WO2016199672A1 - ガラス及びセラミック研磨用組成物 - Google Patents

ガラス及びセラミック研磨用組成物 Download PDF

Info

Publication number
WO2016199672A1
WO2016199672A1 PCT/JP2016/066428 JP2016066428W WO2016199672A1 WO 2016199672 A1 WO2016199672 A1 WO 2016199672A1 JP 2016066428 W JP2016066428 W JP 2016066428W WO 2016199672 A1 WO2016199672 A1 WO 2016199672A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
glass
abrasive
titanium oxide
silicon dioxide
Prior art date
Application number
PCT/JP2016/066428
Other languages
English (en)
French (fr)
Inventor
真稔 上田
達也 鶴村
Original Assignee
テイカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テイカ株式会社 filed Critical テイカ株式会社
Priority to KR1020177031482A priority Critical patent/KR20180006897A/ko
Priority to CN201680028684.3A priority patent/CN108026431A/zh
Priority to EP16807379.9A priority patent/EP3309232A4/en
Publication of WO2016199672A1 publication Critical patent/WO2016199672A1/ja
Priority to US15/833,179 priority patent/US20180105727A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles

Definitions

  • the present invention relates to a polishing composition used for polishing and smoothing the surface of a member made of glass or ceramic.
  • polishing means for such fine processing and smoothing.
  • CMP Chemical-Mechanical-Polishing
  • This CMP polishing increases the mechanical polishing effect by the relative movement of the polishing material and the object to be polished by the surface chemical action of the polishing material (abrasive grains) itself and the action of chemical components contained in the polishing liquid, and smoothes at high speed.
  • This is a technique for obtaining a smooth polished surface.
  • a polishing slurry is dropped onto a circular surface plate on which a polishing pad is stretched, and a polishing object held on a carrier is pressed, and the surface plate and the carrier are rotated together to perform relative motion.
  • a rotary type polishing apparatus is often used.
  • the abrasive slurry to be used varies depending on the object to be polished, but usually, fine particles (particle size: several tens to several hundreds of nanometers) such as colloidal silica, fumed silica, cerium oxide, aluminum oxide, and zirconium oxide. It consists of an aqueous dispersion and contains chemical components such as acids, alkalis, and organic compounds that modify the polishing film, dispersants, surfactants, and the like as required (Patent Documents 1 to 5).
  • Such a CMP polishing technique is already widely used in various processes such as planarization of a silicon wafer itself in semiconductor manufacturing, shallow trench element isolation formation, tungsten plug embedding planarization, and wiring surface planarization.
  • CMP polishing there are few fine scratches and work-affected layers compared to polishing with a single abrasive, and an ideal smooth surface can be obtained. It has become a problem that polishing scratches that can be visually recognized with the naked eye.
  • Patent Document 6 discloses an aqueous dispersion containing composite particles of organic polymer particles and inorganic particles such as alumina, titania, and silica.
  • Patent Document 7 discloses an organic polymer particle in which at least a part of the surface is coated with tetravalent metal hydroxide particles such as rare earth oxide or zirconium hydroxide and water.
  • Patent Document 8 discloses an organic polymer particle whose surface is coated with metal oxide particles having an average particle diameter of 1 to 400 nm, such as ceria, silica, alumina, titania, zirconia, manganese oxide, and the like, and water. ing.
  • JP-A-10-322569 Japanese Patent Laid-Open No. 11-188647 JP 2004-356326 A JP-A-2005-353681 Republished WO2012 / 1665016 Japanese Patent No. 4151178 JP-A-2005-353681 JP 2006-41252 A
  • Patent Documents 6 to 8 it is difficult to obtain a uniform particle size as organic polymer particles, and the hardness of the organic polymer particles is low. It is low and easily deformed, so the polishing rate cannot be increased, and it is not suitable for use in an alkaline region, so the polishing conditions are restricted, and since it is an organic substance, it requires incineration to dispose of it and costs high. There was a difficulty that it took.
  • the present invention has excellent applicability to CMP polishing as a glass and ceramic polishing composition, and there is no concern that the abrasive particles have a uniform particle size and are not altered or deformed.
  • An object of the present invention is to provide a material that can stably exhibit characteristics, hardly cause polishing scratches, obtain a good smooth surface with few surface defects, and can cope with a wide range of polishing conditions from an acidic region to an alkaline region.
  • the glass and ceramic polishing composition according to the invention of claim 1 is characterized by containing, as an abrasive, titanium oxide particles having at least a part of the surface coated with silicon dioxide.
  • the invention of claim 2 is configured such that the glass and ceramic polishing composition of claim 1 comprises an aqueous dispersion containing the abrasive.
  • the invention of claim 3 is configured such that the solid content concentration of the aqueous dispersion in the glass and ceramic polishing composition of claim 2 is 5 to 40% by mass.
  • the ratio of silicon dioxide to titanium oxide particles is 10 to 60% by mass in terms of oxide.
  • the ratio of SiO 2 / TiO 2 by X-ray photoelectron spectroscopy of the abrasive is 0.15 or more.
  • the invention of claim 6 is the glass and ceramic polishing composition according to any one of claims 1 to 5, wherein the average primary particle diameter of titanium oxide is 6 to 30 nm.
  • a seventh aspect of the present invention is the glass and ceramic polishing composition according to any one of the first to sixth aspects, wherein the abrasive has a BET specific surface area of 40 to 400 m 2 / g.
  • the invention of claim 8 is the glass and ceramic polishing composition according to any one of claims 1 to 7, wherein the titanium oxide particles are coated with silicon dioxide on the surface by chemical deposition.
  • the glass and ceramic polishing composition according to the invention of claim 1 includes titanium oxide particles having at least a part of the surface coated with silicon dioxide as an abrasive, and is excellent in applicability to CMP polishing.
  • the polishing characteristics can be exhibited stably, and scratches are hardly generated, a very good smooth surface can be obtained, and a wide range of polishing conditions from the acidic range to the alkaline range can be handled.
  • a smooth surface with few surface defects can be formed without greatly shaving the surface of the object to be polished, so that when the object to be polished is glass, the optical characteristics are improved and electrodes are formed on the surface.
  • the polishing composition is composed of an aqueous dispersion containing the above abrasive, it can be suitably used as an abrasive slurry in a rotary CMP polishing apparatus or the like.
  • the aqueous dispersion since the aqueous dispersion has a specific solid content concentration, more excellent polishing characteristics can be obtained.
  • silicon dioxide is in a specific ratio with respect to the titanium oxide particles, higher polishing performance can be surely exhibited.
  • the titanium oxide of the abrasive since the titanium oxide of the abrasive has a specific primary particle diameter, excellent polishing characteristics can be obtained and the effect of suppressing polishing flaws can be further improved.
  • the BET specific surface area of the abrasive is in the specific range, more excellent polishing characteristics can be obtained, and the effect of suppressing polishing scratches can be further improved.
  • the titanium oxide particles of the abrasive material consist of silicon dioxide coated on the surface by chemical deposition
  • silicon dioxide keeps a stable coating state on the surface of the titanium oxide particles even during polishing
  • the agglomerated particles of silicon dioxide particles are not generated, and the titanium oxide particles themselves are coated with silicon dioxide so that the agglomerated particles are easily separated. Therefore, it is easy to re-disperse and can exhibit very excellent polishing performance.
  • the glass and ceramic polishing composition of the present invention uses titanium oxide particles (hereinafter, abbreviated as silicon dioxide-coated titanium oxide particles) coated at least part of the surface with silicon dioxide as an abrasive.
  • silicon dioxide-coated titanium oxide particles titanium oxide particles coated at least part of the surface with silicon dioxide
  • the aqueous dispersion containing the abrasive that is, the slurry form
  • the abrasive alone or the abrasive is mainly used. It can also be used in a powder form.
  • the above-mentioned silicon dioxide-coated titanium oxide particles are not a mixture of titanium oxide particles and silicon dioxide particles, but have titanium oxide particles as a core and a silicon dioxide coating layer on the surface of the core particles.
  • the titanium oxide particles that are the core of the abrasive are not particularly limited, but those having an average primary particle size in the range of 6 to 30 nm are preferred, and an average particle size in the range of 6 to 20 nm is particularly recommended. If it is too small, the polishing rate will be slow. On the other hand, if it is too large, the smoothness of the polished surface will be lowered and polishing flaws will easily occur.
  • a typical crystal form of titanium oxide there are a rutile form (tetragonal crystal) and an anatase form (tetragonal crystal), but any crystal form may be used.
