WO2016199412A1 - 抵抗変化素子、および抵抗変化素子の製造方法 - Google Patents

抵抗変化素子、および抵抗変化素子の製造方法 Download PDF

Info

Publication number
WO2016199412A1
WO2016199412A1 PCT/JP2016/002769 JP2016002769W WO2016199412A1 WO 2016199412 A1 WO2016199412 A1 WO 2016199412A1 JP 2016002769 W JP2016002769 W JP 2016002769W WO 2016199412 A1 WO2016199412 A1 WO 2016199412A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal
copper
wiring
resistance change
Prior art date
Application number
PCT/JP2016/002769
Other languages
English (en)
French (fr)
Inventor
宗弘 多田
直樹 伴野
岡本 浩一郎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/577,408 priority Critical patent/US10305034B2/en
Priority to JP2017523112A priority patent/JP6798489B2/ja
Publication of WO2016199412A1 publication Critical patent/WO2016199412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/51Structure including a barrier layer preventing or limiting migration, diffusion of ions or charges or formation of electrolytes near an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa-shaped or cup-shaped devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Definitions

  • the present invention relates to a resistance change element and a method for manufacturing the resistance change element, and more particularly to a resistance change element in which one electrode contains ruthenium and a method for manufacturing the resistance change element.
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • the soaring lithography process includes soaring manufacturing equipment and mask set prices.
  • physical limits of device dimensions include operating limits and dimensional variation limits.
  • FPGA Field Programmable Gate Array
  • resistance change element examples include ReRAM (Resistance RAM (Random Access Memory)) using a transition metal oxide and NanoBridge (registered trademark of NEC) using an ion conductor.
  • ReRAM Resistance RAM (Random Access Memory)
  • NEC NanoBridge
  • An ionic conductor is a solid in which ions can move freely by application of an electric field or the like.
  • Non-Patent Document 1 discloses a metal bridge deposition type switching element using metal ion migration and electrochemical reaction in an ion conductor as a resistance change element having a high possibility of improving the degree of freedom of a circuit.
  • the switching element disclosed in Non-Patent Document 1 has a configuration including three layers of an ion conductive layer and a first electrode and a second electrode provided in contact with each of two surfaces of the ion conductive layer. .
  • the 1st electrode plays the role for supplying a metal ion to an ion conductive layer, and is called an active electrode.
  • metal ions are not supplied from the second electrode, it is called an inactive electrode.
  • this variable resistance element When a positive voltage is applied to the first electrode and the second electrode is grounded, the metal of the first electrode becomes metal ions and dissolves in the ion conductive layer. And the metal ion in an ion conductive layer turns into a metal and precipitates in an ion conductive layer, The metal bridge
  • the switch is turned on by electrically connecting the first electrode and the second electrode by metal bridge.
  • Non-Patent Document 1 discloses the configuration and operation in the case of a two-terminal switching element in which two electrodes are arranged via an ion conductor and the conduction state between them is controlled.
  • Such a switching element is characterized by a smaller size and a lower on-resistance than a semiconductor switch such as a MOSFET. Therefore, it is considered promising for application to programmable logic devices.
  • this switching element can be used as a non-volatile memory element because a conductive state (ON or OFF of the element) is maintained as it is without applying a voltage.
  • a memory cell including one selection element such as a transistor and one switching element as a basic unit
  • a plurality of memory cells are arranged in the vertical direction and the horizontal direction, respectively. Arranging in this way makes it possible to select an arbitrary memory cell from among a plurality of memory cells with the word line and the bit line.
  • Non-volatile that can sense the conduction state of the switching element of the selected memory cell and read information “1” or “0” from the on or off state of the switching element. Memory can be realized.
  • Patent Document 1 proposes to use an alloy containing ruthenium as the second electrode of the resistance change element. According to the resistance change element of Patent Document 1, the adhesion between the metal bridge and the second electrode is improved, and even when the resistance change element is programmed at a low current, the stability of the element is improved and the holding power is improved. Further improvement is desired regarding the long-term reliability of the variable resistance element.
  • the present invention has been made to solve the above-described problems, and provides a resistance change element that improves the dielectric breakdown resistance of an ion conductive layer and improves the number of rewrites, and a method of manufacturing the resistance change element. For the purpose.
  • a variable resistance element includes a first electrode containing at least copper, a second electrode containing at least Ru, nitrogen, and a first metal, the first electrode, and the second electrode. And an ion conductive layer located between the two.
  • variable resistance element manufacturing method a first electrode including at least copper is formed, an ion conductive layer is formed on the first electrode, and Ru, nitrogen, and the first are formed on the ion conductive layer.
  • a second electrode containing at least a metal is formed.
  • the second electrode is stabilized, and the breakdown voltage when the reset voltage is applied is improved.
  • (A) is a graph showing the switching voltage and breakdown voltage of a resistance change element using a Ru electrode
  • (b) is a graph showing the switching voltage and breakdown voltage of a resistance change element using a RuTi electrode
  • (C) is a graph which shows the switching voltage and dielectric breakdown voltage of a resistance change element using a RuTiN electrode. It is a graph which shows the atomic composition in the formed RuTiN film
  • the resistance change element has a structure in which an ion conductive layer is located between the first electrode, the second electrode, and the first electrode and the second electrode.
  • the first electrode is at least It is an electrode containing copper (Cu).
  • the second electrode is an electrode containing at least ruthenium (Ru), nitrogen, and a first metal.
  • the nitrogen content in the second electrode is preferably 10 atm% or more and less than 20 atm%.
  • the second electrode contains 20 atm% or more of nitrogen, desorption of nitrogen occurs, and the stability of the electrode decreases.
  • the first metal of the second electrode is a metal whose standard free energy for formation of oxidation is negatively larger than that of ruthenium (Ru).
  • crosslinking is formed between the 1st electrode and the 2nd electrode, there exists an effect which the adhesiveness of metal bridge
  • the first electrode contains the first metal to form a bond between the first metal and nitrogen, and the second electrode is alloyed and stabilized.
  • the first metal is titanium (Ti), tantalum (Ta), aluminum (Al), manganese (Mn), zirconium (Zr), hafnium (Hf), magnesium (Mg), cobalt (Co), zinc (Zn). , At least one of tungsten (W).
  • the content of the first metal in the second electrode is preferably 10 amt% or more and less than 20 atm%. This is because the present inventors have found that the withstand voltage decreases conversely when the content of the first metal is increased to 20 atm% or more.
  • the ratio of the nitrogen content and the first metal content in the second electrode is preferably stoichiometry. This is because when the first metal forms a nitrogen compound, the bonding state is stabilized when the stoichiometric ratio is established.
  • the first metal is a trivalent metal, it is preferable that the nitrogen content and the first metal content are the same.
  • the withstand voltage of the ion conductive layer may be reduced.
  • the sum of the nitrogen content and the first metal content in the second electrode is preferably less than 40 amt%.
  • the second electrode has a hexagonal close-packed structure.
  • the stable crystal structure of ruthenium at room temperature and atmospheric pressure is a hexagonal close-packed structure.
  • the second electrode is configured such that the ruthenium crystal structure is maintained regardless of the nitrogen content and the first metal content, and the plane parallel to the ion conductive layer is the closest packed layer. This is because when the metal bridge is formed in the ion conductive layer and the second electrode and the formed metal bridge are connected, the connection interface is stabilized.
  • the variable resistance element has a third electrode that is in contact with the second electrode and is not in contact with the ion conductive layer, and the third electrode includes at least the first metal and nitrogen.
  • the third electrode serves to protect the second electrode containing ruthenium during dry etching during the manufacturing process. At this time, due to the thermal history during the processing process of the LSI, mutual diffusion of the material constituting the second electrode and the third electrode may occur, and the composition of the second electrode may fluctuate. The composition of the second electrode affects the switching operation of the variable resistance element.
  • the third electrode includes the first metal and nitrogen in advance.
  • the ratio of the first metal and nitrogen in the third electrode is preferably the same as the ratio of the first metal and nitrogen in the second electrode. Thereby, the mutual diffusion between the second electrode and the third electrode can be further prevented.
  • the first electrode preferably includes the first metal. This is because when the first metal is added to the first electrode when the metal bridge is formed, the first metal is also contained inside the metal bridge. At this time, since the first metal is also contained in the second electrode, the adhesion between the metal bridge and the second electrode can be improved, and the thermal stability in the low resistance state can be improved. It becomes like this.
  • the ion conductive layer in which the effect of the present invention is easily obtained is preferably a film containing at least silicon (Si) as an element in addition to oxygen (O) and carbon (C).
  • FIG. 1 is a cross-sectional view schematically showing a variable resistance element according to the first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of the semiconductor device of the present embodiment.
  • the resistance change element of the present embodiment includes a first electrode 1, an ion conductive layer 3, and a second electrode 2.
  • an ion conductive layer 3 and a second electrode 2 are sequentially formed on the first electrode 1.
  • the 1st electrode 1 is a structure which consists of a metal containing copper (Cu), and is good also considering copper (Cu) as a main component.
  • the ion conductive layer 2 contains silicon (Si), oxygen (O), and carbon (C) elements as materials.
  • the first electrode 1 and the second electrode 2 of the resistance change element in the present embodiment will be described.
  • the first electrode 1 is an electrode containing copper (Cu).
  • the first electrode 1 plays a role for supplying copper ions to the ion conductive layer.
  • the first electrode 1 may contain a metal such as aluminum (Al), titanium (Ti), tin (Sn), zirconium (Zr), and tantalum (Ta) as impurities for copper (Cu). .
  • the second electrode 2 serves as an inert electrode, and the material is preferably composed mainly of ruthenium (Ru), and preferably contains nitrogen. Furthermore, it is preferable that the second electrode 2 contains a first metal having a negative oxidation free energy larger than that of copper (Cu).
  • the first metal is, for example, titanium (Ti), tantalum (Ta), aluminum (Al), manganese (Mn), zirconium (Zr), hafnium (Hf), magnesium (Mg), cobalt (Co), zinc ( It is preferable that it is at least one of Zn).
  • a sputtering method for forming the second electrode 2.
  • a method using an alloy target of ruthenium (Ru) and a first metal a co-sputtering method of simultaneously sputtering a ruthenium target and a first metal target in the same chamber, is there.
  • an intermixing method in which a thin film of a first metal is formed in advance, a ruthenium film is formed thereon using a sputtering method, and alloyed with the energy of collision atoms.
  • the use of cosputtering and intermixing methods can change the composition of the alloy. Nitrogen can be introduced into the formed electrode by performing sputtering while introducing nitrogen gas or a gas containing nitrogen gas as a sputtering atmosphere.
  • the nitrogen content in the second electrode is preferably in the range of 10 atm% to 20 atm%. This is because when the nitrogen content is high, nitrogen is desorbed from the second electrode due to the thermal history of the subsequent process, and the film quality is destabilized.
  • the first metal can be selected from refractory metals such as tantalum (Ta), titanium (Ti), and tungsten (W).
  • the second electrode containing these metals is excellent in both the transition from the on state to the off state and the stability of the on state.
  • the content of the first metal in the second electrode is preferably in the range of 10 atm% to 20 atm%.
  • the sum of the nitrogen content and the first metal content is preferably 40 atm% or less. This is because when the composition ratio is outside this range, the second electrode becomes unstable with respect to heat, and the dielectric breakdown voltage decreases.
  • the ion conductive layer 3 plays a role of ion conduction.
  • the ion conductive layer from which the effect of the present embodiment can be obtained is not limited to the effect of the present embodiment as long as electrical conduction of metal ions is possible.
  • the ion conductive layer 3 for example, an oxide, nitride, fluoride, sulfide, carbide, organic polymer, a mixed material thereof, a laminated structure, or the like can be used.
  • the ion conductive layer 3 is preferably an oxide or a carbide.
  • the ion conductive layer 3 preferably contains at least silicon (Si) and oxygen (O) as main components, for example. Since the ion conductive layer 3 has a cyclic siloxane structure composed of silicon (Si) and oxygen (O), conduction of ions in the film is facilitated. Further, the ion conductive layer 3 is preferably made of silicon (Si), oxygen (O) and carbon (C) elements.
  • Si silicon
  • O oxygen
  • C carbon
  • the second electrode 2 of the variable resistance element is configured to include at least Ru, nitrogen, and the first metal, whereby the second electrode 2 is stabilized and a reset voltage is applied. This improves the breakdown voltage.
  • FIG. 2 is a cross-sectional view schematically showing a variable resistance element according to the second embodiment of the present invention.
  • variable resistance element of FIG. 2 has a third electrode 4 that contacts the second electrode 2 and does not contact the ion conductive layer 3.
  • the third electrode 4 includes at least the first metal and nitrogen.
  • the third electrode 4 of this embodiment has a role of protecting the second electrode 2 from etching damage in the manufacturing process of the resistance change element.
  • the second electrode containing ruthenium (Ru) is used.
  • the third electrode 4 covers the second electrode 2 so that the two electrodes 2 are not directly exposed.
  • the composition of the second electrode 2 is prevented from fluctuating by preventing the second electrode 2 containing ruthenium (Ru) from being directly exposed.
  • the third electrode 4 also has a function as an etching stop film for etching for forming a contact hole when forming a contact hole for electrical connection with the second electrode 2 from the outside. Therefore, it is preferable to select a material having a low etching rate for the third electrode 4 with respect to the plasma of a fluorocarbon gas used for etching an insulating film such as silicon oxide in which a contact hole is formed.
  • the third electrode 4 is preferably made of a metal nitride. However, in the subsequent processing process, mutual diffusion (intermixing) occurs between the second electrode and the third electrode, and the composition of the second electrode may change. The composition of the second electrode affects the switching operation of the variable resistance element. In order to prevent this, it is preferable that the third electrode contains the first metal in the material that functions as an etching stop film and has conductivity.
  • a metal nitride such as titanium (Ti), tantalum (Ta), zirconium (Zr), hafnium (Hf), tungsten (W), or the like is preferable.
  • the content ratio of the first metal and nitrogen in the third electrode is preferably the same as the content ratio of the first metal and nitrogen in the second electrode. Thereby, the mutual diffusion between the second electrode and the third electrode can be further prevented.
  • a sputtering method for forming the third electrode 4.
  • a reactive sputtering method in which a metal target is evaporated using plasma of a mixed gas of nitrogen and argon (Ar). The metal evaporated from the metal target reacts with nitrogen to form a metal nitride and is deposited on the substrate.
  • the second electrode 2 of the variable resistance element is configured to include at least Ru, nitrogen, and the first metal, as in the first embodiment. 2 is stabilized, and the breakdown voltage when the reset voltage is applied is improved.
  • the resistance change element of the present embodiment since the resistance change element includes the third electrode 4, the second electrode 2 can be protected from etching damage in the process of manufacturing the resistance change element. Furthermore, since the third electrode 4 is configured to include at least nitrogen and the first metal, it is possible to reduce the possibility of mutual diffusion (intermixing) between the second electrode and the third electrode in the subsequent processing process. can do. By reducing the possibility of this interdiffusion, the possibility that the composition of the second electrode will fluctuate can be reduced.
  • FIG. 3 is a cross-sectional view schematically showing a semiconductor device in which the variable resistance element according to the first embodiment of the present invention is formed.
  • 3 includes a first interlayer insulating film 101, a barrier metal 102, a first electrode / first copper wiring 103, a first insulating barrier film 104, an ion conductive layer 105, a second electrode 106, and a third electrode 107. , And a copper plug 108.
  • the semiconductor device of FIG. 3 includes a second interlayer insulating film 109, a barrier metal 110, a second copper wiring 111, and a second insulating barrier film 112.
  • the first electrode 3 includes a first electrode formed on the first interlayer insulating film 101 on a semiconductor substrate (not shown).
  • the first electrode is an electrode containing copper (Cu) and also serves as the first copper wiring.
  • the first electrode in FIG. 3 is referred to as a first electrode / first copper wiring 103.
  • the side and bottom surfaces of the first electrode / first copper wiring 103 are covered with a barrier metal 102.
  • the upper surfaces of the first electrode / first copper wiring 103 and the first interlayer insulating film 101 are covered with a first insulating barrier film 104.
  • the first insulating barrier film 104 has an opening, and at least a part of the first electrode / first copper wiring 103 is exposed at the bottom of the opening.
  • An ion conductive layer 105, a second electrode 106, and a third electrode 107 are sequentially embedded in the opening of the first insulating barrier film 104, and the side surfaces of these films are processed by dry etching. These together with the first electrode / first copper wiring 103 constitute a resistance change element 113.
