WO2017004818A1 - 一种硅氧化合物的制造设备及制备方法 - Google Patents

一种硅氧化合物的制造设备及制备方法 Download PDF

Info

Publication number
WO2017004818A1
WO2017004818A1 PCT/CN2015/083616 CN2015083616W WO2017004818A1 WO 2017004818 A1 WO2017004818 A1 WO 2017004818A1 CN 2015083616 W CN2015083616 W CN 2015083616W WO 2017004818 A1 WO2017004818 A1 WO 2017004818A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
manufacturing
heating furnace
reaction
compound according
Prior art date
Application number
PCT/CN2015/083616
Other languages
English (en)
French (fr)
Inventor
庞春雷
任建国
岳敏
Original Assignee
深圳市贝特瑞新能源材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝特瑞新能源材料股份有限公司 filed Critical 深圳市贝特瑞新能源材料股份有限公司
Priority to PCT/CN2015/083616 priority Critical patent/WO2017004818A1/zh
Priority to KR1020177016957A priority patent/KR20170088918A/ko
Priority to US15/516,363 priority patent/US10611644B2/en
Priority to CN201580001202.0A priority patent/CN107249726B/zh
Priority to JP2017519520A priority patent/JP6461329B2/ja
Publication of WO2017004818A1 publication Critical patent/WO2017004818A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/182Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by reduction of a siliceous material, e.g. with a carbonaceous reducing agent and subsequent oxidation of the silicon monoxide formed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/04Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge of single-chamber type with temporary partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of chemical equipment, in particular to a manufacturing device and a preparation method of a silicon oxide compound.
  • SiO is an important raw material for the preparation of optical glass, semiconductor materials, and anode materials for lithium ion batteries.
  • the currently disclosed production method generally involves reacting Si and SiO 2 to produce SiO gas under vacuum and high temperature conditions, and condensing SiO at a low temperature.
  • the production equipment of SiO in the industry is to set the reaction chamber and the collection chamber in the vacuum cylinder, and place a heating wire in the cavity between the reaction chamber and the vacuum cylinder.
  • This equipment can not effectively increase the size of the reaction chamber, resulting in product output. Lower, it will also lead to poor uniformity of material composition in all aspects of the product. Since the heating device is in the vacuum cylinder, combustion heating cannot be used, so the energy consumption is large; since the reaction chamber and the collection chamber are both disposed in the vacuum cylinder, the SiO in the collection chamber needs to be cooled to the entire apparatus, and continuous production cannot be achieved, which is extremely large. This has caused a waste of energy.
  • a device for manufacturing a silicone compound having at least one can body, the can body having an opening at least at one end thereof, the can body including a reaction portion and a collecting portion, the reaction portion for placing a raw material,
  • the collecting portion is configured to be placed in a collector, the collector is placed at an open end of the tank, the reaction portion is away from an open end of the tank, the reaction portion is disposed in the heating furnace, and the collecting portion and the opening are both Provided outside the heating furnace, the can body is evacuated through an interface that opens or closes the opening through the can lid.
  • a cooling device is disposed on the collecting portion.
  • the heating furnace is in communication with air.
  • the heating furnace is heated by electric heating or combustion.
  • the collector is a cylindrical structure having at least one end open.
  • the collector has a taper with the small end of the collector facing the can lid.
  • the interface is provided in the collecting portion.
  • the cooling device includes a cooling jacket sleeved on the collecting portion, and is circulated and cooled by a cooling medium.
  • the axis of the reaction portion is horizontal.
  • Another object of the present invention is to provide a method for preparing a silicon oxide compound, which improves the preparation efficiency and reduces energy consumption:
  • a method for preparing a silicon oxide compound using the above manufacturing equipment and performing the following steps:
  • Step one turning on the heating furnace
  • Step two turning on the cooling device
  • Step 3 the can lid is opened, the Si powder and the SiO 2 powder are mixed, and then placed as a raw material in the reaction portion, and a collector is placed in the collecting portion to close the can lid;
