.0 g, 30.0 mmol) 과 10 % Pd/C (0.9 g), 메탄올 120 mL를 넣고 수소 분위기 하에서 상온 교반하였다. 12 시간 교반 후 고체 여과하였다. 여과된 용액을 감압증류하고 에탄올을 이용하여 재결정하였다 (11.5 g, 95%).
LC-MS : m/z= 406.78[M+]
(7) [화학식 3-g]로 표시되는 화합물의 합성
상기 [반응식 3-7]에 의하여 [화학식 3-g]로 표시되는 화합물을 합성하였다.
상기 [반응식 3-6]로부터 얻은 [화학식 3-f]로 표시되는 화합물 (12.0 g, 29.0 mmol)과 소디움아이오다이드 (11.0 g, 74.0 mmol), 하이드로젠 브로마이드 (72.0 g, 174.0 mmol) 를 반응기에 넣고, 105 ℃에서 12 시간 교반시킨다. 반응 종료 후 소디움바이카보네이트 수용액을 이용하여 중화시킨다. 용매를 제거하고 물/아세톤/에탄올을 이용하여 결정을 생성시킨다. 메탄올/아세톤을 이용하여 재결정하고 아세톤으로 세척하였다 (3.0 g, 27%)
LC-MS : m/z= 392.93[M+]
(8) [화학식 3-h]로 표시되는 화합물의 합성
상기 [반응식 3-8]에 의하여 [화학식 3-h]로 표시되는 화합물을 합성하였다.
상기 [반응식 3-7]로부터 얻은 [화학식 3-g]로 표시되는 화합물 (3.0 g, 8.0 mmol)을 N,N-다이메틸포름아미드 (1.3 g, 8.0 mmol)이 담긴 반응기에 투입하였다. 50 ℃에서 12 시간 반응하였다. 반응 종료 후 물로 희석 후 중화하였다. 용매 제거 후 메탄올/아세톤을 이용하여 결정을 생성하였다. 에탄올을 이용하여 재결정하였다 (0.8 g, 25%)
LC-MS : m/z= 420.74[M+]
(9) [화학식 3]으로 표시되는 화합물의 합성
하기 [반응식 3-9]에 의하여 [화학식 3]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000027
상기 [반응식 3-3]로부터 합성한 [화학식 3-c] 로 표시되는 화합물 (1.0 g, 1.9 mmol)과 [반응식 8]로부터 합성한 [화학식 3-h]로 표시되는 화합물 (0.8 g, 1.9 mmol)을 에탄올 20 mL에 녹인 후 80 ℃에서 8 시간 교반하였다. 반응 종료 후 감압농축으로 용매를 제거하였다. 농축된 반응물을 클로로포름 50 mL에 녹인 후 50% 술퍼릭 에시드 1 mL을 적가하였다. 다이클로로메탄으로 희석하여 물로 추출하였다. 유기층 감압농축 후 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60 분 동안 10~100%까지 20 mL/min으로 정제하였다 (0.4 g, 51%)
LC-MS : m/z= 780.01[M+]
(10) [화학식 36; 화학식 3-NHS]로 표시되는 화합물의 합성
하기 반응식에 의하여 [화학식 3-NHS]로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000028
상기 [반응식 3-9]로 부터 얻은 [화학식 3]로 표시되는 화합물 (0.24 g, 0.5 mmol), N-하이드록시 숙신이미드 (0.03 g, 0.03 mmol), N,N-다이사이클로헥실 카보다이이미드 (0.054 g, 0.03 mmol) 를 N,N-다이메틸폼아이드 ( 1 ml)에 녹여서 1시간 상온교반하였다. 반응 종료 후 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/ 아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60분동안 10~100%까지 20ml/min으로 정제하였다. (0.15 g, 56.6 %)
합성예 4 [화학식 4]로 표시되는 화합물의 합성
Figure PCTKR2016007801-appb-I000029
Figure PCTKR2016007801-appb-I000030
(1) [화학식 4-a]로 표시되는 화합물의 합성
상기 [반응식 4-1]에 의하여 [화학식 4-a]로 표시되는 화합물을 합성하였다.
P-히드라지노벤젠술폰산 (p-hydrazinobenzenesulfonic acid) (20 g, 106mmol)과 3-메틸-2-부타논 (27.48 g, 319 mmol)을 이용하여 [반응식 1-2]와 같이 합성하였다.(11.1 g, 30%)
LC-MS : m/z= 277.02[M+]
(2) [화학식 4-b]로 표시되는 화합물의 합성
상기 [반응식 4-2]에 의하여 [화학식 4-b]로 표시되는 화합물을 합성하였다.
상기 [반응식 4-1]로부터 얻은 [화학식 4-a]로 표시되는 화합물을 [반응식 1-3]과 같이 합성하였다. (5.0 g, 34.0%)
LC-MS : m/z= 408.12[M+]
(3) [화학식 4-c]로 표시되는 화합물의 합성
상기 [반응식 4-3]에 의하여 [화학식 4-c]로 표시되는 화합물을 합성하였다.
3-메톡시-N-메틸아닐린 (10.0 g, 73.0 mmol)과 6-브로모헥사노익에시드 (17.1 g, 87.5 mmol), N,N-다이메틸포름아미드 100ml 환류 교반하였다. 반응 종료 후 컬럼 정제하였다. (13.6 g, 74.3%)
LC-MS : m/z= 252.15[M+]
(4) [화학식 4-d]로 표시되는 화합물의 합성
상기 [반응식 4-4]에 의하여 [화학식 4-d]로 표시되는 화합물을 합성하였다.
상기 [반응식 4-4]로부터 얻은 [화학식 4-d]로 표시되는 화합물을 이용하여 [반응식 3-7]과 같이 합성하였다. (5.1 g, 45.6 %)
LC-MS : m/z= 238.14[M+]
(5) [화학식 4-e]로 표시되는 화합물의 합성
상기 [반응식 4-5]에 의하여 [화학식 4-e]로 표시되는 화합물을 합성하였다.
상기 [반응식 4-5]로 부터 얻은 [화학식 4-e]로 표시되는 화합물을 이용하여 [반응식 1-6]과 같이 합성하였다. (2.0 g, 35.1 %)
LC-MS : m/z= 266.13[M+]
(6) [화학식 4-6]로 표시되는 화합물의 합성
상기 [반응식 4-6]에 의하여 [화학식 4-f]로 표시되는 화합물을 합성하였다.
상기 [반응식 4-2]로부터 합성한 [화학식 4-b]로 표시되는 화합물과 [반응식 4-5]로부터 합성한 [화학식 4-e]로 표시되는 화합물을 이용하여 [반응식 1-7]과 같이 합성하였다. (0.46 g, 23.5 %)
LC-MS : m/z= 525.20[M+]
(7) [화학식 4]로 표시되는 화합물의 합성
상기 [반응식 4-7]에 의하여 [화학식 4]로 표시되는 화합물을 합성하였다.
상기 [반응식 4-2]로부터 합성한 [화학식 4-b] 로 표시되는 화합물 (1.0g, 1.9 mmol)을 N,N-다이메틸포름아미드 1.0ml 에 녹인 후, 염화포스포닐 0.5ml을 첨가하여 가열한다. 2-아미노에탄-1,1-다이설포닉에시드 를 투입 상온 교반한다. 컬럼 정제하였다. (0.2 g, 15.2 %)
LC-MS : m/z= 696.14[M+]
합성예 5 : [화학식 5]로 표시되는 화합물의 합성
(1) [화학식 5-a]로 표시되는 화합물의 합성
Figure PCTKR2016007801-appb-I000031
상기 [반응식 5-1]에 의하여 [화학식 5-a]로 표시되는 화합물을 합성하였다. 7-메톡시-2,2-4-트리메틸-1,2-다이하이드로퀴놀린을 이용하여 [반응식4-3]과 같이 합성하였다. (15.0 g, 52.6%)
LC-MS : m/z= 318.20[M+]
(2) [화학식 5-b]로 표시되는 화합물의 합성
상기 [반응식 5-2]에 의하여 [화학식 5-b]로 표시되는 화합물을 합성하였다.
상기 [반응식 5-1]로부터 얻은 [화학식 5-a]로 표기되는 화합물을 이용하여 [반응식 3-5]와 같이 합성 하였다.(13.0 g, 65.0%)
LC-MS : m/z= 420.14[M+]
(3) [화학식 5-c]로 표시되는 화합물의 합성
상기 [반응식 5-3]에 의하여 [화학식 5-c]로 표시되는 화합물을 합성하였다.
상기 [반응식 5-2]로부터 얻은 [화학식 5-b]로 표시되는 화합물을 이용하여 [반응식 3-7]과 같이 합성하였다.(7.2 g, 56.0%)
LC-MS : m/z= 406.12[M+]
(4) [화학식 5-d]로 표시되는 화합물의 합성
상기 [반응식 5-4]에 의하여 [화학식 5-d]로 표시되는 화합물을 합성하였다.
상기 [반응식 5-3]로 부터 얻은 [화학식 5-c]로 표시되는 화합물을 이용하여 [반응식 3-8]과 같이 합성하였다.(2.5 g, 30%)
LC-MS : m/z= 434.12[M+]
(5) [화학식 5]로 표시되는 화합물의 합성
상기 [반응식 5-5]에 의하여 [화학식 5]로 표시되는 화합물을 합성하였다.
상기 [반응식 4-2]로부터 합성한 [화학식 4-b]로 표시되는 화합물 과 [반응식 5-4]로부터 합성한 [화학식 5-d]로 표시되는 화합물을 사용하여 [반응식 4-6]과 같이 합성 진행하였다.(0.51 g, 32.0%)
LC-MS : m/z= 693.18[M+]
합성예 6 [화학식 6]으로 표시되는 화합물의 합성
Figure PCTKR2016007801-appb-I000032
Figure PCTKR2016007801-appb-I000033
(1) [화학식 6-a]로 표시되는 화합물의 합성
상기 [반응식 6-1]에 의하여 [화학식 6-a]로 표시되는 화합물을 합성하였다. 2,3,3-트리에틸인돌레닌을 이용하여 [반응식 1-3]과 같이 합성하였다. (10.0 g, 62.5%)
LC-MS : m/z= 261.16[M+]
(2) [화학식 6-b]로 표시되는 화합물의 합성
상기 [반응식 6-2]에 의하여 [화학식 6-b]로 표시되는 화합물을 합성하였다. m-아니시딘을 이용하여 [반응식 4-3]과 같이 합성하였다.(8.1 g, 42.1%)
LC-MS : m/z= 238.14[M+]
(3) [화학식 6-c]로 표시되는 화합물의 합성
상기 [반응식 6-3]에 의하여 [화학식 6-c]로 표시되는 화합물을 합성하였다.
상기 [반응식 6-2]로부터 합성한 [화학식 6-b] 로 표시되는 화합물 (5.0g, 21.0 mmol)과 1-클로로-3-메틸-2-부탄 (5.2 g, 25.3 mmol) ,포타슘카보네이트 (3.5 g, 25.3mol), 아세토나이트릴25.0 ml 환류 교반하였다. 반응 종료 후 컬럼 정제하였다.(4.0 g, 62.0%)
LC-MS : m/z= 306.20[M+]
(4) [화학식 6-d]로 표시되는 화합물의 합성
상기 [반응식 6-4]에 의하여 [화학식 6-d]로 표시되는 화합물을 합성하였다.