  • a copper plug 108 is connected to the upper surface of the third electrode 107 via a barrier metal 110, and the copper plug 108 is formed inside the second interlayer insulating film 109 by a dual damascene process. Integrated and connected. The upper surfaces of the second copper wiring 111 and the second interlayer insulating film 109 are covered with the second insulating barrier film 112.
  • the semiconductor substrate is a substrate on which a semiconductor element is formed.
  • a semiconductor substrate for example, a silicon substrate, a single crystal substrate, an SOI (Silicon on Insulator) substrate, a TFT (Thin Film Transistor) substrate, a liquid crystal manufacturing substrate, or the like can be used.
  • the first interlayer insulating film 101 in FIG. 3 is an insulating film formed on the semiconductor substrate.
  • a silicon oxide film for example, a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used.
  • the first interlayer insulating film 101 may be a laminate of a plurality of insulating films.
  • the first insulating barrier film 104 and the second insulating barrier film 112 are insulating films having a diffusion barrier property against copper (Cu). In addition, it has a role as an etching stop layer when processing a via hole for forming a copper plug.
  • the first insulating barrier film 104 and the second insulating barrier film 112 for example, SiN, SiC, SiCN, or the like can be used.
  • the second interlayer insulating film 109 is an insulating film formed on the first insulating barrier film 104.
  • the second interlayer insulating film 109 for example, a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used.
  • the second interlayer insulating film 109 may be a laminate of a plurality of insulating films.
  • a wiring groove for embedding the first electrode / first copper wiring 103 is formed in the first interlayer insulating film 101, and the first electrode / first copper wiring 103 is formed in the wiring groove via the barrier metal 102. Embedded.
  • the first electrode / first copper wiring 103 and the ion conductive layer 105 are in direct contact with each other through the opening of the first insulating barrier film 104.
  • the first electrode / first copper wiring 103 contains copper (Cu) as a main component, but preferably contains a first metal and is alloyed.
  • the barrier metal 102 is used to prevent the metal contained in the first electrode / first copper wiring 103 from diffusing into the first interlayer insulating film 101 or the lower layer of the first interlayer insulating film 101.
  • 1 is a conductive film having a barrier property covering the side surface or bottom surface of the copper wiring 103.
  • a refractory metal such as tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), tungsten carbonitride (WCN), a nitride thereof, or a laminated film thereof is used. Can be used.
  • the first insulating barrier film 104 has an opening.
  • the opening of the first insulating barrier film 104 is formed in a region including at least the first electrode / first copper wiring 103.
  • the wall surface of the opening of the first insulating barrier film 104 is a tapered surface that becomes wider as the distance from the center of the opening increases. By doing so, the embedding characteristics of the ion conductive layer 105, the second electrode 106, and the third electrode 107 can be maintained satisfactorily.
  • the ion conductive layer 105 is a film whose resistance value changes due to precipitation of metal bridges.
  • an oxide insulating film containing tantalum (Ta) can be used, and Ta 2 O 5 , TaSiO, or the like can be used as the oxide containing tantalum (Ta).
  • the ion conductive layer 105 may have a stacked structure in which Ta 2 O 5 and TaSiO are stacked in this order from the bottom. With such a laminated structure, when a variable resistance material is used as the ion conductive layer, metal ions (for example, copper) formed inside the ion conductive layer when the resistance is low (when the variable resistance element is on).
  • the ion conductive layer 105 may be a sulfide such as Cu 2 S or GeS, or may be a laminated structure of an oxide and a sulfide.
  • variable resistance element With the configuration as shown in FIG. 3, the variable resistance element according to the embodiment of the present invention can be formed inside the copper wiring of the semiconductor device. Since the first electrode also serves as the first copper wiring, the electrode resistance can be lowered while simplifying the number of steps. As an additional step to the normal Cu damascene wiring process, it is possible to mount a variable resistance element simply by creating a mask set of at least 2PR, and it is possible to simultaneously achieve low resistance and low cost of the element.
  • the formed resistance change element 113 performs on / off control by applying a voltage or passing a current, for example, electric field diffusion of a metal related to the first electrode / first copper wiring 103 into the ion conductive layer 105. Use to control on / off.
  • the second electrode 106 is located on the ion conductive layer 105 and is in direct contact with the ion conductive layer 105.
  • the second electrode 106 is preferably made of a metal material that is less ionized than copper (Cu) and is less likely to diffuse and ion-conduct in the ion conductive layer 105, and is a metal material that has a smaller absolute value of free energy of oxidation than copper. It is preferable.
  • the second electrode 106 includes at least ruthenium (Ru), nitrogen, and a first metal.
  • the first metal it is preferable to select a metal having a negative oxidation free energy larger than that of copper (Cu).
  • a metal having a negative oxidation free energy larger than that of copper (Cu) For example, Ti, Ta, Al, Mn, Zr, Hf, Mg, Co, Zn, W It is preferable that it is at least one of these.
  • a reactive co-sputtering method is preferably used, and sputtering can be performed in a state where nitrogen gas is introduced into the sputtering atmosphere. By performing sputtering with nitrogen gas introduced into the sputtering atmosphere, the formed second electrode 106 can contain nitrogen.
  • the nitrogen content in the second electrode 106 is preferably in the range of 10 atm% to 20 atm%. This is because if the content of nitrogen is large, nitrogen is desorbed by the thermal history of the subsequent process and the film is destabilized.
  • a mixed gas of argon (Ar) and nitrogen is supplied as a sputtering atmosphere to a sputtering chamber including two targets of ruthenium (Ru) and titanium (Ti).
  • the nitrogen content in the formed film can be controlled by changing the ratio of nitrogen to the gas supply amount of the entire mixed gas.
  • the titanium content in the film can be controlled by changing the power ratio applied to each target of ruthenium (Ru) and titanium (Ti).
  • FIG. 7 is an example of the film composition result of the RuTiN film when the first metal is titanium (Ti).
  • the horizontal axis of FIG. 7 shows the ratio of nitrogen in the mixed gas of argon (Ar) and nitrogen (N 2 ) as a sputtering atmosphere.
  • the vertical axis in FIG. 7 indicates the atomic composition in the RuTiN film with respect to the nitrogen ratio in the mixed gas.
  • the second electrode 106 is a material having a barrier property against copper and copper ions.
  • the second electrode 106 can be selected from, for example, a tantalum nitrogen compound, a titanium nitrogen compound, a tungsten nitrogen compound, and the like.
  • the variable resistance element in which such a material is selected as the second electrode 106 is excellent in the transition from the on state to the off state and the stability of the on state.
  • the content of the first metal in the second electrode 106 is preferably in the range of 10 atm% to 20 atm%.
  • the sum of the nitrogen content and the first metal content in the second electrode 106 is preferably 40 atm% or less. This is because when the composition ratio is outside this range, the second electrode becomes unstable with respect to heat, and the dielectric breakdown voltage decreases.
  • the third electrode 107 is an electrode located above the second electrode 106.
  • the third electrode 107 has a role of protecting the second electrode 106. That is, since the third electrode 107 protects the second electrode 106, damage to the second electrode 106 during the process can be suppressed, and the switching characteristics of the resistance change element 113 can be maintained.
  • the third electrode 107 is preferably a nitrogen compound containing a first metal, and Ta, Ti, and W can be used as the first metal. Since these nitrogen compounds are stable in the atmosphere, even when a via hole is opened, the resistance is not increased by oxidation.
  • the third electrode 107 is preferably made of the same material as the barrier metal 110. For this reason, a fourth electrode (not shown) made of the same material as the barrier metal 110 may be provided on the third electrode 107. The fourth electrode is electrically connected to the copper plug 108 via the barrier metal 110.
  • FIG. 4 is a cross-sectional view schematically showing a semiconductor device in which the variable resistance element according to the second embodiment of the present invention is formed.
  • 4 includes a first interlayer insulating film 400, a barrier metal 406, a first electrode / first copper wiring 405, a first insulating barrier film 407, an ion conductive layer 409, a second electrode 410, and a third electrode 411. And a protective insulating film 414.
  • the semiconductor device of FIG. 4 includes a second interlayer insulating film 417, a third interlayer insulating film 416, a copper plug 418, a second copper wiring 419, a barrier metal 420, and a second insulating barrier film 421.
  • the first electrode / first copper wiring 405, the ion conductive layer 409, the second electrode 410, and the third electrode 411 constitute a resistance change element 201. Also in the resistance change element 201 of FIG. 4, the same material and composition as the resistance change element 113 of FIG. 3 described above can be employed. That is, the first electrode / first copper wiring 405 is an electrode mainly composed of copper (Cu) and is a wiring.
  • the second electrode 410 of the resistance change element 201 in FIG. 4 includes at least ruthenium (Ru), nitrogen, and a first metal.
  • the second electrode 410 is preferably made of a metal material that is less ionizable than copper (Cu) and is less likely to diffuse and ion-conduct in the ion conductive layer 409 and has a smaller absolute value of free energy of oxidation than copper. It is preferable.
  • the second electrode 410 includes at least ruthenium (Ru), nitrogen, and a first metal.
  • the first metal it is preferable to select a metal having a negative oxidation free energy larger than that of copper (Cu).
  • Cu copper
  • Ti, Ta, Al, Mn, Zr, Hf, Mg, Co, Zn, W It is preferable that it is at least one of these.
  • the nitrogen content in the second electrode 410 is preferably in the range of 10 atm% to 20 atm%.
  • the content of the first metal in the second electrode 410 is preferably in the range of 10 atm% to 20 atm%.
  • the sum of the nitrogen content and the first metal content in the second electrode 410 is preferably 40 atm% or less. This is because when the composition ratio is outside this range, the second electrode becomes unstable with respect to heat, and the dielectric breakdown voltage decreases.
  • the opening is provided in the first barrier insulating film 407 such as a SiCN film, and the ion conductive layer 409 is a solid electrolyte, for example, an oxide, for example, mainly composed of carbon, oxygen, hydrogen, and silicon.
  • the second electrode 410 is an electrode containing ruthenium (Ru) as a main component.
  • An upper portion of the second electrode 410 may further include a third electrode 411 such as TiN and a high melting point nitrogen compound such as TaN.
  • a hard mask film 412 as shown in FIG. 4 may be further provided between the third electrode 411 and the protective insulating film 414.
  • the third electrode 411 is connected to the upper wiring via the copper plug 418 and may be a copper dual damascene wiring.
  • the copper dual damascene wiring has its side and bottom surfaces surrounded by a barrier metal 420 such as Ta / TaN, and the upper surface is covered with a second insulating barrier film 421 such as SiN or SiCN.
  • a first interlayer insulating film 400, a first insulating barrier film 407, a protective insulating film 414, a second interlayer insulating film 417, and a third interlayer insulating film 416 are sequentially stacked above a semiconductor substrate (not shown). And an insulating laminate including a second insulating barrier film 421.
  • a wiring groove is formed in the first interlayer insulating film 400 such as SiOCH. Side and bottom surfaces of the wiring groove are covered with a barrier metal 406 such as Ta / TaN, and a first electrode / first copper wiring 405 is formed on the barrier metal 406 so as to fill the wiring groove. ing.
  • a barrier metal 406 such as Ta / TaN
  • the first electrode / first copper wiring 405 is a lower wiring.
  • contact holes are formed in the protective insulating film 414 such as SiN and the hard mask film 412 such as SiCN, and the copper plug 418 is in contact with the third electrode 411 of the resistance change element 201 through the contact holes.
  • a wiring trench is formed in the third interlayer insulating film 416 such as SiOCH and the second interlayer insulating film 417 such as SiO 2 .
  • the side and bottom surfaces of the contact hole and the wiring groove are covered with a barrier metal 420 such as Ta / TaN.
  • a copper plug 418 is formed so as to bury the contact hole, and a second copper wiring 419 as an upper wiring is formed so as to bury the wiring groove.
  • the second copper wiring 419 and the copper plug 418 are integrated.
  • the first electrode / first copper wiring 405 is a lower wiring.
  • the first insulating barrier film 407 such as SiCN, an opening communicating with the first electrode / first copper wiring 405 is formed. A portion located inside the opening of the first electrode / first copper wiring 405, a side surface of the opening of the first insulating barrier film 407, and a part of the upper surface of the first insulating barrier film 407 are covered. In addition, an ion conductive layer 409, a second electrode 410, and a third electrode 411 are sequentially stacked.
  • variable resistance element portion will be briefly described.
  • a wiring groove is formed in the first interlayer insulating film 400, and the side and bottom surfaces of the wiring groove are covered with the barrier metal 406. Further, the first electrode / first copper wiring 405 is formed in the wiring groove covered with the barrier metal 406. The first electrode / first copper wiring 405 contains at least copper. The first electrode / first copper wiring 405 also functions as the first electrode of the resistance change element 201. After the first insulating barrier film 407 is formed so as to cover the first interlayer insulating film 400 and the first electrode / first copper wiring 405, an opening for exposing the first electrode / first copper wiring 405 is formed in the first portion. An insulating barrier film 407 is formed.
  • an ion conductor to be the ion conductive layer 409 is formed so as to be in contact with at least the first electrode / first copper wiring 405 exposed at the opening.
  • a second electrode layer that includes at least ruthenium (Ru), nitrogen, and a first metal and serves as the second electrode 410 is then stacked.
  • the resistance change element 201 includes the third electrode 411 as illustrated in FIG. 4, a third electrode layer that includes nitrogen and the first metal and becomes the third electrode 411 is then stacked.
  • the laminated structure including the third electrode layer, the second electrode layer and the ion conductor, or the laminated structure including the second electrode layer and the ion conductor is patterned to obtain the ion conductive layer 409 of the resistance change element 201 and the second electrode 410. And the third electrode 411 is formed.
  • FIG. 5 is a cross-sectional view schematically showing a semiconductor device having a multilayer wiring structure in which a variable resistance element according to a third embodiment of the present invention is formed.
  • a resistance change element 501 is mounted in a multilayer wiring layer on a CMOS (Complementary Metal Oxide Semiconductor) substrate.
  • CMOS Complementary Metal Oxide Semiconductor
  • the CMOS substrate base in the formation of the reconfigurable circuit refers to a layer below the resistance change element 501.
  • This semiconductor device has a silicon substrate 500 as an example of a semiconductor substrate and a MOSFET 599 formed on the silicon substrate 500. Further, this semiconductor device has a multilayer wiring structure formed on silicon substrate 500 and MOSFET 599, and resistance change element 501 incorporated in the multilayer wiring structure.
  • the multilayer wiring structure of FIG. 5 includes a plurality of silicon oxide films 511 and 519 and SiOCH films 512 to 518 as insulating films stacked in the vertical direction. Further, the multilayer wiring structure of FIG. 5 is formed in the uppermost layer with silicon carbonitride (SiCN) films 521 to 528 formed between each of the plurality of silicon oxide films or SiOCH films. And a silicon oxynitride film 520 as a protective film.
  • SiCN silicon carbonitride
  • the multilayer wiring structure of FIG. 5 includes a tungsten plug 529 formed penetrating in the thickness direction of the lowermost silicon oxide film 511. Further, the multilayer wiring structure of FIG. 5 includes a copper wiring 530 made of a Cu layer 534 and a barrier metal 533 formed so as to penetrate in the thickness direction of the SiOCH film 512 which is a layer immediately above the lowermost layer. Further, the multilayer wiring structure of FIG. 5 includes a copper wiring 530 made of a Cu layer 536 and a barrier metal 535 formed in a SiOCH film 513 above the copper wiring 530 made of the Cu layer 534 and the barrier metal 533. 5 includes a dual damascene pattern formed in each of the SiOCH films 512 to 518, and an uppermost layer wiring formed over the silicon oxide film 519 and the uppermost silicon oxynitride film 520.
  • the tungsten plug 529 includes a tungsten layer 532 and a TiN layer 531 that covers the side and bottom surfaces of the tungsten layer 532.
  • Dual damascene grooves are formed in each of the SiOCH films 512 to 518.
  • the dual damascene pattern includes Cu layers 540, 542, 544, and 546 buried in the dual damascene grooves, and Ta / TaN films 539, 541, and 543 that cover the side surfaces and bottom surfaces of the Cu layers 540, 542, 544, and 546, 545.
  • the Ta / TaN films 539, 541, 543, and 545 are barrier metals.
  • the uppermost layer wiring includes an Al—Cu layer 548 embedded in a groove-shaped via formed over the silicon oxide film 519 and the uppermost silicon oxynitride film 520. Further, the uppermost layer wiring is a Ti / TiN layer as a barrier metal that covers the side and bottom surfaces of the Al—Cu layer 548 in the silicon oxide film 519 and the boundary surface between the silicon oxide film 519 and the silicon oxynitride film 520. 547. Further, the uppermost layer wiring includes a Ti / TiN layer 549 as a barrier metal that covers the upper surface of the Al—Cu layer 548 in the silicon oxynitride film 520.
  • the Ti / TiN layer 547 and the Ti / TiN layer 549 of the uppermost layer wiring can be omitted as necessary.
  • each dual damascene pattern, the copper wiring 530, and the tungsten plug 529 are formed so as to be aligned in the vertical direction. Connected.
  • a copper wiring 530 made of a Cu layer 534 and a barrier metal 533 is formed between a copper wiring 530 made of a Cu layer 534 and a barrier metal 533 and a copper wiring 530 made of a Cu layer 536 and a barrier metal 535.