  • the ratio of silicon dioxide to titanium oxide particles is not particularly limited, but it is preferably in the range of 10 to 60% by mass in terms of oxide, and if it is too small, it tends to cause polishing scratches on the polished surface. When the powder is mixed, polishing scratches are easily generated on the polishing surface. As the silicon dioxide-coated titanium oxide particles, the entire surface of the titanium oxide particles need not be covered with silicon dioxide, and the surface of the titanium oxide may be partially exposed. It is desirable that the ratio of SiO 2 / TiO 2 by the method is 0.15 or more. If this ratio is too low, the effect of suppressing polishing scratches cannot be sufficiently exhibited due to insufficient coating with silicon dioxide.
  • the BET specific surface area of the abrasive containing silicon dioxide-coated titanium oxide particles is preferably in the range of 40 to 400 m 2 / g, more preferably in the range of 40 to 130 m 2 / g, and particularly in the range of 60 to 110 m 2 / g. It is recommended that if it is too small, it is easy to cause polishing scratches. Conversely, if it is too large, there is a problem that the uniform dispersion state of the abrasive cannot be maintained.
  • the solid content concentration is preferably in the range of 5 to 40% by mass, particularly in the range of 25 to 35% by mass, and is too low. Decreases the polishing efficiency.
  • the solid content concentration is too high, a uniform dispersion state of the abrasive cannot be maintained, and it becomes difficult to use especially for CMP polishing, and handling becomes difficult due to an increase in viscosity.
  • the aqueous dispersion is recommended to be alkaline, and a pH of 8 to 12 is more preferable because the uniform dispersion state of the abrasive can be kept better.
  • the preferred solid content concentration and pH here are in the numerical range when used for polishing, and prepared as a relatively high concentration (high pH) aqueous dispersion at the time of commercialization in order to reduce the volume during transportation and storage. However, it may be used by diluting at the time of polishing.
  • an abrasive may be mixed with water at a desired blending ratio and dispersed to form a suspension.
  • this dispersion and mixing means various existing methods such as stirring with a blade-type stirrer and ultrasonic dispersion can be adopted.
  • various additives conventionally known for use as abrasive slurries may be added as necessary, such as product quality maintenance and stabilization, and the types of objects to be polished and polishing conditions. Can be added.
  • the additive include the following (a) to (f).
  • organic polyanionic substances such as lignin sulfonates and polyacrylates
  • water-soluble polymers emulsifiers
  • emulsifiers such as polyvinyl alcohol
  • dimethylglyoxime dithizone
  • various other inorganic particles may be blended as a polishing accelerator, an anti-settling agent and the like together with silicon dioxide-coated titanium oxide particles as an abrasive.
  • the glass and ceramic polishing composition having the above-described structure contains silicon dioxide-coated titanium oxide particles as an abrasive, it has excellent applicability to CMP polishing, can stably exhibit high polishing characteristics, and has polishing scratches. It is difficult to occur and a very good smooth surface can be obtained, and it can cope with a wide range of polishing conditions from an acidic range to an alkaline range. And, according to this polishing composition, a smooth surface with few surface defects can be formed without greatly shaving the surface of the object to be polished, so that when the object to be polished is glass, the optical characteristics are improved and electrodes are formed on the surface. In the case of a ceramic member, there is an advantage that electrode peeling after electrode formation is suppressed.
  • polishing composition of the present invention when it is subjected to polishing as an aqueous dispersion (slurry), even if the dry powder of the abrasive material adhering to the periphery during the polishing may be mixed, the polishing scratches It has also been found that it is difficult to increase this.
  • the titanium oxide particles which are the core of the abrasive particles, are altered with a uniform particle size.
  • the titanium oxide particles themselves absorb the pressing reaction force from the surface to be polished during polishing. It is presumed that it functions as a buffer layer that suppresses the occurrence of polishing flaws.
  • the titanium oxide particles of the abrasive are made of silicon dioxide coated on the surface by chemical deposition, the silicon dioxide keeps a stable coating state on the surface of the titanium oxide particles even during polishing, and the titanium oxide particles and silicon dioxide particles Unlike the mere mixture, the silicon dioxide particles do not form agglomerated particles, and the titanium oxide particles themselves are coated with silicon dioxide so that the agglomerated particles are easily loosened and easily redispersed. Excellent polishing performance.
  • the glass and ceramic polishing composition of the present invention can be applied to various polishing methods other than CMP polishing, and can also be used in powder form without using an abrasive as an aqueous dispersion.
  • Example 1 Rutile fine particle titanium dioxide whose surface is coated with silicon dioxide by chemical deposition on the surface of titanium oxide particles having an average primary particle diameter of 15 nm (trade name: MT-100WP, manufactured by Teika Co., Ltd. The ratio of silicon dioxide to titanium oxide is 43%. )
  • MT-100WP trade name: Teika Co., Ltd.
  • the ratio of silicon dioxide to titanium oxide is 43%.
  • Example 2 Anatase type fine particle titanium dioxide (the ratio of silicon dioxide to titanium oxide is 15%) in which silicon dioxide is coated by chemical deposition on the surface of titanium dioxide particles having an average primary particle diameter of 6 nm by a method according to Japanese Patent No. 4296529. Firing was performed at 700 ° C. so as to have an average primary particle size of 20 nm, and the mixture was dispersed in water by a bead mill to obtain an aqueous dispersion having a solid content concentration of 30% and a pH of 2.4. A portion of this dispersion was collected and dried, and the silicon oxide-coated titanium dioxide particles after drying were subjected to surface analysis by XPS (X-ray photoelectron spectroscopy). As a result, the SiO2 / TiO2 was 16/84.
  • XPS X-ray photoelectron spectroscopy
  • Example 3 Anatase type fine particle titanium dioxide (the ratio of silicon dioxide to titanium oxide is 10%) in which silicon dioxide is coated by chemical deposition on the surface of titanium dioxide particles having an average primary particle diameter of 6 nm by a method according to Japanese Patent No. 4296529. It was dispersed in water with a bead mill to obtain an aqueous dispersion having a solid content concentration of 5% and a pH of 11.0. A part of this dispersion was collected and dried, and the silicon oxide-coated titanium dioxide particles after drying were subjected to surface analysis by XPS (X-ray photoelectron spectroscopy). As a result, SiO2 / TiO2 was 20/80.
  • XPS X-ray photoelectron spectroscopy
  • Comparative Example 1 A titanyl sulfate aqueous solution (80 parts in terms of TiO2) and a cerium nitrate aqueous solution (20 parts in terms of CeO2) were mixed and neutralized to pH 7 with 24% aqueous ammonia. The neutralized slurry is filtered and washed with Nutsche, dried at 120 ° C., fired at 600 ° C., pulverized with a hammer mill, anatase fine particles partially coated with cerium oxide with an average primary particle size of 14 nm. Titanium dioxide was produced. Then, it was made to disperse
  • Comparative Example 2 A titanyl sulfate aqueous solution (90 parts in terms of TiO2) and a zirconium sulfate aqueous solution (10 parts in terms of ZrO2) were mixed and neutralized to pH 7 with 24% aqueous ammonia.
  • the neutralized slurry is filtered and washed with Nutsche, dried at 120 ° C., fired at 800 ° C., pulverized with a hammer mill, and anatase fine particles partially coated with zirconium oxide with an average primary particle size of 20 nm. Titanium dioxide was produced. Then, it was made to disperse
  • Comparative Example 3 An aqueous dispersion having a pH of 5.9 and a solid content concentration of 30% of pigment-grade titanium dioxide particles having an average primary particle diameter of 180 nm (trade name: TITANIX JA-3, anatase type, manufactured by Teica) was prepared.
  • Comparative Example 5 A commercially available colloidal silica (trade name: manufactured by Nissan Chemical Co., Ltd .: Snowtex 30, average primary particle diameter: 15 nm) was prepared as an aqueous dispersion having a pH of 9.8 and a solids equivalent concentration of 30%.
  • FIG. 3 is a micrograph of the surface after polishing with the abrasive slurry of Comparative Example 2, and FIG. The same micrograph of the surface after polishing with the abrasive slurry of Comparative Example 3 is shown in FIG. 5, and the same micrograph of the surface after polishing with the abrasive slurry of Comparative Example 4 is shown in FIG.
  • the polishing rate measured the glass thickness before and behind polishing with the micrometer, and computed the average value of three glasses.
  • the number of polishing scratches is indicated by the average number of counts of three fields per sample, counting the number of scratches in the field of view obtained by photographing the polished glass surface at a magnification of 34 times. If not, 1000 ⁇ pieces were used.
  • Polishing device CMP double-side polishing machine 2B-9P manufactured by Speed Fem Co. Load: 2kg Slurry concentration: 5-30% Slurry input amount: 200 ml / min Lower plate rotation speed: 40 rpm Polishing time: 30 minutes
  • Pad used Polyurethane pad (Product name: POLITEX Pad manufactured by Nitta Haas) Glass sample to be polished: parallel plate glass, diameter 30 mm, thickness 5 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】ガラス及びセラミック研磨用組成物として、CMP研磨への適用性に優れ、研磨材粒子が均一な粒度で変質や変形を生じる懸念がなく、優れた研磨特性を安定的に発揮でき、研磨傷を生じにくく、表面欠陥の少ない良好な平滑面が得られ、酸性域からアルカリ性域まで広い研磨条件に対応できるものを提供する。 【解決手段】二酸化ケイ素によって表面の少なくとも一部が被覆された酸化チタン粒子を研磨材として含むことを特徴するガラス及びセラミック研磨用組成物。