  • Step 4 vacuuming the tank through the interface
  • Step 5 After the reaction of the raw materials in the tank is completed, the operation of the heating furnace and the cooling device is maintained, the can lid is opened, the collector is taken out, a new raw material is charged into the reaction portion, and a new collector is placed in the collecting portion. Close the lid, vacuum the tank through the interface, start the next reaction, and remove the silicone product from Stripped on the removed collector;
  • Step 6 Repeat step five until the end of the preparation.
  • the loading amount of the can body is 2-200 KG
  • the temperature of the heating furnace is 1100-1400 ° C
  • the vacuum degree of the can body is maintained between 0.01-10000 Pa
  • the temperature of the cooling device is 100-800.
  • the time between the insertion of the new collector in the fifth step and the removal of the collector in the step 6 is 2-60 h (hours).
  • a device for manufacturing a silicon oxy-compound according to the present invention wherein a reaction portion is disposed in a heating furnace, a collecting portion and an opening are placed outside the heating furnace, a collector is taken out by opening the opening, and a new collector is placed to close the opening.
  • the heating furnace can work continuously, and the efficiency is high. Due to the cooling of the previous equipment, the energy waste is caused by the heating and cooling process, the equipment largely saves energy; at the same time, the manufacturing equipment as described above is proposed.
  • the preparation method improves the preparation efficiency and reduces the energy consumption.
  • FIG. 1 is a schematic structural view of a manufacturing apparatus of a silicon oxy-compound according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of a manufacturing apparatus of a silicon oxy-compound according to a second embodiment of the present invention
  • FIG 3 is a schematic structural view of a manufacturing apparatus of a silicon oxide compound according to a third embodiment of the present invention.
  • 1, can body; 2, opening; 3, reaction part; 4, collecting part; 5, raw material; 6, collector; 7, heating furnace; 8, interface; 9, can lid; 11, cooling jacket; 12, products.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a device for manufacturing a silicone compound having at least one can body 1
  • the device in the embodiment has a can body 1
  • the can body 1 is provided with an opening 2 at least at one end thereof
  • Can The body 1 is provided with an opening 2 at one end
  • the can body 1 includes a reaction portion 3 for collecting the raw material 5, the collecting portion 4 for placing the collector 6, and the collector 6 being placed in the can body 1.
  • the open end of the reaction portion 3 is away from the open end of the can body 1, the reaction portion 3 is disposed in the heating furnace 7, and the collecting portion 4 and the opening 2 are both disposed outside the heating furnace 7, and the can body 1 is evacuated through the interface 8, the can body 1 Open or close the opening 2 through the can lid 9.
  • the can body 1 is vented through the interface 8, so that the degree of vacuum in the can body 1 meets the requirements, the heating furnace 7 heats the raw material 5 in the reaction portion 3, and the raw material 5 undergoes a chemical reaction to generate product vapor, due to the collecting portion 4 Located outside the heating furnace 7, the temperature of the air located at the periphery of the collecting portion 4 is much lower than that of the heating furnace 7, and the product vapor exchanges heat with the outside air of the tank 1, and condenses on the collector 6 to form a solid product 12, and after a production cycle, the tank is opened.
  • the cover 9, the collector 6 is taken out of the opening 2, the new raw material 5 is loaded, the new collector 6 is replaced, the can lid 9 is closed, and the above process is repeated until the production is completed, in which the heating furnace 7 does not need to be Stop the furnace and maintain the production state, thus achieving semi-continuous production, greatly improving efficiency and saving energy.
  • the opening 2 is only provided at one end of the can body 1.
  • Those skilled in the art can provide openings 2 at both ends of the can body 1 as needed, and both pass through the can lid. 9 sealed.
  • the collecting portion 4 of the present embodiment can be cooled by air cooling or cooling means, and the cooling mode is selected in accordance with the required cooling requirements, so that the collecting portion 4 is cooled more quickly, and the collecting portion 4 is provided with the cooling device 10.