  • the resistance change element 201 shown in FIG. 4 of the third embodiment described above can be applied to this embodiment. That is, the first electrode / first copper wiring 405 in FIG. 4 is used as the Cu layer 534 in FIG. Further, an ion conductive layer 409, a second electrode 410, a third electrode 411, etc. as shown in FIG. 4 are arranged between the Cu layer 534 of FIG. 5 and the copper wiring 530 made of the Cu layer 534 and the barrier metal 533. To do. Also in the resistance change element 501 in FIG. 5, the same material and composition as the resistance change element 113 in FIG. 3 and the resistance change element 201 in FIG. 4 described above can be employed.
  • FIG. 6A is a graph showing the set voltage and breakdown voltage of a resistance change element using a Ru electrode
  • FIG. 6B shows the set voltage and breakdown voltage of a resistance change element using a RuTi electrode. It is a graph.
  • FIG. 6C is a graph showing a set voltage and a breakdown voltage of a resistance change element using a RuTiN electrode.
  • the horizontal axis represents the set voltage (Vset) when the variable resistance element is programmed from the high resistance state to the low resistance state, and the breakdown voltage (Vb) at which dielectric breakdown occurs.
  • Vset set voltage
  • Vb breakdown voltage
  • the vertical axis indicates the cumulative probability.
  • FIG. 6C shows a case where a RuTiN electrode is used as the second electrode of the resistance change element, which corresponds to the embodiment of the present invention.
  • 6A shows a case where a Ru electrode is used as the second electrode of the variable resistance element
  • FIG. 6B shows a case where a RuTi electrode is used as the second electrode of the variable resistance element.
  • it is a comparative example of the present invention.
  • the set voltage (Vset) can be applied to both the resistance change element of the background art and the resistance change element corresponding to the embodiment of the present invention.
  • the median value is 2V, which is almost the same.
  • the breakdown voltage (Vb) is improved by using RuTiN for the second electrode of the variable resistance element. As described above, this is because the second electrode of the variable resistance element is stabilized. At this time, the content of titanium (Ti) in the second electrode was 15 atm%, and the content of nitrogen was 15 atm%.
  • the dependency of the content of titanium (Ti) and the content of nitrogen in the second electrode was confirmed.
  • the content of titanium (Ti) was significantly reduced in the range of 10 atm% to 20 atm%. Improvement was confirmed.
  • the breakdown voltage was remarkably improved in the nitrogen content range of 10 atm% to 20 atm%.
  • the nitrogen content and the titanium (Ti) content are preferably the same in these ranges. This is because nitrogen binds to the first metal.
  • the hexagonal close-packed structure was confirmed by X-ray diffraction. That is, as a crystal structure, it is preferable to maintain Ru as a base material, and when a metal bridge is formed in the ion conductive layer, the second electrode and the metal bridge interface are stabilized. This is because the hexagonal close-packed structure has a stabilizing surface with the smallest surface energy. In order to maintain this crystal structure, it was confirmed that the total of the nitrogen content and the titanium content is preferably less than 40 atm%.
  • the first metal was tantalum (Ta) or tungsten (W).
  • the first metal is preferably a metal material having a smaller absolute value of free energy of oxidation than copper.
  • the first metal may be selected from Ti, Ta, Al, Mn, Zr, Hf, Mg, Co, Zn, and W, which have a negative free energy of oxidation larger than that of Cu. Is possible. Among these, it can be judged that Ti, Ta, Al, Zr, and W are more preferable from the viewpoint that the nitrogen compound has thermal stability.
  • FIG. 8 is a cross-sectional view showing a configuration of a semiconductor device in which variable resistance elements according to the fourth embodiment of the present invention are integrated in a multilayer wiring layer.
  • the variable resistance element is configured as a two-terminal switch.
  • the multilayer wiring layer includes a first electrode / first copper wiring 808 and a plug 807, and a two-terminal switch 899 includes a second electrode 804a and a third electrode 804b as an upper electrode,
  • the structure includes a conductive layer 803.
  • the first electrode and first copper wiring 808 of the multilayer wiring layer also serves as the lower electrode of the two-terminal switch 899. That is, the ion conductive layer 803 is inserted between the upper electrode and the first electrode / first copper wiring 808.
  • the ion conductive layer 803 is connected to the first electrode / first copper wiring 808 through one opening. The opening is formed so as to reach a portion between the interlayer insulating film 800 and the first electrode / first copper wiring 808.
  • a wiring trench 811 is formed in the interlayer insulating film 800.
  • the side and bottom surfaces of the wiring groove 811 are covered with a barrier metal 809, and a first electrode / first copper wiring 808 is formed so as to fill the wiring groove 811.
  • a contact hole is formed in the interlayer insulating film 802, and a wiring groove 811 is formed in the interlayer insulating film 816.
  • the contact holes and the side and bottom surfaces of the wiring grooves 811 are covered with a barrier metal 813.
  • a plug 807 is formed so as to fill the contact hole, and a second wiring 814 is formed so as to fill the wiring groove 811. The second wiring 814 and the plug 807 are integrated.
  • an opening communicating with the first electrode / first copper wiring 808 is formed.
  • the ion conductive layer 803, the second electrode 804a, and the third electrode 804b are sequentially stacked. These layers are sequentially laminated so as to cover a portion located inside the opening of the first electrode / first copper wiring 808, a side surface of the opening of the barrier insulating film 801, and a part of the upper surface of the barrier insulating film 901. Has been.
  • the two-terminal switch configured in this way is switched to an on state or an off state by application of voltage or current.
  • the switching of the two-terminal switch is performed by using electric field diffusion of metal ions supplied from the metal forming the first electrode / first copper wiring 808 to the ion conductive layer 803.
  • the interlayer insulating film 800 is an insulating film formed on a semiconductor substrate.
  • the first electrode / first copper wiring 808 is a wiring embedded in a wiring groove 811 formed in the interlayer insulating film 800.
  • the first electrode / first copper wiring 808 also serves as a lower electrode of the two-terminal switch, and is in direct contact with the ion conductive layer 803.
  • the first electrode / first copper wiring 808 may be formed of an alloy including a metal (for example, copper) that generates metal ions capable of diffusion or ion conduction in the ion conductive layer 803 and aluminum.
  • the barrier metal 809 is used to prevent the metal (for example, copper) forming the first electrode / first copper wiring 808 from diffusing into the interlayer insulating film 800 or the lower layer. It is a conductive film having a barrier property covering the side surface and the bottom surface.
  • the first electrode / first copper wiring 808 and the barrier metal 809 constitute a lower wiring 810.
  • the barrier insulating film 801 is formed so as to cover the interlayer insulating film 800 and the first electrode / first copper wiring 808.
  • the barrier insulating film 801 has an opening communicating with the first electrode / first copper wiring 808, and the first electrode / first copper wiring 808 and the ion conductive layer 803 are in contact with each other inside the opening.
  • the ion conductive layer 803 forms a resistance change layer in which the resistance is changed by the action (diffusion, ion conduction, etc.) of metal ions generated from the metal forming the first electrode / first copper wiring 808.
  • the second electrode 804a is a lower electrode layer of the upper electrode and is in direct contact with the ion conductive layer 803.
  • the third electrode 804b is an electrode layer on the upper side of the upper electrode, and is formed on the second electrode 804a.
  • the third electrode 804b has a role of protecting the second electrode 804a. That is, since the third electrode 804b protects the second electrode 804a, damage to the second electrode 804a during the manufacturing process can be suppressed, and the switching characteristics of the two-terminal switch 899 can be maintained.
  • Interlayer insulating films 802 and 816 are insulating films formed on the protective insulating film 801. Contact holes for embedding the plugs 807 are formed in the interlayer insulating films 802 and 816. The contact hole is covered with a barrier metal 813, and a plug 807 is formed on the barrier metal 813 so as to bury the contact hole. A second wiring 814 is formed on the barrier metal 813 so as to bury the wiring groove 811. The barrier metal 813 and the second wiring 814 constitute an upper wiring 815.
  • the second wiring 814 is a wiring embedded in a wiring groove 811 formed in the interlayer insulating film 816.
  • the second wiring 814 is integrated with the plug 807.
  • the plug 807 is electrically connected to the third electrode 804b through the barrier metal 813.
  • FIG. 9 is a cross-sectional view showing a configuration of a semiconductor device in which variable resistance elements according to the fifth embodiment of the present invention are integrated in a multilayer wiring layer.
  • the variable resistance element is configured as a three-terminal switch.
  • the multilayer wiring layer includes a pair of first electrode / first copper wirings 908a and 908b and a plug 907, and a three-terminal switch 999 includes a second electrode 904a and a third electrode as upper electrodes. 904b and an ion conductive layer 903 are provided.
  • the first electrode and first copper wirings 908a and 908b of the multilayer wiring layer also serve as the lower electrode of the three-terminal switch 999. That is, the ion conductive layer 903 is inserted between the upper electrode and the first electrode / first copper wirings 908a and 908b.
  • the ion conductive layer 903 is connected to the pair of first electrode / first copper wirings 908a and 908b through one opening. The opening is formed so as to reach a portion of the interlayer insulating film 900 between the first electrode / first copper wirings 908a and 908b.
  • a pair of wiring grooves 911 is formed in the interlayer insulating film 900.
  • the side and bottom surfaces of the wiring groove 911 are respectively covered with barrier metals 909a and 909b, and a pair of first electrode / first copper wirings 908a and 908b are formed so as to fill the pair of wiring grooves 911. ing.
  • a contact hole is formed in the interlayer insulating film 902, and a wiring groove 911 is further formed in the interlayer insulating film 916. Side and bottom surfaces of the contact hole and the wiring groove 911 are covered with a barrier metal 913.
  • a plug 907 is formed so as to fill the contact hole, and a second wiring 914 is formed so as to fill the wiring groove 911. The second wiring 914 and the plug 907 are integrated.
  • openings that communicate with the first electrode / first copper wirings 908a and 908b are formed.
  • the ion conductive layer 903, the second electrode 904a, and the third electrode 904b are sequentially stacked. These are sequentially formed so as to cover portions of the first electrode / first copper wirings 908a and 908b located inside the opening, a side surface of the opening of the barrier insulating film 901, and a part of the upper surface of the barrier insulating film 901. Are stacked.
  • the three-terminal switch configured in this way is switched to an on state or an off state by application of a voltage or current.
  • switching of the three-terminal switch is performed by using electric field diffusion of metal ions supplied from the metal forming the first electrode / first copper wirings 908a and 908b to the ion conductive layer 903.
  • the interlayer insulating film 900 is an insulating film formed on a semiconductor substrate.
  • the first electrode / first copper wirings 908 a and 908 b are wirings embedded in the wiring grooves 911 formed in the interlayer insulating film 900.
  • the first electrode and first copper wirings 908 a and 908 b also serve as the lower electrode of the three-terminal switch and are in direct contact with the ion conductive layer 903.
  • the first electrode / first copper wirings 908a and 908b may be formed of an alloy including a metal (for example, copper) that generates metal ions capable of diffusion or ion conduction in the ion conductive layer 903 and aluminum.
  • the barrier metals 909a and 909b are the first electrode and first electrode in order to prevent the metal (for example, copper) forming the first electrode and first copper wirings 908a and 908b from diffusing into the interlayer insulating film 900 or the lower layer.
  • the side surfaces and bottom surface of the copper wirings 908a and 908b are covered.
  • the barrier metals 909a and 909b are conductive films having a barrier property that prevent the metal (for example, copper) forming the first electrode / first copper wirings 908a and 908b from diffusing into the interlayer insulating film 900 or the lower layer. .
  • the first wiring 910a and the barrier metal 909a constitute the lower wiring 910a
  • the first wiring 910b and the barrier metal 909b constitute the lower wiring 910a.
  • the barrier insulating film 901 is formed so as to cover the interlayer insulating film 900 and the first electrode / first copper wirings 908a and 908b.
  • the barrier insulating film 901 has an opening that communicates with the first electrode and first copper wirings 908a and 908b. Inside the opening, the first electrode and first copper wirings 908a and 908b and the ion conductive layer 903 are provided. It touches.
  • the ion conductive layer 903 forms a resistance change layer in which the resistance is changed by the action (diffusion, ion conduction, etc.) of metal ions generated from the metal forming the first electrode / first copper wirings 908a and 908b.
  • the second electrode 904a is a lower electrode layer of the upper electrode and is in direct contact with the ion conductive layer 903.
  • the third electrode 904b is an electrode layer on the upper side of the upper electrode, and is formed on the second electrode 904a.
  • the third electrode 904b has a role of protecting the second electrode 904a. That is, since the third electrode 904b protects the second electrode 904a, damage to the second electrode 904a during the manufacturing process can be suppressed, and the switching characteristics of the three-terminal switch 999 can be maintained.
  • Interlayer insulating films 902 and 916 are insulating films formed on the protective insulating film 901. Contact holes for embedding the plugs 907 are formed in the interlayer insulating films 902 and 916. The contact hole is covered with a barrier metal 913, and a plug 907 is formed on the barrier metal 913 so as to bury the contact hole. A second wiring 914 is formed on the barrier metal 913 so as to fill the wiring groove 911. The barrier metal 913 and the second wiring 914 constitute an upper wiring 915.
  • the second wiring 914 is a wiring embedded in a wiring groove 911 formed in the interlayer insulating film 916.
  • the second wiring 914 is integrated with the plug 907.
  • the plug 907 is electrically connected to the third electrode 904b through the barrier metal 913.
  • the present invention includes a memory circuit such as DRAM (Dynamic RAM), SRAM (Static RAM), flash memory, FRAM (Ferro Electric RAM) (registered trademark), MRAM (Magnetic RAM), resistance change memory, and the like. It can also be applied to semiconductor products.
  • the present invention can also be applied to a semiconductor product having a memory circuit such as a bipolar transistor, a semiconductor product having a logic circuit such as a microprocessor, or a copper wiring of a board or package on which these are simultaneously listed.
  • the present invention can also be applied to junctions of electronic circuit devices, optical circuit devices, quantum circuit devices, micromachines, MEMS (Micro Electro Mechanical Systems), etc., to semiconductor devices.
  • the example of the switch function has been mainly described.
  • the present invention can be used for a memory element using both non-volatility and resistance change characteristics.
  • the substrate bonding method according to the present invention can be confirmed from the state after manufacture. Specifically, the cross section of the device is observed with a TEM to confirm the lower electrode, the ion conductive layer, and the upper electrode made of copper. In addition, it is confirmed that the copper wiring is used for the multilayer wiring, and when the resistance change element is mounted, the lower surface of the resistance change element is the copper wiring, and the copper wiring is the lower electrode. In this state, it can be confirmed by observing the existence of the ion conductive layer. In addition to TEM, composition analysis such as EDX (Energy Dispersive X-ray Spectroscopy) and EELS (Electron Energy Loss Spectroscopy) confirms the materials used. Can do.
  • EDX Electronic X-ray Spectroscopy
  • EELS Electrode Loss Spectroscopy
  • an ion conductive layer is formed on the copper wiring and the upper electrode in contact with the ion conductive layer includes Ru, nitrogen, and the first metal, it can be determined that the structure uses the present invention. it can.
  • variable resistance element according to any one of supplementary notes 1 to 3, wherein the second electrode has a hexagonal close-packed structure.
  • the resistance change element according to any one of supplementary notes 1 to 4 wherein a content of nitrogen in the second electrode is 10 atm% or more and less than 20 atm%.
  • Additional remark 6 Content of the said 1st metal in a said 2nd electrode is a resistance change element as described in any one of Additional remark 1 thru
  • (Supplementary note 7) The resistance change element according to any one of supplementary notes 1 to 6, wherein the content of the nitrogen and the content of the first metal in the second electrode are the same.
  • (Supplementary note 8) The resistance change element according to any one of supplementary notes 1 to 6, wherein a ratio of the nitrogen and the first metal in the second electrode has a stoichiometric composition.
  • (Supplementary note 9) The resistance change element according to any one of supplementary notes 1 to 8, wherein the sum of the nitrogen content and the first metal content in the second electrode is 40 atm% or less.
  • Additional remark 10 Any one of Additional remark 1 thru
  • the resistance change element according to one.
  • a first electrode containing at least copper is formed, an ion conductive layer is formed on the first electrode, and a second electrode containing at least Ru, nitrogen and a first metal is formed on the ion conductive layer.
  • a manufacturing method of a resistance change element to be formed After forming a first electrode layer containing at least copper and forming an insulating film covering the first electrode layer, an opening is formed to expose a part of the first electrode layer, and the insulating Forming an ionic conductor in contact with the first electrode layer exposed at the opening of the membrane; Forming a second electrode layer including at least Ru, nitrogen and a first metal on the ion conductor; APPENDIX 12 The second electrode layer and the ion conductor are patterned to form a variable resistance element including the first electrode composed of the first electrode layer, the ion conductive layer, and the second electrode.
  • the manufacturing method of the resistance change element as described in any one of.
  • a third electrode layer including at least the first metal and nitrogen is formed on the second electrode layer, and the third electrode layer and the second electrode layer are formed.
  • the electrode layer and the ion conductor are patterned to form a variable resistance element including a first electrode composed of the first electrode layer, the ion conductive layer, the second electrode, and a third electrode. 12 or the method of manufacturing a resistance change element according to attachment 13.