상기 [반응식 6-3]로부터 합성한 [화학식 6-c] 로 표시되는 화합물 (4.0g, 13.1 mmol)과 메탄설포닉에시드 4.0 ml를 넣고 환류 교반하였다. 반응 종료 후 중화하여 추출하였다. 컬럼 정제하였다.(3.0 g, 75.2%)
LC-MS : m/z= 306.20[M+]
(5) [화학식 6-e]로 표시되는 화합물의 합성
상기 [반응식 6-4]에 의하여 [화학식 6-e]로 표시되는 화합물을 합성하였다.
상기 [반응식 6-4]로부터 합성한 [화학식 6-d] 로 표시되는 화합물을 이용하여 [반응식 3-7]과 같이 합성하였다. (2.5 g, 87.3%)
LC-MS : m/z= 292.18[M+]
(6) [화학식 6-f]로 표시되는 화합물의 합성
상기 [반응식 6-5]에 의하여 [화학식 6-f] 및 [화학식 6-g]로 표시되는 화합물을 합성하였다.
상기 [반응식 6-4]로부터 합성한 화합물을 이용하여 [반응식 3-8]과 같이 합성하였다. [화학식 6-f] (0.84 g, 31.8%), [화학식 6-g] (0.56 g, 21.2%)
LC-MS : m/z= 320.4[M+]
(7) [화학식 6]으로 표시되는 화합물의 합성
상기 [반응식 6-6]에 의하여 [화학식 6]로 표시되는 화합물을 합성하였다.
상기 [반응식 6-1]로부터 합성한 [화학식 6-a] 로 표시되는 화합물과 [반응식 6-5]로부터 합성한 [화학식 6-f]로 표시되는 화합물을 이용하여 [반응식 1-7]과 같이 합성 진행하였다.(0.35 g, 32.0 %)
LC-MS : m/z= 500.30[M+]
합성예 7 [화학식 7]로 표시되는 화합물의 합성
(1) [화학식 7]로 표시되는 화합물의 합성
상기 [반응식 6-6]에 의하여 [화학식 7]로 표시되는 화합물을 합성하였다.
상기 [반응식 6-1]로부터 합성한 [화학식 6-a] 로 표시되는 화합물과 [반응식 6-5]로부터 합성한 [화학식 6-g]로 표시되는 화합물을 이용하여 [반응식 1-7]과 같이 합성 진행하였다.(0.24 g, 35.0 %)
LC-MS : m/z= 500.30[M+]
합성예 8 : [화학식 44]로 표시되는 화합물의 합성
(1) [화학식 8-a]로 표시되는 화합물의 합성
하기 [반응식 8-1]에 의하여 [화학식 8-a]로 표시되는 화합물을 합성하였다.
[반응식 8-1]
Figure PCTKR2016007801-appb-I000034
[화학식 8-a]
에틸 2-메틸아세테토아세테이트(Ethyl 2-methylacetoactate) (23.5 g, 163 mmol)와 애틸 6-브로모헥사노네이트(ethyl 6-bromohexanoate) (40.0 g, 179 mmol)를 에탄올 200 ml에 넣고, 교반하였다. 액체 소디움에옥사이드를 적가하였다. 80 ℃에서 10시간 교반하였다. 반응 종료 후 고체 필터하고 필터 된 용액을 감압증류하였다. 다이클로로메탄과 2 N 염산 수용액으로 추출하였다. 유기층 건조 된 소디움술페이트처리 후 필터하여 감압증류하였다(47.7 g). 용매가 제거되면 수용액 300 ml를 첨가하여 10시간 환류교반하였다. 반응 종료 후 다이클로로메탄으로 추출 후 소디움술페이트 처리하여 필터하고 감압증류하였다(25g, 71%).
1H NMR (400MHz, CDCl3): δ= 10.85(1H, s), 2.52(1H, m), 2.36(2H, m) 2.30(3H, s), 1.65(4H, m), 1.35(4H, m), 1.09(3H, d)
(2) [화학식 8-b]로 표시되는 화합물의 합성
하기 [반응식 8-2]에 의하여 [화학식 8-b]로 표시되는 화합물을 합성하였다.
[반응식 8-2]
Figure PCTKR2016007801-appb-I000035
[화학식 8-b]
페닐하이드라진 하이드로클로라이드(phenylhydrazine hydrochloride) (8.6 g, 75mmol)과 [화학식 8-a]로 표시되는 화합물 (42 g, 225 mmol)을 에탄올 86ml에 넣고 염산 21.5 ml를 가한 후, 12시간 동안 환류 교반하였다. 상온으로 냉각시키고, 에틸 아세테이트 50ml를 첨가하고 생성된 고체를 여과하였다, 에틸아세테이트로 세정 후 감압 건조하였다. 다이클로로메탄과 2 N 수산화나트륨 수용액으로 추출한다. 유기층을 감압 건조하고 실리카 컬럼정제 하였다(8.5g, 40%).
1H NMR (400MHz, CDCl3): δ= 7.92(1H, q), 7.51(2H, m), 7.42(1H, q), 4.09(2H, q), 2.82(3H, s), 2.18(2H, t), 2.12(2H, m), 1.97(2H, m), 1.49(3H, s), 1.46(2H, m), 1.26(2H, m), 1.23(3H, t), 0.73(2H, m).
(3) [화학식 8-c]로 표시되는 화합물의 합성
하기 [반응식 8-3]에 의하여 [화학식 8-c]로 표시되는 화합물을 합성하였다.
[반응식 8-3]
Figure PCTKR2016007801-appb-I000036
[화학식 8-c]
상기 [반응식 8-2]로부터 얻은 [화학식 8-b]로 표시되는 화합물 8g(28 mmol)을 상온, 질소 기류하에서 에탄올 400 ml과 함께 교반하고, 48% 염산 수용액(80 ml)을 적가하였다. 1 시간 후 반응액을 감압증류하였다. 감압증류된 반응기에 아세토니트릴(320 ml), 아세틱에시드(8 ml)와 아크롤레닌 다이에틸 아세탈 (65.72 g, 505 mmol)을 첨가하였다. 70 ℃에서 2 시간 반응하였다. 반응액을 감압증류하고 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60 분 동안 10~100%까지 20 ml/min으로 정제하였다.
(4) [화학식 8-d]로 표시되는 화합물의 합성
하기 [반응식 8-4]에 의하여 [화학식 8-d]로 표시되는 화합물을 합성하였다.
[반응식 8-4]
Figure PCTKR2016007801-appb-I000037
[화학식 8-d]
상기 [반응식 8-3]로부터 얻은 [화학식 8-c]로 표시되는 화합물 2g(4.7mmol)과 2,4-다이하이드록시 벤즈알데하이드 0.58g(4.7mmol)을 에탄올 20ml에 넣고 3h 동안 환류, 교반하였다. 상온으로 냉각하여 감압증류 후 실리카컬럼정제하였다. 정제한 물질에 클로로포름 10ml와 50% 황산 수용액 1ml를 넣고 상온에서 20분 교반한다. 2노르말 수산화나트륨 용액을 사용하여 pH를 7-8로 맞추고 메틸렌클로라이드로 추출하였다. 감압증류 후 실리카컬럼정제한다. (0.3g, 15%)
(5) [화학식 44]로 표시되는 화합물의 합성
하기 [반응식 8-5]에 의하여 [화학식 44]로 표시되는 화합물을 합성하였다.
[반응식 8-5]
Figure PCTKR2016007801-appb-I000038
[화학식 44]
상기 [반응식 8-4]로부터 얻은 [화학식 8-d]로 표시되는 화합물 0.3g(0.67mmol)을 아세토 나이트릴 1.3ml에 넣고 6노르말 염산용액 1.3ml를 첨가하여 12h 동안 교반한다. 2노르말 수산화나트륨 용액으로 pH 7-8로 맞추고 반응액을 감압증류하고 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/ 아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 정제하였다. (90mg, 32%)
1H NMR (400MHz, MeOD): δ= 8.28(1H, s), 7.68(2H, m), 7.61(2H, m), 7.48(1H, d), 6.58(1H, d), 6.40(1H, s), 5.42(1H, m), 6.70(1H, m), 4.30(1H, m), 2.87(1H, m), 2.54(1H, m), 2.14(2H, m), 1.80(2H, m), 1.29(3H, s), 0-3(6H, m)
합성예 9 : [화학식 45]로 표시되는 화합물의 합성
(1) [화학식 9-a]로 표시되는 화합물의 합성
하기 [반응식 9-1]에 의하여 상기 [반응식 8-2]와 유사한 방법으로 [화학식 9-a]로 표시되는 화합물을 합성하였다.
[반응식 9-1]
Figure PCTKR2016007801-appb-I000039
[화학식 9-a]
1H NMR (400MHz, CDCl3): δ= 7.92(2H, dd), 7.81(1H, d), 7.76(1H, d), 7.49(1H, t), 7.39(1H, t), 4.01(2H, q), 2.38(1H, m) 2.32(3H, s), 2.04(2H, t), 1.97(1H, m), 1.47(3H, s), 1.35(2H, m), 1.16(3H, t), 1.07(2H, m), 0.58(1H, m), 0.39(1H, m)
(2) [화학식 9-b]로 표시되는 화합물의 합성
하기 [반응식 9-2]에 의하여 [화학식 9-b]로 표시되는 화합물을 합성하였다.
[반응식 9-2]
Figure PCTKR2016007801-appb-I000040
[화학식 9-b]
상기 [반응식 9-1]로부터 얻은 [화학식 9-a]로 표시되는 화합물 10g(30mmol)과 황산용액 5ml을 넣고 180 ℃에서 가열 교반하였다. 두 시간 후 상온으로 냉각하고 얼음에 반응액을 부어준다. 50% 수산화나트륨 용액 5ml를 천천히 적가하였다. 상온에서 24시간 동안 교반 후, 생성된 침전물은 필터하고 여액에 포화 소듐설페이트 수용액 5ml를 첨가한다. 생선 된 침전물을 필터하고 고체를 물에서 두번 재결정한다. 얻어진 고체를 진공건조 하였다. (8g, 60%)
(3) [화학식 9-c]로 표시되는 화합물의 합성
하기 [반응식 9-3]에 의하여 상기 [반응식 8-3]과 유사한 방법으로 [화학식 9-c]로 표시되는 화합물을 합성하였다.
[반응식 9-3]
Figure PCTKR2016007801-appb-I000041
[화학식 9-c]
(4) [화학식 9-d]으로 표시되는 화합물의 합성
하기 [반응식 9-4]에 의하여 상기 [반응식 8-4]와 유사한 방법으로 [화학식 9-d]으로 표시되는 화합물을 합성하였다.
[반응식 9-4]
Figure PCTKR2016007801-appb-I000042
[화학식 9-d]
(5) [화학식 45]로 표시되는 화합물의 합성
하기 [반응식 9-5]에 의하여 [화학식 45]로 표시되는 화합물을 합성하였다.
[반응식 9-5]
Figure PCTKR2016007801-appb-I000043
[화학식 45]
상기 [반응식 9-4]로부터 얻은 [화학식 9-d]로 표시되는 화합물 0.3g(30mmol)과 황산용액 1ml을 넣고 40 ℃에서 가열 교반하였다. 두 시간 후 상온으로 냉각하고 얼음에 반응액을 부어준다. 50% 수산화나트륨 용액을 천천히 적가하여 중성을 맞춘다. HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/ 아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60분동안 10~100%까지 20ml/min으로 정제하였다.