  • the heating furnace 7 is connected to the air to realize electric heating or combustion heating.
  • the electric heating includes medium-high frequency induction heating, microwave heating and resistance heating, and the resistance heating includes silicon carbon rod, silicon molybdenum rod, graphite resistance heating, fuel for combustion heating. Including natural gas, gas, gas, biomass gas or artificial gas, combustion heating is more energy-saving than electric heating.
  • Due to the vacuum state inside the tank 1, atmospheric pressure is not conducive to the service life of the tank 1.
  • the tank body 1 is selected from one or more of heat-resistant steel, ceramic, corundum, silicon carbide and carbon materials, in order to ensure sealing property, processability and processing. Cost, preferably heat resistant steel, and preferably the diameter of the can body 1 is 100 mm to 1000 mm, preferably the length of the can body 1 is from 300 mm to 5000 mm.
  • the collector 6 is a cylindrical structure having at least one end open for easy collection and handling.
  • the collector 6 has a taper, and the small end of the collector 6 faces the can lid 9, which is convenient for taking out and putting in.
  • the interface 8 is provided in the collecting portion 4 to facilitate the degree of vacuum in the can body 1.
  • the cooling device 10 includes a cooling jacket 11 that is sleeved on the collecting portion 4 and is circulated and cooled by the cooling medium.
  • Water, air, inert gas, and coolant may be used. This embodiment uses circulating water to cool, and the cost is low.
  • the cooling jacket 11 may be provided inside or outside the collecting portion 4.
  • the collector 6 is one or more of heat resistant steel, SUS, iron, quartz, graphite, tungsten flakes, silicon carbide, alumina, and C/C composite materials.
  • Step one turning on the heating furnace 7;
  • Step two the cooling device 10 is turned on
  • Step 3 open the can lid 9, the Si powder and SiO 2 powder are mixed, placed as the raw material 5 in the reaction part 3, placed in the collection part 4 collector 6 to close the can lid 9;
  • Step 4 vacuuming the can body 1 through the interface 8;
  • Step 5 After the reaction of the raw material 5 in the can body 1 is completed, the operation of the heating furnace 7 and the cooling device 10 is maintained, the can lid 9 is opened, the collector 6 is taken out, and the new raw material 5 is placed in the reaction portion 3, in the collecting portion. 4, a new collector 6 is placed, the can lid 9 is closed, the can body 1 is evacuated through the interface 8, the next reaction is started, and the silicon oxide product 12 is peeled off from the removed collector 6.
  • Step 6 Repeat step five until the end of the preparation.
  • the method does not need to stop the furnace during the preparation process, and steps 5 and 6 realize the semi-continuous operation of the equipment.
  • the production efficiency is greatly improved, and the energy waste caused by the heating and cooling process of the heating furnace 7 is avoided.
  • the temperature of the heating furnace 7 is 1100-1400 ° C, and the vacuum degree of the tank body 1 is maintained between 0.01-10000 Pa.
  • the temperature of the cooling device 10 is 100-800 ° C, and the time between the insertion of the new collector 6 in step 5 and the removal of the collector 6 in step 6 is 2-60 h.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the difference between this embodiment and the first embodiment is that the two ends of the can body 1 are provided with openings 2, which are all sealed by the can lid 9.
  • the collector 6 and the cooling device 10 are arranged in the same manner as in the first embodiment.
  • the reaction portion 3 is disposed in the heating furnace 7, and the collecting portions 4 located on both sides of the reaction portion 3 are disposed outside the heating furnace 7. This embodiment further improves the speed of preparing the product under the premise of ensuring good sealing. And production efficiency.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the difference between this embodiment and the first embodiment is that there are three tanks 1 in the apparatus.
  • the number of tanks 1 is reasonably set according to the production requirements and the size of the furnace 7.
  • the number is not limited to the embodiment, and the present embodiment provides a plurality of can bodies 1 to better utilize the heat of the heating furnace 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