Landscapes

  • Semiconductor Memories (AREA)

Abstract

抵抗変化素子のイオン伝導層の絶縁破壊耐性を改善し、書き換え回数を改善する。抵抗変化素子は、銅を少なくとも含む第1電極と、Ru、窒素および第1金属を少なくとも含む第2電極と、上記第1電極と上記第2電極との間に位置するイオン伝導層と、を有する。

Description

抵抗変化素子、および抵抗変化素子の製造方法
 本発明は、抵抗変化素子、および抵抗変化素子の製造方法に関し、特に一つの電極がルテニウムを含む抵抗変化素子、および抵抗変化素子の製造方法に関する。
 シリコンデバイスを含む半導体デバイスは、Mooreの法則で知られるスケーリング則の微細化によってデバイスの集積化・低電力化が進められ、「3年で4倍の集積化を図る」というペースで開発が進められてきた。近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のゲート長は20nm以下となっている。これに起因する、リソグラフィプロセスの高騰、およびデバイス寸法の物理的限界により、これまでのスケーリング則とは異なるアプローチでのデバイス性能の改善が求められている。
 リソグラフィプロセスの高騰には、製造装置価格およびマスクセット価格の高騰が挙げられる。また、デバイス寸法の物理的限界には、動作限界および寸法ばらつき限界が挙げられる。
 近年、ゲートアレイとスタンダードセルの中間的な位置づけとして、FPGA(Field Programmable Gate Array)と呼ばれる再書き換え可能なプログラマブルロジックデバイスが開発されている。FPGAは、顧客自身がチップの製造後に任意の回路構成を行うことを可能とするものである。FPGAは、多層配線層の内部に抵抗変化素子を有し、顧客自身が任意に配線の電気的接続をできるようにしたものである。このようなFPGAを搭載した半導体装置を用いることで、回路の自由度を向上させることができるようになった。
 抵抗変化素子としては、遷移金属酸化物を用いたReRAM(Resistance RAM (Random Access Memory))や、イオン伝導体を用いたNanoBridge(NEC社の登録商標)などがある。イオン伝導体は、イオンが電界などの印加によって自由に動くことのできる固体である。
 回路の自由度を向上させる可能性の高い抵抗変化素子として、イオン伝導体中における金属イオン移動と電気化学反応とを利用した、金属架橋析出型のスイッチング素子が非特許文献1に開示されている。非特許文献1に開示されたスイッチング素子は、イオン伝導層と、このイオン伝導層の2つの面のそれぞれに接して設けられた第1電極および第2電極との3つ層からなる構成である。このうち、第1電極はイオン伝導層に金属イオンを供給するための役割を果たしており、活性電極と呼ばれる。一方、第2電極からは金属イオンは供給されないため、不活性電極と呼ばれる。
 この抵抗変化素子のスイッチング動作を簡単に説明する。第1電極に正電圧を印加して第2電極を接地すると、第1電極の金属が金属イオンになってイオン伝導層に溶解する。そして、イオン伝導層中の金属イオンがイオン伝導層中に金属になって析出し、析出した金属により第1電極と第2電極を接続する金属架橋が形成される。金属架橋で第1電極と第2電極が電気的に接続することで、スイッチがオン状態になる。
 一方、上記オン状態で第1電極を接地して第2電極に正電圧を印加すると、金属架橋の一部が切れる。これにより、第1電極と第2電極との電気的接続が切れ、スイッチがオフ状態になる。なお、電気的接続が完全に切れる前の段階から第1電極および第2電極間の抵抗が大きくなったり、電極間容量が変化したりするなど電気特性が変化し、最終的に電気的接続が切れる。また、上記オフ状態からオン状態にするには、再び第1電極に正電圧を印加して第2電極を接地すればよい。
 また、非特許文献1では、イオン伝導体を介して2個の電極が配置され、それらの間の導通状態を制御する2端子型のスイッチング素子の場合の構成および動作が開示されている。
 このようなスイッチング素子は、MOSFETなどの半導体スイッチよりもサイズが小さく、オン抵抗が小さいという特徴を持っている。そのため、プログラマブルロジックデバイスへの適用に有望であると考えられている。また、このスイッチング素子においては、電圧を印加しなくても、導通状態(素子のオンまたはオフ)がそのまま維持されるので、不揮発性のメモリ素子として用いることもできる。
 例えば、トランジスタなどの選択素子1個とスイッチング素子1個とを含むメモリセルを基本単位として、このメモリセルを縦方向と横方向にそれぞれ複数配列する。このように配列することで、ワード線およびビット線で複数のメモリセルの中から任意のメモリセルを選択することが可能となる。そして、選択したメモリセルのスイッチング素子の導通状態をセンスし、スイッチング素子のオンまたはオフの状態から情報「1」または「0」のいずれの情報が格納されているかを読み取ることが可能な不揮発性メモリを実現できる。
国際公開第2013/190988号
M. Tada, K. Okamoto, T. Sakamoto, M. Miyamura, N. Banno, and H. Hada, "Polymer Solid-Electrolyte (PSE) Switch Embedded on CMOS for Nonvolatile Crossbar Switch", IEEE Transactions on Electron Devices, vol. 58, no. 12, pp.4398-4405, (2011).
 ところで、上記金属架橋析出型の抵抗変化素子において書換えを行う場合、高抵抗状態に抵抗を変化させる際にリセット方向に電圧を印加する必要がある。100MΩ以上の高い抵抗を得るためには、イオン伝導層に析出した金属を、電圧を印加して回収する必要がある。しかしながら、繰り返し書き換えを行うと絶縁破壊が生じてしまい、書き換えが不可能になるbitが発生する課題を有していた。
 特許文献1では、抵抗変化素子の第2電極としてルテニウムを含む合金を用いることが提案されている。特許文献1の抵抗変化素子によれば、金属架橋と第2電極の密着性が向上し、低電流で抵抗変化素子をプログラミングした場合にも素子の安定性が向上し、保持力が向上する。抵抗変化素子の長期信頼性に関して、さらなる向上が望まれる。
 本発明は上述した課題を解決するためになされたものであり、イオン伝導層の絶縁破壊耐性を改善し、書き換え回数を改善することを可能とする、抵抗変化素子、およびその製造方法を提供することを目的とする。
 前記目的を達成するため、本発明に係る抵抗変化素子は、銅を少なくとも含む第1電極と、Ru、窒素および第1金属を少なくとも含む第2電極と、上記第1電極と上記第2電極との間に位置するイオン伝導層と、を有する。
 本発明に係る抵抗変化素子の製造方法は、銅を少なくとも含む第1電極を形成し、上記第1電極の上にイオン伝導層を形成し、上記イオン伝導層の上にRu、窒素および第1金属を少なくとも含む第2電極を形成する。
 本発明の抵抗変化素子によれば、第2電極が安定化し、リセット電圧を印加した際の絶縁破壊電圧が改善する。
本発明の第1の実施形態に係る抵抗変化素子を模式的に示す断面図である。 本発明の第2の実施形態に係る抵抗変化素子を模式的に示す断面図である。 本発明の第1の実施例に係る抵抗変化素子を模式的に示す断面図である。 本発明の第2の実施例に係る抵抗変化素子を模式的に示す断面図である。 本発明の第3の実施例に係る抵抗変化素子が形成された、多層配線構造を有する半導体装置を、模式的に示す断面図である。 (a)はRu電極を用いた抵抗変化素子のスイッチング電圧および絶縁破壊電圧を示すグラフであり、(b)はRuTi電極を用いた抵抗変化素子のスイッチング電圧および絶縁破壊電圧を示すグラフであり、(c)はRuTiN電極を用いた抵抗変化素子のスイッチング電圧および絶縁破壊電圧を示すグラフである。 スパッタリング雰囲気中の窒素比率に対する、形成されたRuTiN膜中の原子組成を示すグラフである。 本発明の第4の実施例に係る抵抗変化素子が多層配線層の内部に集積化された半導体装置の構成を示す断面図である。 本発明の第5の実施例に係る抵抗変化素子が多層配線層の内部に集積化された半導体装置の構成を示す断面図である。
 本発明の一実施形態における抵抗変化素子は、第1電極と、第2電極と、上記第1電極と上記第2電極との間にイオン伝導層が位置する構造を、有するものである。本実施形態の抵抗変化素子では、第1電極と、第2電極と、上記第1電極と上記第2電極の間に位置するイオン伝導層とからなる抵抗変化素子において、上記第1電極は少なくとも銅(Cu)を含む電極である。そして本実施形態の抵抗変化素子では、上記第2電極は少なくともルテニウム(Ru)、窒素および第1金属を含む電極であることを特徴とする。
 これにより、第2電極が安定化し、リセット電圧を印加した際の絶縁破壊電圧が改善する。上記第2電極における窒素の含有量は、10atm%以上20atm%未満であることが好ましい。第2電極が20atm%以上の窒素を含むと窒素の脱離が発生し、電極の安定性が低下する。
 第2電極の上記第1金属は、ルテニウム(Ru)よりも酸化の標準生成自由エネルギーが負に大きな金属であることとする。これにより、第1電極と第2電極間に金属架橋が形成された際に、金属架橋と第2電極の密着性が向上する効果を奏する。
 さらに別の効果として、第2電極中に第1金属を含むことで、第1金属と窒素との結合が形成され、第2電極が合金化し安定化する。これにより、第2電極における銅の熱拡散に対する拡散バリア性が向上するので、金属架橋を形成する銅の熱拡散を防ぎ、さらに架橋の安定性を向上することができるようになる。
 上記第1金属は、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マンガン(Mn)、ジルコニウム(Zr)、ハフニウム(Hf)、マグネシウム(Mg)、コバルト(Co)、亜鉛(Zn)、タングステン(W)の少なくとも一つである。
 上記第2電極における、上記第1金属の含有量は10amt%以上20atm%未満であることが好ましい。これは第1金属の含有量が20atm%以上に大きくなると、逆に絶縁耐圧が低下することを本発明者らが見出したためである。
 上記第2電極における、上記窒素の含有量と第1金属の含有量の比率が、ストイキオメトリーであることが好ましい。これは第1金属が窒素化合物を形成する際に、化学量論比であると結合状態が安定するためである。例えば、第1金属が三価の金属である場合には、上記窒素の含有量と第1金属の含有量とが同一であることが好ましい組成となる。
 上記第2電極中の、上記窒素の含有量と第1金属の含有量との和が40atm%を超えてしまうと、イオン伝導層の絶縁耐圧が低下する可能性がある。上記第2電極中の、上記窒素の含有量と第1金属の含有量との和を40amt%未満とすることが好ましい。
 上記第2電極は、六方最密充填構造であることが好ましい。ルテニウムの常温、常圧で安定な結晶構造は、六方最密充填構造である。第2電極を、窒素の含有量と第1金属の含有量に関わらず、ルテニウムの結晶構造を維持し、イオン伝導層に対して平行な面が最密充填層となるように構成する。これにより、イオン伝導層内に金属架橋が形成され、第2電極と形成された金属架橋とが接続した場合に、接続界面が安定化する効果を奏するためである。
 また抵抗変化素子は、上記第2電極と接しイオン伝導層とは接しない第3電極を有し、上記第3電極は少なくとも上記第1金属と窒素とを含むことが好ましい。第3電極は、製造過程のドライエッチング中に、ルテニウムを含む第2電極を保護する役割を果たす。このとき、LSIの加工プロセス中の熱履歴によって、第2電極と第3電極との間で構成する材料の相互拡散が生じ、第2電極の組成が変動してしまう可能性がある。第2電極の組成は、抵抗変化素子のスイッチング動作に影響する。これを防止するため、あらかじめ第3電極が第1金属と窒素とを含むことが好ましい。さらに第3電極における第1金属と窒素との比率は、第2電極における第1金属と窒素の比率と同じであることが好ましい。これにより、第2電極と第3電極間における相互拡散をさらに防ぐことができるようになる。
 一方、上記第1電極は上記第1金属を含むことが好ましい。これは、金属架橋を形成する際に、第1電極に第1金属が添加されていると、金属架橋内部にも第1金属が含まれることになる。このとき、第2電極にも第1金属が含まれているため、金属架橋と第2電極の密着性を向上させることができるようになり、低抵抗状態の熱安定性を改善することができるようになる。
 本発明の効果が得られやすいイオン伝導層としては、酸素(O)および炭素(C)の他に少なくともシリコン(Si)を元素として含む膜であることが好ましい。
 以下に、本発明の実施形態を詳しく説明する。
 (第1の実施形態)
 本発明の第1の実施形態に係る抵抗変化素子について、図面を用いて説明する。図1は、本発明の第1の実施形態に係る抵抗変化素子を模式的に示す断面図である。図1は、本実施形態の半導体装置の一構成例を模式的に示した断面図である。
 図1に示すように、本実施形態の抵抗変化素子は、第1電極1と、イオン伝導層3と、第2電極2とを有する。図1の抵抗変化素子では、第1電極1の上に、イオン伝導層3と第2電極2とが順に形成されている。第1電極1は、銅(Cu)を含む金属からなる構成であり、銅(Cu)を主成分としても良い。イオン伝導層2には、シリコン(Si)、酸素(O)および炭素(C)の元素が、材料として含まれている。
 本実施形態における抵抗変化素子の第1電極1と第2電極2について、説明する。第1電極1は、銅(Cu)を含む電極である。第1電極1は、イオン伝導層に銅イオンを供給するための役割を果たしている。第1電極1の中に、銅(Cu)に対する不純物として、アルミニウム(Al)、チタン(Ti)、スズ(Sn)、ジルコニウム(Zr)、タンタル(Ta)などの金属が含まれていてもよい。
 第2電極2は不活性電極の役割を果たし、材料は、ルテニウム(Ru)を主成分とすることが好ましく、窒素を含むことが好ましい。さらに第2電極2には、銅(Cu)よりも酸化の自由エネルギーが負に大きい第1金属を含むことが好ましい。この第1金属は、例えば、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マンガン(Mn)、ジルコニウム(Zr)、ハフニウム(Hf)、マグネシウム(Mg)、コバルト(Co)、亜鉛(Zn)の少なくとも一つであることが好ましい。
 第2電極2の形成には、スパッタリング法を用いることが望ましい。スパッタリング法を用いて合金を成膜する場合、ルテニウム(Ru)と第1金属との合金ターゲットを用いる方法、ルテニウムのターゲットと第1金属のターゲットとを同一チャンバー内で同時にスパッタリングするコスパッタ法、がある。その他、予め第1金属の薄膜を形成し、その上に、スパッタリング法を用いてルテニウムを成膜し、衝突原子のエネルギーで合金化するインターミキシング法がある。コスパッタ法およびインターミキシング法を用いると、合金の組成を変えることができる。スパッタリング雰囲気として窒素ガスまたは窒素ガスを含むガスを導入しつつスパッタリングを行うことで、形成される電極へ窒素を導入することできる。
 第2電極における窒素の含有率は、10atm%~20atm%の範囲とすることが好ましい。これは窒素の含有量が多いと、後続のプロセスの熱履歴によって第2電極から窒素が脱離し膜質を不安定化するためである。