1H NMR (400MHz, MeOD): δ= 8.13(2H, m), 7.97(3h, m), 7.72(2H, m), 5.48(1H, m), 4.65(1H, m) 4.43(1H, m), 2.98(1H, m), 2.61(1H, m), 2.44(1H, m), 2.24(1H, m), 1.77(3H, d), 1.70(2H, m), 0.85(4H, m) 0.46(1H, m), -0.01(1H, m)
합성예 10 [화학식 46]으로 표시되는 화합물의 합성
하기 반응식에 의하여 [화학식 46]으로 표시되는 화합물을 합성하였다.
Figure PCTKR2016007801-appb-I000044
[화학식 44] [화학식 46]
상기 [반응식 8-5]로 부터 얻은 [화학식 44]로 표시되는 화합물 (0.5 g, 0.138 mmol), N-하이드록시 숙신이미드 (0.08 g, 0.069 mmol), N,N-다이사이클로헥실 카보다이이미드 (0.142 g, 0.069 mmol) 를 N,N-다이메틸폼아이드 (1 ml)에 녹여서 1시간 상온교반하였다. 반응 종료 후 HPLC Rainin Dynamax C18, 8 μm 컬럼, 물/ 아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60분동안 10~100%까지 20ml/min으로 정제하였다. (0.38 g, 60.0 %)
합성예 11 : [화학식 47]로 표시되는 화합물의 합성
(1) [화학식 11-a]로 표시되는 화합물의 합성
하기 [반응식 11-1]에 의하여 상기 [반응식 8-3]과 유사한 방법으로 [화학식 11-a]로 표시되는 화합물을 합성하였다.
[반응식 11-1]
Figure PCTKR2016007801-appb-I000045
[화학식 11-a]
(2) [화학식 11-b]로 표시되는 화합물의 합성
하기 [반응식 11-2]에 의하여 상기 [반응식 8-4]과 유사한 방법으로 [화학식 11-b]로 표시되는 화합물을 합성하였다.
[반응식 11-2]
Figure PCTKR2016007801-appb-I000046
[화학식 11-b]
1H NMR (400MHz, MeOD): δ= 7.90(1H, s), 7.45(2H, m), 7.25(2H, m), 7.00(1H, d), 6.31(1H, d), 5.15(1H, m), 4.36(1H, m), 3.92(1H, m), 2.78(1H, m), 2.41(1H, m), 1.73(6H, d)
(3) [화학식 47]로 표시되는 화합물의 합성
하기 [반응식 11-3]에 의하여 [화학식 47]로 표시되는 화합물을 합성하였다.
[반응식 11-3]
Figure PCTKR2016007801-appb-I000047
[화학식 47]
상기 [반응식 11-2]로부터 얻은 [화학식 11-b]로 표시되는 화합물 0.3g(1mmole)을 50 ℃, 질소 기류하에서 수산화 칼륨 0.1g(2mmole), 에탄올 3ml와 함께 30분 동안 가열 교반한다. 5-아이오도펜탄오익 에씨드 에틸 에스터 0.3g(1mmole)를 첨가하고 3시간 동안 환류 교반한다. 반응 종료 후 감압 농축한다. HPLC Rainin Dynamax C18, 8 ㎛ 컬럼, 물/ 아세토니트릴(0.1% 트리플루오로아세틱 에시드)의 전개액으로 60 분동안 10~100%까지 20 mL/min으로 정제하였다.
M+=448.2, 1H NMR (400MHz, D2O): δ= 8.28(1H, s), 7.55-7.80(4H, m), 7.31(1H, s), 6.60(1H, s), 5.51(1H, s), 4.74(1H, m), 4.08(1H, m), 2.94(1H, m), 2.66(1H, m), 1.82(6H, d), 1-4.5(10H, m)
합성예 12 : [화학식 48]로 표시되는 화합물의 합성
(1) [화학식 12-a]로 표시되는 화합물의 합성
하기 [반응식 12-1]에 의하여 상기 [반응식 8-3]과 유사한 방법으로 [화학식 12-a]로 표시되는 화합물을 합성하였다.
[반응식 12-1]
Figure PCTKR2016007801-appb-I000048
[화학식 12-a]
(2) [화학식 48]로 표시되는 화합물의 합성
하기 [반응식 12-2]에 의하여 상기 [반응식 8-4]와 유사한 방법으로 [화학식 48]으로 표시되는 화합물을 합성하였다.
[반응식 12-2]
Figure PCTKR2016007801-appb-I000049
[화학식 48]
1H NMR (400MHz, MeOD): δ= 7.40(1H, s), 8.37(1H, d), 8.20(1H, d), 8.13(1H, d), 7.84(1H, d),7.77(1H, t), 7.67(1H, t), 7.49(1H, dd), 6.59(1H, dt), 6.41(1H,s), 5.46(1H, m),4.82(1H, m), 4.42(1H, m), 2.92(1H, m), 2.60(1H, m), 2.10(2H, m), 2.01(2H, t), 1.29(3H, s), 1.33(2H, m), 1.11(2H, m), 0.84(1H, m), 0.43(1H, m)
합성예 13 : [화학식 49]로 표시되는 화합물의 합성
(1) [화학식 49]로 표시되는 화합물의 합성
하기 [반응식 13-1]에 의하여 상기 [반응식 8-4]와 유사한 방법으로 [화학식 49]로 표시되는 화합물을 합성하였다.
[반응식 13-1]
Figure PCTKR2016007801-appb-I000050
[화학식 49]
1H NMR (400MHz, MeOD): δ= 8.39(1H, s), 8.33(1H, d), 8.17(1H, dd), 8.09(1H, d), 7.83(1H, dd), 7.74(1H, t), 7.64(1H, t), 7.54(1H, dd), 6.70(1H, dt), 6.56(1H, m), 5.46(1H, m), 4.84(1H, m), 4.41(1H, m), 3.86(3H, s), 3.70(1H, m), 2.90(2H, m), 2.63(3H, m), 1.94(2H, t), 1.25(3H, s), 1.07(2H, t), 0.80(1H, m), 0.40(1H, m)
합성예 14 : [화학식 50]으로 표시되는 화합물의 합성
(1) [화학식 50]으로 표시되는 화합물의 합성
하기 [반응식 14-1]에 의하여 상기 [반응식 9-5]와 유사한 방법으로 [화학식 50]으로 표시되는 화합물을 합성하였다.
[반응식 14-1]
Figure PCTKR2016007801-appb-I000051
[화학식 50]
1H NMR (400MHz, DMSO): δ= 8.62(1H, s), 8.40(1H, m), 8.31(1H, m), 8.37(1H, d), 7.99(1H, dd), 7.92(1H, d), 8.05(1H, s), 6.43(1H, s), 5.48(1H, m), 4.84(1H, m), 4.42(1H, m), 2.80(5H, m), 2.58(1H, m), 1.98(3H, s), 1.95(2H, t), 1.20(1H, m), 1.04(1H, m), 0.76(1H, m), 0.25(1H, m)
합성예 15 : [화학식 51]로 표시되는 화합물의 합성
(1) [화학식 15-a]으로 표시되는 화합물의 합성
하기 [반응식 15-1]에 의하여 상기 [반응식 8-4]와 유사한 방법으로 [화학식 15-a]으로 표시되는 화합물을 합성하였다.
[반응식 15-1]
Figure PCTKR2016007801-appb-I000052
[화학식 15-a]
1H NMR (400MHz, CDCl3): δ= 10.15(1H, s), 7.80(1H, s), 7.66(1H, s), 7.36(2H, m), 7.28(1H, d), 7.12(1H, d), 5.97(1H, s), 5.12(1H, m), 4.25(1H, m), 3.93(1H, m), 2.73(1H, m), 2.33(1H, m), 1.68(3H, s), 1.63(3H, s)
(2) [화학식 15-b]으로 표시되는 화합물의 합성
하기 [반응식 15-2]에 의하여 [화학식 15-b]로 표시되는 화합물을 합성하였다.
[반응식 15-2]
Figure PCTKR2016007801-appb-I000053
[화학식 15-b]
4-아미노벤조익 에씨드 5g(36mmole)과 포타슘 사이오시아네이트 19.03g(195mmole)을 아세틱 에씨드 70ml에 넣고 50분 동안 상온 교반한다. 0 ℃에서 브롬 2.06ml(40mmole)를 천천히 적가한다. 상온에서 24시간 교반한다. 물 200ml에 반응액을 첨가하여 70-80 ℃에서 1.5시간 가열 교반한다. 감압여과하고 여과액을 0 ℃에서 암모늄용액을 첨가하여 pH를 6으로 맞추고 감압 여과하여 고체를 건조한다.
(3) [화학식 15-c]으로 표시되는 화합물의 합성
하기 [반응식 15-3]에 의하여 [화학식 15-c]로 표시되는 화합물을 합성하였다.
[반응식 15-3]
Figure PCTKR2016007801-appb-I000054
[화학식 15-c]
수산화 칼륨 20g을 물 60ml에 넣고 30분동안 상온 교반한다. 상기 [반응식 15-2]로부터 얻은 [화학식 15-b]로 표시되는 화합물 9.4g를 첨가하고 빛을 차단한 상태로 120 ℃에서 24 시간 환류 교반한다. 염산을 첨가하여 pH를 4로 맞추고 여과한다. 물로 여러 번 씻어준다. 고체를 건조한다.
(4) [화학식 51]으로 표시되는 화합물의 합성
하기 [반응식 15-4]에 의하여 [화학식 51]로 표시되는 화합물을 합성하였다.
[반응식 15-4]
Figure PCTKR2016007801-appb-I000055
[화학식 51]
상기 [반응식 15-1]로부터 얻은 [화학식 15-a]로 표시되는 화합물 0.2g(0.58mmole)과 [반응식 15-3]로부터 얻은 [화학식 15-c]로 표시되는 화합물 0.69g(0.69mmole), p-톨루엔 설포닉 에씨드 0.011g(0.058mmole)을 다이메틸포름아마이드에 넣고 80-90 ℃에서 24시간 가열 교반한다. 반응이 끝나면 물을 첨가하여 감압 여과한다. 물로 여러 번 씻어주고 건조한다.
1H NMR (400MHz, DMSO): δ= 12.85(1H, s), 8.78(1H, s), 8.74(1H, s), 8.04(1H, m), 7.80(1H, q), 7.57(1H, m), 7.44(1H, d), 7.08(1H, d), 6.59(1H, s), 5.44(1H, q), 4.68(1H, q), 4.23(1H, m), 2.78(1H, m), 2.26(1H, m), 1.78(6H, d).
합성예 16 : [화학식 52]로 표시되는 화합물의 합성
(1) [화학식 16-a]으로 표시되는 화합물의 합성
하기 [반응식 16-1]에 의하여 [화학식 16-a]로 표시되는 화합물을 합성하였다.
[반응식 16-1]
Figure PCTKR2016007801-appb-I000056
[화학식 16-a]
4-아미노페닐 아세틱 에씨드 15.1g(0.1mole)과 탄산나트륨 10.5g(0.1mol)을 물 120ml에 넣고 10분동안 교반한다. 소듐 나이트릴 6.9g(0.1mole)을 물 30ml에 녹여 0 ℃에서 반응액에 천천히 적가한다. 발열과 거품이 생성된다. 10분 동안 교반 후 염산 140ml를 천천히 적가 하고 30분 동안 교반한다. 틴 클로라이드 디하이드레이트 45.1g(0.2mole)를 염산에 녹여 천천히 적가하고 상온에서 교반한다. 반응이 종료되면 감압여과하여 차가운 물과 에탄올로 씻어준다. (22g)
(2) [화학식 16-b]으로 표시되는 화합물의 합성
하기 [반응식 16-2]에 의하여 [화학식 16-b]로 표시되는 화합물을 합성하였다.