一种硅氧化合物的制造设备及制备方法,涉及化工设备领域。该设备具有至少一个罐体(1),所述罐体(1)至少一端设有开口(2),所述罐体(1)包括反应部(3)和收集部(4),所述反应部(3)用于置入原料(5),所述收集部(4)用于置入收集器(6),所述收集器(6)置于罐体(1)的开口端,所述反应部(3)远离罐体(1)的开口端,所述反应部(3)设置于加热炉(7)内,所述收集部(4)和开口(2)均设置于所述加热炉(7)外,所述罐体(1)通过接口(8)抽真空,所述罐体(1)通过罐盖(9)打开或封闭开口(2);该制备方法采用该制造设备。解决了以往的硅氧化合物制造设备和制备方法无法连续生产造成耗能大、效率低的问题。

Description

一种硅氧化合物的制造设备及制备方法 技术领域
本发明涉及化工设备领域,尤其涉及一种硅氧化合物的制造设备及制备方法。
背景技术
SiO是用作制备光学玻璃、半导体材料以及锂离子电池负极材料的重要原料。
由于SiO的生产条件苛刻,其产量不能满足市场需求。目前公开的生产方式一般是在真空和高温条件下使Si和SiO2反应产生SiO气体,并使SiO低温凝结。
目前工业上SiO的生产设备是将反应室和收集室均设于真空筒内,在反应室与真空筒之间的空腔中放置电热丝,这种设备不能有效增加反应室尺寸,导致产品产量较低,还也会导致产品各方向上的材料组成均一性较差。由于发热器件处于真空筒中,无法采用燃烧加热,从而能源消耗较大;由于反应室和收集室都设于真空筒内,取出收集室中的SiO需冷却整个设备,无法实现连续生产,极大的造成了能源的浪费。
发明内容
本发明的一个目的在于提出一种硅氧化合物的制造设备,实现半连续生产,降低能耗。
为达此目的,本发明采用以下技术方案:
一种硅氧化合物的制造设备,所述设备具有至少一个罐体,所述罐体至少一端设有开口,所述罐体包括反应部和收集部,所述反应部用于置入原料,所 述收集部用于置入收集器,所述收集器置于罐体的开口端,所述反应部远离罐体的开口端,所述反应部设置于加热炉内,所述收集部和开口均设置于所述加热炉外,所述罐体通过接口抽真空,所述罐体通过罐盖打开或封闭开口。
进一步,所述收集部上设有冷却装置。
进一步,所述加热炉连通空气。
进一步,所述加热炉采用电加热或燃烧加热。
进一步,所述收集器为至少一端开口的筒状结构。
进一步,所述收集器具有锥度,所述收集器的小端朝向罐盖。
进一步,所述接口设于收集部。
进一步,所述冷却装置包括套设于所述收集部的冷却套,通过冷却介质循环冷却。
进一步,所述反应部的轴线水平。
本发明的另一个目的在于,提出一种硅氧化合物的制备方法,该制备方法提高制备效率,降低能耗:
一种硅氧化合物的制备方法,采用上述的制造设备并进行以下步骤:
步骤一,开启加热炉;
步骤二,开启冷却装置;
步骤三,打开罐盖,将Si粉末和SiO2粉末混合后作为原料放置在反应部中,在收集部中放入收集器,封闭罐盖;
步骤四,通过接口对罐体抽真空;
步骤五,待罐体中的原料反应完毕后,保持加热炉和冷却装置的运行,打开罐盖取出收集器,在反应部中装入新的原料,在收集部中放入新的收集器,封闭罐盖,通过接口对罐体抽真空,开始下一轮反应,并将硅氧化合物产品从 取出的收集器上剥离;
步骤六,重复步骤五,直至制备结束。
进一步,所述罐体的装载量为2-200KG,所述加热炉的温度为1100-1400℃,所述罐体的真空度保持在0.01-10000Pa间,所述冷却装置的温度为100-800℃,所述步骤五中放入新的收集器到步骤六中取出该收集器之间的时间为2-60h(小时)。
本发明的有益效果有:
本发明提出的一种硅氧化合物的制造设备,通过将反应部设置于加热炉内,收集部和开口置于加热炉外,通过打开开口取出收集器,放入新的收集器后关闭开口,无需冷却整个设备,加热炉能连续工作,效率高,由于以往的设备需冷却,升温降温过程造成能源的浪费,本设备很大程度上节约了能源;同时提出了采用如上所述的制造设备的制备方法,提高制备效率,降低能耗。
附图说明
图1是本发明实施例一提供的一种硅氧化合物的制造设备的结构示意图;
图2是本发明实施例二提供的一种硅氧化合物的制造设备的结构示意图;
图3是本发明实施例三提供的一种硅氧化合物的制造设备的结构示意图。
图中,1、罐体;2、开口;3、反应部;4、收集部;5、原料;6、收集器;7、加热炉;8、接口;9、罐盖;10、冷却装置;11、冷却套;12、产品。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例一:
如图1所示,一种硅氧化合物的制造设备,该设备具有至少一个罐体1,本实施例中的设备具有一个罐体1,罐体1至少一端设有开口2,本实施例中的罐 体1仅一端设有开口2,罐体1包括反应部3和收集部4,反应部3用于置入原料5,收集部4用于置入收集器6,收集器6置于罐体1的开口端,反应部3远离罐体1的开口端,反应部3设置于加热炉7内,收集部4和开口2均设置于加热炉7外,罐体1通过接口8抽真空,罐体1通过罐盖9打开或封闭开口2。
反应时,通过接口8对罐体1排气,使罐体1内的真空度符合要求,加热炉7对反应部3内的原料5加热,原料5经过化学反应生成产品蒸气,由于收集部4位于加热炉7外,位于收集部4外围的空气温度远低于加热炉7,产品蒸气与罐体1外部空气换热,冷凝在收集器6上形成固体产品12,一个生产周期后,打开罐盖9,从开口2中取出收集器6,装入新的原料5,换入新的收集器6,关闭罐盖9,重复上述过程直至完成该次生产,在这个过程中,加热炉7无需停炉,保持生产状态,从而实现半连续生产,极大的提高了效率,节约了能源。
本实施例中,为保证罐体1良好的密封状态,开口2只设在罐体1的一端,本领域技术人员可根据需要,在罐体1的两端都设置开口2,均通过罐盖9密封。
本实施例的收集部4可采用空气冷却或冷却装置冷却,按所需的冷却要求选择冷却方式,为更快冷却收集部4,收集部4上设有冷却装置10。
加热炉7连通空气,从而实现电加热或燃烧加热均可,电加热包括中高频感应加热、微波加热以及电阻加热,电阻加热包括硅碳棒、硅钼棒、石墨电阻加热,燃烧加热采用的燃料包括天然气、煤气、瓦斯气、生物质气或人工燃气,燃烧加热较于电加热,很大程度的节约了能源,由于罐体1内的真空状态,大气压会不利于罐体1的使用寿命,为保证罐体1的使用寿命,本实施例中,罐体1选用耐热钢、陶瓷、刚玉、碳化硅和碳素材料中的一种或几种,为保证密封性、易加工性和加工成本,优选耐热钢,并且优选罐体1的直径为100mm至 1000mm,优选罐体1的长度为300mm至5000mm。
收集器6为至少一端开口的筒状结构,方便收集和拿放。
本实施例中,收集器6具有锥度,收集器6的小端朝向罐盖9,方便拿出和放入。
接口8设于收集部4,便于保证罐体1内的真空度。
本实施例中,冷却装置10包括套设于收集部4的冷却套11,通过冷却介质循环冷却,采用水、空气、惰性气体、冷却液均可,本实施例采用循环水冷却,成本低。
本实施例中,冷却套11设置于收集部4的内部或外部均可。
收集器6采用耐热钢、SUS、铁皮、石英、石墨、钨片、碳化硅、氧化铝以及C/C复合材料中的一种或几种。
采用本实施例提出的制造设备制备硅氧化合物的方法是:
步骤一,开启加热炉7;
步骤二,开启冷却装置10;
步骤三,打开罐盖9,将Si粉末和SiO2粉末混合后作为原料5放置在反应部3中,在收集部4中放入收集器6,封闭罐盖9;
步骤四,通过接口8对罐体1抽真空;
步骤五,待罐体1中的原料5反应完毕后,保持加热炉7和冷却装置10的运行,打开罐盖9取出收集器6,在反应部3中装入新的原料5,在收集部4中放入新的收集器6,封闭罐盖9,通过接口8对罐体1抽真空,开始下一轮反应,并将硅氧化合物产品12从取出的收集器6上剥离;
步骤六,重复步骤五,直至制备结束。
该方法在制备过程中无需停炉,步骤五和步骤六实现了设备的半连续工作, 极大地提高了生产效率,避免了加热炉7升温降温过程中造成的能源浪费。
为实现较高的生产效率和较低的成本,其中,罐体1的装载量为2-200KG,加热炉7的温度为1100-1400℃,罐体1的真空度保持在0.01-10000Pa间,冷却装置10的温度为100-800℃,步骤五中放入新的收集器6到步骤六中取出该收集器6之间的时间为2-60h。
实施例二:
如图2所示,本实施例与实施例一的区别在于,罐体1两端均设有开口2,均通过罐盖9密封,收集器6和冷却装置10的设置方式与实施例一相同,本实施例中,反应部3设置在加热炉7内,位于反应部3两边的收集部4均设置在加热炉7外,在保证密封良好的前提下,本实施例进一步提高制备产品的速度和生产效率。
实施例三:
如图3所示,本实施例与实施例一的区别在于,设备中具有三个罐体1,对本领域的技术人员而言,根据生产需要和加热炉7的尺寸合理设置罐体1的数目,该数目不局限于本实施例,本实施例设置多个罐体1,更好的利用了加热炉7的热量。