 第2電極2に金属架橋の成分である銅(Cu)が混入すると、標準ギブズエネルギーが負方向に大きい金属を添加した効果が薄れるため、第2電極は銅および銅イオンに対してバリア性のある材料が好ましい。この点からは、第1金属は、例えばタンタル(Ta)、チタン(Ti)、タングステン(W)などの高融点金属から選択することができる。これらの金属を含む第2電極は、オン状態からオフ状態への遷移とオン状態の安定性との両方に優れている。このとき、第2電極における第1金属の含有率は、10atm%~20atm%の範囲が好ましい。上記窒素の含有量と第1金属の含有量の和が、40atm%以下であることが好ましい。この範囲外の組成比になると、第2電極が熱に対して不安定化し、逆に絶縁破壊電圧が低下するためである。
 次に、本実施形態における抵抗変化素子のイオン伝導層について、説明する。本実施形態では、イオン伝導層3がイオン伝導の役目を果たす。本実施形態の効果が得られるイオン伝導層としては、電気的に金属イオンの伝導が可能であればよく、本実施形態の効果を限定するものではない。イオン伝導層3として、例えば、酸化物、窒化物、フッ化物、硫化物、炭化物、有機ポリマー、あるいはそれらの混合材料や、積層構造などを用いることができる。本実施形態におけるルテニウム(Ru)を主成分とする第2電極との密着性を確保する観点から、イオン伝導層3は酸化物、炭化物であることが好ましい。
 特に好ましい材料としてイオン伝導層3は、例えば、少なくともシリコン(Si)および酸素(O)を主成分とすることが好ましい。イオン伝導層3がシリコン(Si)および酸素(O)からなる環状シロキサン構造を有することで、膜中のイオンの伝導が容易になる。さらに、イオン伝導層3は、シリコン(Si)、酸素(O)および炭素(C)の元素からなることが好ましい。その理由の1つとして、イオン伝導層となる絶縁膜が炭素(C)を含むことで、イオン伝導層の比誘電率を小さくできるということが挙げられる。これにより、金属架橋形成のための電圧依存性のグラフが急峻となるため、動作電圧域でのディスターブ特性を向上させることができる。
 本実施形態の抵抗変化素子によれば、抵抗変化素子の第2電極2を、Ru、窒素および第1金属を少なくとも含むように構成したことにより、第2電極2が安定化し、リセット電圧を印加した際の絶縁破壊電圧が改善する。
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る抵抗変化素子について、図面を用いて説明する。図2は、本発明の第2の実施形態に係る抵抗変化素子を模式的に示す断面図である。
 図2の抵抗変化素子は、図1の抵抗変化素子と同様に、第1電極1と、イオン伝導層3と、第2電極2とを有する。さらに、図2の抵抗変化素子は、第2電極2と接しイオン伝導層3とは接しない第3電極4を有する。この第3電極4は、少なくとも上記第1金属と窒素とを含む、ことを特徴とする。
 本実施形態の第3電極4は、抵抗変化素子の製造過程において、第2電極2をエッチングのダメージから保護する役割を有する。第2電極2を規定の素子サイズに加工する場合や、外部より第2電極2と電気的な接続を行うためのコンタクトホールを第2電極2上に設ける場合に、ルテニウム(Ru)を含む第2電極2が直接露出しないように、第3電極4は第2電極2を覆う。このような抵抗変化素子の製造過程において、ルテニウム(Ru)を含む第2電極2が直接露出しないようにすることにより、第2電極2の組成が変動しないようにする。
 また第3電極4は、外部より第2電極2と電気的な接続を行うためのコンタクトホールの形成時に、コンタクトホール形成のためのエッチングに対するエッチングストップ膜としての機能も有する。そのため、第3電極4は、コンタクトホールが形成される酸化シリコンなどの絶縁膜のエッチングに使用するフッ化炭素系のガスのプラズマに対して、エッチング速度が小さい材質を選択することが好ましい。
 第3電極4は、金属の窒化物で構成されることが好ましい。しかしながら、後続の加工プロセスにおいて第2電極と第3電極との間で相互拡散(インターミキシング)が生じ、第2電極の組成が変動してしまう可能性がある。第2電極の組成は、抵抗変化素子のスイッチング動作に影響する。これを防ぐためには、エッチングストップ膜として機能し、かつ導電性を有する材料の中で、第3電極は第1金属を含むことが好ましい。第3電極としては、例えばチタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ハフニウム(Hf)、タングステン(W)などの金属窒化物が良い。さらに第3電極における、第1金属と窒素との含有比率は、第2電極における、第1金属と窒素との含有比率と同じであることが好ましい。これにより第2電極と第3電極との間における相互拡散を、さらに防ぐことができるようになる。
 第3電極4の形成には、スパッタリング法を用いることが望ましい。スパッタリング法を用いて金属窒化物を成膜する場合、窒素とアルゴン(Ar)の混合ガスのプラズマを用いて金属ターゲットを蒸発させるリアクティブスパッタ法を用いることが好ましい。金属ターゲットより蒸発した金属は窒素と反応し、金属窒化物となって基板上に成膜される。
 本実施形態の抵抗変化素子によれば、第1の実施形態と同様に、抵抗変化素子の第2電極2を、Ru、窒素および第1金属を少なくとも含むように構成したことにより、第2電極2が安定化し、リセット電圧を印加した際の絶縁破壊電圧が改善する。
 さらに本実施形態の抵抗変化素子によれば、抵抗変化素子が第3電極4を含むことにより、抵抗変化素子の製造過程において、第2電極2をエッチングのダメージから保護することができる。さらに、第3電極4が窒素および第1金属を少なくとも含むように構成したことにより、後続の加工プロセスにおいて第2電極と第3電極との間で相互拡散(インターミキシング)が生じる可能性を低減することができる。この相互拡散の可能性を低減することにより、第2電極の組成が変動してしまう可能性を低減することができる。
 [実施例1]
 以下、本発明のより具体的な実施形態として、実施例を説明する。図3は、本発明の第1の実施例に係る抵抗変化素子が形成された半導体装置を、模式的に示す断面図である。図3の半導体装置は、第1層間絶縁膜101、バリアメタル102、第1電極兼第1銅配線103、第1絶縁性バリア膜104、イオン伝導層105、第2電極106、第3電極107、および銅プラグ108を有する。さらに図3の半導体装置は、第2層間絶縁膜109、バリアメタル110、第2銅配線111、および第2絶縁性バリア膜112を有する。
 図3の半導体装置の抵抗変化素子は、半導体基板上(図示せず)にて、第1層間絶縁膜101に形成された第1電極を有する。第1電極は銅(Cu)を含む電極であり、第1銅配線を兼ねる。図3の第1電極を、第1電極兼第1銅配線103と称することにする。第1電極兼第1銅配線103の側面と底面は、バリアメタル102によって覆われている。第1電極兼第1銅配線103と第1層間絶縁膜101の上面は、第1絶縁性バリア膜104によって覆われている。第1絶縁性バリア膜104は開口部を有し、開口部の底には少なくとも第1電極兼第1銅配線103の一部が露出している。第1絶縁性バリア膜104の開口部には、イオン伝導層105、第2電極106、第3電極107が順に埋め込まれており、これらの膜の側面はドライエッチングによって加工されている。これらは第1電極兼第1銅配線103と合わせて、抵抗変化素子113を構成する。
 第3電極107の上面には銅プラグ108がバリアメタル110を介して接続しており、銅プラグ108はデュアルダマシンプロセスで第2層間絶縁膜109内部に形成されており、第2銅配線111と一体化して、接続している。第2銅配線111と第2層間絶縁膜109の上面は、第2絶縁性バリア膜112によって覆われている。
 半導体基板は、半導体素子が形成された基板である。半導体基板には、例えば、シリコン基板、単結晶基板、SOI(Silicon on Insulator)基板、TFT(Thin Film Transistor)基板、液晶製造用基板等の基板を用いることができる。
 図3の第1層間絶縁膜101は、半導体基板上に形成された絶縁膜である。第1層間絶縁膜101には、例えば、シリコン酸化膜や、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。第1層間絶縁膜101は、複数の絶縁膜を積層したものであってもよい。
 第1絶縁性バリア膜104、第2絶縁性バリア膜112は、銅(Cu)に対する拡散バリア性を有する絶縁膜である。また、銅プラグを形成するためのビアホール加工時にエッチングストップ層としての役割を有する。第1絶縁性バリア膜104、第2絶縁性バリア膜112には、例えば、SiN、SiC、SiCN等を用いることができる。
 第2層間絶縁膜109は、第1絶縁性バリア膜104上に形成された絶縁膜である。第2層間絶縁膜109には、例えば、シリコン酸化膜や、シリコン酸化膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。第2層間絶縁膜109は、複数の絶縁膜を積層したものであってもよい。第1層間絶縁膜101には、第1電極兼第1銅配線103を埋め込むための配線溝が形成されており、当該配線溝にバリアメタル102を介して第1電極兼第1銅配線103が埋め込まれている。
 第1電極兼第1銅配線103とイオン伝導層105とは、第1絶縁性バリア膜104の開口部を介して、直接接している。なお、第1電極兼第1銅配線103は銅(Cu)を主成分とするが、第1金属を含んでおり、合金化していることが好ましい。
 バリアメタル102は、第1電極兼第1銅配線103に含まれる金属が、第1層間絶縁膜101や第1層間絶縁膜101の下層へ拡散することを防止するために、第1電極兼第1銅配線103の側面乃至底面を被覆する、バリア性を有する導電性膜である。バリアメタル102には、例えば、タンタル(Ta)、窒化タンタル(TaN)、窒化チタン(TiN)、炭窒化タングステン(WCN)のような、高融点金属やその窒化物等、またはそれらの積層膜を用いることができる。
 第1絶縁性バリア膜104は、開口部を有する。第1絶縁性バリア膜104の開口部は、少なくとも第1電極兼第1銅配線103を含む領域内に形成されている。第1絶縁性バリア膜104の開口部の壁面は、開口部の中心から離れるにしたがい広くなったテーパ面となっている。このようにすることで、イオン伝導層105、第2電極106、第3電極107の埋め込み特性を、良好に維持することができるようになる。
 イオン伝導層105は、金属架橋の析出によって抵抗値が変化する膜である。例えば、タンタル(Ta)を含む酸化物の絶縁膜であって、タンタル(Ta)を含む酸化物としてTa、TaSiO等を用いることができる。また、イオン伝導層105は、下からTa、TaSiOの順に積層した積層構造とすることもできる。このような積層構造とすることで、抵抗変化材料をイオン伝導層として用いた場合には、低抵抗時(抵抗変化素子のオン時)にイオン伝導層内部に形成される金属イオン(例えば、銅イオン)による架橋を、抵抗変化素子のオフ時に金属イオンとして回収できる。積層構造のTa層で分断することで、抵抗変化素子のオフ時に金属イオンを容易に回収することができるようになり、スイッチング特性を向上させることができるようになる。イオン伝導層105は、CuSやGeSのような硫化物であってもよく、酸化物と硫化物の積層構造であっても良い。
 図3のような構成とすることで、本発明の実施形態による抵抗変化素子を、半導体装置の銅配線内部に形成することができる。第1電極が第1銅配線を兼ねることで、工程数を簡略化しながら、電極抵抗を下げることができる。通常のCuダマシン配線プロセスに追加工程として、少なくとも2PRのマスクセットを作成するだけで、抵抗変化素子を搭載することができ、素子の低抵抗化と低コスト化を同時に達成することができる。
 形成した抵抗変化素子113は、電圧の印加、あるいは電流を流すことでオン/オフの制御を行い、例えば、イオン伝導層105中への第1電極兼第1銅配線103に係る金属の電界拡散を利用してオン/オフの制御を行う。
 図3の抵抗変化素子113の第2電極106は、少なくともルテニウム(Ru)と窒素と第1金属とを含んでなる。第2電極106は、イオン伝導層105の上部に位置し、イオン伝導層105と直接接している。第2電極106は、銅(Cu)よりもイオン化しにくく、イオン伝導層105において拡散、イオン伝導しにくい金属を用いることが好ましく、銅よりも酸化の自由エネルギーの絶対値が小さい金属材料とすることが好ましい。この条件を満たす材料として、第2電極106は、少なくともルテニウム(Ru)と窒素と第1金属とを含んでなる。この第1金属としては、銅(Cu)よりも酸化の自由エネルギーが負に大きいものを選択することが好ましく、例えば、Ti、Ta、Al、Mn、Zr、Hf、Mg、Co、Zn、Wの少なくとも一つであることが好ましい。第2電極106の形成には、反応性コスパッタ法を用いることが好ましく、スパッタリング雰囲気中に窒素ガスを導入した状態でスパッタリングを行うことができる。スパッタリング雰囲気中に窒素ガスを導入した状態でスパッタリングを行うことにより、形成された第2電極106に窒素を含有させることができる。
 第2電極106における窒素の含有率は、10atm%~20atm%の範囲が好ましい。これは窒素の含有量が多いと、後続のプロセスの熱履歴によって窒素が脱離し膜を不安定化するためである。例えば、ルテニウム(Ru)とチタン(Ti)の二つのターゲットを備えたスパッタリングチャンバーに、アルゴン(Ar)と窒素の混合ガスをスパッタリング雰囲気として供給する。このとき、形成される膜内の窒素含有量の制御は、混合ガス全体のガス供給量に対する窒素の比率を変化させることで、行うことができる。また、膜内のチタン含有量の制御は、ルテニウム(Ru)とチタン(Ti)の各ターゲットに印加する電力比率を変化させることで、行うことができる。
 図7は、第1金属がチタン(Ti)である場合のRuTiN膜の膜組成結果の一例である。図7の横軸は、スパッタリング雰囲気としてのアルゴン(Ar)と窒素(N)の混合ガス中の窒素の比率を示す。図7の縦軸は、上記混合ガス中の窒素比率に対する、RuTiN膜中の原子組成(atomic composition)をそれぞれ示す。スパッタリング雰囲気としての混合ガス中の窒素含有率を20%~60%の間に維持することで、膜内の窒素含有量を10%、膜内のチタン含有量を10%とすることができる。
 同様の実験をタンタル(Ta)、アルミニウム(Al)、タングステン(W)でも行ったところ、同様に組成比の制御が可能であることがわかった。この結果から、スパッタリング方式の原理上、Mn、Zr、Hf、Mg、Co、Znに関しても同様に制御を行うことができるのは、明らかである。
 第2電極106に金属架橋の成分である銅が混入すると、標準ギブズエネルギーが負方向に大きい金属を添加した効果が薄れるため、第2電極106は銅および銅イオンに対してバリア性のある材料が好ましい。この点からは、第2電極106は例えば、タンタル窒素化合物、チタン窒素化合物、タングステン窒素化合物などから選択することができる。第2電極106としてこのような材料を選択した抵抗変化素子は、オン状態からオフ状態への遷移とオン状態の安定性とに、優れている。このとき、第2電極106における第1金属の含有率は、10atm%~20atm%の範囲が好ましい。また第2電極106における上記窒素の含有量と第1金属の含有量との和が40atm%以下であることが好ましい。この範囲外の組成比になると、第2電極が熱に対して不安定化し、逆に絶縁破壊電圧が低下するためである。