Description

ガラス及びセラミック研磨用組成物
 本発明は、ガラスやセラミックからなる部材表面を研磨して平滑化するのに使用される研磨用組成物に関する。
 近年における電子機器に関連する技術の進歩は目覚ましく、使用される部品や素子の高集積化、小型化、応答の高速化が年々進んでいる。これらに伴い、部品や素子の微細加工の精度、加工表面の平滑度を高める必要性が増している。例えば、素子として機器に組み込む石英や特殊組成のガラス板では、特定面の高平滑化によってガラス自体の反射特性や透過特性等の光学特性を変化させる場合、アルミナ等の一般的な研磨材では目的とする光学特性を引き出せないことが多い。また、例えば、コンデンサや圧電振動子として用いるセラミック素子の表面に電極を形成する場合、焼成直後のセラミック表面は電極形成に適した平滑度あるいは表面粗さを満たしていないことが多く、何らかの研磨手段で適正な表面状態に加工する必要がある。
 このような微細加工や平滑化のための研磨手段として、種々の手法が存在するが、昨今では特にCMP研磨(Chemical Mechanical Polishing・・・化学機械研磨)技術が脚光を浴びている。このCMP研磨は、研磨材(砥粒)自体が有する表面化学作用や研磨液に含まれる化学成分の作用によって、研磨材と研磨対象物の相対運動による機械的研磨効果を増大させ、高速で平滑な研磨面を得る技術である。そのCMP研磨装置としては、研磨パッドを張った円形の定盤の上に、研磨材スラリーを滴下しながら、キャリヤに保持させた研磨対象物を押し付け、定盤とキャリヤを共に回転させて相対運動させる、ロータリー方式の研磨装置が多用される。また、使用する研磨材スラリーは、研磨対象物によって異なるが、通常は、コロイダルシリカ、ヒュームドシリカ、酸化セリウム、酸化アルミニウム、酸化ジルコニウム等の微細粒子(粒子径:数十~数百nm)の水分散体からなり、必要に応じて、研磨膜を改質する酸、アルカリ、有機化合物等の化学成分、分散剤、界面活性剤等を含んでいる(特許文献1~5)。
 そして、このようなCMP研磨技術は、既に半導体製造におけるシリコンウェハ自体の平坦化、シャロートレンチ素子分離形成、タングステンプラグの埋め込み平坦化、配線表面の平坦化等の各工程に汎用されている。しかるに、CMP研磨によれば、研磨材単体による研磨に比較して微細な傷や加工変質層が少なく、理想的な平滑面が得られるとされているものの、現実には往々にして研磨表面に肉眼で視認できるような研磨傷が入ることが問題化している。
 そこで、この研磨傷を防ぐためのCMP研磨材として、ポリスチレン系樹脂やアクリル系樹脂の如き有機高分子粒子を含むものが種々提案されている。例えば、特許文献6では、有機高分子粒子とアルミナ、チタニア、シリカ等の無機粒子との複合体粒子を含む水系分散体が開示されている。また、特許文献7では、表面の少なくとも一部が希土類酸化物や水酸化ジルコニウムの如き4価の金属水酸化物粒子によって被覆された有機高分子粒子と水を含むものが開示されている。更に、特許文献8では、セリア、シリカ、アルミナ、チタニア、ジルコニア、酸化マンガン等の平均粒径1~400nmの金属酸化物粒子によって表面が被覆された有機高分子粒子と水を含むものが開示されている。
特開平10-322569号公報 特開平11-188647号公報 特開2004-356326号公報 特開2005-353681号公報 再公表WO2012/165016号公報 特許第4151178号公報 特開2005-353681号公報 特開2006-41252号公報
 しかしながら、前記提案(特許文献6~8)のように有機高分子粒子を含むCMP研磨材スラリーでは、有機高分子粒子として均一な粒度のものが得られにくい上、該有機高分子粒子の硬度が低く変形を生じ易いことで研磨速度を高められず、またアルカリ性域での使用に適さないために研磨条件が制約されると共に、有機物であることから廃棄するのに焼却処理を要してコストがかかるという難点があった。
 本発明は、上述の事情に鑑みて、ガラス及びセラミック研磨用組成物として、CMP研磨への適用性に優れ、研磨材粒子が均一な粒度で変質や変形を生じる懸念がなく、もって優れた研磨特性を安定的に発揮でき、研磨傷を生じにくく、表面欠陥の少ない良好な平滑面が得られると共に、酸性域からアルカリ性域まで広い研磨条件に対応できるものを提供することを目的としている。
 上記目的を達成するために、請求項1の発明に係るガラス及びセラミック研磨用組成物は、二酸化ケイ素によって表面の少なくとも一部が被覆された酸化チタン粒子を研磨材として含むことを特徴としている。
 請求項2の発明は、上記請求項1のガラス及びセラミック研磨用組成物が上記研磨材を含む水分散体からなる構成としている。
 請求項3の発明は、上記請求項2のガラス及びセラミック研磨用組成物における水分散体の固形分濃度が5~40質量%である構成としている。
 請求項4の発明は、上記請求項1~3のいずれかのガラス及びセラミック研磨用組成物において、酸化チタン粒子に対する二酸化ケイ素の割合が酸化物換算で10~60質量%である構成としている。
 請求項5の発明は、上記請求項1~4のいずれかのガラス及びセラミック研磨用組成物において、研磨材のX線光電子分光法によるSiO2/TiO2の比率が0.15以上である構成としている。
 請求項6の発明は、上記請求項1~5のいずれかのガラス及びセラミック研磨用組成物において、酸化チタンの平均一次粒子径が6~30nmである構成としている。
 請求項7の発明は、上記請求項1~6のいずれかのガラス及びセラミック研磨用組成物において、研磨材のBET比表面積が40~400m/gである構成としている。
 請求項8の発明は、上記請求項1~7のいずれかのガラス及びセラミック研磨用組成物において、酸化チタン粒子が二酸化ケイ素を化学的沈着によって表面に被覆したものからなる構成としている。