[반응식 16-2]
Figure PCTKR2016007801-appb-I000057
[화학식 16-b]
상기 [반응식 15-1]로부터 얻은 [화학식 15-a]로 표시되는 화합물 22g(0.132mole)을 아세틱 에씨드 220ml에 넣고 교반한다. 3-메틸-2-부탄온 27.4g(0.318mole)을 첨가하고 30분동안 상온 교반하다. 환류교반하여 반응액이 모두 녹으면 상온으로 냉각하고 메틸렌클로라이드와 물을 이용하여 추출한다. 감압 농축 후 건조하였다.(갈색 고체 10g)
(3) [화학식 16-c]으로 표시되는 화합물의 합성
하기 [반응식 16-3]에 의하여 [화학식 16-c]로 표시되는 화합물을 합성하였다.
[반응식 16-3]
Figure PCTKR2016007801-appb-I000058
[화학식 16-c]
에탄올 100ml를 0 ℃로 냉각하고 염화티오닐 7ml를 천천히 적가하고 10분동안 교반한다. 상기 [반응식 15-1]로부터 얻은 [화학식 15-a]로 표시되는 화합물 10g(0.05mole)을 에탄올에 녹여 천천히 적가하고 상온에서 교반한다. 감압농축후 건조하였다. (보라색 액상 13g)
(4) [화학식 16-d]으로 표시되는 화합물의 합성
하기 [반응식 16-4]에 의하여 상기 [반응식 8-3]과 유사한 방법으로 [화학식 16-d]로 표시되는 화합물을 합성하였다.
[반응식 16-4]
Figure PCTKR2016007801-appb-I000059
[화학식 16-d]
(4) [화학식 16-e]로 표시되는 화합물의 합성
하기 [반응식 16-5]에 의하여 상기 [반응식 8-4]과 유사한 방법으로 [화학식 16-e]로 표시되는 화합물을 합성하였다.
[반응식 16-5]
Figure PCTKR2016007801-appb-I000060
[화학식 16-e]
(5) [화학식 52]로 표시되는 화합물의 합성
하기 [반응식 16-6]에 의하여 [화학식 52]로 표시되는 화합물을 합성하였다.
[반응식 16-6]
Figure PCTKR2016007801-appb-I000061
[화학식 52]
상기 [반응식 16-5]로부터 얻은 [화학식 16-e]로 표시되는 화합물 0.6g(1mmole)을 메탄올, 테트라하이드로퓨란, 물이 각각 11ml씩 혼합되어있는 용매에 넣고 교반하였다. 리튬 하이드록사이드 모노하이드레이트 3.8g(9mmole)를 첨가하고 24시간동안 교반하였다. 1N 염산수용액을 사용하여 pH4 이하로 맞추고 메틸렌클로라이드로 추출하였다. 감압증류 후 실리카 컬럼으로 정제한다. (0.5g)
합성예 17 : [화학식 53]으로 표시되는 화합물의 합성
(1) [화학식 17-a]으로 표시되는 화합물의 합성
하기 [반응식 17-1]에 의하여 상기 [반응식 16-3]와 유사한 방법으로 [화학식 17-a]으로 표시되는 화합물을 합성하였다.
[반응식 17-1]
Figure PCTKR2016007801-appb-I000062
[화학식 17-a]
(2) [화학식 17-b]으로 표시되는 화합물의 합성
하기 [반응식 17-2]에 의하여 [화학식 17-b]로 표시되는 화합물을 합성하였다.
[반응식 17-2]
Figure PCTKR2016007801-appb-I000063
[화학식 17-b]
염화 포스포릴 4.01ml(26mmole)에 디메톡시포름아미드 4.78ml(65.4mmole)을 천천히 적하하고 상온에서 2시간 동안 교반한다. 상기 [반응식 17-1]로부터 얻은 [화학식 17-a]로 표시되는 화합물 5g(24mmole)를 디메톡시포름아미드 12.5ml에 녹여 반응액에 천천히 적가한고 24시간 교반하다. 반응액을 과량의 물에 천천히 적가하다. 석출된 고체를 감압여과하고 실리카 컬럼으로 정제한다.
(3) [화학식 17-c]으로 표시되는 화합물의 합성
하기 [반응식 17-3]에 의하여 [화학식 17-c]로 표시되는 화합물을 합성하였다.
[반응식 17-3]
Figure PCTKR2016007801-appb-I000064
[화학식 17-c]
상기 [반응식 17-2]로부터 얻은 [화학식 17-b]로 표시되는 화합물 8g(34mmole)을 다이클로로 메탄 200ml에 넣고 교반한다. 알루미늄클로라이드 13.44g(101mmole)를 천천히 적가하고 40 ℃에서 24시간 가열 교반한다. 상온 냉각 후 6N 염산 수용액 100ml를 적가하고 추출한다. 실리카 컬럼으로 정제한다. (4.3g, 59%)
(4) [화학식 17-d]으로 표시되는 화합물의 합성
하기 [반응식 17-4]에 의하여 상기 [반응식 16-6]과 유사한 방법으로 [화학식 17-d]로 표시되는 화합물을 합성하였다.
[반응식 17-4]
Figure PCTKR2016007801-appb-I000065
[화학식 17-d]
(5) [화학식 17-e]로 표시되는 화합물의 합성
하기 [반응식 17-5]에 의하여 상기 [반응식 9-3]과 유사한 방법으로 [화학식 17-e]로 표시되는 화합물을 합성하였다.
[반응식 17-5]
Figure PCTKR2016007801-appb-I000066
[화학식 17-e]
(6) [화학식 17-f]으로 표시되는 화합물의 합성
하기 [반응식 17-6]에 의하여 상기 [반응식 9-4]와 유사한 방법으로 [화학식 17-f]로 표시되는 화합물을 합성하였다.
[반응식 17-6]
Figure PCTKR2016007801-appb-I000067
[화학식 17-f]
(7) [화학식 53]으로 표시되는 화합물의 합성
하기 [반응식 17-7]에 의하여 상기 [반응식 8-4]와 유사한 방법으로 [화학식 53]으로 표시되는 화합물을 합성하였다.
[반응식 17-7]
Figure PCTKR2016007801-appb-I000068
[화학식 53]
합성예 18 : [화학식 97]로 표시되는 화합물의 합성
(1) [화학식 18-a]으로 표시되는 화합물의 합성
하기 [반응식 18-1]에 의하여 [화학식 18-a]로 표시되는 화합물을 합성하였다.
[반응식 18-1]
Figure PCTKR2016007801-appb-I000069
[화학식 18-a]
2-(2-브로모에틸)-1,3-다이옥소란(22 mL, 0.188 mol)과 포타슘 아이오다이드(63 g, 0.376 mol)를 아세토니트릴 300 ml에 넣고 50 ℃에서 1시간 교반하고, 2,3,3-트리에틸인돌레닌(30 g, 0.188 mol)를 적가한 후, 12시간 동안 환류 교반하였다. 냉각 후 고체를 필터하고 필터 된 용액을 감압 증류하여 실리카 컬럼정제하였다. (25 g, 34%)
(2) 하기 [반응식 18-2]에 의하여 [화학식 97]로 표시되는 화합물을 합성하였다.
[반응식 18-2]
Figure PCTKR2016007801-appb-I000070
[화학식 18-a] [화학식 97]
상기 [반응식 18-1]로부터 얻은 [화학식 18-a]로 표시되는 화합물(5 g, 1.3 mmol)과 2,4-다이하이드록시 벤즈알데하이드(1.8 g, 1.3 mmol)을 에탄올 10ml에 넣고 3시간 동안 환류 교반하였다. 상온으로 냉각하여 감압증류 후 실리카 컬럼정제하였다. 정제한 물질에 클로로포름 500 ml와 50% 황산 수용액 100 ml를 넣고 상온에서 20분 교반한다. 2노르말 수산화나트륨 용액을 사용하여 pH를 7-8로 맞추고 메틸렌클로라이드로 추출하였다. 감압증류 후 실리카컬럼정제한다.
합성예 19 : [화학식 98]로 표시되는 화합물의 합성
하기 [반응식 18-3]에 의하여 [화학식 98]로 표시되는 화합물을 합성하였다.
[반응식 18-3]
Figure PCTKR2016007801-appb-I000071
[화학식 18-a] [화학식 98]
상기 [반응식 18-1]로부터 얻은 [화학식 18-a]로 표시되는 화합물(1 g, 4 mmol)과 4-다이메틸아미노 살리실알데하이드(0.7 g, 4 mmol)을 에탄올 10ml에 넣고 2시간 동안 환류 교반하였다. 상온으로 냉각하여 감압증류 후 실리카 컬럼정제하였다. 정제한 물질에 클로로포름 100ml와 50% 황산 수용액 10 ml를 넣고 상온에서 20분 교반한다. 2노르말 수산화나트륨 용액을 사용하여 pH를 7-8로 맞추고 메틸렌클로라이드로 추출하였다. 감압증류 후 실리카컬럼정제한다.
합성예 20 : [화학식 105]로 표시되는 화합물의 합성
(1) Chem. Eur. J. 2012, 18, 16196 - 16202에 공지된 합성방법에 따라 하기 [반응식 20-1]에 의하여 [화학식 20-a]로 표시되는 화합물을 합성하였다.
[반응식 20-1]
Figure PCTKR2016007801-appb-I000072
[화학식 20-a]
(2) Chem. Eur. J. 2010, 16, 158 - 166에 공지된 합성방법에 따라 하기 [반응식 20-2]에 의하여 [화학식 20-b]로 표시되는 화합물을 합성하였다.
[반응식 20-2]
Figure PCTKR2016007801-appb-I000073
[화학식 20-b]
(3) Chem. Eur. J. 2010, 16, 158 - 166에 공지된 합성방법에 따라 하기 [반응식 20-3]에 의하여 [화학식 20-c]로 표시되는 화합물을 합성하였다.
[반응식 20-3]
Figure PCTKR2016007801-appb-I000074
[화학식 20-c]
(4) 하기 [반응식 20-4]에 의하여 [화학식 20-d]로 표시되는 화합물을 합성하였다.
[반응식 20-4]
Figure PCTKR2016007801-appb-I000075
[화학식 20-d]
반응기에 엔-디메틸포름아마이드를 담고 0 ℃로 냉각한 뒤 포스포러스옥시클로라이드를 적가하였다. 10분간 교반하고 [화학식 4-c]를 엔-디메틸포름아마이드에 희석하여 적가하였다. 50 ℃에서 12시간 반응 후 상온냉각하였다. 반응물을 얼음물에 붓고 1M 소듐하이드록사이드 수용액으로 중화한 뒤 에틸아세테이트로 추출하였다. 용액을 감압농축 하고 실리카 컬럼 정제하였다.
(5) 하기 [반응식 20-5]에 의하여 [화학식 105]로 표시되는 화합물을 합성하였다.