 第3電極107は、第2電極106の上部に位置する電極である。第3電極107は、第2電極106を保護する役割を有する。すなわち、第3電極107が第2電極106を保護することで、プロセス中の第2電極106へのダメージを抑制し、抵抗変化素子113のスイッチング特性を維持することができる。第3電極107には、第1金属を含んだ窒素化合物とすることが好ましく、第1金属としてはTa、Ti、Wを用いることができる。これらの窒素化合物は大気中においても安定であることから、ビアホールを開口した場合にも酸化により高抵抗化することはない。また、第3電極107は、バリアメタル110と同一材料であることが好ましい。このため、第3電極107上にバリアメタル110と同一材料の第4電極(図示せず)を備えていてもよい。第4電極は、バリアメタル110を介して銅プラグ108と電気的に接続される。
 [実施例2]
 図4は、本発明の第2の実施例に係る抵抗変化素子が形成された半導体装置を、模式的に示す断面図である。図4の半導体装置は、第1層間絶縁膜400、バリアメタル406、第1電極兼第1銅配線405、第1絶縁性バリア膜407、イオン伝導層409、第2電極410、第3電極411、保護絶縁膜414を有する。さらに図4の半導体装置は、第2層間絶縁膜417、第3層間絶縁膜416、銅プラグ418、第2銅配線419、バリアメタル420、および第2絶縁性バリア膜421を有する。
 第1電極兼第1銅配線405、イオン伝導層409、第2電極410、および第3電極411は、抵抗変化素子201を構成する。図4の抵抗変化素子201においても、上述した図3の抵抗変化素子113と同様な材料や組成を採用することができる。すなわち、第1電極兼第1銅配線405は銅(Cu)を主成分とする電極であり配線である。
 図4の抵抗変化素子201の第2電極410は、少なくともルテニウム(Ru)と窒素と第1金属とを含んでなる。第2電極410は、銅(Cu)よりもイオン化しにくく、イオン伝導層409において拡散、イオン伝導しにくい金属を用いることが好ましく、銅よりも酸化の自由エネルギーの絶対値が小さい金属材料とすることが好ましい。この条件を満たす材料として、第2電極410は、少なくともルテニウム(Ru)と窒素と第1金属とを含んでなる。
 この第1金属としては、銅(Cu)よりも酸化の自由エネルギーが負に大きいものを選択することが好ましく、例えば、Ti、Ta、Al、Mn、Zr、Hf、Mg、Co、Zn、Wの少なくとも一つであることが好ましい。第2電極410における窒素の含有率は、10atm%~20atm%の範囲が好ましい。また第2電極410における第1金属の含有率は、10atm%~20atm%の範囲が好ましい。また第2電極410における上記窒素の含有量と第1金属の含有量との和が40atm%以下であることが好ましい。この範囲外の組成比になると、第2電極が熱に対して不安定化し、逆に絶縁破壊電圧が低下するためである。
 以下、図4の構造を説明する。開口部はSiCN膜のような第1バリア絶縁膜407に設けられており、イオン伝導層409は例えば固体電解質であり、酸化物であったり、例えば炭素、酸素、水素、シリコンを主成分とする材料からなる。第2電極410は、ルテニウム(Ru)を主成分とする電極である。第2電極410の上部には、TiNなどの第3電極411や、TaNなどの高融点窒素化合物をさらに有していてもよい。第3電極411と保護絶縁膜414との間には、図4のようなハードマスク膜412をさらに有していてもよい。第3電極411は銅プラグ418を介して上部配線と接続されており、銅デュアルダマシン配線であってよい。銅デュアルダマシン配線はTa/TaNなどのバリアメタル420で側面と底面が囲まれており、上面は例えばSiNやSiCNなどの第2絶縁性バリア膜421で覆われている。
 図4では、図示しない半導体基板の上方に、順次に積層された第1層間絶縁膜400、第1絶縁性バリア膜407、保護絶縁膜414、第2層間絶縁膜417、第3層間絶縁膜416、および第2絶縁性バリア膜421を備えた絶縁積層体を有している。当該多層配線層においては、SiOCHのような第1層間絶縁膜400に配線溝が形成されている。該配線溝の側面および底面は、Ta/TaNなどのバリアメタル406で被覆されており、更に、該配線溝を埋め込むようにバリアメタル406の上に第1電極兼第1銅配線405が形成されている。図4では、第1電極兼第1銅配線405は、下部配線である。また、SiNなどの保護絶縁膜414と、SiCNなどのハードマスク膜412にコンタクトホールが形成され、このコンタクトホールを介して銅プラグ418は抵抗変化素子201の第3電極411に接触している。さらに、SiOCHなどの第3層間絶縁膜416、およびSiOなどの第2層間絶縁膜417に、配線溝が形成されている。該コンタクトホールと配線溝の側面および底面は、Ta/TaNなどのバリアメタル420によって被覆される。銅プラグ418が該コンタクトホールを埋め込むように形成され、上部配線としての第2銅配線419が該配線溝を埋め込むように形成されている。第2銅配線419と銅プラグ418とは、一体となっている。図4では、第1電極兼第1銅配線405が下部配線である。
 SiCNなどの第1絶縁性バリア膜407には、第1電極兼第1銅配線405に連通する開口部が形成されている。第1電極兼第1銅配線405の該開口部の内部に位置する部分、第1絶縁性バリア膜407の該開口部の側面および第1絶縁性バリア膜407の上面の一部を被覆するように、イオン伝導層409、第2電極410、および第3電極411が順次に積層されている。
 図4の、本発明の第2の実施例に係る抵抗変化素子が形成された半導体装置の製造方法のうち、抵抗変化素子の部分の製造方法について簡単に説明する。
 第1層間絶縁膜400に配線溝を形成し、配線溝の側面および底面をバリアメタル406で被覆する。さらに、バリアメタル406で被覆された配線溝に、第1電極兼第1銅配線405を形成する。第1電極兼第1銅配線405は、銅を少なくとも含んでいる。第1電極兼第1銅配線405は抵抗変化素子201の第1電極としても働く。第1層間絶縁膜400および第1電極兼第1銅配線405を覆うように、第1絶縁性バリア膜407を形成した後、第1電極兼第1銅配線405を露出させる開口部を第1絶縁性バリア膜407に形成する。
 さらに、開口部で露出した第1電極兼第1銅配線405に少なくとも接するように、イオン伝導層409となるイオン伝導体を形成する。抵抗変化素子201が第2電極410を有する場合には、その後、少なくともルテニウム(Ru)と窒素と第1金属とを含み、第2電極410となる第2電極層を積層する。図4のように抵抗変化素子201が第3電極411を有する場合には、その後、窒素と第1金属とを含み、第3電極411となる第3電極層を積層する。
 第3電極層、第2電極層およびイオン伝導体を含む積層構造、または第2電極層およびイオン伝導体を含む積層構造をパターニングして、抵抗変化素子201のイオン伝導層409、第2電極410や第3電極411を形成する。
 [実施例3]
 図5は、本発明の第3の実施例に係る抵抗変化素子が形成された、多層配線構造を有する半導体装置を、模式的に示す断面図である。CMOS(Complementary Metal Oxide Semiconductor)基板上の多層配線層内に抵抗変化素子501が搭載されている。本発明の実施形態の、再構成回路形成におけるCMOS基板下地とは、抵抗変化素子501よりも下のレイヤを指す。
 この半導体装置は、半導体基板の一例としてのシリコン基板500と、シリコン基板500上に形成されたMOSFET599とを有する。さらにこの半導体装置は、シリコン基板500およびMOSFET599上に形成された多層配線構造と、多層配線構造に組み込まれた抵抗変化素子501とを有する。
 図5の多層配線構造は、上下方向に積層された絶縁膜としての複数のシリコン酸化膜511、519およびSiOCH膜512~518を含む。さらに図5の多層配線構造は、これらの複数のシリコン酸化膜またはSiOCH膜の各膜の間に挟まれて形成されているシリコン炭窒化(SiCN)膜521~528と、最上層に形成された保護膜としてのシリコン酸窒化膜520とを含む。
 さらに図5の多層配線構造は、最下層のシリコン酸化膜511の厚さ方向に貫通して形成されたタングステンプラグ529を含む。さらに図5の多層配線構造は、最下層の直上の層であるSiOCH膜512の厚さ方向に貫通して形成されたCu層534およびバリアメタル533からなる銅配線530を含む。さらに図5の多層配線構造は、Cu層534およびバリアメタル533からなる銅配線530より上層のSiOCH膜513に形成された、Cu層536およびバリアメタル535からなる銅配線530を含む。さらに図5の多層配線構造は、SiOCH膜512~518の各々に形成されたデュアルダマシンパターンと、シリコン酸化膜519および最上層のシリコン酸窒化膜520にわたって形成された最上層配線とを含む。
 タングステンプラグ529は、タングステン層532と、タングステン層532の側面および底面を覆うTiN層531と、からなる。SiOCH膜512~518の各々には、デュアルダマシン溝が形成されている。上記デュアルダマシンパターンは、このデュアルダマシン溝に埋められたCu層540、542、544、546と、Cu層540、542、544、546の側面および底面を覆うTa/TaN膜539、541、543、545と、からなる。Ta/TaN膜539、541、543、545は、バリアメタルである。
 最上層配線は、シリコン酸化膜519および最上層のシリコン酸窒化膜520にわたって形成された溝状ビアに埋め込まれたAl-Cu層548を含む。さらに最上層配線は、シリコン酸化膜519内におけるAl-Cu層548の側面および底面と、シリコン酸化膜519とシリコン酸窒化膜520との間の境界面とを覆うバリアメタルとしてのTi/TiN層547を含む。さらに最上層配線は、シリコン酸窒化膜520内におけるAl-Cu層548の上面を覆うバリアメタルとしてのTi/TiN層549を含む。最上層配線のTi/TiN層547およびTi/TiN層549は、必要に応じて、省略することが可能である。最上層配線を構成するAl-Cu層548の上面には、接続パッド用の凹部が形成されている。
 最上層配線、各デュアルダマシンパターン、銅配線530、タングステンプラグ529は上下方向に整列して形成されており、最上層配線、タングステンプラグ529および各パターンは上層および下層の配線、プラグまたはパターンと電気的に接続されている。
 図5の抵抗変化素子501は、Cu層534およびバリアメタル533からなる銅配線530と、Cu層536およびバリアメタル535からなる銅配線530との間に、形成されている。
 上述した実施例3の図4に示す抵抗変化素子201を、本実施例に適用することができる。すなわち、図4の第1電極兼第1銅配線405を、図5のCu層534とする。さらに、図5のCu層534と、Cu層534およびバリアメタル533からなる銅配線530との間に、図4のような、イオン伝導層409、第2電極410、第3電極411などを配置する。図5の抵抗変化素子501においても、上述した図3の抵抗変化素子113や図4の抵抗変化素子201と同様な材料や組成を採用することができる。
 [比較例1]
 次に、本発明の実施形態の抵抗変化素子と、背景技術の抵抗変化素子の、セット電圧(Vset)と絶縁破壊電圧(Vb)の比較を示す。図6(a)はRu電極を用いた抵抗変化素子のセット電圧および絶縁破壊電圧を示すグラフであり、図6(b)はRuTi電極を用いた抵抗変化素子のセット電圧および絶縁破壊電圧を示すグラフである。図6(c)は、RuTiN電極を用いた抵抗変化素子のセット電圧および絶縁破壊電圧を示すグラフである。図6(a)~図6(c)の横軸は、抵抗変化素子を高抵抗状態から低抵抗状態にプログラムする場合のセット電圧(Vset)と、絶縁破壊が発生する絶縁破壊電圧(Vb)とを示し、縦軸は累積確率を示す。
 上述した図4に示される構造において、図6(c)は抵抗変化素子の第2電極としてRuTiN電極を用いた場合を示し、本発明の実施形態に対応する。図6(a)は抵抗変化素子の第2電極としてRu電極を用いた場合、図6(b)は抵抗変化素子の第2電極としてRuTi電極を用いた場合を示し、本発明の背景技術に対応し、本発明の比較例となるものである。
 図6(a)および図6(b)と図6(c)とから、セット電圧(Vset)については、背景技術の抵抗変化素子においても、本発明の実施形態に対応する抵抗変化素子においても、中央値2Vであり、ほぼ同等である。一方、絶縁破壊電圧(Vb)は抵抗変化素子の第2電極をRuTiNとすることで改善していることがわかる。これは上述したように、抵抗変化素子の第2電極が安定化したためである。このとき、第2電極におけるチタン(Ti)の含有量は15atm%、窒素の含有量は15atm%であった。
 さらに、第2電極中の、チタン(Ti)の含有量と窒素の含有量の依存性を確認したところ、チタン(Ti)の含有量は10atm%~20atm%の範囲において、顕著に絶縁破壊電圧の改善が確認された。一方、窒素の含有量においても、10atm%~20atm%の範囲において、顕著に絶縁破壊電圧の改善が確認された。
 また、窒素の含有量とチタン(Ti)の含有量は、これらの範囲において同一であることが好ましいことがわかった。これは、窒素は第1金属と結合するためである。
 第2電極の結晶性を評価したところ、X線回折により六方最密充填構造であることを確認した。すわなち、結晶構造としてはRuを母体として維持することが好ましく、イオン伝導層内に金属架橋が形成された場合には、第2電極と金属架橋界面が安定化する効果を奏する。これは、六方最密充填構造においては、最も表面エネルギーの小さくなる安定化面が存在するためである。この結晶構造を維持するためには、窒素の含有量とチタンの含有量の合計が40atm%未満であることが好ましいことを確認した。
 第1金属がタンタル(Ta)、タングステン(W)の場合においても、同様の結果が得られた。このことから、第1金属としては、銅よりも酸化の自由エネルギーの絶対値が小さい金属材料とすることが好ましいことを示唆している。第2電極に好ましい材料として第1金属は、Cuよりも酸化の自由エネルギーが負に大きい、Ti、Ta、Al、Mn、Zr、Hf、Mg、Co、Zn、Wの中から選択することが可能である。これらのうち、窒素化合物が熱安定を有するという観点から、Ti、Ta、Al、Zr、Wがより好ましいと判断できる。
 [実施例4]
 図8は、本発明の第4の実施例に係る抵抗変化素子が多層配線層の内部に集積化された半導体装置の構成を示す断面図である。図8では、抵抗変化素子が二端子スイッチとして構成されている。
 図8では、多層配線層が、第1電極兼第1銅配線808と、プラグ807とを備えており、二端子スイッチ899が、上部電極としての第2電極804aおよび第3電極804bと、イオン伝導層803とを備えた構成となっている。多層配線層の第1電極兼第1銅配線808は、二端子スイッチ899の下部電極を兼ねている。即ち、イオン伝導層803は、上部電極と第1電極兼第1銅配線808の間に挿入されている。イオン伝導層803は、一つの開口を通じ第1電極兼第1銅配線808と接続されている。該開口は、層間絶縁膜800と第1電極兼第1銅配線808との間の部分に到達するように形成されている。
 図8の絶縁積層体は、層間絶縁膜800、バリア絶縁膜801、層間絶縁膜802、層間絶縁膜816およびバリア絶縁膜812を、備える。層間絶縁膜800に配線溝811が形成されている。該配線溝811の側面および底面は、バリアメタル809で被覆されており、さらに、配線溝811を埋め込むように第1電極兼第1銅配線808が形成されている。