 請求項1の発明に係るガラス及びセラミック研磨用組成物は、研磨材として二酸化ケイ素によって表面の少なくとも一部が被覆された酸化チタン粒子を含むものであり、CMP研磨への適用性に優れ、高い研磨特性を安定的に発揮でき、しかも研磨傷を生じにくく、非常に良好な平滑面が得られると共に、酸性域からアルカリ性域まで広い研磨条件に対応できる。そして、この研磨用組成物によれば被研磨物表面を大きく削ることなく表面欠陥の少ない平滑面を形成できるから、研磨対象がガラスの場合には光学特性が向上し、表面に電極を形成するセラミック部材の場合には電極形成後の電極剥離が抑制されるという利点がある。
 請求項2の発明によれば、研磨用組成物が上記研磨材を含む水分散体からなるため、研磨材スラリーとしてロータリー方式のCMP研磨装置等に好適に使用できる。
 請求項3の発明によれば、上記水分散体が特定の固形分濃度を有することから、より優れた研磨特性が得られる。
 請求項4の発明によれば、酸化チタン粒子に対して二酸化ケイ素が特定割合であることから、より高い研磨性能を確実に発揮できる。
 請求項5の発明によれば、酸化チタン粒子の表面が二酸化ケイ素によって充分に覆われているから、研磨傷をより生じにくく、高い研磨性能を確実に発揮できる。
 請求項6の発明によれば、研磨材の酸化チタンが特定の一次粒子径を有するから、優れた研磨特性が得られると共に、研磨傷の抑制効果もより向上する。
 請求項7の発明によれば、研磨材のBET比表面積が特定範囲にあることから、より優れた研磨特性が得られると共に、研磨傷の抑制効果もより向上する。
 請求項8の発明によれば、研磨材の酸化チタン粒子が二酸化ケイ素を化学的沈着によって表面に被覆したものからなるため、研磨中でも二酸化ケイ素が酸化チタン粒子の表面で安定した被覆状態を保ち、酸化チタン粒子と二酸化ケイ素粒子の単なる混合物のように二酸化ケイ素粒子同士の凝集粒子を生じることがないと共に、酸化チタン粒子自体は二酸化ケイ素で表面が被覆されていることで凝集粒子が容易に開離して再分散し易く、もって非常に優れた研磨性能を発揮できる。
研磨対象とするガラスサンプル(a)(b)の研磨前の表面の光学顕微鏡写真図である。 酸化ケイ素被覆酸化チタン粒子の研磨材スラリーによる研磨後の両ガラスサンプル(a)(b)表面の光学顕微鏡写真図である。 酸化セリウム被覆酸化チタン粒子の研磨材スラリーによる研磨後の両ガラスサンプル(a)(b)表面の光学顕微鏡写真図である。 酸化ジルコニウム被覆酸化チタン粒子の研磨材スラリーによる研磨後の両ガラスサンプル(a)(b)表面の光学顕微鏡写真図である。 顔料級酸化チタン粒子の研磨材スラリーによる研磨後の両ガラスサンプル(a)(b)表面の光学顕微鏡写真図である。 酸化セリウム粒子の研磨材スラリーによる研磨後の両ガラスサンプル(a)(b)表面の光学顕微鏡写真図である。 コロイダルシリカの研磨材スラリーによる研磨中に乾燥したコロイダルシリカが混入した場合の研磨後の両ガラスサンプル(a)(b)表面の光学顕微鏡写真図である。 酸化ケイ素被覆酸化チタン粒子の研磨材スラリーによる研磨中に乾燥した酸化ケイ素被覆酸化チタン粒子が混入した場合の研磨後の両ガラスサンプル(a)(b)表面の光学顕微鏡写真図である。
 本発明のガラス及びセラミック研磨用組成物は、既述のように、二酸化ケイ素によって表面の少なくとも一部が被覆された酸化チタン粒子(以下、略称では二酸化ケイ素被覆酸化チタン粒子という)を研磨材として含むものであり、通常は該研磨材を含む水分散体つまりスラリー形態としてロータリー方式のCMP研磨装置等に好適に使用できるが、研磨対象や研磨方式によっては該研磨材単独又は該研磨材を主体とする粉末形態でも使用可能である。
 上記の二酸化ケイ素被覆酸化チタン粒子は、酸化チタン粒子と二酸化ケイ素粒子との混合物ではなく、酸化チタン粒子を核として、その核粒子の表面に二酸化ケイ素の被覆層を有するものである。
 このような二酸化ケイ素被覆酸化チタン粒子を得るには、種々の方法があるが、核となる酸化チタン粒子の表面に二酸化ケイ素を化学的沈着によって被覆する手段が推奨される。この化学的沈着による二酸化ケイ素の被覆手段としては、例えば、特許第4296529号公報、特開2006-83033号公報、特開2008-69193号公報、特許5158078号公報等に開示される方法を好適に採用できる。
 研磨材の核となる酸化チタン粒子は、特に制約されないが、一次粒子の平均粒子径が6~30nmの範囲にあるものが好適であり、特に同平均粒子径が6~20nmの範囲が推奨され、小さ過ぎては研磨速度が遅くなり、逆に大き過ぎては研磨面の平滑性が低下すると共に研磨傷も発生し易くなる。また、酸化チタンの代表的な結晶形態としてルチル形(正方晶)とアナターセ形(正方晶)があるが、いずれの結晶形態でも差し支えない。
 酸化チタン粒子に対する二酸化ケイ素の割合は、特に制約されないが、酸化物換算で10~60質量%の範囲が好ましく、少な過ぎては研磨面に研磨傷を生じ易く、逆に多過ぎても乾燥した粉体が混入した際に研磨面に研磨傷を生じ易くなる。なお、二酸化ケイ素被覆酸化チタン粒子としては、酸化チタン粒子の全表面が二酸化ケイ素によって覆われている必要はなく、酸化チタンの表面が一部露呈した状態であってもよいが、X線光電子分光法によるSiO2/TiO2の比率が0.15以上であることが望ましく、この比率が低過ぎては二酸化ケイ素による被覆不足で研磨傷の抑制効果を充分に発揮できない。
 更に、二酸化ケイ素被覆酸化チタン粒子を含む研磨材のBET比表面積は、40~400m/gの範囲が好ましく、40~130m/gの範囲が好ましく、特に60~110m/gの範囲が推奨され、小さ過ぎては研磨傷を生じ易く、逆に大き過ぎては研磨材の均一分散状態を保てなくなるという問題がある。