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种硅氧化合物的制造设备,其特征在于,所述设备具有至少一个罐体(1),所述罐体(1)至少一端设有开口(2),所述罐体(1)包括反应部(3)和收集部(4),所述反应部(3)用于置入原料(5),所述收集部(4)用于置入收集器(6),所述收集器(6)置于罐体(1)的开口端,所述反应部(3)远离罐体(1)的开口端,所述反应部(3)设置于加热炉(7)内,所述收集部(4)和开口(2)均设置于所述加热炉(7)外,所述罐体(1)通过接口(8)抽真空,所述罐体(1)通过罐盖(9)打开或封闭开口(2)。
  2. 如权利要求1所述的硅氧化合物的制造设备,其特征在于,所述收集部(4)上设有冷却装置(10)。
  3. 如权利要求1所述的硅氧化合物的制造设备,其特征在于,所述加热炉(7)连通空气。
  4. 如权利要求3所述的硅氧化合物的制造设备,其特征在于,所述加热炉(7)采用电加热或燃烧加热。
  5. 如权利要求1所述的硅氧化合物的制造设备,其特征在于,所述收集器(6)为至少一端开口的筒状结构。
  6. 如权利要求5所述的硅氧化合物的制造设备,其特征在于,所述收集器(6)具有锥度,所述收集器(6)的小端朝向罐盖(9)。
  7. 如权利要求1所述的硅氧化合物的制造设备,其特征在于,所述接口(8)设于收集部(4)。
  8. 如权利要求2所述的硅氧化合物的制造设备,其特征在于,所述冷却装置(10)包括套设于所述收集部(4)的冷却套(11),通过冷却介质循环冷却。
  9. 一种硅氧化合物的制备方法,其特征在于,所述制备方法采用如权利要求1-8任一所述的制造设备并进行以下步骤:
    步骤一,开启加热炉(7);
    步骤二,开启冷却装置(10);
    步骤三,打开罐盖(9),将Si粉末和SiO2粉末混合后作为原料(5)放置在反应部(3)中,在收集部(4)中放入收集器(6),封闭罐盖(9);
    步骤四,通过接口(8)对罐体(1)抽真空;
    步骤五,待罐体(1)中的原料(5)反应完毕后,保持加热炉(7)和冷却装置(10)的运行,打开罐盖(9)取出收集器(6),在反应部(3)中装入新的原料(5),在收集部(4)中放入新的收集器(6),封闭罐盖(9),通过接口(8)对罐体(1)抽真空,开始下一轮反应,并将硅氧化合物产品(12)从取出的收集器(6)上剥离;
    步骤六,重复步骤五,直至制备结束。
  10. 如权利要求9所述的硅氧化合物的制备方法,其特征在于,所述罐体(1)的装载量为2-200KG,所述加热炉(7)的温度为1100-1400℃,所述罐体(1)的真空度保持在0.01-10000Pa间,所述冷却装置(10)的温度为100-800℃,所述步骤五中放入新的收集器(6)到步骤六中取出该收集器(6)之间的时间为2-60h。
PCT/CN2015/083616 2015-07-08 2015-07-08 一种硅氧化合物的制造设备及制备方法 WO2017004818A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/083616 WO2017004818A1 (zh) 2015-07-08 2015-07-08 一种硅氧化合物的制造设备及制备方法
KR1020177016957A KR20170088918A (ko) 2015-07-08 2015-07-08 실리콘 산화물의 제조 장치 및 제조 방법
US15/516,363 US10611644B2 (en) 2015-07-08 2015-07-08 Equipment and process for preparing silicon oxides
CN201580001202.0A CN107249726B (zh) 2015-07-08 2015-07-08 一种硅氧化合物的制造设备及制备方法
JP2017519520A JP6461329B2 (ja) 2015-07-08 2015-07-08 シリコン酸化物の製造装置及び調製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083616 WO2017004818A1 (zh) 2015-07-08 2015-07-08 一种硅氧化合物的制造设备及制备方法

Publications (1)

Publication Number Publication Date
WO2017004818A1 true WO2017004818A1 (zh) 2017-01-12

Family

ID=57684754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083616 WO2017004818A1 (zh) 2015-07-08 2015-07-08 一种硅氧化合物的制造设备及制备方法

Country Status (5)

Country Link
US (1) US10611644B2 (zh)
JP (1) JP6461329B2 (zh)
KR (1) KR20170088918A (zh)
CN (1) CN107249726B (zh)
WO (1) WO2017004818A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017223466A1 (de) * 2017-12-20 2019-06-27 Dialog Semiconductor (Uk) Limited Analog-digital-wandler mit selbst-verfolgung und selbst-rangingfenster
CN109205631A (zh) * 2018-11-12 2019-01-15 杭州致德新材料有限公司 一氧化硅纳米材料连续生产装置及生产工艺
CN110307724A (zh) * 2019-07-04 2019-10-08 广德特旺光电材料有限公司 一种生产一氧化硅的多反应器真空炉
TWI759209B (zh) * 2021-05-19 2022-03-21 中美矽晶製品股份有限公司 矽氧化物之製備裝置
CN115140739B (zh) * 2022-07-19 2023-05-16 新疆晶硕新材料有限公司 一种氧化亚硅的生产设备及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2451567Y (zh) * 2000-11-01 2001-10-03 代国光 一氧化硅生产装置
US20040166046A1 (en) * 2000-02-04 2004-08-26 Hirofumi Fukuoka Method and apparatus for the continuous production of silicon oxide powder
EP1236682B1 (en) * 2001-02-28 2006-01-11 Shin-Etsu Chemical Co., Ltd. Silicon oxide powder and its manufacture
CN1989639A (zh) * 2004-07-29 2007-06-27 住友钛株式会社 二次电池用SiO粉末及其制造方法
CN204162438U (zh) * 2014-10-18 2015-02-18 李绍光 一种制取一氧化硅的流化床反应器
CN204973821U (zh) * 2015-07-08 2016-01-20 深圳市贝特瑞新能源材料股份有限公司 一种硅氧化合物的制造设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088242A (ja) * 2000-09-13 2002-03-27 Kanegafuchi Chem Ind Co Ltd ポリイミド樹脂組成物及びポリイミドフィルム状成形体
EP1443126B1 (en) * 2001-09-17 2008-05-07 OSAKA Titanium Technologies Co., Ltd. Silicon monoxide vapor deposition material and method for preparation thereof
CN1281488C (zh) * 2004-06-25 2006-10-25 中国科学院过程工程研究所 一种纳米高纯二氧化硅的制备方法
JP5942897B2 (ja) * 2012-03-22 2016-06-29 信越化学工業株式会社 酸化珪素析出体の連続製造方法及び製造装置
JP5737265B2 (ja) * 2012-10-23 2015-06-17 信越化学工業株式会社 珪素酸化物及びその製造方法、負極、ならびにリチウムイオン二次電池及び電気化学キャパシタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166046A1 (en) * 2000-02-04 2004-08-26 Hirofumi Fukuoka Method and apparatus for the continuous production of silicon oxide powder
CN2451567Y (zh) * 2000-11-01 2001-10-03 代国光 一氧化硅生产装置
EP1236682B1 (en) * 2001-02-28 2006-01-11 Shin-Etsu Chemical Co., Ltd. Silicon oxide powder and its manufacture
CN1989639A (zh) * 2004-07-29 2007-06-27 住友钛株式会社 二次电池用SiO粉末及其制造方法
CN204162438U (zh) * 2014-10-18 2015-02-18 李绍光 一种制取一氧化硅的流化床反应器
CN204973821U (zh) * 2015-07-08 2016-01-20 深圳市贝特瑞新能源材料股份有限公司 一种硅氧化合物的制造设备