 また、層間絶縁膜802にコンタクトホールが形成され、さらに、層間絶縁膜816に配線溝811が形成されている。該コンタクトホールと配線溝811の側面および底面は、バリアメタル813によって被覆されている。プラグ807が該コンタクトホールを埋め込むように形成され、第2配線814が該配線溝811を埋め込むように形成されている。第2配線814とプラグ807とは、一体となっている。
 バリア絶縁膜801には、第1電極兼第1銅配線808に連通する開口が形成されている。イオン伝導層803、第2電極804aおよび第3電極804bが、順次に積層されている。これらは、第1電極兼第1銅配線808の該開口の内部に位置する部分、バリア絶縁膜801の該開口の側面およびバリア絶縁膜901の上面の一部を被覆するように、順次に積層されている。
 このように構成された二端子スイッチは、電圧または電流の印加によってオン状態またはオフ状態にスイッチングされる。例えば、第1電極兼第1銅配線808を形成する金属から供給される金属イオンのイオン伝導層803への電界拡散を利用して、二端子スイッチのスイッチングが行われる。
 層間絶縁膜800は、半導体基板上に形成された絶縁膜である。第1電極兼第1銅配線808は、層間絶縁膜800に形成された配線溝811に埋め込まれた配線である。ここで、第1電極兼第1銅配線808は、二端子スイッチの下部電極を兼ね、イオン伝導層803と直接接している。第1電極兼第1銅配線808は、イオン伝導層803において拡散またはイオン伝導が可能な金属イオンを生成する金属(例えば、銅)とアルミニウムとを含む合金で形成されていてもよい。
 バリアメタル809は、第1電極兼第1銅配線808を形成する金属(例えば、銅)が層間絶縁膜800や下層へ拡散することを防止するために、第1電極兼第1銅配線808の側面および底面を被覆する、バリア性を有する導電性膜である。第1電極兼第1銅配線808およびバリアメタル809で下部配線810を構成している。
 バリア絶縁膜801は、層間絶縁膜800および第1電極兼第1銅配線808を被覆するように形成される。バリア絶縁膜801は、第1電極兼第1銅配線808に連通する開口を有しており、該開口の内部において、第1電極兼第1銅配線808とイオン伝導層803が接している。イオン伝導層803は、第1電極兼第1銅配線808を形成する金属から生成される金属イオンの作用(拡散、イオン伝導など)により、抵抗が変化する抵抗変化層を構成する。
 第2電極804aは、上部電極の下側の電極層であり、イオン伝導層803と直接接している。第3電極804bは、上部電極の上側の電極層であり、第2電極804aの上に形成されている。第3電極804bは、第2電極804aを保護する役割を有する。すなわち、第3電極804bが第2電極804aを保護することで、製造プロセス中の第2電極804aへのダメージを抑制し、二端子スイッチ899のスイッチング特性を維持することができる。
 層間絶縁膜802、816は、保護絶縁膜801の上に形成された絶縁膜である。層間絶縁膜802、816には、プラグ807を埋め込むためのコンタクトホールが形成されている。当該コンタクトホールはバリアメタル813で被覆されており、プラグ807が、バリアメタル813の上に当該コンタクトホールを埋め込むように形成されている。バリアメタル813の上に第2配線814が当該配線溝811を埋め込むように形成されている。バリアメタル813および第2配線814は、上部配線815を構成する。
 第2配線814は、層間絶縁膜816に形成された配線溝811に埋め込まれた配線である。第2配線814は、プラグ807と一体になっている。プラグ807は、バリアメタル813を介して第3電極804bと電気的に接続されている。
 図8の抵抗変化素子においても、上述した図3の抵抗変化素子113や図4の抵抗変化素子201と同様な材料や組成を採用することができる。
 [実施例5]
 図9は、本発明の第5の実施例に係る抵抗変化素子が多層配線層の内部に集積化された半導体装置の構成を示す断面図である。図9では、抵抗変化素子が三端子スイッチとして構成されている。
 図9では、多層配線層が、一対の第1電極兼第1銅配線908a、908bと、プラグ907とを備えており、三端子スイッチ999が、上部電極としての第2電極904aおよび第3電極904bと、イオン伝導層903とを備えた構成となっている。多層配線層の第1電極兼第1銅配線908a、908bは、三端子スイッチ999の下部電極を兼ねている。即ち、イオン伝導層903は、上部電極と第1電極兼第1銅配線908a、908bの間に挿入されている。イオン伝導層903は、一つの開口を通じ一対の第1電極兼第1銅配線908a、908bと接続されている。該開口は、層間絶縁膜900の第1電極兼第1銅配線908a、908bの間の部分に到達するように形成されている。
 図9の絶縁積層体は、層間絶縁膜900、バリア絶縁膜901、層間絶縁膜902、層間絶縁膜916およびバリア絶縁膜912を、備える。層間絶縁膜900に一対の配線溝911が形成されている。該配線溝911の側面および底面は、それぞれ、バリアメタル909a、909bで被覆されており、さらに、一対の配線溝911を埋め込むように一対の第1電極兼第1銅配線908a、908bが形成されている。
 また、層間絶縁膜902にコンタクトホールが形成され、さらに、層間絶縁膜916に配線溝911が形成されている。該コンタクトホールと配線溝911の側面および底面は、バリアメタル913によって被覆されている。プラグ907が該コンタクトホールを埋め込むように形成され、第2配線914が該配線溝911を埋め込むように形成されている。第2配線914とプラグ907とは、一体となっている。
 バリア絶縁膜901には、第1電極兼第1銅配線908a、908bに連通する開口が形成されている。イオン伝導層903、第2電極904aおよび第3電極904bが、順次に積層されている。これらは、第1電極兼第1銅配線908a、908bの該開口の内部に位置する部分、バリア絶縁膜901の該開口の側面およびバリア絶縁膜901の上面の一部を被覆するように、順次に積層されている。
 このように構成された三端子スイッチは、電圧または電流の印加によってオン状態またはオフ状態にスイッチングされる。例えば、第1電極兼第1銅配線908a、908bを形成する金属から供給される金属イオンのイオン伝導層903への電界拡散を利用して、三端子スイッチのスイッチングが行われる。
 層間絶縁膜900は、半導体基板上に形成された絶縁膜である。第1電極兼第1銅配線908a、908bは、層間絶縁膜900に形成された配線溝911に埋め込まれた配線である。ここで、第1電極兼第1銅配線908a、908bは、三端子スイッチの下部電極を兼ね、イオン伝導層903と直接接している。第1電極兼第1銅配線908a、908bは、イオン伝導層903において拡散またはイオン伝導が可能な金属イオンを生成する金属(例えば、銅)とアルミニウムとを含む合金で形成されていてもよい。
 バリアメタル909a、909bは、第1電極兼第1銅配線908a、908bを形成する金属(例えば、銅)が層間絶縁膜900や下層へ拡散することを防止するために、第1電極兼第1銅配線908a、908bの側面および底面を被覆する。バリアメタル909a、909bは、第1電極兼第1銅配線908a、908bを形成する金属(例えば、銅)が層間絶縁膜900や下層へ拡散することを防止するバリア性を有する導電性膜である。第1配線910aおよびバリアメタル909aで下部配線910aを構成し、第1配線910bおよびバリアメタル909bで下部配線910aを構成している。
 バリア絶縁膜901は、層間絶縁膜900および第1電極兼第1銅配線908a、908bを被覆するように形成される。バリア絶縁膜901は、第1電極兼第1銅配線908a、908bに連通する開口を有しており、該開口の内部において、第1電極兼第1銅配線908a、908bとイオン伝導層903が接している。イオン伝導層903は、第1電極兼第1銅配線908a、908bを形成する金属から生成される金属イオンの作用(拡散、イオン伝導など)により、抵抗が変化する抵抗変化層を構成する。
 第2電極904aは、上部電極の下側の電極層であり、イオン伝導層903と直接接している。第3電極904bは、上部電極の上側の電極層であり、第2電極904aの上に形成されている。第3電極904bは、第2電極904aを保護する役割を有する。すなわち、第3電極904bが第2電極904aを保護することで、製造プロセス中の第2電極904aへのダメージを抑制し、三端子スイッチ999のスイッチング特性を維持することができる。
 層間絶縁膜902、916は、保護絶縁膜901の上に形成された絶縁膜である。層間絶縁膜902、916には、プラグ907を埋め込むためのコンタクトホールが形成されている。当該コンタクトホールはバリアメタル913で被覆されており、プラグ907が、バリアメタル913の上に当該コンタクトホールを埋め込むように形成されている。バリアメタル913の上に第2配線914が当該配線溝911を埋め込むように形成されている。バリアメタル913および第2配線914は、上部配線915を構成する。
 第2配線914は、層間絶縁膜916に形成された配線溝911に埋め込まれた配線である。第2配線914は、プラグ907と一体になっている。プラグ907は、バリアメタル913を介して第3電極904bと電気的に接続されている。
 図9の抵抗変化素子においても、上述した図3の抵抗変化素子113や図4の抵抗変化素子201と同様な材料や組成を採用することができる。
 好適な実施形態および実施例に関連付けして本発明を説明したが、これら実施形態および実施例は単に実例を挙げて発明を説明するためのものであって、限定することを意味するものではない。
 例えば、本発明者によってなされた発明の背景となった利用分野であるCMOS回路を有する半導体製造装置技術に関して説明し、半導体基板上の銅配線上部に抵抗変化素子を形成する例について説明したが、本発明はそれに限定されるものではない。本発明を、例えば、DRAM(Dynamic RAM)、SRAM(Static RAM)、フラッシュメモリ、FRAM(Ferro Electric RAM)(登録商標)、MRAM(Magnetic RAM)、抵抗変化型メモリ等のようなメモリ回路を有する半導体製品にも、適用することができる。また本発明を、バイポーラトランジスタ等のようなメモリ回路を有する半導体製品、マイクロプロセッサなどの論理回路を有する半導体製品、あるいはそれらを同時に掲載したボードやパッケージの銅配線上へも適用することができる。
 また、本発明を、半導体装置に対する、電子回路装置、光回路装置、量子回路装置、マイクロマシン、MEMS(Micro Electro Mechanical Systems)などの接合にも適用することができる。また、本発明ではスイッチ機能での実施例を中心に説明したが、不揮発性と抵抗変化特性の双方を利用したメモリ素子などに用いることもできる。
 また、製造後の状態からも本発明による基板の接合方法を確認することができる。具体的には、デバイスの断面をTEM観察することで、銅からなる下部電極、イオン伝導層、上部電極を確認する。また、他にも、多層配線に銅配線が用いられていることを確認し、抵抗変化素子が搭載されている場合には、抵抗変化素子の下面が銅配線であり、銅配線が下部電極を兼ねている状態で、イオン伝導層の存在を観察することで確認することができる。さらにTEMに加えEDX(Energy Dispersive X-ray Spectroscopy:エネルギー分散型X線分光法)、EELS(Electron Energy-Loss Spectroscopy:電子エネルギー損失分光法)などの組成分析を行うことで、使用材用の確認をすることができる。
 具体的には、銅配線上にイオン伝導層が形成され、イオン伝導層に接している上部電極がRuと窒素と第1金属を含めば、本発明を用いた構造であると判断することができる。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)銅を少なくとも含む第1電極と、Ru、窒素および第1金属を少なくとも含む第2電極と、前記第1電極と前記第2電極との間に位置するイオン伝導層と、を有する抵抗変化素子。
(付記2)前記第1金属は、Ruよりも酸化の標準生成自由エネルギーが負に大きい、付記1に記載の抵抗変化素子。
(付記3)前記第1金属は、Ti、Ta、Al、Mn、Zr、Hf、Mg、Co、Znの少なくとも一つである、付記1または付記2に記載の抵抗変化素子。
(付記4)前記第2電極は六方最密充填構造である、付記1乃至付記3のいずれか一つに記載の抵抗変化素子。
(付記5)前記第2電極における窒素の含有量は、10atm%以上20atm%未満である、付記1乃至付記4のいずれか一つに記載の抵抗変化素子。
(付記6)前記第2電極における前記第1金属の含有量は、10amt%以上20atm%未満である、付記1乃至付記5のいずれか一つに記載の抵抗変化素子。
(付記7)前記第2電極における、前記窒素の含有量と前記第1金属の含有量とが同一である、付記1乃至付記6のいずれか一つに記載の抵抗変化素子。
(付記8)前記第2電極における、前記窒素と前記第1金属の比率が、化学量論組成となっている、付記1乃至付記6のいずれか一つに記載の抵抗変化素子。
(付記9)前記第2電極における、前記窒素の含有量と前記第1金属の含有量との和が40atm%以下である、付記1乃至付記8のいずれか一つに記載の抵抗変化素子。
(付記10)前記第2電極と接し前記イオン伝導層とは接しない第3電極をさらに有し、前記第3電極は前記第1金属と窒素とを少なくとも含む、付記1乃至付記9のいずれか一つに記載の抵抗変化素子。
(付記11)前記第1電極が銅の他に前記第1金属を含む、付記1乃至付記10のいずれか一つに記載の抵抗変化素子。
(付記12)銅を少なくとも含む第1電極を形成し、前記第1電極の上にイオン伝導層を形成し、前記イオン伝導層の上にRu、窒素および第1金属を少なくとも含む第2電極を形成する、抵抗変化素子の製造方法。
(付記13)銅を少なくとも含む第1電極層を形成し、前記第1電極層を覆う絶縁膜を形成した後で、前記第1電極層の一部を露出させる開口部を形成し、前記絶縁膜の前記開口部で露出する前記第1電極層に接するようにイオン伝導体を形成し、
前記イオン伝導体の上にRu、窒素および第1金属を少なくとも含む第2電極層を形成し、
前記第2電極層および前記イオン伝導体をパターニングして、前記第1電極層からなる前記第1電極と、前記イオン伝導層と、前記第2電極とを含む抵抗変化素子を形成する、付記12に記載の抵抗変化素子の製造方法。
(付記14)前記第2電極層を形成した後で、前記第2電極層の上に前記第1金属と窒素とを少なくとも含む第3電極層を形成し、前記第3電極層、前記第2電極層および前記イオン伝導体をパターニングして、前記第1電極層からなる第1電極と、前記イオン伝導層と、前記第2電極と、第3電極とを含む抵抗変化素子を形成する、付記12または付記13に記載の抵抗変化素子の製造方法。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年6月11日に出願された日本出願特願2015-118014号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  第1電極
 2、106、804a、904a  第2電極
 3、105、803、903  イオン伝導層
 4、107、804b、904b  第3電極
 103、405、808、908a、908b  第1電極兼第1銅配線
 113、201、501  抵抗変化素子
 899  二端子スイッチ
 999  三端子スイッチ