 研磨用組成物が上記研磨材を含む水分散体である場合、その固形分濃度は、5~40質量%の範囲が好適であり、特に25~35質量%の範囲が推奨され、低過ぎては研磨能率が低下する。また、逆に固形分濃度が高過ぎると、研磨材の均一分散状態を保てなくなり、特にCMP研磨には使用困難になると共に、粘性の増大によって取り扱いも困難になる。また、該水分散体は、アルカリ性であることが推奨され、pH8~12であれば研磨材の均一分散状態をより良好に保つことができるので更に好ましい。なお、ここでいう好ましい固形分濃度やpHは研磨に使用時の数値範囲であり、輸送や保管時のボリュームを減らすために製品化時点では比較的高濃度(高pH)の水分散体として調製し、研磨時に希釈して用いる形にしてもよい。
 このような水分散体からなる研磨用組成物を調製するには、研磨材を所望の配合比率で水に混合し、分散させて懸濁液とすればよい。この分散混合手段としては、翼式攪拌機による撹拌や超音波分散等の既存の種々の方式を採用できる。また、この水分散体の調製に際しては、製品の品質保持や安定化、被研磨物の種類や研磨条件への対応等、必要に応じて従来より研磨材スラリー用として知られる種々の添加剤を加えることができる。
 上記添加剤の好適な例としては、次の(イ)~(ヘ)のようなものが挙げられる。
 (イ)セルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース等のセルロース類、(ロ)エタノール、プロパノール、エチレングリコール等の水溶性アルコール類、(ハ)アルキルベンゼンスルホン酸ナトリウム、ナフタリンスルホン酸のホルマリン縮合物等の界面活性剤、(ニ)リグニンスルホン酸塩、ポリアクリル酸塩等の有機ポリアニオン系物質、(ホ)ポリビニルアルコール等の水溶性高分子(乳化剤)、(ヘ)ジメチルグリオキシム、ジチゾン、オキシン、アセチリアセトン、グリシン、EDTA、NTA等のキレート剤。
 一方、本発明に係る研磨用組成物では、研磨材としての二酸化ケイ素被覆酸化チタン粒子と共に、研磨促進剤や沈降防止剤等として他の種々の無機質粒子を配合してもよい。
 上記構成のガラス及びセラミック用研磨用組成物は、研磨材として二酸化ケイ素被覆酸化チタン粒子を含むことから、CMP研磨への適用性に優れ、高い研磨特性を安定的に発揮でき、しかも研磨傷を生じにくく、非常に良好な平滑面が得られると共に、酸性域からアルカリ性域まで広い研磨条件に対応できる。そして、この研磨用組成物によれば被研磨物表面を大きく削ることなく表面欠陥の少ない平滑面を形成できるから、研磨対象がガラスの場合には光学特性が向上し、表面に電極を形成するセラミック部材の場合には電極形成後の電極剥離が抑制されるという利点がある。なお、本発明の研磨用組成物では、水分散体(スラリー)として研磨に供する際、その研磨中に周辺に付着していた研磨材の乾燥粉体が混入することがあっても、研磨傷の増加に繋がりにくいことも判明している。
 このように優れた研磨特性を安定的に発揮できて且つ研磨傷を生じにくい理由については、詳細な作用機構は明らかではないが、研磨材粒子の核となる酸化チタン粒子が均一な粒度で変質や変形を生じる懸念がないことに加え、該酸化チタン粒子が表面を被覆する二酸化ケイ素よりも低い硬度であるため、研磨中に該酸化チタン粒子自体が被研磨面からの押接反力を吸収する緩衝層として機能し、もって研磨傷の発生が抑えられるものと推測される。ただし、同じように酸化チタン粒子を核とする研磨材であっても、後述する比較例の研磨結果で示すように、被覆物が酸化セリウムや酸化ジルコニウム等の他の金属酸化物である場合は研磨傷の発生が格段に多くなることが判明している。従って、未解明ではあるが、何らかの特異な要因が作用することで、酸化チタンの核粒子と二酸化ケイ素の被覆物との組合せに高い適性があると考えられる。
 また、研磨材の酸化チタン粒子が二酸化ケイ素を化学的沈着によって表面に被覆したものからなるため、研磨中でも二酸化ケイ素が酸化チタン粒子の表面で安定した被覆状態を保ち、酸化チタン粒子と二酸化ケイ素粒子の単なる混合物のように二酸化ケイ素粒子同士の凝集粒子を生じることがないと共に、酸化チタン粒子自体は二酸化ケイ素で表面が被覆されていることで凝集粒子が容易にほぐれて再分散し易く、もって非常に優れた研磨性能を発揮できる。
 なお、本発明のガラス及びセラミック研磨用組成物は、CMP研磨以外の種々の研磨方法にも適用できると共に、研磨材を水分散体とせずに粉末形態で使用することも可能である。 
 以下に、本発明の実施例について比較例と対比して具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下における%は質量%、部は質量部を意味する。なお、各研磨材の結晶形及び平均一次粒子径はX線回析により、水分散体のpHはJIS Z 8802に基づく測定法により、それぞれ調べた。
 実施例1
 平均一次粒子径15nmの酸化チタン粒子の表面に二酸化ケイ素を化学的沈着によって被覆したルチル形微粒子二酸化チタン(テイカ社製の商品名:MT-100WP・・・酸化チタンに対する二酸化ケイ素の割合が43%)をビーズミルで水に分散させ、固形分濃度30%、pH10.0の水分散体を得た。この分散液の一部を採取して乾燥させ、この乾燥後の酸化ケイ素被覆酸化チタン粒子をXPS(X線光電子分光法)によって表面分析した結果、SiO2/TiO2が70/30であった。
 実施例2
  特許第4296529号に準じた方法にて、平均一次粒子径6nmの二酸化チタン粒子の表面に二酸化ケイ素を化学的沈着によって被覆したアナタース形微粒子二酸化チタン(酸化チタンに対する二酸化ケイ素の割合が15%)を平均一次粒子径20nmになるように700℃で焼成し、ビーズミルで水に分散させ、固形分濃度30%、pH2.4の水分散体を得た。この分散液の一部を採取して乾燥させ、この乾燥後の酸化ケイ素被覆二酸化チタン粒子をXPS(X線光電子分光法)によって表面分析した結果、SiO2/TiO2が16/84であった。