[반응식 8]
Figure PCTKR2016007801-appb-I000076
[화학식 20-a] [화학식 20-d] [화학식 105]
반응기에 [화학식 20-a](3 g, 0.0115 mol)와 에탄올 30 ml를 담고 40 ℃에서 교반하였다. [화학식 4-d](2.88 g, 0.0112 mol)를 에탄올에 희석하여 반응물에 담고 12시간동안 환류교반하였다. 상온냉각하고 감압농축하였다. 반응물을 클로로포름 300 ml에 희석한 뒤 50% 황산수용액 30 ml를 상온에서 적가하고 2시간동안 반응하였다. 1M 소듐하드록사이드 수용액으로 중성화하고 메틸렌클로라이드로 추출하였다. 감압농축 후 컬럼정제하였다. (0.8 g, 16%)
실험예 1
본 발명에 따른 [화학식 1] 내지 [화학식 7]의 화합물에 대해서 흡수 스펙트럼(λabs), 발광 스펙트럼(λem), 몰흡광계수(ε) 및 양자효율을 측정하여 하기 [표 1]에 나타내었다.
[비교 화합물]
Figure PCTKR2016007801-appb-I000077
구분 용매 λabs(nm) λem(nm) ε(M-1cm-1) Q.Y.
비교화합물 548 562 150,000 0.04
화학식 1 DMSO 584 617 66,000 0.91
화학식 2 DMSO 597 623 71,500 0.94
화학식 3 DMSO 595 624 64,000 0.87
화학식 4 DMSO 584 614 76,000 0.81
화학식 5 DMSO 617 659 65,000 0.56
화학식 6 DMSO 579 612 12,800 0.72
화학식 7 DMSO 584 615 60,000 1.00
실험예 2
Alexa Fluor® 568 (ThermoFisher사 제조)과 본 발명에 따른 [화학식 1] 화합물에 대해서, 각각 Goat Anti-Mouse IgG에 라벨링한 후에 흡수(Absorption) 스펙트럼 및 Fluorescence Emission 스펙트럼을 확인하였다.
도 1A는 [화학식 1]을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수(Absorption) 스펙트럼이고, 도 1B는 Alexa Fluor® 568을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수(Absorption) 스펙트럼이며, 도 1C는 [화학식 1]을 Goat Anti-Mouse IgG에 라벨링한 후의 Fluorescence Emission 스펙트럼이고, 도 1D는 Alexa Fluor® 568을 Goat Anti-Mouse IgG에 라벨링한 후의 Fluorescence Emission 스펙트럼이다.
본 발명에 따른 [화학식 1]은 Alexa Fluor® 568의 흡수파장과 유사하고, Alexa Fluor® 568보다 aggregation이 덜 생기는 것을 확인할 수 있으며, Alexa Fluor® 568보다 Fluorescence Emission 강도 역시 더 큰 것을 확인할 수 있다.
실험예 3
1. Goat Anti-Mouse IgG를 0.1M sodium bicarbonate buffer로 희석하여 1mg/ml protein solution을 만들었다.
2. 5 개의 튜브를 준비하고 각 튜브에 125 ㎕씩 protein solution을 담았다.
3. Dye solution(5mg/ml)을 1, 2, 3, 4, 5 ㎕씩 준비된 튜브에 담고 바로 vortex 시켰다.
4. 상온에서 locker에 약 30분간 흔들어 주었다.
5. Amicon centrifuge filter에 반응 용액을 담았다.
6. Centrifuge로 free dye가 제거될 때까지 PBS로 여과시켰다. (14,000rpm, 10분, 5회)
7. Amicon tube에 centrifuge filter를 뒤집어 결합한 뒤 여액을 회수하였다. (1,000rpm, 2분)
8. PBS 1 ml로 희석시켰다.
9. UV, PL 및 microplate reader로 fluorescence를 측정하였다.
샘플에 대한 단백질에 대한 색소의 비율을, labeling 후 Dye의 흡광도의 값과 280 nm에서의 단백질의 흡광도의 값을 측정하였으며, 이하의 등식을 사용해서 결정했다.
Figure PCTKR2016007801-appb-I000078
분모의 인자 X는 최대의 흡수(Adye)로 Dye의 흡수의 a%인 280 nm에서의 색소의 흡광을 설명한다.
하기 도 1E는 본 발명에 따른 [화학식 1] 화합물과 Alexa Fluor® 568을 Goat Anti-Mouse IgG에 라벨링한 후의 밝기(brightness)를 확인한 결과로서, 본 발명에 따른 [화학식 1] 화합물이 Alexa Fluor® 568보다 brightness가 밝음을 확인할 수 있다.
실험예 4
1. IgG from Mouse Serum(primary)을 coating buffer에 녹여 10 ug/ml을 만들었다.
2. FLISA H/B black corning plate에 100 ㎕씩 well에 나누어 담았다.
3. Top sealing 후 상온에서 2시간 동안 암실에서 Incubation하였다.
4. Washing buffer를 300 ㎕씩 well에 담고 3회 washing하였다.
5. blocking buffer를 300 ㎕씩 well에 담고 top sealing 후 암실에서 상온 1시간 동안 incubation하였다.
6. blocking buffer를 제거 후 washing buffer로 3회 washing하였다.
7. Dye가 conjugation된 secondary antibody(10ug/ml)를 100 ㎕씩 담고 Top sealing 후 암실에서 상온1 시간 동안 incubation하였다.
8. 용액제거 후 washing buffer를 200 ㎕씩 담고 5회 washing하였다.
9. 샘플이 담긴 well에 PBS를 100 ㎕씩 담았다.
10. microplate reader로 fluorescence를 측정하였다.
하기 [표 2]는 본 발명에 따른 [화학식 1]과 Alexa Fluor® 568에 대한 D/P ratio에 따른 fluorescence 측정값을 나타낸 것이며, 하기 도 1F는 [화학식 1]과 Alexa Fluor® 568의 생체활성 (bioactivity)을 비교 확인한 그래프이다.
화학식 1 Alexa Fluor® 568
D/P ratio fluorescence D/P ratio fluorescence
2.202771 104.026 2.12797 72.0106
4.888795 127.5422 5.465357 68.00017
8.141409 95.40485 7.760384 60.15061
11.30465 91.8519 9.118983 52.02349
12.45994 75.09808 9.673626 41.4303
상기 [표 2] 및 도 1F에서 보는 바와 같이, 본 발명에 따른 [화학식 1] 화합물은 D/P ratio가 4.8일 때, Dye-2차 항체가 1차 항체에 conjugate되는 효율이 가장 큰 것을 확인할 수 있으며, Alexa Fluor® 568보다 brightness가 훨씬 밝으며, 생체 내 작용 활성이 더 우수함을 확인할 수 있다.
실험예 5
Alexa Fluor® 568 (ThermoFisher사 제조)과 본 발명에 따른 [화학식 3] 화합물에 대해서, 각각 Goat Anti-Mouse IgG에 라벨링한 후에 흡수(Absorption) 스펙트럼 및 Fluorescence Emission 스펙트럼을 확인하였다.
도 2A는 [화학식 3]을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수(Absorption) 스펙트럼이고, 도 2B는 Alexa Fluor® 594을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수(Absorption) 스펙트럼이며, 도 2C는 [화학식 3]을 Goat Anti-Mouse IgG에 라벨링한 후의 Fluorescence Emission 스펙트럼이고, 도 2D는 Alexa Fluor® 594을 Goat Anti-Mouse IgG에 라벨링한 후의 Fluorescence Emission 스펙트럼이다.
본 발명에 따른 [화학식 3]은 Alexa Fluor® 594의 흡수파장과 유사하고, Alexa Fluor® 594보다 Fluorescence Emission 강도가 더 큰 것을 확인할 수 있다.
실험예 6
본 발명에 따른 [화학식 3]에 대해서 상기 실험예 3과 동일하게 수행하였다.
하기 도 2E는 본 발명에 따른 [화학식 3] 화합물과 Alexa Fluor® 594을 Goat Anti-Mouse IgG에 라벨링한 후의 밝기(brightness)를 확인한 결과로서, 본 발명에 따른 [화학식 3] 화합물이 Alexa Fluor® 568보다 brightness가 밝으며, D/P ratio가 클수록 [화학식 3] 화합물은 Alexa Fluor® 594보다 brightness가 더욱 밝음을 확인할 수 있다.
실험예 7
본 발명에 따른 [화학식 3]에 대해서 상기 실험예 4와 동일하게 수행하였다.
하기 [표 3]은 본 발명에 따른 [화학식 3]과 Alexa Fluor® 594에 대한 D/P ratio에 따른 fluorescence 측정값을 나타낸 것이며, 하기 도 2F는 [화학식 3]과 Alexa Fluor® 594의 생체활성 (bioactivity)을 비교 확인한 그래프이다.
화학식 3 Alexa Fluor® 594
D/P ratio fluorescence D/P ratio fluorescence
2.54 64.89 2.55 76.07
3.47 83.79 3.81 81.82
4.86 78.61 4.74 80.38
5.18 80.28 5.50 71.62
5.95 68.06 6.08 54.13
상기 [표 3] 및 도 2F에서 보는 바와 같이, 본 발명에 따른 [화학식 3] 화합물은 D/P ratio가 3.4일 때, Dye-2차 항체가 1차 항체에 conjugate되는 효율이 가장 큰 것을 확인할 수 있으며, D/P ratio가 5 이상일 때, Alexa Fluor® 594보다 brightness가 훨씬 밝으며, 생체 내 작용 활성도 더 우수함을 확인할 수 있다.
실험예 8
본 발명에 따른 [화학식 44] 내지 [화학식 53] 화합물에 대해서 흡수 스펙트럼(λabs), 발광 스펙트럼(λem), 몰흡광계수 및 양자효율을 측정하여 하기 [표 4]에 나타내었다.
[비교예 화합물]
Figure PCTKR2016007801-appb-I000079
구분 용매 λabs(nm) λem(nm) ε (M-1cm-1) Quantum yield
비교화합물 548 562 150,000 0.04
화학식 44 PBS 544 568 51,000 0.72
화학식 45 DMSO 581 601 55,000 0.73
화학식 47 DMSO 559 580 49,000 0.45
화학식 48 DMSO 570 592 110,000 0.98
화학식 49 DMSO 490 574 28,000 0.35
화학식 50 DMSO 573 596 100,000 0.95
화학식 51 DMSO 595 621 78,800 0.75
화학식 52 PBS 541 564 0.61
화학식 53 DMSO 546 570 33,000 0.95
실험예 9
본 발명에 따른 [화학식 50]에 대해서 상기 실험예 3과 동일하게 수행하였다.
하기 도 3A는 본 발명에 따른 [화학식 50]을 Goat Anti-Mouse IgG에 라벨링한 후의 흡수 (Absorption) 스펙트럼이다.
하기 도 3B는 본 발명에 따른 [화학식 50] 화합물과 Alexa Fluor® 546을 Goat Anti-Mouse IgG에 라벨링한 후의 밝기(brightness)를 확인한 결과로서, 본 발명에 따른 [화학식 7] 화합물이 Alexa Fluor® 546보다 brightness가 밝음을 확인할 수 있다.
실험예 10
본 발명에 따른 [화학식 50]에 대해서 상기 실험예 4와 동일하게 수행하였다.
하기 [표 5]는 본 발명에 따른 [화학식 50]과 Alexa Fluor® 546에 대한 D/P ratio에 따른 fluorescence 측정값을 나타낸 것이며, 하기 도 3C는 [화학식 50]와 Alexa Fluor® 546의 생체활성 (bioactivity)을 비교 확인한 그래프이다.
[화학식 50]
D/P ratio Fluorescence
1.995678 59.97054
2.536109 69.32306
3.981585 50.97775
4.954446 43.58956
5.593174 36.24333
상기 [표 5] 및 도 3C에서 보는 바와 같이, 본 발명에 따른 [화학식 50] 화합물은 D/P ratio가 2.5일 때, Dye-2차 항체가 1차 항체에 conjugate되는 효율이 가장 큰 것을 확인할 수 있으며, Alexa Fluor® 568보다 brightness가 훨씬 밝음을 확인할 수 있다.