Claims (10)

  1.  銅を少なくとも含む第1電極と、Ru、窒素および第1金属を少なくとも含む第2電極と、前記第1電極と前記第2電極との間に位置するイオン伝導層と、を有する抵抗変化素子。
  2.  前記第1金属は、Ruよりも酸化の標準生成自由エネルギーが負に大きい、請求項1に記載の抵抗変化素子。
  3.  前記第1金属は、Ti、Ta、Al、Mn、Zr、Hf、Mg、Co、Znの少なくとも一つである、請求項1または請求項2に記載の抵抗変化素子。
  4.  前記第2電極は六方最密充填構造である、請求項1乃至請求項3のいずれか一項に記載の抵抗変化素子。
  5.  前記第2電極における窒素の含有量は、10atm%以上20atm%未満である、請求項1乃至請求項4のいずれか一項に記載の抵抗変化素子。
  6.  前記第2電極における前記第1金属の含有量は、10amt%以上20atm%未満である、請求項1乃至請求項5のいずれか一項に記載の抵抗変化素子。
  7.  前記第2電極における、前記窒素の含有量と前記第1金属の含有量とが同一である、請求項1乃至請求項6のいずれか一項に記載の抵抗変化素子。
  8.  前記第2電極における、前記窒素と前記第1金属の比率が、化学量論組成となっている、請求項1乃至請求項6のいずれか一項に記載の抵抗変化素子。
  9.  前記第2電極における、前記窒素の含有量と前記第1金属の含有量との和が40atm%以下である、請求項1乃至請求項8のいずれか一項に記載の抵抗変化素子。
  10.  前記第2電極と接し前記イオン伝導層とは接しない第3電極をさらに有し、前記第3電極は前記第1金属と窒素とを少なくとも含む、請求項1乃至請求項9のいずれか一項に記載の抵抗変化素子。
PCT/JP2016/002769 2015-06-11 2016-06-08 抵抗変化素子、および抵抗変化素子の製造方法 WO2016199412A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/577,408 US10305034B2 (en) 2015-06-11 2016-06-08 Variable resistance element and method for producing variable resistance element
JP2017523112A JP6798489B2 (ja) 2015-06-11 2016-06-08 抵抗変化素子、および抵抗変化素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-118014 2015-06-11
JP2015118014 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016199412A1 true WO2016199412A1 (ja) 2016-12-15

Family

ID=57503178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002769 WO2016199412A1 (ja) 2015-06-11 2016-06-08 抵抗変化素子、および抵抗変化素子の製造方法

Country Status (3)

Country Link
US (1) US10305034B2 (ja)
JP (1) JP6798489B2 (ja)
WO (1) WO2016199412A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181019A1 (ja) * 2017-03-31 2020-02-06 日本電気株式会社 半導体装置およびその製造方法
KR102223115B1 (ko) * 2019-09-24 2021-03-08 포항공과대학교 산학협력단 스위칭 소자 및 이를 포함하는 논리 연산 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152497A (ja) * 2017-03-14 2018-09-27 東芝メモリ株式会社 抵抗変化素子及び記憶装置
CN112823411B (zh) * 2018-09-28 2024-05-28 株式会社村田制作所 连接电极及连接电极的制造方法
US11532669B2 (en) * 2019-08-23 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and manufacturing method thereof
KR20210127559A (ko) * 2020-04-14 2021-10-22 에스케이하이닉스 주식회사 가변 저항층을 포함하는 반도체 장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114482A (ja) * 1998-10-06 2000-04-21 Matsushita Electric Ind Co Ltd キャパシタ、その製造方法及び半導体装置
JP2001085642A (ja) * 1999-07-09 2001-03-30 Nec Corp 半導体装置およびその製造方法
JP2008021750A (ja) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 抵抗変化素子およびその製造方法、ならびにそれを用いた抵抗変化型メモリ
JP2010010582A (ja) * 2008-06-30 2010-01-14 Fujitsu Ltd 抵抗素子及びその製造方法
WO2010079816A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 半導体装置及びその製造方法
JP2011198909A (ja) * 2010-03-18 2011-10-06 Panasonic Corp 抵抗変化型不揮発性記憶素子
JP2012174766A (ja) * 2011-02-18 2012-09-10 Toshiba Corp 不揮発性抵抗変化素子
JP2012256772A (ja) * 2011-06-10 2012-12-27 Sony Corp 記憶素子および記憶装置
JP2013162086A (ja) * 2012-02-08 2013-08-19 Toshiba Corp 不揮発性抵抗変化素子
WO2013190988A1 (ja) * 2012-06-22 2013-12-27 日本電気株式会社 スイッチング素子およびスイッチング素子の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669422B2 (ja) * 2010-03-31 2015-02-12 キヤノンアネルバ株式会社 不揮発性記憶素子およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114482A (ja) * 1998-10-06 2000-04-21 Matsushita Electric Ind Co Ltd キャパシタ、その製造方法及び半導体装置
JP2001085642A (ja) * 1999-07-09 2001-03-30 Nec Corp 半導体装置およびその製造方法
JP2008021750A (ja) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 抵抗変化素子およびその製造方法、ならびにそれを用いた抵抗変化型メモリ
JP2010010582A (ja) * 2008-06-30 2010-01-14 Fujitsu Ltd 抵抗素子及びその製造方法
WO2010079816A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 半導体装置及びその製造方法
JP2011198909A (ja) * 2010-03-18 2011-10-06 Panasonic Corp 抵抗変化型不揮発性記憶素子
JP2012174766A (ja) * 2011-02-18 2012-09-10 Toshiba Corp 不揮発性抵抗変化素子
JP2012256772A (ja) * 2011-06-10 2012-12-27 Sony Corp 記憶素子および記憶装置
JP2013162086A (ja) * 2012-02-08 2013-08-19 Toshiba Corp 不揮発性抵抗変化素子
WO2013190988A1 (ja) * 2012-06-22 2013-12-27 日本電気株式会社 スイッチング素子およびスイッチング素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181019A1 (ja) * 2017-03-31 2020-02-06 日本電気株式会社 半導体装置およびその製造方法
KR102223115B1 (ko) * 2019-09-24 2021-03-08 포항공과대학교 산학협력단 스위칭 소자 및 이를 포함하는 논리 연산 장치

Also Published As

Publication number Publication date
US10305034B2 (en) 2019-05-28
US20180166630A1 (en) 2018-06-14
JP6798489B2 (ja) 2020-12-09
JPWO2016199412A1 (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
WO2016199412A1 (ja) 抵抗変化素子、および抵抗変化素子の製造方法
JP5382001B2 (ja) 半導体装置及びその製造方法
US10193065B2 (en) High K scheme to improve retention performance of resistive random access memory (RRAM)
CN108123034B (zh) 具有复合式顶部电极的内嵌式存储器装置
US7888228B2 (en) Method of manufacturing an integrated circuit, an integrated circuit, and a memory module
US7423282B2 (en) Memory structure and method of manufacture
WO2014112365A1 (ja) スイッチング素子、および半導体スイッチング装置の製造方法
US10312288B2 (en) Switching element, semiconductor device, and semiconductor device manufacturing method
JP5324724B2 (ja) 不揮発性記憶装置の製造方法
JP5799504B2 (ja) 半導体装置及びその製造方法
JP5527321B2 (ja) 抵抗変化素子及びその製造方法
WO2016203751A1 (ja) 整流素子、スイッチング素子および整流素子の製造方法
JP2014056888A (ja) 記憶装置
US20210408119A1 (en) Non-volatile storage device and method of manufacturing the same
US20130320289A1 (en) Resistance random access memory and method of fabricating the same
US10615339B2 (en) Variable resistance element and method for fabricating the variable resistance element
WO2018181019A1 (ja) 半導体装置およびその製造方法
JP7426119B2 (ja) 非線形抵抗素子、スイッチング素子、非線形抵抗素子の製造方法
US9905758B2 (en) Semiconductor device and method for manufacturing same
WO2019176833A1 (ja) 半導体装置およびその製造方法
JP2023051435A (ja) 非線形抵抗素子、スイッチング素子、及び非線形抵抗素子の製造方法
JP2015146343A (ja) 不揮発性記憶装置およびその製造方法
JP2014216386A (ja) 抵抗変化素子及びその形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523112

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15577408

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807120

Country of ref document: EP

Kind code of ref document: A1