 実施例3
  特許第4296529号に準じた方法にて、平均一次粒子径6nmの二酸化チタン粒子の表面に二酸化ケイ素を化学的沈着によって被覆したアナタース形微粒子二酸化チタン(酸化チタンに対する二酸化ケイ素の割合が10%)をビーズミルで水に分散させ、固形分濃度5%、pH11.0の水分散体を得た。この分散液の一部を採取して乾燥させ、この乾燥後の酸化ケイ素被覆二酸化チタン粒子をXPS(X線光電子分光法)によって表面分析した結果、SiO2/TiO2が20/80であった。
 比較例1
 硫酸チタニル水溶液(TiO2換算で80部 )と硝酸セリウム水溶液(CeO2換算で20部)を混合し、24%アンモニア水にてpH7まで中和した。中和後のスラリーをヌッチェにてろ過、洗浄し、120℃で乾燥後、600℃で焼成し、ハンマーミルにて粉砕し、平均一次粒子径14nmで酸化セリウムが部分的に被覆したアナタース形微粒子二酸化チタンを作製した。その後、ビーズミルで水に分散させ、固形分濃度30%、pH6.2の水分散体を得た。
 比較例2
 硫酸チタニル水溶液(TiO2換算で90部 )と硫酸ジルコニウム水溶液(ZrO2換算で10部)を混合し、24%アンモニア水にてpH7まで中和した。中和後のスラリーをヌッチェにてろ過、洗浄し、120℃で乾燥後、800℃で焼成し、ハンマーミルにて粉砕し、平均一次粒子径20nmで酸化ジルコニウムが部分的に被覆したアナタース形微粒子二酸化チタンを作製した。その後、ビーズミルで水に分散させ、固形分濃度30%、pH7.5の水分散体を得た。
 比較例3
 平均一次粒子径180nmの顔料級二酸化チタン粒子(テイカ社製の商品名:TITANIX JA-3・・・アナタース形)のpH5.9、固形分濃度30%の水分散体を用意した。
 比較例4
 市販酸化セリウム系研磨材〔昭和電工社製の商品名:SHOROX NX23(T)、蛍光X線分析ではCeO2が60%、La2O3が30%〕のpH8.4、固形分濃度30%の水分散体を用意した。
 比較例5
 市販コロイダルシリカ(日産化学社製の商品名:スノーテックス30、平均一次粒子径15nm)のpH9.8、固形分換算濃度30%の水分散体を用意した。
 〔研磨試験1〕
 実施例1~3及び比較例1~4の水分散体をそれぞれ研磨材スラリーとして用い、下記条件でガラスのCMP研磨試験を行った。この研磨試験における研磨レートと研磨傷発生数を測定し、その結果をBET一点法による比表面積と共に後記表1に示す。また、研磨対象のガラス(a)(b)2枚について、その研磨前の表面の顕微鏡写真(倍率34倍、以下も同じ)を図1に、実施例1の研磨材スラリーによる研磨後の表面の同顕微鏡写真を図2に、比較例1の研磨材スラリーによる研磨後の表面の同顕微鏡写真を図3に、比較例2の研磨材スラリーによる研磨後の表面の同顕微鏡写真を図4に、比較例3の研摩材スラリーによる研磨後の表面の同顕微鏡写真を図5に、比較例4の研磨材スラリーによる研磨後の表面の同顕微鏡写真を図6に、それぞれ示す。なお、研磨レートは、研磨前後のガラス厚をマイクロメーターにて測定し、ガラス3枚の平均値を算出した。また、研磨傷の数は、研磨後のガラス面を倍率34倍で撮影した視野内の傷をカウントし、1サンプルに付き3視野のカウント数の平均値にて示したが、多過ぎて数えきれない場合は1000<個とした。
 <研磨条件>
   研磨装置:スピードファム社製のCMP両面研磨機2B-9P
   荷重:2kg
   スラリー濃度:5~30%
   スラリー投入量:200ml/分
   下盤回転数:40rpm
   研磨時間:30分
   使用パッド:ポリウレタンパッド(ニッタハース社製の商品名:POLITEX Pad)
   研磨対象のガラスサンプル:並板ガラス、直径30mm、厚さ5mm。
Figure JPOXMLDOC01-appb-T000001
 表1の結果ならびに図2(a)(b)の顕微鏡写真から明らかなように、本発明の二酸化ケイ素被覆酸化チタン粒子の水分散体を研磨材スラリーとして用いたガラスのCMP研磨では、研磨傷の少ない良好な研磨面が得られる。これに対し、顔料級二酸化チタン粒子の水分散体(比較例3)や市販の酸化セリウム粒子の水分散体(比較例4)を研磨材スラリーとして用いたガラスのCMP研磨では、比較的に高い研磨速度が得られるものの、研磨面に研磨傷が多く発生することが判る。また、核粒子が二酸化チタン粒子であっても、その被覆物が酸化セリウム(比較例1)や酸化ジルコニウム(比較例2)である研磨材スラリーを用いた場合は、やはり研磨面に研磨傷が多く発生することが判る。
 〔研磨試験2〕
 実施例1及び比較例5の水分散体をそれぞれ研磨材スラリーとして用い、前記研磨試験1と同様の研磨条件において、常温で乾燥させた乾燥粉体を1%混入させ、ガラスのCMP研磨試験を行った。その結果、実施例1の研磨材スラリーによる研磨後のガラス表面の研磨傷は3視野のカウント数の平均値で220個/104cmであったのに対し、比較例5のコロイダルシリカの水分散体から研磨材スラリーによる研磨後のガラス表面の研磨傷は同1000個/104cm以上であった。なお、この研磨試験2に用いたガラス(a)(b)2枚について、実施例1の研磨材スラリーによる研磨後の表面の同顕微鏡写真を図7に、比較例5の研磨材スラリーによる研磨後の表面の同顕微鏡写真を図8に、それぞれ示す。これら図7と図8の対比から、研磨中に研磨材の乾燥粉末が混入した場合、該研磨材が市販のコロイダルシリカでは研磨傷が増加するのに対し、本発明の研磨用組成物では研磨傷の増加に繋がりにくいことが明らかである。