Also Published As

Publication number Publication date
CN107249726A (zh) 2017-10-13
JP2017535506A (ja) 2017-11-30
US10611644B2 (en) 2020-04-07
CN107249726B (zh) 2020-07-14
JP6461329B2 (ja) 2019-01-30
US20170297917A1 (en) 2017-10-19
KR20170088918A (ko) 2017-08-02

Similar Documents

Publication Publication Date Title
WO2017004818A1 (zh) 一种硅氧化合物的制造设备及制备方法
CN102126721B (zh) 石墨材料的纯化和石墨化方法
CN104386682B (zh) 一种石墨化炉及热处理石墨粉的方法
CN112331947B (zh) 一种锂电池回收拆解过程中的锂电池放电方法
CN108923037B (zh) 一种富硅SiOx-C材料及其制备方法和应用
CN104795469A (zh) 辊道式太阳电池辐照退火炉
CN106676677A (zh) 一种生物质材料制备中空碳纤维的方法
CN103066291A (zh) 一种利用内热串接石墨化炉制备锂电池负极材料的方法
CN109553409A (zh) 一种固态电解质薄膜用Li3PO4靶材的制备方法和应用
CN204973821U (zh) 一种硅氧化合物的制造设备
CN204538071U (zh) 辊道式太阳电池辐照退火炉
CN106299480A (zh) 一种聚合物电芯烘烤工艺
CN216918627U (zh) 一种石墨提纯加热装置
CN217103087U (zh) 一种石墨提纯用反应炉
CN108640114B (zh) 一种双体式活性炭真空渗硫装置及其使用方法
CN212253625U (zh) 锂离子电池负极材料炭化处理的炭化炉
CN112503931A (zh) 一种生产氧化亚硅的罐体轮换式真空炉及制备方法
CN204324887U (zh) 一种石墨化炉
CN210220619U (zh) 一种高纯金属铬真空脱气烧结炉
CN105752992A (zh) 一种制备硅氧化合物的方法及制造设备
CN108878289B (zh) 高效电池退火工艺
CN205907046U (zh) 一种制备硅氧化合物的制造设备
CN212620158U (zh) 一种新型锂离子电池负极材料石墨化装置
CN215063657U (zh) 一种生产氧化亚硅的罐体轮换式真空炉
CN215676377U (zh) 一种高温回转炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516363

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017519520

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177016957

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897474

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15897474

Country of ref document: EP

Kind code of ref document: A1