실험예 11 : 본 발명에 따른 화합물에 대한 광학 특성 평가
본 발명에 따른 염료 화합물은 종래 시아닌 염료 화합물 대비 매우 높은 형광양자효율을 나타내고, 비교화합물과 비교하여 몰흡광계수는 낮으나, 형광양자효율이 매우 높아 (몰흡광계수 X 형광양자효율)의 경우 비교화합물 대비 높음을 알 수 있다.
비교 화합물
Figure PCTKR2016007801-appb-I000080
구분 용매 λabs(nm) λem(nm) ε(M-1cm-1) Quantum yield
화학식 97 PBS 541 565 14,000 0.63
DMSO 551 568 35,000 0.94
EtOH 555 567 47,000 0.90
화학식 98 PBS 565 595 57,000 0.51
DMSO 570 601 57,000 0.77
EtOH 570 596 64,000 0.78
화학식 99 PBS 463 558 30,000 0.42
DMSO 467 563 21,000 0.65
EtOH 474 558 22,000 0.52
화학식100 PBS 589 608 54,000 0.80
DMSO 594 618 65,000 0.90
EtOH 592 612 75,000 0.90
화학식101 PBS 578 619 49,000 0.61
DMSO 584 630 54,000 0.70
EtOH 585 623 66,000 0.87
화학식102 PBS 524 571 7,100 0.70
DMSO 570 586 23,000 0.99
EtOH 557 578 6,800 0.78
화학식103 PBS 516 563 48,000 0.79
DMSO 566 586 108,000 0.88
EtOH 547 574 70,000 0.84
화학식104 PBS 559 572 28,000 0.09
DMSO 646 685 52,000 0.38
화학식105 PBS 604 643 35,000 0.28
DMSO 613 649 37,000 0.70
EtOH 611 645 44,000 0.50
화학식106 PBS 616 652 29,000 0.21
DMSO 620 660 55,000 0.72
EtOH 620 657 70,000 0.59
화학식107 PBS 624 655 37,000 0.29
DMSO 629 664 40,000 0.70
EtOH 628 659 50,000 0.52
화학식108 PBS 630 651 74,000 0.37
DMSO 627 650 64,000 0.52
화학식109 PBS 559 582 47,000 0.46
DMSO 569 590 73,000 0.93
화학식110 PBS 550 579 37,000 0.78
DMSO 561 597 37,000 0.86
EtOH 558 584 50,000 0.80
화학식111 PBS(pH7.4) 530 585 55,000 0.53
비교화합물 548 562 150,000 0.04
실험예 12 본 발명에 따른 화합물의 미토콘드리아 선택성
본 발명에 따른 [화학식 110]의 미토콘드리아에 특이한 선택성을 나타내는지 확인하기 위하여, Raw 264.7 세포를 [화학식 110]와 상용화된 미토콘드리아 마커(MTG, 1 μM MitoTracker Green FM for Mitochondria)를 이용하여 동시국소화(Co-localization) 실험을 실시하였다.
Thermo Fisher Scientific사의 MitoTracker Green FM의 구조식은 아래와 같다.
Figure PCTKR2016007801-appb-I000081
OPM 영상은 각각 470 - 520 nm (MTG, λex = 488 nm) 및 560 - 600 nm(화학식 14, λex = 552 nm)에서 획득하였으며, 이의 영상을 각각 하기 도 4A, 도 4B에 나타내었다. 또한, 하기 도 4C는 도 4A 및 도 4B를 합친 영상이고, 피어슨의 동시국소화(co-localization) 효율을 나타내는 계수 (A)는 LAS AF 소프트웨어를 사용하여 계산하였다.
[MTG] = 1 μM for 30min incubation, λ ex = 488 nm
[화학식 110] = 1 μM for 30min incubation, λ ex = 552 nm
그 결과, MTG(Mitotracker Green FM)과 [화학식 110]를 같이 염색해서 각각의 이미지를 겹쳐보았을 때 겹쳐지는 정도가 A=0.73이 나와 미토콘드리아에 우세하게 나타나는 것을 확인할 수 있다. 이는 본 발명에 따른 염료 [화학식 110]이 세포 내 여러 소기관 중 미토콘드리아에 선택적으로 염색이 되어 미토콘드리아를 정확하게 영상화함을 알 수 있다.
실험예 13
본 발명에 따른 [화학식 110] 1.0 uM을 HeLa A431 세포에 염색한 후에 세 부분의 영역(A, B, C)의 형광 세기를 2초 간격으로 3500초 동안 측정하였으며, 그 결과를 하기 도 5에 나타내었다.
도 5에서 보는 바와 같이, 한 시간 동안 형광 세기의 감소가 거의 없기 때문에 본 발명에 따른 [화학식 110]의 광 안정성은 매우 우수함을 확인할 수 있다.
실험예 14 본 발명에 따른 화합물의 미토콘드리아 선택성
본 발명에 따른 [화학식 97]의 미토콘드리아에 특이한 선택성을 나타내는지 확인하기 위하여, 헬라 A431 세포를 [화학식 97]과 상용화된 미토콘드리아 마커(MTG, 0.2μM MitoTracker Green FM for Mitochondria)를 이용하여 동시국소화(Co-localization) 실험을 실시하였다.
OPM 영상은 각각 498 - 540 nm (MTG, λex = 488 nm) 및 571 - 650 nm(화학식 97, λex = 552 nm)에서 획득하였으며, 이의 영상을 각각 하기 도 6A, 도 6B에 나타내었다. 또한, 하기 도 6C는 도 6A 및 도 6B를 합친 영상이고, 피어슨의 동시국소화(co-localization) 효율을 나타내는 계수 (A)는 LAS AF 소프트웨어를 사용하여 계산하였다.
[MTG] = 0.2 μM for 30min incubation, λ ex = 488 nm
[화학식 97] = 0.5 μM for 30min incubation, λ ex = 552 nm
그 결과, MTG(Mitotracker Green FM)과 [화학식 97]을 같이 염색해서 각각의 이미지를 겹쳐보았을 때 겹쳐지는 정도가 A=0.74이 나와 미토콘드리아에 우세하게 나타나는 것을 확인할 수 있다. 이는 본 발명에 따른 염료 [화학식 97]이 세포 내 여러 소기관 중 미토콘드리아에 선택적으로 염색이 되어 미토콘드리아를 정확하게 영상화함을 알 수 있다.
실험예 15
본 발명에 따른 [화학식 98] 1.0 uM을 HeLa A431 세포에 염색한 후에 네 부분의 영역(A, B, C, D)의 형광 세기를 2초 간격으로 3500초 동안 측정하였으며, 그 결과를 하기 도 7에 나타 내었다.
도 7에서 보는 바와 같이, 한 시간동안 형광 세기의 감소가 거의 없기 때문에 본 발명에 따른 [화학식 98]의 광 안정성은 매우 우수함을 확인할 수 있다.
비교 실험예
Cy3B 1.0 uM을 HeLa A431 세포에 염색한 후에 A, B 두 가지 부분의 형광 세기를 2초 간격으로 2000초 동안 측정하였으며, 그 결과를 하기 도 8에 나타내었다.
도 8에서 보는 바와 같이, 1500초 동안 형광 세기가 완전히 줄어들었기 때문에 광안정성이 매우 좋지 않다는 것을 알 수 있으며, 본 발명에 따른 염료 화합물 대비 광안정성이 매우 좋지 않음을 알 수 있다.
Figure PCTKR2016007801-appb-I000082
실험예 16 내지 17 pH probe 특성 확인
하기 도 9 및 10에서 보는 바와 같이, 본 발명에 따른 [화학식 111]의 화합물은 Acidic 조건(pH 1-6)에서 형광세기가 증가하고, Basic 조건(pH 9-12)에서 형광세기가 감소하는 probe type으로서, 산성 조건의 세포 소기관 대한 선택성이 높아 살아있는 세포에서 acidic organelles를 표지할 수 있음을 알 수 있다. 이와 달리 [화학식 97]의 경우에는 Acidic 조건(pH 1-6)에서 형광세기가 감소하고, Basic 조건(pH 9-12)에서 형광세기가 증가하는 probe type임을 알 수 있다. 또한, 상용화 되어 있는 Laser line(488 nm, 532 nm, 550 nm)에 잘 맞음을 알 수 있다.
즉, [화학식 111]의 pH probe Type은 pH2~6사이에 강한 형광을 내고 [화학식 97]의 pH probe type은 pH 8~12사이에 강한 형광을 낸다. 이 두 가지 Type의 염료를 활용하여 사용 목적에 따라 선택하여 사용할 수 있다.
따라서, 본 발명에 따른 염료 화합물은 pH 변화에 따라 형광세기가 변하는 특징을 가지고 있어서 이 특성을 이용하여 살아 있는 세포의 pH를 확인 할 수 있는 pH probe로도 사용이 가능하다. 또한, Live cell 염색을 통해 pH 측정하는 방법 외에, 최근에는 plate reader를 통해 세포의 pH를 측정하는 방법이 쓰이고 있는데 본 발명에 따른 염료 화합물을 이용하면, 이 방법에도 사용할 수 있으며, pH를 측정하고자 하는 여러 적용분야에 다양하게 이용할 수 있다.
실험예 18
본 발명에 따른 [화학식 97], [화학식 100] 내지 [화학식 102]에 대해서 광물리적 특성을 평가하고, 이를 하기 [표 7]에 나타내었으며, 모든 측정은 DMSO, 에탄올 및 PBS Buffer에서 수행되었다. 또한, 이광자 단면적(δ)은 펨토 초단위(femto second, fs) 형광 측정법을 이용하여 측정하였다.
또한, 하기 도 11은 PBS 완충용액 및 에탄올에서 본 발명에 따른 [화학식 97], [화학식 100] 내지 [화학식 102]의 이광자 활성 스펙트럼이다.
구분 Solvent λ max abs λ max fl Φ e Φ λ (2) max abs d d Φ
화학식97 Buffer 541 565 0.63 8820 920 35 22
EtOH 720 14
DMSO 551 567 0.94
화학식102 Buffer 524 571 0.70 4970 910 60 42
EtOH 750 7.6
DMSO 570 586 1.00
화학식100 Buffer 589 611 0.65 61750 740 272 177
EtOH 750 114
DMSO 594 618 0.90
화학식101 Buffer 578 619 0.61 29890 740 89 54
EtOH 720 54
DMSO 584 630 0.70
λ max abs : 일광자 흡수 스펙트럼 최대 파장(단위:nm)
λ max fl : 일광자 방출 스펙트럼 최대 파장(단위:nm)
Φ : 형광 양자 효율
e Φ : 몰흡광계수 × 형광양자효율
λ (2) max abs : 이광자 흡수 스펙트럼 최대 파장(단위:nm)
d : 10-50 cm4s/photon에서의 광자당 피크 이광자 단면적(단위:GM)
d Φ : 이광자 작용 단면적(two photon action cross-section)
본 발명에 따른 염료 화합물은 종래 시아닌 염료에 비하여 양자효율이 현저히 개선된 효과를 가지고, 보다 강한 형광을 나타내어 광학 영상이 필요한 다양한 생물학적 시스템에 대한 프로브 등으로 광범위한 분야에서 유효하게 활용할 수 있다.