 

Claims (8)

  1.  二酸化ケイ素によって表面の少なくとも一部が被覆された酸化チタン粒子を研磨材として含むことを特徴とするガラス及びセラミック研磨用組成物。
  2.  前記研磨材を含む水分散体からなる請求項1に記載のガラス及びセラミック研磨用組成物。
  3.  前記水分散体の固形分濃度が5~40質量%である請求項2に記載のガラス及びセラミック研磨用組成物。
  4.  研磨材の酸化チタン粒子に対する二酸化ケイ素の割合が酸化物換算で10~60質量%である請求項1~3のいずれかに記載のガラス及びセラミック研磨用組成物。
  5.  研磨材のX線光電子分光法によるSiO2/TiO2の比率が0.15以上である請求項1~4のいずれかに記載のガラス及びセラミック研磨用組成物。
  6.  酸化チタンの平均一次粒子径が6~30nmである請求項1~5のいずれかに記載のガラス及びセラミック研磨用組成物。
  7.  研磨材のBET比表面積が40~400m/gである請求項1~6のいずれかに記載のガラス及びセラミック研磨用組成物。
  8.  前記酸化チタン粒子が二酸化ケイ素を化学的沈着によって表面に被覆したものからなる請求項1~7のいずれかに記載のガラス及びセラミック研磨用組成物。

     
     
     
PCT/JP2016/066428 2015-06-09 2016-06-02 ガラス及びセラミック研磨用組成物 WO2016199672A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177031482A KR20180006897A (ko) 2015-06-09 2016-06-02 유리 및 세라믹 연마용 조성물
CN201680028684.3A CN108026431A (zh) 2015-06-09 2016-06-02 玻璃及陶瓷研磨用组成物
EP16807379.9A EP3309232A4 (en) 2015-06-09 2016-06-02 COMPOSITION FOR GLASS AND CERAMIC POLISH
US15/833,179 US20180105727A1 (en) 2015-06-09 2017-12-06 Composition For Glass And Ceramic Polishing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015116812A JP2017002166A (ja) 2015-06-09 2015-06-09 ガラス及びセラミック研磨用組成物
JP2015-116812 2015-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/833,179 Continuation US20180105727A1 (en) 2015-06-09 2017-12-06 Composition For Glass And Ceramic Polishing

Publications (1)

Publication Number Publication Date
WO2016199672A1 true WO2016199672A1 (ja) 2016-12-15