특히, 미토콘드리아의 표지하여 추적할 수 있는 Mitotracker로 활용할 수 있어 생체 또는 세포조직에서 미토콘드리아를 정량적으로 영상화할 수 있으며, 또한 살아있는 세포의 pH를 확인할 수 있는 pH 프로브(probe)로도 적용할 수 있다.

Claims (9)

  1. 하기 [화학식 Ⅰ] 또는 [화학식 Ⅱ]로 표시되는 염료 화합물:
    [화학식 Ⅰ]
    Figure PCTKR2016007801-appb-I000083
    [화학식 Ⅱ]
    Figure PCTKR2016007801-appb-I000084
    상기 [화학식 Ⅰ] 또는 [화학식 Ⅱ]에서,
    Ar1은 치환 또는 비치환된 탄소수 6 내지 20의 아릴이거나 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴이고,
    상기 Ar1은 각각 1종 이상의 치환기로 치환될 수 있으며, 상기 1종 이상의 치환기는 수소, 중수소, 치환 또는 비치환된 알킬, 치환 또는 비치환된 알케닐, 치환 또는 비치환된 알키닐, 치환 또는 비치환된 아릴, 치환 또는 비치환된 헤테로아릴, 치환 또는 비치환된 아릴알킬, 치환 또는 비치환된 아릴옥시, 치환 또는 비치환된 아릴옥시알킬, 치환 또는 비치환된 알콕시, 치환 또는 비치환된 알콕시알킬, 할로겐, 시아노, 니트로, 할로겐, 아민, 하이드록시, 알데하이드, 아미노, 아마이드, 히드라진, 티올, 아세탈, 케탈, 포스포릴, 포스페이트, 포스포네이트, 술포히드록시, 술포닐, 술포네이트, 설페이트, 카르복실레이트, 아미드, 아지도, 구아니디움, 카르보닐, 티오카르보닐, 아미노티오카르보닐, 카르복실, 카르복실산, 케톤, 설프하이드릴, 아실클로라이드, 설폰산, 에스터, 폴리알킬렌옥사이드, 폴리에틸렌글리콜 및 4차 암모늄 중에서 선택되는 어느 하나이고,
    상기 1종 이상의 치환기가 알킬, 알케닐, 알키닐, 아릴, 헤테로아릴, 아릴알킬, 아릴옥시, 아릴옥시알킬, 알콕시 및 알콕시알킬 중에서 선택되는 어느 하나인 경우 1종 이상의 치환기로 더 치환될 수 있으며, 상기 1종 이상의 치환기는 할로겐, 시아노, 니트로, 할로겐, 아민, 하이드록시, 알데하이드, 아미노, 아마이드, 히드라진, 티올, 아세탈, 케탈, 포스포릴, 포스페이트, 포스포네이트, 술포히드록시, 술포닐, 술포네이트, 설페이트, 카르복실레이트, 아미드, 아지도, 구아니디움, 카르보닐, 티오카르보닐, 아미노티오카르보닐, 카르복실, 카르복실산, 케톤, 설프하이드릴, 아실클로라이드, 설폰산, 에스터, 폴리알킬렌옥사이드, 폴리에틸렌글리콜 및 4차 암모늄 중에서 선택되고,
    E는 CR1 또는 N이고,
    Z1은 NR2R3, OR4, SR5이며, Z2는 NR6, O, S, O+R7이고,
    X는 O, S, NR8R9, SiR10R11, CR12R13 또는 Se이며,
    Y는 CR14R15, NR16, O, S, Se, SiR17R18 또는 CR19R20=CR21R22이고,
    W는 CR23R24, CR25R26=CR527R28, O, -[CR29R30-CR31R32]- 또는 -[CR33R34-O]-이며,
    상기 R23 내지 R34은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 알킬 또는 아실옥시이고, 인접한 두 개는 서로 연결되어 지환족 탄화 수소를 형성할 수 있으며,
    상기 R1 내지 R3 및 이와 인접한 치환기 중에서 선택되는 두 개는 서로 연결되어 지환족 탄화수소 고리, 단일환 또는 다환의 방향족 탄화수소 고리를 형성할 수 있고, 상기 형성된 지환족, 방향족 탄화수소 고리의 탄소원자는 N, S, O, Se, Te, Po, NR35, SiR36R37, GeR38R39, PR40, 및 BR41 중에서 선택되는 어느 하나로 치환될 수 있으며,
    상기 R1 내지 R22 및 R29 내지 R41은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 알킬, 치환 또는 비치환된 알케닐, 치환 또는 비치환된 알키닐, 치환 또는 비치환된 아릴, 치환 또는 비치환된 헤테로아릴, 치환 또는 비치환된 아릴알킬, 치환 또는 비치환된 아릴옥시, 치환 또는 비치환된 아릴옥시알킬, 치환 또는 비치환된 알콕시, 치환 또는 비치환된 알콕시알킬, 할로겐, 시아노, 니트로, 할로겐, 아민, 하이드록시, 알데하이드, 아미노, 아마이드, 히드라진, 티올, 아세탈, 케탈, 포스포릴, 포스페이트, 포스포네이트, 술포히드록시, 술포닐, 술포네이트, 설페이트, 카르복실레이트, 아미드, 아지도, 구아니디움, 카르보닐, 티오카르보닐, 아미노티오카르보닐,카르복실, 카르복실산, 케톤, 설프하이드릴, 아실클로라이드, 설폰산, 에스터, 폴리알킬렌옥사이드, 폴리에틸렌글리콜 및 4차 암모늄 중에서 선택되는 어느 하나이며,
    상기 R1 내지 R22 및 R29 내지 R41이 알킬, 알케닐, 알키닐, 아릴, 헤테로아릴, 아릴알킬, 아릴옥시, 아릴옥시알킬, 알콕시 및 알콕시알킬 중에서 선택되는 어느 하나인 경우 1종 이상의 치환기로 더 치환될 수 있으며, 상기 1종 이상의 치환기는 할로겐, 시아노, 니트로, 할로겐, 아민, 하이드록시, 알데하이드, 아미노, 아마이드, 히드라진, 티올, 아세탈, 케탈, 포스포릴, 포스페이트, 포스포네이트, 술포히드록시, 술포닐, 술포네이트, 설페이트, 카르복실레이트, 아미드, 아지도, 구아니디움, 카르보닐, 티오카르보닐, 아미노티오카르보닐, 카르복실, 카르복실산, 케톤, 설프하이드릴, 아실클로라이드, 설폰산, 에스터, 폴리알킬렌옥사이드, 폴리에틸렌글리콜 및 4차 암모늄 중에서 선택되고,
    A-는 유기 또는 무기 이온으로서, 음이온 또는 A+로 표시되는 양이온이고, A-는 존재 또는 비존재일 수 있다.
  2. 제1항에 있어서,
    상기 R1 내지 R22 및 R29 내지 R41 및 이들의 치환기 는상기 염료 화합물이 표지되는 표지 대상 물질에 결합하는 반응성 치환기(RX)로서,
    상기 반응성 치환기(RX)는 활성에스테르(activated esters), 카르복실(carboxyl), 아마이드(amide), 아크릴아마이드(acrylamides), 아자이드(azide), 아실아자이드(acyl azides), 아실할라이드(acyl halides), 알카인(alkyne), 아민(amine), 알데하이드(aldehydes), 케톤(ketones), 알킬할라이드(alkyl halides), 알킬설포네이트(alkyl sulfonates), 아릴할라이드(aryl halides), 아지리딘(aziridines), 보로네이트(boronates), 다이아조알칸(diazoalkanes), 에폭사이드(epoxides), 할로플래티네이트(할로백금산염, haloplatinate), 할로트리아진(halotriazines), 이미도에스테르(imido esters), 이소시아네이트(isocyanates), 실릴할라이드(silyl halides), 설포네이트에스테르(sulfonate esters), 설포닐할라이드(sulfonyl halides), 숙신이미딜에스테르(succinimidyl ester), 설포-숙신이미딜에스테르(sulpho-succinimidyl ester), 무수물(anhydrides), 산할로겐화물(산 할라이드, acid halides), 이소티오시아네이트(isothiocyanate), 비닐설폰(vinylsulphone), 디클로로트리아진(dichlorotriazines), 할로아세트아미드(haloacetamides), 말레이미드(maleimides), 카르보다이이미드(carbodiimide), 포스포라미다이트(phosphoramidites), 하이드라진(hydrazines) 및 하이드라자이드(hydrazide) 중에서 선택되는 어느 하나이고,
    상기 활성에스테르는 -COR'이고, 상기 R'는 숙신이미딜옥시(succinimidyloxy, -OC4H4O2), 술포숙신이미딜옥시(sulfosuccinimidyloxy, -OC4H3O2-SO3H), 또는 -1-옥시벤조벤조트리아졸일(-1-oxybenzotriazolyl, -OC6H4N8)이거나; 비치환된 아릴옥시 또는 니트로, 할로겐, 시아노 및 할로겐알킬 중에서 선택된 1종 이상으로 치환된 아릴옥시이거나; 또는 카르복실산인 것을 특징으로 하는 염료 화합물.
  3. 제2항에 있어서,
    상기 반응성 치환기(RX)는 링커(L)에 공유결합으로 연결된 -L-RX 구조이고, 상기 L은 단일결합이거나, 탄소(C), 질소(N), 산소(O) 및 황(S) 원자로 구성되는 군에서 선택된 원자가 1 내지 20개 연결된 직쇄 또는 분지쇄의 사슬이거나, 지방족 탄화수소 고리, 방향족 탄화수소 고리, 지방족 헤테로 고리 및 방향족 헤테로 고리에서 선택된 어느 하나이고, 상기 L은 + 또는 - 전하를 가질 수 있는 것을 특징으로 하는 염료 화합물.
  4. 제2항에 있어서,
    상기 표지 대상 물질은 아미노기, 설프하이드릴기, 카르보닐기, 하이드록실기, 카르복실기, 티올기, 인산기 및 티오인산기 중에서 선택되는 1종 이상을 포함하는 생체분자, 나노입자 또는 유기화합물이고,
    상기 생체분자는 항체(antibody); 항원(antigen); 지질(lipid); 단백질(protein); 펩타이드(peptide); 탄수화물(carbohydrate); 덱스트란(dextran); 지방산(fatty acid); 인지질(phospholipid); 리포다당류(lipopoly saccharide); 아미노기, 설프하이드릴기, 카르보닐기, 하이드록실기, 카르복실기, 티올기, 인산기 및 티오인산기 중에서 하나 이상을 포함하거나, 또는 포함하도록 유도화된 뉴클레오타이드(nucleotides) 또는 올리고뉴클레오타이드(oligonucleotide); 아미노기, 설프하이드릴기, 카르보닐기, 하이드록실기, 카르복실기, 티올기, 포스페이트기 및 티오포스페이트기 중에서 하나 이상을 포함하거나, 또는 포함하도록 유도화된 옥시폴리핵산(oxypolynuceotide) 또는 데옥시폴리핵산(deoxypolynuceotide); 미생물; 약물; 호르몬; 세포; 세포막; 및 독소(toxins);로 이루어진 군 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 염료 화합물.