Family

ID=57504001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066428 WO2016199672A1 (ja) 2015-06-09 2016-06-02 ガラス及びセラミック研磨用組成物

Country Status (7)

Country Link
US (1) US20180105727A1 (ja)
EP (1) EP3309232A4 (ja)
JP (1) JP2017002166A (ja)
KR (1) KR20180006897A (ja)
CN (1) CN108026431A (ja)
TW (1) TW201710463A (ja)
WO (1) WO2016199672A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001055028A1 (en) * 2000-01-25 2001-08-02 Nippon Aerosil Co., Ltd. Oxide powder and method for preparing the same, and product using the same
JP2001294848A (ja) * 2000-04-17 2001-10-23 Sanyo Chem Ind Ltd 研磨用砥粒分散剤及び研磨用スラリー
JP2006511638A (ja) * 2002-12-23 2006-04-06 デグサ アクチエンゲゼルシャフト 二酸化ケイ素で被覆された二酸化チタン
JP2009509784A (ja) * 2005-09-30 2009-03-12 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 研磨スラリー及び当該研磨スラリーを利用する方法
JP2009078935A (ja) * 2007-09-26 2009-04-16 Jgc Catalysts & Chemicals Ltd 金平糖状複合シリカゾル
JP2010506743A (ja) * 2006-10-16 2010-03-04 キャボット マイクロエレクトロニクス コーポレイション ガラス研磨組成物および方法
JP2013136499A (ja) * 2011-12-01 2013-07-11 Fuji Xerox Co Ltd シリカ複合粒子及びその製造方法
WO2013175976A1 (ja) * 2012-05-25 2013-11-28 株式会社ダイセル Cmp用研磨材組成物及び該cmp用研磨材組成物を使用したデバイスウェハの製造方法
JP2015000877A (ja) * 2013-06-13 2015-01-05 株式会社Adeka 研磨用担持体、研磨液組成物及び研磨方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114866A (ja) 1986-10-31 1988-05-19 Hoya Corp ガラスの加工方法
JP2000345143A (ja) 1999-06-03 2000-12-12 Showa Denko Kk ガラス研磨用研磨材組成物およびそれを用いた研磨方法
US6827639B2 (en) * 2002-03-27 2004-12-07 Catalysts & Chemicals Industries Co., Ltd. Polishing particles and a polishing agent
JPWO2014069507A1 (ja) * 2012-11-02 2016-09-08 コニカミノルタ株式会社 光学反射フィルム、赤外遮蔽フィルムおよびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001055028A1 (en) * 2000-01-25 2001-08-02 Nippon Aerosil Co., Ltd. Oxide powder and method for preparing the same, and product using the same
JP2001294848A (ja) * 2000-04-17 2001-10-23 Sanyo Chem Ind Ltd 研磨用砥粒分散剤及び研磨用スラリー
JP2006511638A (ja) * 2002-12-23 2006-04-06 デグサ アクチエンゲゼルシャフト 二酸化ケイ素で被覆された二酸化チタン
JP2009509784A (ja) * 2005-09-30 2009-03-12 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 研磨スラリー及び当該研磨スラリーを利用する方法
JP2010506743A (ja) * 2006-10-16 2010-03-04 キャボット マイクロエレクトロニクス コーポレイション ガラス研磨組成物および方法
JP2009078935A (ja) * 2007-09-26 2009-04-16 Jgc Catalysts & Chemicals Ltd 金平糖状複合シリカゾル
JP2013136499A (ja) * 2011-12-01 2013-07-11 Fuji Xerox Co Ltd シリカ複合粒子及びその製造方法
WO2013175976A1 (ja) * 2012-05-25 2013-11-28 株式会社ダイセル Cmp用研磨材組成物及び該cmp用研磨材組成物を使用したデバイスウェハの製造方法
JP2015000877A (ja) * 2013-06-13 2015-01-05 株式会社Adeka 研磨用担持体、研磨液組成物及び研磨方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309232A1 *

Also Published As

Publication number Publication date
KR20180006897A (ko) 2018-01-19
JP2017002166A (ja) 2017-01-05
EP3309232A4 (en) 2019-02-27
TW201710463A (zh) 2017-03-16
EP3309232A1 (en) 2018-04-18
US20180105727A1 (en) 2018-04-19
CN108026431A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
FI118180B (fi) Optisille pinnoille soveltuva kiillotusformulaatio
JP3457144B2 (ja) 研磨用組成物
Armini et al. Composite polymer core–ceria shell abrasive particles during oxide cmp: A defectivity study
TW503216B (en) Improved ceria powder
JP5287174B2 (ja) 研磨剤及び研磨方法
TWI387626B (zh) 製備具有高分散穩定度之拋光泥漿的方法
JP2009051726A (ja) 酸化セリウムの製造方法、酸化セリウム研磨剤、これを用いた基板の研磨方法及び半導体装置の製造方法
JP6965997B2 (ja) スラリ、研磨液の製造方法、及び、研磨方法
EP1234801A2 (en) Crystalline ceric oxide sol and process for producing the same
JP2008290183A (ja) 研磨用組成物
JP2000080352A (ja) 低誘電率材料用研磨用スラリ―としての水系金属酸化物ゾル
JP3945745B2 (ja) セリウム系研摩材及び研摩材スラリー並びにセリウム系研摩材の製造方法
KR20080059606A (ko) 폴리싱 슬러리 및 그 사용 방법
KR20190109405A (ko) 연마 조성물
JP2013111725A (ja) 研磨材およびその製造方法
WO2023168780A1 (zh) 光学玻璃超精密加工用低磨料含量和弱酸性抛光液及其制备方法
US8808568B2 (en) Magnetorheological materials, method for making, and applications thereof
JP2007061989A (ja) 研磨用複合酸化物粒子およびスラリー状研磨材
WO2016199672A1 (ja) ガラス及びセラミック研磨用組成物
JP6460090B2 (ja) 複合金属酸化物研磨材料の製造方法及び複合金属酸化物研磨材料
KR101196757B1 (ko) 고정도 연마용 산화세륨의 제조방법
JP4955253B2 (ja) デバイスウエハエッジ研磨用研磨組成物、その製造方法、及び研磨加工方法
JP4356636B2 (ja) 酸化セリウムの製造方法、酸化セリウム研磨剤、これを用いた基板の研磨方法及び半導体装置の製造方法
JP2002326812A (ja) 結晶性酸化第二セリウムゾル及びその製造方法
JPH1088111A (ja) 研磨用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031482

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807379

Country of ref document: EP