  5. 제1항에 있어서,
    상기 [화학식 Ⅰ] 또는 [화학식 Ⅱ]로 표시되는 염료 화합물은 하기 [화학식 1] 내지 [화학식 113] 중에서 선택되는 어느 하나인 것을 특징으로 하는 염료 화합물:
    Figure PCTKR2016007801-appb-I000085
    Figure PCTKR2016007801-appb-I000086
    Figure PCTKR2016007801-appb-I000087
    Figure PCTKR2016007801-appb-I000088
    Figure PCTKR2016007801-appb-I000089
    Figure PCTKR2016007801-appb-I000090
    Figure PCTKR2016007801-appb-I000091
    Figure PCTKR2016007801-appb-I000092
    Figure PCTKR2016007801-appb-I000093
    Figure PCTKR2016007801-appb-I000094
  6. 제1항에 있어서,
    상기 염료 화합물은 세포 내 미토콘드리아에 선택적으로 염색되는 것을 특징으로 하는 염료 화합물.
  7. 제1항에 있어서,
    상기 염료 화합물은 세포 내 pH에 따라 형광의 세기가 변하는 것을 특징으로 하는 염료 화합물.
  8. (a) 표지 대상 물질을 포함하는 시료에 제1항에 따른 염료 화합물을 주입하고, 인큐베이팅하는 단계;를 포함하는 화합물 표지방법.
  9. 제8항에 있어서,
    (b) 상기 표지 대상 물질과 결합된 염료 화합물의 형광 발광을 측정하는 단계;를 더 포함하여, 형광 세기에 따라 표지 대상 물질을 정량화하는 것을 특징으로 하는 화합물 표지방법.
PCT/KR2016/007801 2015-07-16 2016-07-18 염료 화합물 WO2017010852A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/743,769 US10473666B2 (en) 2015-07-16 2016-07-18 Dye compounds
JP2018501233A JP6815038B2 (ja) 2015-07-16 2016-07-18 染料化合物
CN201680041283.1A CN107850601B (zh) 2015-07-16 2016-07-18 染料化合物
EP16824767.4A EP3309552B1 (en) 2015-07-16 2016-07-18 Dye compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0100820 2015-07-16
KR20150100820 2015-07-16
KR20150100821 2015-07-16
KR10-2015-0100822 2015-07-16
KR20150100822 2015-07-16
KR10-2015-0100821 2015-07-16

Publications (1)

Publication Number Publication Date
WO2017010852A1 true WO2017010852A1 (ko) 2017-01-19

Family

ID=57757076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007801 WO2017010852A1 (ko) 2015-07-16 2016-07-18 염료 화합물

Country Status (6)

Country Link
US (1) US10473666B2 (ko)
EP (1) EP3309552B1 (ko)
JP (1) JP6815038B2 (ko)
KR (1) KR102502117B1 (ko)
CN (1) CN107850601B (ko)
WO (1) WO2017010852A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523243A (ja) * 2018-05-29 2021-09-02 蘇州百源基因技術有限公司 蛍光染料及びその製造方法並びに応用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102260233B1 (ko) * 2017-10-17 2021-06-03 에스에프씨 주식회사 메로시아닌계 화합물, 이를 포함하는 생체분자 표지용 염료, 키트 및 조영제 조성물
WO2019078513A1 (ko) 2017-10-17 2019-04-25 에스에프씨 주식회사 메로시아닌계 화합물, 이를 포함하는 생체분자 표지용 염료, 키트 및 조영제 조성물
WO2019098756A2 (ko) * 2017-11-16 2019-05-23 주식회사 에스에프씨 표지용 염료 및 이를 포함하는 키트
KR102253839B1 (ko) * 2017-11-16 2021-05-20 에스에프씨 주식회사 표지용 염료 및 이를 포함하는 키트
KR102593166B1 (ko) * 2017-11-23 2023-10-25 에스에프씨 주식회사 표지용 염료 및 이를 포함하는 표지용 키트
CN108558746A (zh) * 2018-03-30 2018-09-21 湖南师范大学 一种Nitro-PAPS的合成方法
WO2022139292A1 (ko) * 2020-12-21 2022-06-30 에스에프씨 주식회사 리포터 및 이의 용도
WO2022191485A1 (ko) * 2021-03-10 2022-09-15 에스에프씨 주식회사 리포터 및 이의 용도
CN114106581B (zh) * 2021-10-11 2023-06-16 南京邮电大学 一种有机小分子染料、j聚集纳米粒子及其制备方法和应用
CN114085172B (zh) * 2021-12-06 2022-10-14 福州大学 一种酸性催化剂及其制备方法和应用
CN116024296A (zh) * 2022-11-25 2023-04-28 中国科学院深圳先进技术研究院 一种基于有机荧光探针评估活生殖细胞及其早期胚胎线粒体状态的应用方法
CN115785112B (zh) * 2022-12-12 2024-03-12 山西大学 一种香豆素半花菁类光敏剂及其制备方法和应用
CN115960110B (zh) * 2023-01-31 2024-04-12 山西大学 一种高效的光动力光敏剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196930A (ja) * 1993-07-12 1995-08-01 Molecular Probes Inc 環式置換−非対称シアニン染料
US6458966B1 (en) * 1997-08-04 2002-10-01 Nycomed Amersham Plc Dye intermediate and method
US20060075582A1 (en) * 2004-09-13 2006-04-13 Alain Lagrange Composition comprising at least one substituted carbocyanin derivative, process for treating keratin fibers using it, device therefor and use thereof
KR20090066096A (ko) * 2007-12-18 2009-06-23 한국화학연구원 세포 표적용 형광 나노물질
KR20130017111A (ko) * 2011-08-10 2013-02-20 주식회사 디케이씨코포레이션 비닐설폰기를 가지는 염료 화합물의 생체 분자 표지 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69801682T2 (de) * 1997-12-17 2002-06-20 Univ Pittsburgh Carnegie Mello Versteifte trimethin-cyaninfarbstoffe
AU2003301687B2 (en) * 1999-06-09 2010-05-13 Amersham Biosciences Uk Limited Chiral indole intermediates and their fluorescent cyanine dyes containing functional groups
FR2875131B1 (fr) * 2004-09-13 2007-09-28 Oreal Composition comprenant au moins un derive substitue de carbocyanine, procede de traitement des fibres keratiniques la mettant en oeuvre, dispositif et utilisation
US8148423B2 (en) * 2008-04-03 2012-04-03 Versitech Limited Fluorophore compounds
US20100291706A1 (en) * 2009-05-15 2010-11-18 Millipore Corporation Dye conjugates and methods of use
CN102115610B (zh) * 2010-01-05 2014-07-02 大连理工大学 一类荧光染料、制备方法及其应用
KR101270160B1 (ko) * 2011-05-16 2013-05-31 아주대학교산학협력단 가변색 이광자 형광프로브, 이를 이용한 미토콘드리아 내 티올 활성의 영상화 방법 및 이의 제조방법
KR102021024B1 (ko) * 2011-12-26 2019-09-11 스미또모 가가꾸 가부시키가이샤 염료용 화합물
WO2015119962A1 (en) * 2014-02-04 2015-08-13 The Texas A&M University System 2,7-disubstituted cephalosporin derivatives as beta-lactamase substrates and methods for their use for the diagnosis of tuberculosis
US9969887B2 (en) * 2016-04-20 2018-05-15 Sfc Co., Ltd. Merocyanine-based compounds, and dyes, kits and contrast medium compositions for labelling biomolecules comprising the same
KR102513508B1 (ko) * 2017-01-13 2023-03-23 에스에프씨 주식회사 pH 검출용 염료 화합물, 이를 이용한 필름 및 키트

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196930A (ja) * 1993-07-12 1995-08-01 Molecular Probes Inc 環式置換−非対称シアニン染料
US6458966B1 (en) * 1997-08-04 2002-10-01 Nycomed Amersham Plc Dye intermediate and method
US20060075582A1 (en) * 2004-09-13 2006-04-13 Alain Lagrange Composition comprising at least one substituted carbocyanin derivative, process for treating keratin fibers using it, device therefor and use thereof
KR20090066096A (ko) * 2007-12-18 2009-06-23 한국화학연구원 세포 표적용 형광 나노물질
KR20130017111A (ko) * 2011-08-10 2013-02-20 주식회사 디케이씨코포레이션 비닐설폰기를 가지는 염료 화합물의 생체 분자 표지 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309552A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021523243A (ja) * 2018-05-29 2021-09-02 蘇州百源基因技術有限公司 蛍光染料及びその製造方法並びに応用
JP7010290B2 (ja) 2018-05-29 2022-01-26 蘇州百源基因技術有限公司 蛍光染料及びその製造方法並びに応用

Also Published As

Publication number Publication date
KR102502117B1 (ko) 2023-02-22
JP6815038B2 (ja) 2021-01-27
US10473666B2 (en) 2019-11-12
KR20170009795A (ko) 2017-01-25
CN107850601A (zh) 2018-03-27
EP3309552A1 (en) 2018-04-18
US20180203015A1 (en) 2018-07-19
CN107850601B (zh) 2021-06-29
JP2018530630A (ja) 2018-10-18
EP3309552B1 (en) 2024-01-17
EP3309552A4 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
WO2017010852A1 (ko) 염료 화합물
WO2016032120A1 (ko) 신규한 아미노-페닐-설포닐-아세테이트 유도체 및 이의 용도
WO2011052888A2 (ko) (3-플루오로-2-히드록시)프로필 작용기가 도입된 아릴 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 퇴행성 뇌질환의 진단 또는 치료용 약학적 조성물
WO2018052243A1 (ko) 황화수소 검출용 형광 프로브 및 이의 제조방법
WO2013048177A2 (ko) 셀레노펜-접합 방향족 화합물, 및 이의 제조 방법
WO2016068640A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기발광소자
WO2010120013A1 (ko) 신규한 로다민 유도체 및 이를 포함한 차아염소산 검출 센서
WO2023058884A1 (ko) 암 진단용 바이오마커 및 이의 용도
WO2019107662A1 (ko) 신규한 티에노[3,2-b]피리딘-5(4H)-온 유도체 화합물, 이의 제조방법 및 이의 용도
WO2017146400A1 (en) Compound and composition for detecting phosgene and diethyl chlorophosphate
WO2016111602A2 (ko) 신규 유기 화합물 및 이를 포함하는 근적외선 형광 조영제, 그리고 조영제의 나노입자화 방법
WO2021101145A1 (ko) 소광자 및 이의 용도
WO2009093872A2 (ko) 신규한 디아민 화합물 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 암 치료용 약학 조성물
WO2020036329A1 (ko) 미토콘드리아 내 nad(p)h 검출을 위한 형광 프로브 및 이를 이용한 검출방법
WO2019216600A1 (ko) 신규한 옥심에스테르 화합물 및 이를 포함하는 포토레지스트 조성물
WO2016190475A1 (ko) 싸이오크로멘 타입 화합물 및 그 용도
WO2015064786A1 (ko) 생체 분자 표지를 위한 시아닌 염료 및 그 제조방법
WO2017014601A1 (ko) 인돌리지노[3,2-c]퀴놀린계 형광 프로브
WO2021225233A1 (ko) 혈관 누출 차단제 화합물의 신규 결정형
WO2016163727A2 (ko) 황화수소 검출용 방사성 프로브
WO2012081893A2 (ko) 신규한 3-인돌리논 유도체 및 이를 포함하는 조성물
WO2019147092A1 (ko) 스핑고신-1-포스페이트 유사체 및 이의 합성 방법
WO2020050470A1 (ko) 메로시아닌 화합물, 이의 이성질체를 포함하는 dsrna 검출용 조성물 및 dsrna 발현 분석을 이용한 암 진단을 위한 정보 제공 방법
WO2021075904A1 (ko) 새로운 트라이아진 기반의 양친매성 화합물 및 이의 활용
WO2020190034A1 (ko) 신규 나프토퓨란 유도체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743769

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018501233

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE